
IHT DIES HARD: PROVABLE ACCELERATED ITERATIVE HARD
THRESHOLDING

RAJIV KHANNA† AND ANASTASIOS KYRILLIDIS?
†UNIVERSITY OF TEXAS AT AUSTIN

?IBM T.J. WATSON RESEARCH CENTER

Abstract. We study –both in theory and practice– the use of momentum motions in classic iterative
hard thresholding (IHT) methods. By simply modifying plain IHT, we investigate its convergence behavior
on convex optimization criteria with non-convex constraints, under standard assumptions. In diverse
scenaria, we observe that acceleration in IHT leads to significant improvements, compared to state of the art
projected gradient descent and Frank-Wolfe variants. As a byproduct of our inspection, we study the impact
of selecting the momentum parameter: similar to convex settings, two modes of behavior are observed
–“rippling” and linear– depending on the level of momentum.

1. Introduction

It is a well-known fact in convex optimization that momentum techniques provably result into significant
gains w.r.t. convergence rate. Since 1983, when Nesterov proposed his optimal gradient methods [1], these
techniques have been used in diverse machine learning and signal processing tasks. Lately, the use of
momentum has re-gained popularity in non-convex settings, thanks to their improved performance in
structured practical scenaria: from empirical risk minimization (ERM) to training neural networks.

Here, we mainly focus on structured constrained ERM optimization problems:

(1) minimize
x∈Rn

f(x) subject to x ∈ C,

that involve convex objectives f and simple structured, but non-convex, constraints C, that can be described
using a set of atoms, as in [2, 3]; see also Section 2.1.

Practical algorithms for (1) are convexified projected gradient descent schemes [3], non-convex iterative
hard thresholding (IHT) variants [4] and Frank-Wolfe (FW) methods [5]. Convex methods can accommodate
acceleration due to [1, 6] and come with rigorous theoretical guarantees; but, higher computational
complexity might be observed in practice (depending on the nature of C); further, their configuration
could be harder and/or non-intuitive. FW variants [7, 8] simplify the handling of constraints, but the
successive construction of estimates –by adding singleton atoms to the putative solution– could slow down
convergence. Non-convex methods, such as IHT [9, 10], could be the methods of choice in practice, but only
few schemes justify their behavior in theory. Even more importantly, IHT schemes that utilize acceleration
inferably are lacking. We defer the discussion on related work to Section 5.

In this work, we study the use of acceleration in IHT settings and supply additional information about
open questions regarding the convergence and practicality of such methods on real problems. The current
paper provides evidence that “IHT dies hard”:
• Accelerated IHT comes with theoretical guarantees for the general minimization problem (1). While
recent results [11] focus on plain IHT, there are no results on Accelerated IHT, apart from [12] on
specific cases of (1) and under stricter assumptions. The main assumptions made here are the existence
of an exact projection operation over the structure set C, as well as standard regularity conditions on
the objective function.
• Regarding the effect of the momentum on the convergence behavior, our study justifies that similar –to
convex settings– behavior is observed in practice for accelerated IHT: two modes of convergence exist
(“rippling” and linear), depending on the level of momentum used per iteration.
• We include extensive experimental results with real datasets and highlight the pros and cons of using
IHT variants over state of the art for structured ERM problems.

1

ar
X

iv
:1

71
2.

09
37

9v
1

 [
m

at
h.

O
C

]
 2

6
D

ec
 2

01
7

2 KHANNA, KYRILLIDIS

Our framework applies in numerous structured applications, and one of its primary merits is its flexibility.

2. Problem statement

2.1. Low-dimensional structures. Following the notation in [3], let A denote a set of atoms; i.e., simple
building units of general “signals”. E.g., we write x ∈ Rn as x =

∑
iwiai, where wi are weights and ai ∈ Rn

atoms from A.
Given A, let the “norm” function ‖x‖0,A return the minimum number of superposed atoms that result

into x. Note that ‖ · ‖0,A is a non-convex entity for the most interesting A cases. Also, define the support
function suppA(x) as the function that returns the indices of active atoms in x. Associated with ‖ · ‖0,A is
the projection operation over the set A:

Πk,A(x) ∈ arg min
y:‖y‖0,A≤k

1
2‖x− y‖22.

To motivate our discussion, we summarize some well-known sets A used in machine learning problems; for
a more complete description see [13].
A represents plain sparsity: Let A = {ai ∈ Rn | ai ≡ ±ei, ∀i ∈ [n]}, where ei denotes the canonical basis

vector. In this case, k-sparse “signals” x ∈ Rn can be represented as a linear combination of k atoms in A:
x =

∑
i∈I wiai, for |I| ≤ k and wi ∈ R+. The “norm” function is the standard `0-“norm” and Πk,A(x) finds

the k-largest in magnitude entries of x.
A represents block sparsity [14]: Let {G1, G2, . . . , GM} be a collection of M non-overlapping group

indices such that ∪Mi=1Gi = [n]. With a slight abuse of notation, A = {ai ∈ Rn | ai ≡ ∪j:j∈Giej} is the
collection of grouped indices, according to {G1, G2, . . . , GM}. Then, k-sparse block “signals” x ∈ Rn can be
expressed as a weighted linear combination of k group atoms in A. The “norm” function is the extension of
`0-“norm” over group structures, and Πk,A(x) finds the k most significant groups (i.e., groups with largest
energy).
A denotes low rankness: Let A = {ai ∈ Rm×n | ai = uiv

>
i , ‖ui‖2 = ‖vi‖2 = 1} be the set of rank-one

matrices. Here, sparsity corresponds to low-rankness. The “norm” function corresponds to the notion of
rankness; Πk,A(x) finds the best k-rank approximation.

2.2. Loss function f . Let f : Rn → R be a differentiable convex loss function. We consider applications
that can be described by restricted strongly convex and smooth functions f .

Definition 1. Let f be convex and differentiable. f is α-restricted strongly convex over C ⊆ Rn if:

(2) f(y) ≥ f(x) + 〈∇f(x), y − x〉+ α
2 ‖x− y‖22, ∀x, y ∈ C.

Definition 2. Let f be a convex and differentiable. f is β-restricted smooth over C ⊆ Rn if:

(3) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β
2 ‖x− y‖22, ∀x, y ∈ C.

Combined with the above, C could be the set of rk-sparse vectors, rk-sparse block “signals”, etc, for
some integer r > 0.

2.3. Optimization criterion. Given f and a low-dimensional structure A, we focus on the following
optimization problem:

(4) minimize
x∈Rn

f(x) subject to ‖x‖0,A ≤ k.

Here, k ∈ Z+ denotes the level of “succinctness”. Examples include (i) sparse and model-based sparse linear
regression, (ii) low-rank learning problems, and (iii) model-based, `2-norm regularized logistic regression
tasks; see also Section 6.

PROVABLE ACCELERATED IHT 3

3. Accelerated IHT variant

We follow the path of IHT methods. These are first-order gradient methods, that perform per-iteration
a non-convex projection over the constraint set A. With math terms, this leads to:

xi+1 = Πk,A (xi − µi∇f(xi)) , where µi ∈ R.
While the merits of plain IHT, as described above, are widely known for simple sets A and specific

functions f (cf., [9, 4, 15, 11]), momentum-based acceleration techniques in IHT have not received significant
attention in more generic ML settings. Here, we study a simple momentum-variant of IHT, previously
proposed in [16, 12], that satisfies the following recursions:

xi+1 = Πk,A (ui − µi∇Tif(ui)) ,

and

ui+1 = xi+1 + τ · (xi+1 − xi).(5)

Here, ∇Tif(·) denotes restriction of the gradient on the subspace spanned by set T ; more details below. τ
is the momentum step size, used to properly weight previous estimates with the current one, based on [17].1
Despite the simplicity of (5), to the best of our knowledge, there are no convergence guarantees for generic
f , neither any characterization of its performance w.r.t. τ values. Nevertheless, its superior performance
has been observed under various settings and configurations [16, 19, 12].

In this paper, we study this accelerated IHT variant, as described in Algorithm 1. This algorithm was
originally presented in [16, 12]. However, [16, 12] covers only a special case (i.e., squared loss) of our setting,
and the theory there is restricted, and further needs justification (e.g., the role of τ in the convergence
behavior is not studied). For simplicity, we will focus on the case of sparsity; same notions can be extended
to more complicated sets A.

Some notation first: given gradient ∇f(x) ∈ Rn, and given a subset of [n], say T ⊆ [n], ∇T f(x) ∈ Rn
has entries from ∇f(x), only indexed by T .2 T c represents the complement of [n] \ T .

Algorithm 1 Accelerated IHT algorithm
1: Input: Tolerance η, T , α, β > 0, model A, k ∈ Z+.
2: Initialize: x0, u0 ← 0, U0 ← {∅}. Set ξ = 1− α

β ; select τ s.t. |τ | ≤ 1−ϕξ1/2
ϕξ1/2

, where ϕ = 1+
√

5
2 .

3: repeat
4: Ti ← suppA

(
Πk,A

(
∇Uci f(ui)

))
∪ Ui

5: ūi = ui − 1
β∇Tif(ui)

6: xi+1 = Πk,A (ūi)
†

7: ui+1 = xi+1 + τ (xi+1 − xi) where Ui+1 ← suppA(ui+1)
8: until ‖xi − xi−1‖ ≤ η‖xi‖ or after T iterations.
9: †Optional : Debias step on xi+1, restricted on the support suppA(xi+1).

Algorithm 1 maintains and updates an estimate of the optimum at every iteration. It does so by
maintaining two sequences of variables: xi’s that represent our putative estimates per iteration, and ui’s
that model the effect of “friction” (memory) in the iterates. The first step in each iteration is active support
expansion: we expand support set Ui of ui, by finding the indices of k atoms of the largest entries in the
gradient in the complement of Ui. This step results into set Ti and makes sure that per iteration we enrich
the active support by “exploring” enough outside of it. The following two steps perform the recursion in
(5), restricted on Ti; i.e., we perform a gradient step, followed by a projection onto A; finally, we update
the auxiliary sequence u by using previous estimates as momentum. The iterations terminate once certain
condition holds.
1Nesterov’s acceleration is an improved version of Polyak’s classical momentum [18] schemes. Understanding when and how
hard thresholding operations still work for the whole family of momentum algorithms is open for future research direction.
2Here, we abuse a bit the notation for the case of low rank structure A: in that case ∇T f(x) ∈ Rm×n denotes the part of
∇f(x) that “lives” in the subspace spanned by the atoms in T .

4 KHANNA, KYRILLIDIS

Some observations: Set Ti has cardinality at most 3k; xi estimates are always k-sparse; intermediate
“signal” ui has cardinality at most 2k, as the superposition of two k-sparse “signals”.

4. Theoretical study

Our study3 starts with the description of the dynamics involved per iteration (Lemma 1), followed by
the conditions and eligible parameters that lead to convergence. Proofs are deferred to the Appendix.
Lemma 1 (Iteration invariant). Consider the non-convex optimization problem in (4), for given structure
A, associated with Πk,A(·), and loss function f , satisfying restricted strong convexity and smoothness
properties over 4k sparse “signals”, with parameters α and β, respectively. Let x? be the minimizer of f ,
with ‖x?‖0,A = k and f(x?) ≤ f(y), for any y ∈ Rn such that ‖y‖0,A ≤ 3k. Assuming x0 = 0, Algorithm 1
satisfies ∀τ the following linear system at the i-th iteration:

[
‖xi+1 − x?‖2
‖xi − x?‖2

]
≤
[(

1− α
β

)
· |1 + τ |

(
1− α

β

)
· |τ |

1 0

]

︸ ︷︷ ︸
:=A

·
[
‖xi − x?‖2
‖xi−1 − x?‖2

]
.

Proof ideas involved: The proof is composed mostly of algebraic manipulations. For exact projection Πk,A(·)
and due to the optimality of the step xi+1 = Πk,A (ūi), we observe that ‖xi+1−x?‖22 ≤ 2 〈xi+1 − x?, ūi − x?〉.
Using Definitions 1-2, we prove a version of Lemma 2 in [20] over non-convex constraint sets, using optimality
conditions over low-dimensional structures [21]. These steps are admissible due to the restriction of the
active subspace to the set Ti per iteration: most operations –i.e., inner products, Euclidean distances, etc–
involved in the proof are applied on “signals” comprised of at most 4k atoms. After algebraic “massaging”,
this leads to the two-step recursion:

‖xi+1 − x?‖2 ≤
(

1− α
β

)
· |1 + τ | · ‖xi − x?‖2

+
(

1− α
β

)
· |τ | · ‖xi−1 − x?‖2.

Finally, we convert this second-order linear system into a two-dimensional first-order system, that produces
the desired recursion. See Appendix A for a detailed proof.

A specific case of the above analysis was presented in [12]; however, the theory specifically applies only
to the matrix sensing case over low-rank matrices, using the RIP property. Here, we generalize these results
for generic (restricted) strongly convex and smooth functions f , where different theoretical tools apply. Our
analysis moves beyond this point, as we show next, in contrast to [12]. Further we investigate a variable τ
selection, instead of a constant selection, as in [12].
Remark 1. The assumption f(x?) ≤ f(y), for any y ∈ Rn such that ‖y‖0,A ≤ 3k, is trivially satisfied
by any noiseless norm-based objective; i.e., for b = Φx? and f(x) = 1

2‖b − Φx‖22, f(x?) = 0 for linear
regression or b = M(X?) and f(X) = 1

2‖b −M(X)‖22, f(X?) = 0 for low rank recovery problems. We
note that this assumption does not restrict our analysis just to the noiseless setting. It states that x? has
the minimum function value f , among all vectors that are at most 3k-sparse. E.g., any dense vector, that
might be a solution also due to noise, does not affect this requirement. We conjecture that it is an artifact
of our proof technique.

Lemma 1 just states the iteration invariant of Algorithm 1; it does not guarantee convergence. To do so,
we need to state some interesting properties of A. The proof is elementary and is omitted.
Lemma 2. Let A be the 2 × 2 matrix, as defined above, parameterized by constants 0 < α < β, and
user-defined parameter τ . Denote ξ := 1− α/β. The characteristic polynomial of A is defined as:

λ2 − Tr(A) · λ+ det(A) = 0

where λ represent the eigenvalue(s) of A. Define ∆ := Tr(A)2 − 4 · det(A) = ξ2 · (1 + τ)2 + 4ξ · |τ |. Then,
the eigenvalues of A satisfy the expression: λ = ξ·|1+τ |±

√
∆

2 . Depending on the values of α, β, τ :

3Our focus is to study optimization guarantees (convergence), not statistical ones (required number of measurements, etc).
Our aim is the investigation of accelerated IHT and under which conditions it leads to convergence; not its one-to-one
comparison with plain IHT schemes.

PROVABLE ACCELERATED IHT 5

• A has a unique eigenvalue λ = ξ·|1+τ |
2 , if ∆ = 0. This happens when α = β and is not considered in this

paper (we assume functions f with curvature).
• A has two complex eigenvalues; this happens when ∆ < 0. By construction, this case does not happen in
our scenaria, since β > α.

• For all other cases, A has two distinct real eigenvalues, satisfying λ1,2 = ξ·|1+τ |
2 ±

√
ξ2·(1+τ)+4ξ·|τ |

2 .

Define y(i + 1) =

[
‖xi+1 − x?‖2
‖xi − x?‖2

]
; then, the linear system in Lemma 1 for the i-th iteration becomes

y(i+ 1) ≤ A · y(i). A has only non-negative values; we can unfold this linear system over T iterations such
that

y(T) ≤ AT · y(0).

Here, we make the convention that x−1 = x0 = 0, such that y(0) =

[
‖x0 − x?‖2
‖x−1 − x?‖2

]
=

[
1
1

]
· ‖x?‖2. The

following lemma describes how one can compute a power of a 2× 2 matrix A, Ai, through the eigenvalues
λ1,2 (real and distinct eigenvalues); the proof is provided in Section C. To the best of our knowledge, there
is no detailed proof on this lemma in the literature.

Lemma 3 ([22]). Let A be a 2× 2 matrix with real eigenvalues λ1,2. Then, the following expression holds,
when λ1 6= λ2:

Ai =
λi1 − λi2
λ1 − λ2

·A− λ1λ2 ·
λi−1

1 − λi−1
2

λ1 − λ2
· I

where λi denotes the i-th eigenvalue of A in order.

Then, the main recursion takes the following form:

y(T) ≤ λT1 − λT2
λ1 − λ2

·A · y(0)− λ1λ2
λT−1
1 − λT−1

2

λ1 − λ2
· y(0).(6)

Observe that, in order to achieve convergence (i.e., the RHS convergences to zero), eigenvalues play
a crucial role: Both A and y(0) are constant quantities, and only how fast the quantities λT1 − λT2 and
λT−1

1 − λT−1
2 “shrink” matter most.

Given that eigenvalues appear in the above expressions in some power (i.e., λT1,2 and λT−1
1,2), we require

|λ1,2| < 1 for convergence. To achieve |λ1,2| < 1, we have:

|λ1,2| =
∣∣∣∣
ξ·|1+τ |

2 ±
√

ξ2(1+τ)2

4 + ξ · |τ |
∣∣∣∣

≤
∣∣∣ ξ·|1+τ |

2

∣∣∣+

∣∣∣∣
√

ξ2(1+τ)2

4 + ξ · |τ |
∣∣∣∣

(i)

≤ ξ·|1+τ |
2 + 1

2

√
ξ(1 + |τ |)2 + 4ξ(1 + |τ |)2

(i)

≤ ξ
1
2 (1+|τ |)

2 +
√

5
2 ξ

1
2 (1 + |τ |)

= ϕ · ξ 1
2 (1 + |τ |)

where (i) is due to ξ < 1, and ϕ = (1 +
√

5)/2 denotes the golden ratio. Thus, upper bounding the RHS to
ensure |λ1,2| < 1 implies |τ | < 1−ϕ·ξ1/2

ϕ·ξ1/2 .

6 KHANNA, KYRILLIDIS

Using the assumption |λ1,2| < 1 for |τ | < 1−ϕ·ξ1/2
ϕ·ξ1/2 , (6) further transforms to:

y(T) ≤ λT1 − λT2
λ1 − λ2

·A · y(0)− λ1λ2
λT−1

1 − λT−1
2

λ1 − λ2
· y(0)

(i)

≤ |λ1|T + |λ2|T
|λ1| − |λ2|

·A · y(0)

+ |λ1λ2| ·
|λ1|T−1 + |λ2|T−1

|λ1| − |λ2|
· y(0)

(ii)

≤ 2|λ1|T
|λ1| − |λ2|

·A · y(0) + |λ1| ·
2|λ1|T−1

|λ1| − |λ2|
· y(0)

where (i) is due to A · y(0) and y(0) being positive quantities, and (ii) is due to 1 > |λ1| > |λ2|. Focusing
on the first entry of y(T) and substituting the first row of A and y(0), we obtain the following inequality:

‖xT − x?‖2 ≤ 4·|λ1|T
|λ1|−|λ2| ·

(
1− α

β

)
· |1 + 2τ | · ‖x?‖2.(7)

This suggests that, as long as |λ1,2| < 1, the RHS “shrinks” exponentially with rate |λ1|T , but also depends
(inverse proportionally) on the spectral gap |λ1| − |λ2|. The above lead to the following convergence result:

Theorem 1. Consider the non-convex optimization problem in (4), for given structure A, associated with
Πk,A(·), and loss function f , satisfying restricted strong convexity and smoothness properties over 4k sparse
“signals”, with parameters α and β, respectively. Under the same assumptions with Lemma 1, Algorithm 1
returns a ε-approximate solution, such that ‖xT − x?‖2 ≤ ε, within O

(
log 1−α/β

ε·(|λ1|−|λ2|)

)
iterations (linear

convergence rate).

Proof. We get this result by forcing the RHS of (7) be less than ε > 0. I.e.,
4·|λ1|T
|λ1|−|λ2| ·

(
1− α

β

)
· |1 + 2τ | · ‖x?‖2 ≤ ε⇒(8)

|λ1|T ≤
ε · (|λ1| − |λ2|)

4 · (1− α
β)|1 + 2τ | · ‖x?‖2

⇒(9)

T ≥




log
4·(1−αβ)|1+2τ |·‖x?‖2

ε·(|λ1|−|λ2|)

log |λ1|




(10)

This completes the proof. �

5. Related work

Optimization schemes over low-dimensional structured models have a long history; due to lack of space,
we refer the reader to [23] for an overview of discrete and convex approaches. We note that there are both
projected and proximal non-convex approaches that fit under our generic model, where no acceleration is
assumed. E.g., see [4, 24, 15, 14]; our present work fills this gap. For non-convex proximal steps see [25]
and references therein; again no acceleration is considered. Below, we focus on accelerated optimization
variants, as well as Frank-Wolfe methods.

Related work on accelerated IHT variants. Accelerated IHT algorithms for sparse recovery were first
introduced in [26, 19, 16]. In [26], the authors provide a double overrelaxation thresholding scheme [27]
in order to accelerate their projected gradient descent variant for sparse linear regression; however, no
theoretical guarantees are provided. In [19], Blumensath accelerates standard IHT methods for the same
problem [9, 28] using the double overrelaxation technique in [26]. His result contains theoretical proof of
linear convergence, under the assumption that the overrelaxation step is used only when the objective
function decreases. However, this approach provides no guarantees that we might skip the acceleration
term often, which leads back to the non-accelerated IHT version; see also [27] for a similar approach on
EM algorithms. [29] describe a family of IHT variants, based on the conjugate gradient method [30], that

PROVABLE ACCELERATED IHT 7

Iterations
0 10 20 30 40 50

f
(bx

)
!

f
(x

?
)

10-20

10-10

100

1010

1020

1030
= = 1!'91=2

'91=2
+ @

@ = !0:01
@ = 0
@ = 0:01

Iterations
0 10 20 30 40 50

f
(bx

)
!

f
(x

?
)

10-20

10-15

10-10

10-5

100
= = !

!
1 + 2

9

"
+ 2

q
1
9

!
1
9
+ 1
"
+ @

@ = 0:4
@ = 0:3
@ = 0:01
Plain IHT

Iterations
0 10 20 30 40 50

f
(bx

)
!

f
(x

?
)

10-8

10-6

10-4

10-2

100

102
= = !

!
1 + 2

9

"
+ @

@ = 5
2

@ = 9
4

@ = 11
4

Iterations
0 10 20 30 40 50

f
(bx

)
!

f
(x

?
)

10-20

100

1020

1040

1060
= = !

!
1 + 2

9

"
! 2

q
1
9

!
1
9
+ 1
"
+ @

@ = !0:01

0

Iterations
0 10 20 30 40 50

f
(bx

)
!

f
(x

?
)

10-20

100

1020

1040

1060
= = !

!
1 + 2

9

"
! 2

q
1
9

!
1
9
+ 1
"
+ @

@ = 0

Iterations
0 10 20 30 40 50

f
(bx

)
!

f
(x

?
)

10-12

10-10

10-8

10-6

10-4

10-2

100
= = !

!
1 + 2

9

"
+ 2

q
1
9

!
1
9
+ 1
"
+ @

@ = 0

⌧ = �
⇣
1 + 2

⇠

⌘
� 2

r
1
⇠

⇣
1
⇠ + 1

⌘
⌧ = �

⇣
1 + 2

⇠

⌘
+ 2

r
1
⇠

⇣
1
⇠ + 1

⌘

⌧ ((((

|⌧ |  1� '⇠1/2

'⇠1/2
{

{

((

{

Figure 1. Behavior of accelerated IHT method, applied on a toy example for sparse
linear regression. Consider A as the plain sparsity model, and let x? be a k-sparse “signal”
in R10 for k = 2, drawn from multivariate normal distribution. Also, ‖x?‖2 = 1. Let
b = Φx?, with Φ ∈ R6×10 drawn entrywise i.i.d. from a normal distribution. Let I be
an index set of k columns in Φ; there are

(
n
k

)
possible such subsets. By Definitions 1-2,

we estimate α and β as the λmin(Φ>I ΦI) and λmax(Φ>I ΦI), where ΦI is the submatrix of
Φ, indexed by I. Here, α ≈ 0.22 and β ≈ 1.78, which leads to ξ = 1 − α/β ≈ 0.87. We
plot f(x̂) − f(x?) vs. iteration count, where f(x) = 1

2‖b − Φx‖22. Gray shaded area on
τ horizontal line corresponds to the range |τ | ≤ (1 − ϕξ1/2)/(ϕξ1/2). (Left panel, top
and bottom row). Accelerated IHT diverges for negative τ , outside the τ shaded area.
(Middle panel, bottom row). “Rippling” behavior for τ values close to the lower bound
of converging τ . (Middle panel, top row). Convergence behavior for accelerated IHT
for various τ values and its comparison to plain IHT (τ = 0). (Right panel, top row).
Similar “rippling” behavior as τ approaches close to the upper bound of the shaded area;
divergence is observed when τ goes beyond the shaded area (observe that, for τ values at the
border of the shaded area, Algorithm 1 still diverges and this is due to the approximation
of ξ).

includes under its umbrella methods like in [31, 32], with the option to perform acceleration steps; however,
no theoretical justification for convergence is provided when acceleration motions are used. [16, 12] contain
hard-thresholding variants, based on Nesterov’s ideas [17]; in [12], the authors provide convergence rate
proofs for accelerated IHT when the objective is just least-squares; no generalization to convex f is provided,
neither a study on varied values of τ . [33] includes a first attempt towards using adaptive τ ; his approach
focuses on the least-squares objective, where a closed for solution for optimal τ is found [16]. However,
similar to [19], it is not guaranteed whether and how often the momentum is used, neither how to set
up τ in more generic objectives; see also Section D in the appendix. From a convex perspective, where
the non-convex constraints are substituted by their convex relaxations (either in constrained or proximal
setting), the work in [34] and [35] is relevant to the current work: based on two-step methods for linear

8 KHANNA, KYRILLIDIS

systems [36], [34] extends these ideas to non-smooth (but convex) regularized linear systems, where f is a
least-squares term for image denoising purposes; see also [35]. Similar to [33, 19], [34] considers variants of
accelerated convex gradient descent that guarantee monotonic decrease of function values per iteration.

Related work on acceleration techniques. Nesterov in [1] was the first to consider acceleration techniques
in convex optimization settings; see also Chapter 2.2 in [17]. Such acceleration schemes have been widely
used as black box in machine learning and signal processing [35, 34, 37, 38]. [6, 39] discuss restart heuristics,
where momentum-related parameters are reset periodically after some iterations. [40] provides some
adaptive restart strategies, along with analysis and intuition on why they work in practice for simple convex
problems. Acceleration in non-convex settings have been very recently considered in continuous settings
[41, 42, 43], where f could be non-convex4. However, none of these works, beyond [44], consider non-convex
and possibly discontinuous constraints—for instance the subset of k-sparse sets. In the case of [44], our
work differs in that it explores better the low-dimensional constraint sets—however, we require f to be
convex. More relevant to this work is [45]: the authors consider non-convex proximal objective and apply
ideas from [35] that lead to either monotone (skipping momentum steps) or nonmonotone function value
decrease behavior; further, the theoretical guarantees are based on different tools than ours. We identify
that such research questions could be directions for future work.

Related work on dynamical systems and numerical analysis. Multi-step schemes originate from explicit
finite differences discretization of dynamical systems; e.g., the so-called Heavy-ball method [18] origins
from the discretization of the friction dynamical system ẍ(t) + γẋ(t) +∇f(x(t)) = 0, where γ > 0 plays the
role of friction. Recent developments on this subject can be found in [46]; see also references therein. From
a different perspective, Scieur et al. [47] use multi-step methods from numerical analysis to discretize the
gradient flow equation. We believe that extending these ideas in non-convex domains (e.g., when non-convex
constraints are included) is of potential interest for better understanding when and why momentum methods
work in practical structured scenaria.

Related work on Frank-Wolfe variants: The Frank-Wolfe (FW) algorithm [5, 7] is an iterative projection-
free convex scheme for constrained minimization. Frank-Wolfe often has cheap per iteration cost by solving
a constrained linear program in each iteration. The classical analysis by [5] presents sublinear convergence
for general functions. For strongly convex functions, FW admits linear convergence if the optimum does
not lie on the boundary of the constraint set; in that case, the algorithm still has sublinear convergence
rate. To address the boundary issue, [48] allows to move away from one of the already selected atoms,
where linear convergence rate can be achieved [8]. Similarly, the pairwise variant introduced by [49] also
has a linear convergent rate. This variant adjusts the weights of two of already selected atoms. [50] present
a different perspective by showing linear convergence of classical FW over strongly convex sets and general
functions. While several variants and sufficient conditions exist that admit linear convergence rates, the
use of momentum for Frank-Wolfe, to the best of our knowledge is unexplored.

6. Experiments

We conducted simulations for different problems to verify our predictions. In all experiments, we use
constant τ = 1/4 as a potential universal momentum parameter. Our experiments are proof of concept
and demonstrate that accelerated projected gradient descent over non-convex structured sets can, not
only offer high-quality recovery in practical settings, but offer much more scalable routines, compared to
state-of-the-art. Here, we present only a subset of our experimental findings and we encourage readers to
go over the experimental results in the Appendix E.

6.1. Sparse linear regression setting. For sparse linear regression, next we consider two simulated
problems settings: (i) with i.i.d. regressors, and (ii) with correlated regressors.

Sparse linear regression under the i.i.d. Gaussian setting: In this case, we consider a similar problem
setting with [8], where x? ∈ Rn is the unknown normalized k-sparse vector, observed through the
underdetermined set of linear equations: b = Φx?. Φ ∈ Rm×n is drawn randomly from a normal
distribution. We consider the standard least squares objective f(x) = 1

2‖b− Φx‖22 and the plain sparsity
model A where ‖x‖0,A ≡ ‖x‖0.
4The guarantees in these settings are restricted to finding a good stationary point.

PROVABLE ACCELERATED IHT 9

Time (sec.)
0 100 200 300

f
(bx

)
!

f
(x

?
)

10-10

10-8

10-6

10-4

10-2

100
IHT with optimal k
IHT with overshooted k
AccIHT with optimal k
AccIHT with overshooted k

Time to compute
�max(�

>�)

Time (sec.)
0 500 1000 1500

f
(bx)!

f
(x

?
)

10-6

10-5

10-4

10-3

10-2

10-1

100

FW

pairFW

Figure 2. Time spent vs. function values gap f(x̂) − f(x?). AccIHT corresponds to
Algorithm 1. Beware in left plot the time spent to approximate step size, via computing
λmax(Φ>Φ).

0 5 10 15 20 25 30
Number of Features Selected

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
re

a
U

nd
er

 R
O

C

Oblivious
Greedy
FoBa
Lasso
AccIHT

0 5 10 15 20 25 30
Number of Features Selected (20 true, 200 total)

0.0

0.2

0.4

0.6

0.8

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Oblivious
Greedy
FoBa
Lasso
AccIHT

0 5 10 15 20 25 30
Number of Features Selected

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 L
og

 L
ik

el
ih

oo
d

Oblivious
Greedy
FoBa
Lasso
AccIHT

Figure 3. Empirical evaluation. Algorithm 1 achieves strong performance on true support
recovery (left), generalization on test data (middle), and on training data fit (right)

We compare Algorithm 1 (abbreviated as AccIHT in plots) with two FW variants (see [8] for FW and
pairFW)5 Further, according to [8], pairFW performs better than awayFW for this problem case, as well
as the plain IHT algorithm. In this experiment, we use step sizes 1/β̂ for Algorithm 1 and IHT, where
β̂ = λmax(Φ>Φ). For the FW variants, we follow the setup in [8] and set as the constraint set the λ-scaled
`1-norm ball, where λ = 40. In the FW code, we further “debias" the selected set of atoms per iteration,
by performing fully corrective steps over putative solution (i.e., solve least-squares objective restricted over
the active atom set) [16, 14]. We observed that such steps are necessary in our setting, in order FW to be
competitive with Algorithm 1 and IHT. For IHT and Algorithm 1, we set input k either exactly or use
the `1-norm phase transition plots [51], where the input parameter for sparsity k̂ is overshooted. See also

5Phase transition results and comparisons to standard algorithms such as CoSaMP (restricted to squared loss) can be found
in [16], and thus omitted.

10 KHANNA, KYRILLIDIS

Section B for more information. We compare the above algorithms w.r.t. function values decrease and
running times.

Figure 2 depicts the summary of results we observed for the case n = 2 · 105, m = 7500 and k = 500.
For IHT and accelerated IHT, we also consider the case where the input parameter for sparsity is set to
k̂ = 2441 > k. The graphs indicate that the accelerated hard thresholding technique can be much more
efficient and scalable than the rest of the algorithms, while at the same time being at least as good in
support/“signal" recovery performance. For instance, while Algorithm 1 is only 1.2× faster than IHT,
when k is known exactly, Algorithm 1 is more resilient at overshooting k: in that case, IHT could take
> 2× time to get to the same level of accuracy. At the same time, Algorithm 1 detects much faster the
correct support, compared to plain IHT. Compared to FW methods (right plot), Algorithm 1 is at least
10× faster than FW variants.

As stated before, we only focus on the optimization efficiency of the algorithms, not their statistical
efficiency. That being said, we consider settings that are above the phase retrieval curve [], and here we
make no comparisons and claims regarding the number of samples required to complete the sparse linear
regression task. We leave such work for an extended version of this work.

Sparse linear regression with correlated regressors: In this section, we test Algorithm 1 for support
recovery, generalization and training loss performance in the sparse linear regression, under a different data
generation setting. We generate the data as follows. We generate the feature matrix 800 × 200 design
matrix Φ according to a first order auto-regressive process with correlation = 0.4. This ensures features
are correlated with each other, which further makes feature selection a non-trivial task. We normalize the
feature matrix so that each feature has `2-norm equal to one. We generate an arbitrary weight vector
x? with ‖x?‖0 = 20 and ‖x?‖2 = 1. The response vector b is then computed as y = Φx? + ε, where ε is
guassian iid noise that is generated to ensure that the signal-to-noise ratio is 10. Finally, the generated
data is randomly split 50-50 into training and test sets.

We compare against Lasso [52], oblivious greedy selection (Oblivious [53]), forward greedy selection
(Greedy [53]), and forward backward selection (FoBa [54]). The metrics we use to compare on are the
generalization accuracy (R2 coefficient determination performance on test set), recovery of true support
(AUC metric on predicted support vs. true support), and training data fit (log likelihood on the training
set). The results are presented in Figure 3, and shows Algorithm 1 performs very competitively: it is
almost always better or equal to other methods across different sparsity levels.

7. Overview and future directions

The use of hard-thresholding operations is widely known. In this work, we study acceleration techniques
in simple hard-thresholding gradient procedures and characterize their performance; to the best of our
knowledge, this is the first work to provide theoretical support for these type of algorithms. Our preliminary
results show evidence that machine learning problems can be efficiently solved using our accelerated
non-convex variant, which is at least competitive with state of the art and comes with convergence
guarantees.

Our approach shows linear convergence; however, in theory, the acceleration achieved has dependence on
the condition number of the problem not better than plain IHT. This leaves open the question on what
types of conditions are sufficient to guarantee the better acceleration of momentum in such non-convex
settings?

Apart from the future directions “scattered" in the main text, another possible direction lies at the
intersection of dynamical systems and numerical analysis with optimization. Recent developments on this
subject can be found in [46] and [47]. We believe that extending these ideas in non-convex domains is
interesting to better understand when and why momentum methods work in practical structured scenaria.

PROVABLE ACCELERATED IHT 11

References

[1] Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1
k2

). In Soviet Mathematics
Doklady, volume 27, pages 372–376, 1983.

[2] S. Negahban, B. Yu, M. Wainwright, and P. Ravikumar. A unified framework for high-dimensional analysis ofm-estimators
with decomposable regularizers. In Advances in Neural Information Processing Systems, pages 1348–1356, 2009.

[3] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky. The convex geometry of linear inverse problems. Foundations
of Computational mathematics, 12(6):805–849, 2012.

[4] S. Bahmani, B. Raj, and P. Boufounos. Greedy sparsity-constrained optimization. Journal of Machine Learning Research,
14(Mar):807–841, 2013.

[5] K. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Transactions on Algorithms
(TALG), 6(4):63, 2010.

[6] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):125–161, 2013.
[7] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML (1), pages 427–435, 2013.
[8] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In Advances in

Neural Information Processing Systems, pages 496–504, 2015.
[9] T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing. Applied and computational harmonic

analysis, 27(3):265–274, 2009.
[10] P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value projection. In Advances in Neural

Information Processing Systems, pages 937–945, 2010.
[11] R. F. Barber and W. Ha. Gradient descent with nonconvex constraints: Local concavity determines convergence. arXiv

preprint arXiv:1703.07755, 2017.
[12] A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal of mathematical imaging and vision,

48(2):235–265, 2014.
[13] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization. Statistical Science,

pages 450–468, 2012.
[14] P. Jain, N. Rao, and I. Dhillon. Structured sparse regression via greedy hard thresholding. In Advances in Neural

Information Processing Systems, pages 1516–1524, 2016.
[15] P. Jain, A. Tewari, and P. Kar. On iterative hard thresholding methods for high-dimensional m-estimation. In Advances

in Neural Information Processing Systems, pages 685–693, 2014.
[16] A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), 2011 4th IEEE International Workshop on, pages 353–356. IEEE, 2011.
[17] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media,

2013.
[18] B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and

Mathematical Physics, 4(5):1–17, 1964.
[19] T. Blumensath. Accelerated iterative hard thresholding. Signal Processing, 92(3):752–756, 2012.
[20] A. Agarwal, S. Negahban, and M. Wainwright. Fast global convergence rates of gradient methods for high-dimensional

statistical recovery. In Advances in Neural Information Processing Systems, pages 37–45, 2010.
[21] A. Beck and N. Hallak. On the minimization over sparse symmetric sets: projections, optimality conditions, and

algorithms. Mathematics of Operations Research, 41(1):196–223, 2015.
[22] K. Williams. The n-th power of a 2× 2 matrix. Mathematics Magazine, 65(5):336, 1992.
[23] A. Kyrillidis, L. Baldassarre, M. El Halabi, Q. Tran-Dinh, and V. Cevher. Structured sparsity: Discrete and convex

approaches. In Compressed Sensing and its Applications, pages 341–387. Springer, 2015.
[24] X. Yuan, P. Li, and T. Zhang. Gradient hard thresholding pursuit for sparsity-constrained optimization. In Proceedings

of the 31st International Conference on Machine Learning (ICML-14), pages 127–135, 2014.
[25] P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye. A general iterative shrinkage and thresholding algorithm for non-convex

regularized optimization problems. In ICML (2), pages 37–45, 2013.
[26] K. Qiu and A. Dogandzic. ECME thresholding methods for sparse signal reconstruction. arXiv preprint arXiv:1004.4880,

2010.
[27] R. Salakhutdinov and S. Roweis. Adaptive overrelaxed bound optimization methods. In Proceedings of the 20th Interna-

tional Conference on Machine Learning (ICML-03), pages 664–671, 2003.
[28] R. Garg and R. Khandekar. Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted

isometry property. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 337–344.
ACM, 2009.

[29] J. Blanchard, J. Tanner, and K. Wei. CGIHT: Conjugate gradient iterative hard thresholding for compressed sensing and
matrix completion. Information and Inference, 4(4):289–327, 2015.

[30] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems, volume 49. NBS, 1952.
[31] D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and

Computational Harmonic Analysis, 26(3):301–321, 2009.
[32] S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal on Numerical Analysis,

49(6):2543–2563, 2011.

12 KHANNA, KYRILLIDIS

[33] K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal Processing Letters, 22(5):593–597, 2015.
[34] J. Bioucas-Dias and M. Figueiredo. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image

restoration. IEEE Transactions on Image processing, 16(12):2992–3004, 2007.
[35] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on

imaging sciences, 2(1):183–202, 2009.
[36] O. Axelsson. Iterative solution methods. Cambridge University press, 1996.
[37] M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. In

Advances in neural information processing systems, pages 1458–1466, 2011.
[38] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization.

In ICML, pages 64–72, 2014.
[39] S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with applications to sparse signal recovery.

Mathematical programming computation, 3(3):165–218, 2011.
[40] B. O’Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes. Foundations of computational

mathematics, 15(3):715–732, 2015.
[41] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Mathematical

Programming, 156(1-2):59–99, 2016.
[42] Y. Carmon, J. Duchi, O. Hinder, and A. Sidford. Accelerated methods for non-convex optimization. arXiv preprint

arXiv:1611.00756, 2016.
[43] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima for nonconvex optimization

in linear time. arXiv preprint arXiv:1611.01146, 2016.
[44] C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui. Catalyst acceleration for gradient-based non-convex

optimization. arXiv preprint arXiv:1703.10993, 2017.
[45] H. Li and Z. Lin. Accelerated proximal gradient methods for nonconvex programming. In Advances in neural information

processing systems, pages 379–387, 2015.
[46] A. Wilson, B. Recht, and M. Jordan. A lyapunov analysis of momentum methods in optimization. arXiv preprint

arXiv:1611.02635, 2016.
[47] D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont. Integration methods and accelerated optimization algorithms. arXiv

preprint arXiv:1702.06751, 2017.
[48] P. Wolfe. Convergence theory in nonlinear programming. Integer and nonlinear programming, pages 1–36, 1970.
[49] B. Mitchell, V. Demyanov, and V. Malozemov. Finding the point of a polyhedron closest to the origin. SIAM Journal on

Control, 12(1):19–26, 1974.
[50] D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. In ICML, pages 541–549,

2015.
[51] D. Donoho and J. Tanner. Neighborliness of randomly projected simplices in high dimensions. Proceedings of the National

Academy of Sciences of the United States of America, 102(27):9452–9457, 2005.
[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[53] A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation
and dictionary selection. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
1057–1064, 2011.

[54] T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Advances in Neural
Information Processing Systems, pages 1921–1928, 2009.

[55] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM review, 43(1):129–159, 2001.
[56] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm

minimization. SIAM review, 52(3):471–501, 2010.
[57] A. Tillmann and M. Pfetsch. The computational complexity of the restricted isometry property, the nullspace property,

and related concepts in compressed sensing. IEEE Transactions on Information Theory, 60(2):1248–1259, 2014.
[58] T. Blumensath. Sampling and reconstructing signals from a union of linear subspaces. IEEE Transactions on Information

Theory, 57(7):4660–4671, 2011.
[59] P. Shah and V. Chandrasekaran. Iterative projections for signal identification on manifolds: Global recovery guarantees.

In Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on, pages 760–767. IEEE,
2011.

[60] A. Kyrillidis and V. Cevher. Combinatorial selection and least absolute shrinkage via the CLASH algorithm. In Information
Theory Proceedings (ISIT), 2012 IEEE International Symposium on, pages 2216–2220. IEEE, 2012.

[61] C. Hegde, P. Indyk, and L. Schmidt. Approximation algorithms for model-based compressive sensing. IEEE Transactions
on Information Theory, 61(9):5129–5147, 2015.

[62] L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In Proceedings of the 26th annual
international conference on machine learning, pages 433–440. ACM, 2009.

[63] S. Negahban and M. Wainwright. Restricted strong convexity and weighted matrix completion: Optimal bounds with
noise. Journal of Machine Learning Research, 13(May):1665–1697, 2012.

PROVABLE ACCELERATED IHT 13

[64] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi. Dropping convexity for faster semi-definite optimization. In Conference
on Learning Theory, pages 530–582, 2016.

[65] D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi. Finding low-rank solutions to matrix problems, efficiently and
provably. arXiv preprint arXiv:1606.03168, 2016.

14 KHANNA, KYRILLIDIS

Appendix A. Proof of Lemma 1

We start by observing that: ‖xi+1 − ūi‖22 ≤ ‖x? − ūi‖22, due to the exactness of the hard thresholding
operation. Note that this holds for most A of interest6 but, again for simplicity, we will focus on the
sparsity model here. By adding and subtracting x? and expanding the squares, we get:

‖xi+1 − x? + x? − ūi‖22 ≤ ‖x? − ūi‖22 ⇒
‖xi+1 − x?‖22 + ‖x? − ūi‖22 + 2 〈xi+1 − x?, x? − ūi〉 ≤ ‖x? − ūi‖22 ⇒

‖xi+1 − x?‖22 ≤ 2 〈xi+1 − x?, ūi − x?〉

From the restricted strong convexity assumption over at most 4k sparse “signals", we have:

f(x?) ≥ f(ūi) + 〈∇f(ūi), x
? − ūi〉+ α

2 ‖ūi − x?‖22 ⇒
f(x?)− α

2 ‖ūi − x?‖22 ≥ f(ūi) + 〈∇f(ūi), x
? − ūi〉

= f(ūi) + 〈∇f(ūi), x
? − xi+1 + xi+1 − ūi〉

= f(ūi) + 〈∇f(ūi), xi+1 − ūi〉+ 〈∇f(ūi), x
? − xi+1〉

Define φi(z) := f(ūi) + 〈∇f(ūi), z − ūi〉 + β
2 ‖z − ūi‖22. Further, as claimed in Algorithm 1, we assume

constant step size µi
2 := 1

β , for all iterations i. Then, it is easy to see that:

min
z: ‖z‖0,A≤k

φi(z) ≡ min
z: ‖z‖0,A≤k

β
2

∥∥∥z −
(
ūi − 1

β∇f(ūi)
)∥∥∥

2

2
,

and thus, xi+1 is the minimizer of φi(z) under A constraints, by construction.
Let us denote the support of x? as X ?. Further, denote as E := Ti ∪ X ?. This implies that all the

following hold: (i) ui ∈ E , (ii) ūi ∈ E , (iii) x? ∈ E , (iv) xi+1 ∈ E and, (v) the cardinality of E satisfies
|E| ≤ 4k, where k denotes the sparsity. Denote PE(·) the subspace projection operator (i.e., in the sparsity
case it means that it keeps only the elements indexed by E).

By Remark 5.1(b) in [21] and given that xi+1 is a basic feasible point, the following holds7:

〈∇φi(xi+1), x? − xi+1〉 = 〈∇φi(xi+1), PE (x? − xi+1)〉
= 〈PE (∇φi(xi+1)) , PE (x? − xi+1)〉 ≥ 0

By the definition of φi(z), the above inequality leads to:

〈PE (∇f(ūi) + β (xi+1 − ūi)) , PE (x? − xi+1)〉 ≥ 0⇒
〈PE (∇f(ūi)) , PE (x? − xi+1)〉 ≥ β · 〈PE (xi+1 − ūi) , PE (xi+1 − x?)〉 ⇒

〈∇f(ūi), x
? − xi+1〉 ≥ β · 〈xi+1 − ūi, xi+1 − x?〉

where the last step is true due to all x?, xi+1 and ūi belonging into the set E .

6For example, in the case of matrices and low-rankness, this operation holds due to the Eckart-Young-Mirsky-Steward theorem,
and the inner products of vectors naturally extend to the inner products over matrices.
7Remark 5.1(b) in [21] claims that for a basic feasible point x of a function f(·), it holds that:

〈PE (∇f(x)) , PE (y − x)〉 ≥ 0, for any y ∈ Rn such that y ∈ E .
This holds for the most interesting cases for A, such as sparsity, overlapping group sparsity and low-rankness, after modifications
from vector to matrix case.

PROVABLE ACCELERATED IHT 15

Going back to the restricted strong convexity inequality, we use the above inequality to get:

f(x?)− α
2 ‖ūi − x?‖22 ≥ f(ūi) + 〈∇f(ūi), xi+1 − ūi〉+ β 〈ūi − xi+1, x

? − xi+1〉
= φi(xi+1)− β

2 ‖xi+1 − ūi‖22 + β 〈ūi − xi+1, x
? − xi+1〉

= φi(xi+1)− β
2 ‖xi+1 − ūi‖22 + β 〈ūi − xi+1, x

? − xi+1 + ūi − ūi〉
= φi(xi+1)− β

2 ‖xi+1 − ūi‖22 + β 〈ūi − xi+1, x
? − ūi〉+ β‖ūi − xi+1‖22

= φi(xi+1) + β
2 ‖xi+1 − ūi‖22 + β 〈ūi − xi+1, x

? − ūi〉
≥ f(x?) + β

2 ‖xi+1 − ūi‖22 + β 〈ūi − xi+1, x
? − ūi〉

The last inequality is due to: φi(xi+1) = f(ūi) + 〈∇f(ūi), xi+1 − ūi〉+ β
2 ‖xi+1 − ūi‖22 ≥ f(xi+1) ≥ f(x?).

Thus:

−α
2 ‖ūi − x?‖22 ≥

β
2 ‖xi+1 − ūi‖22 + β 〈ūi − xi+1, x

? − ūi〉 ⇒
−β 〈ūi − xi+1, x

? − ūi〉 ≥ β
2 ‖xi+1 − ūi‖22 + α

2 ‖ūi − x?‖22
Going back to our initial inequality, we get:

‖xi+1 − x?‖22 ≤ 2 〈xi+1 − x?, ūi − x?〉
= 2 〈xi+1 − ūi + ūi − x?, ūi − x?〉
= −2 〈ūi − xi+1, ūi − x?〉+ ‖ūi − x?‖22
≤ −‖xi+1 − ūi‖22 − α

β ‖ūi − x?‖22 + ‖ūi − x?‖22
=
(

1− α
β

)
‖ūi − x?‖22 − ‖xi+1 − ūi‖22

≤
(

1− α
β

)
‖ūi − x?‖22

To continue the proof, we need to expand the right hand side of the above expression:

‖ūi − x?‖22 = ‖ui − 1
β∇Tif(ui)− x?‖22

= ‖ui − x?‖22 + 1
β2 ‖∇Tif(ui)‖22 − 2

〈
1
β∇Tif(ui), ui − x?

〉

and focus on the last term. In particular, we know that:
〈

1
β∇Tif(ui), ui − x?

〉
= 〈ui − ūi, ui − x?〉. Using

the same arguments as above, we can easily deduce that, by the strong convexity assumption, we have:

f(x?)− α
2 ‖ui − x?‖22 ≥ f(ui) + 〈∇Tif(ui), x

? − ūi〉+ 〈∇Tif(ui), ūi − ui〉

Similarly to above, define function hi(z) := f(ui) + 〈∇Tif(ui), z − ui〉+ β
2 ‖z − ui‖22, with minimizer the

ūi. Thus, by the optimality/feasibility conditions, we have:

〈∇h(ūi), x
? − ūi〉 ≥ 0⇒ 〈∇f(ui), x

? − ūi〉 ≥ β 〈ūi − x?, ūi − ui〉 ,

and, therefore, following similar motions and under the assumption of Lemma 1 that f(x?) ≤ f(y), for any
y ∈ Rn such that ‖y‖0,A ≤ 3k, we get:

β〈ui − ūi, ui − x?〉 ≥ β
2 ‖ūi − ui‖22 + α

2 ‖ui − x?‖22.

We note that, while the assumption ‖y‖0,A ≤ 3k is not necessarily mild, it does not restrict our analysis
just to the noiseless setting. It states that x? has the minimum function value f , among all vectors that
are at most 3k-sparse. E.g., any dense vector, that might be a solution also due to noise, does not affect
this requirement.

16 KHANNA, KYRILLIDIS

The above lead to:

‖xi+1 − x?‖22 ≤
(

1− α
β

)
·
(
‖ui − x?‖22 + 1

β2 ‖∇Tif(ui)‖22 − 2
〈

1
β∇Tif(ui), ui − x?

〉)

≤
(

1− α
β

)
·
(
‖ui − x?‖22 + 1

β2 ‖∇Tif(ui)‖22 − ‖ūi − ui‖22 − α
β ‖ui − x?‖22

)

=
(

1− α
β

)2
· ‖ui − x?‖22

Focusing on the norm term on RHS, we observe:

‖ui − x?‖2 = ‖xi + τi (xi − xi−1)− x?‖2 = ‖xi + τi (xi − xi−1)− (1− τi + τi)x
?‖2

= ‖(1 + τi)(xi − x?) + τi(x
? − xi−1)‖2

≤ |1 + τ | · ‖xi − x?‖2 + |τ | · ‖xi−1 − x?‖2
where in the last inequality we used the triangle inequality and the fact that τi = τ , for all i. Substituting
this in our main inequality, we get:

‖xi+1 − x?‖2 ≤
(

1− α
β

)
· (|1 + τ | · ‖xi − x?‖2 + |τ | · ‖xi−1 − x?‖2)

=
(

1− α
β

)
· |1 + τ | · ‖xi − x?‖2 +

(
1− α

β

)
· |τ | · ‖xi−1 − x?‖2

Define z(i) = ‖xi − x?‖2; this leads to the following second-order linear system:

z(i+ 1) ≤
(

1− α
β

)
· |1 + τ | · z(i) +

(
1− α

β

)
· |τ | · z(i− 1).

We can convert this second-order linear system into a two-dimensional first-order system, where the
variables of the linear system are multi-dimensional. To do this, we define a new state variable w(i):

w(i) := z(i+ 1)

and thus w(i+ 1) = z(i+ 2). Using w(i), we define the following 2-dimensional, first-order system:
{
w(i)−

(
1− α

β

)
· |1 + τ | · w(i− 1)−

(
1− α

β

)
· |τ | · z(i− 1) ≤ 0,

z(i) ≤ w(i− 1).

This further characterizes the evolution of two state variables, {w(i), z(i)}:
[
w(i)
z(i)

]
≤
[(

1− α
β

)
· |1 + τ |

(
1− α

β

)
· |τ |

1 0

]
·
[
w(i− 1)
z(i− 1)

]
⇒

[
‖xi+1 − x?‖2
‖xi − x?‖2

]
≤
[(

1− α
β

)
· |1 + τ |

(
1− α

β

)
· |τ |

1 0

]
·
[
‖xi − x?‖2
‖xi−1 − x?‖2

]
,

where in the last inequality we use the definitions z(i) = ‖xi − x?‖2 and w(i) = z(i+ 1). Observe that the
contraction matrix has non-negative values. This completes the proof.

Appendix B. Implementation details

So far, we have showed the theoretical performance of our algorithm, where several hyper-parameters
are assumed known. Here, we discuss a series of practical matters that arise in the implementation of our
algorithm.

B.1. Setting structure hyper-parameter k. Given structure A, one needs to set the “succinctness"
level k, as input to Algorithm 1. Before we describe practical solutions on how to set up this value, we first
note that selecting k is often intuitively easier than setting the regularization parameter in convexified
versions of (4). For instance, in vector sparsity settings for linear systems, where the Lasso criterion is
used: arg minx∈Rn

{
1
2‖b− Φx‖22 + λ · ‖x‖1

}
, selecting λ > 0 is a non-trivial task: arbitrary values of λ lead

to different k, and it is not obvious what is the “sweet range" of λ values for a particular sparsity level.
From that perspective, using k leads to more interpretable results.

PROVABLE ACCELERATED IHT 17

However, even in the strict discrete case, selecting k could be considered art for many cases. Here,
we propose two ways for such selection: (i) via cross-validation, and (ii) by using phase transition plots.
Regarding cross-validation, this is a well-known technique and we will skip the details; we note that we
used cross-validation, as in [14], to select the group sparsity parameters for the tumor classification problem
in Subsection E.1.

A different way to select k comes from the recovery limits of the optimization scheme at hand: For
simplicity, consider the least-squares objective with sparsity constraints. [51] describes mathematically the
phase transition behavior of the basis pursuit algorithm [55] for that problem; see Figure 1 in [51]. Moving
along the phase transition line, triplets of (m,n, k) can be extracted; for fixed m and n, this results into a
unique value for k. We used this “overshooted" value in Algorithm 1 at our experiments for sparse linear
regression; see Figure 2 in Subsection 6.1. Our results show that, even using this procedure as a heuristic, it
results into an automatic way of setting k, that leads to the correct solution. Similar phase transition plots
can be extracted, even experimentally, for other structures A; see e.g. [56] for the case of low rankness.

B.2. Selecting τ and step size in practice. The analysis in Section 4 suggests using τ within the range:
|τ | ≤ (1−ϕ·ξ1/2)

ϕ·ξ1/2 . In order to compute the end points of this range, we require a good approximation of
ξ := 1−α/β, where α and β are the restricted strong convexity and smoothness parameters of f , respectively.

In general, computing α and β in practice is an NP-hard task8 A practical rule is to use a constant
momentum term, like τ = 1/4: we observed that this value worked well in our experiments.9

In some cases, one can approximate α and β with the smallest and largest eigenvalue of the hessian ∇2f(·);
e.g., in the linear regression setting, the hessian matrix is constant across all points, since ∇2f(·) = Φ>Φ.
This is the strategy followed in Subsection 6.1 to approximate β with β̂ := λmax(Φ>Φ). We also used 1/β̂
as the step size. Moreover, for such simplified but frequent cases, one can efficiently select step size and
momentum parameter in closed form, via line search; see [16].

In the cases where τ results into “ripples" in the function values, we conjecture that the adaptive
strategies in [40] can be used to accelerate convergence. This solution is left for future work.

Apart from these strategies, common solutions for approximate α and β include backtracking (update
approximates of α and β with per-iteration estimates, when local behavior demands it) [39, 35], Armijo-style
search tests, or customized tests (like eq. (5.7) in [39]). However, since estimating the α parameter is a
much harder task [40, 39, 6], one can set τ as constant and focus on approximating β for the step size
selection.

B.3. Inexact projections Πk,A(·). Part of our theory relies on the fact that the projection operator
Πk,A(·) is exact. We conjecture that our theory can be extended to approximate projection operators,
along the lines of [58, 59, 60, 61]. We present some experiments that perform approximate projections for
overlapping group sparse structures and show AccIHT can perform well. We leave the theoretical analysis
as potential future work.

Appendix C. Proof of Lemma 3

First, we state the following simple theorem; the proof is omitted.

Lemma 4. Let A :=

[
γ δ
ε ζ

]
be a 2× 2 matrix with distinct eigevalues λ1, λ2. Then, A has eigenvalues

such that:

λ1,2 = ω
2 ±

√
ω2

4 −∆,

where ω := γ + ζ and ∆ = γ · ζ − δ · ε.
We will consider two cases: (i) when λ1 6= λ2 and, (ii) when λ1 = λ2.

8To see this, in the sparse linear regression setting, there is a connection between α, β and the so-called restricted isometry
constants [57]. It is well known that the latter is NP-hard to compute.
9We did not perform binary search for this selection—we conjecture that better τ values in our results could result into even
more significant gains w.r.t. convergence rates.

18 KHANNA, KYRILLIDIS

C.0.1. λ1 6= λ2. Some properties regarding these two eigenvalues are the following:

λ1 + λ2 =

(
ω
2 +

√
ω2

4 −∆

)
+

(
ω
2 −

√
ω2

4 −∆

)
= ω

and

λ1λ2 =

(
ω
2 +

√
ω2

4 −∆

)
·
(
ω
2 −

√
ω2

4 −∆

)
= ω2

4 − ω2

4 + ∆ = ∆

Let us define:

B1 = −(A− λ1 · I)

B2 = (A− λ2 · I)

Observe that:

λ2 ·B1 + λ1 ·B2 = −λ2 (A− λ1 · I) + λ1 (A− λ2 · I)

= −λ2A+ λ1λ2I + λ1A− λ1λ2I

= (λ1 − λ2)A

which, under the assumption that λ1 6= λ2, leads to:

A = λ2
λ1−λ2B1 + λ1

λ1−λ2B2

Furthermore, we observe:

B1 ·B1 = (A− λ1 · I) · (A− λ1 · I)

= A2 + λ2
1 · I − 2λ1A

By the Calley-Hamilton Theorem on 2× 2 matrices, we know that the characteristic polynomial p(A) =
A2 − Tr(A) ·A− det(A) · I = 0, and thus,

A2 = (γ + ζ) ·A− (γ · ζ − δ · ε) · I ⇒
= ω ·A−∆ · I

Using the ω and ∆ characterizations above w.r.t. the eigenvalues λ1,2, we have:

A2 = (λ1 + λ2) ·A− λ1λ2I

and thus:

B1 ·B1 = (λ1 + λ2)A− λ1λ2I + λ2
1I − 2λ1A

= (λ2 − λ1)A− (λ1λ2 − λ2
1) · I

= (λ2 − λ1) · (A− λ1I)

= (λ1 − λ2) ·B1

Similarly, we observe that:

B2 ·B2 = · · · = (λ1 − λ2) ·B2

On the other hand, the cross product B1 ·B2 = 0. To see this:

B1 ·B2 = −(A− λ1I) · (A− λ2I)

= −A2 − λ1λ2I + λ2A+ λ1A

= −A2 + (λ1 + λ2)A− λ1λ2I = 0

PROVABLE ACCELERATED IHT 19

by the Calley-Hamilton Theorem. Given the above, we have:

B2
1 = B1 ·B1 = (λ1 − λ2) ·B1

B3
1 = B2

1 ·B1 = (λ1 − λ2) ·B1 = (λ1 − λ2)2 ·B1

...

Bi
1 = · · · = (λ1 − λ2)i−1B1

Similarly for B2:

Bi
2 = (λ1 − λ2)i−1B2

Getting back to the characterization of A via B1 and B2, A = λ2
λ1−λ2B1 + λ1

λ1−λ2B2, and given that any
cross product of B1 ·B2 = 0, it is easy to see that Ai equals to:

A =
(

λ2
λ1−λ2

)i
·Bi

1 +
(

λ1
λ1−λ2

)i
·Bi

2

=
(

λ2
λ1−λ2

)i
· (λ1 − λ2)i−1B1 +

(
λ1

λ1−λ2

)i
· (λ1 − λ2)i−1B2

=
λi2

λ1−λ2B1 +
λi1

λ1−λ2B2

=
λi2

λ1−λ2 · (−A+ λ1I) +
λi1

λ1−λ2 · (A− λ2I)

=
λi1−λi2
λ1−λ2 ·A+

(
λ1 · λi2

λ1λ2
− λ2 · λi1

λ1−λ2

)
· I

=
λi1−λi2
λ1−λ2 ·A− λ1λ2 · λ

i−1
1 −λi−1

2
λ1−λ2 · I

where in the fourth equality we use the definitions of B1 and B2.

C.0.2. λ1 = λ2. In this case, let us denote for simplicity: λ ≡ λ1 = λ2. By the Calley-Hamilton Theorem,
we have:

A2 = 2λ ·A− λ2 · I =⇒ (A− λ · I)2 = 0

Let us denote C = A− λ · I. From the derivation above, it holds:

C2 = (A− λ · I)2 = 0

C3 = C2 · C = 0

...

Ci = Ci−1 · C = 0.

Thus, as long as i ≥ 2, Ci = 0. Focusing on the i-th power of A, we get:

Ai = (A+ λ · −λ · I)i = (C + λ · I)i

By the multinomial theorem, the above lead to:

Ai =
∑

|θ|=i

(
i

θ

)
(C · (λ · I))θ ,

where θ = (θ1, θ2) and (C · (λ · I))θ = Cθ1 · (λ · I)θ2 , according to multi-indexes notations. However, we
know that only when i < 2, Ci could be nonzero. This translates into keeping only two terms in the
summation above:

Ai = λi · I + i · λi−1 · C = λi · I + i · λi−1 · (A− λ · I)

Appendix D. Non-increasing function values and momentum

20 KHANNA, KYRILLIDIS

Parameter =
0 0.5 1 1.5 2

f
(x

)

0

0.5

1

1.5

2

2.5

3

ky !Ax2k2

ky !Av2k2

Figure 4. The use of momentum could
be skipped in [33].

Here, we present a toy example for the analysis in [33],
where momentum term is not guaranteed to be used per step.
While this is not in general an issue, it might lead to repeatedly
skipping the momentum term and, thus losing the acceleration.

Let us focus on the sparse linear regression problem, where
the analysis in [33] applies. That means, f(x) := ‖b− Φx‖22,
where b ∈ Rm, Φ ∈ Rm×n and x ∈ Rn. b represents the set
of observations, according to the linear model: b = Φx? + ε,
where x? is the sparse vector we look for and ε is an additive
noise term. We assume that m < n and, thus, regularization
is needed in order to hope for a meaningful solution.

Similar to the algorithm considered in this paper, [33] per-
forms a momentum step, where vi+1 = xi+1 +τi+1 ·(xi+1−xi),
where

τi+1 = arg min
τ

‖b− Φvi+1‖22
= arg min

τ
‖b− Φ (xi+1 + τ · (xi+1 − xi)) ‖22

The above minimization problem has a closed form solution. However, the analysis in [33] assumes that
‖y − Φvi+1‖2 ≤ ‖y − Φxi+1‖2, i.e., per iteration the momentum step does not increase the function value.

As we show in the toy example below, assuming positive momentum parameter τ ≥ 0, this assumption
leads to no momentum term, when this is not satisfied. Consider the setting:

[
0.3870
−0.1514

]

︸ ︷︷ ︸
=b

≈
[

0.3816 −0.2726 0.0077
−0.1598 1.9364 −0.3908

]

︸ ︷︷ ︸
=Φ

·




1
0
0




︸︷︷︸
=x?

+

[
0.0055
0.0084

]

︸ ︷︷ ︸
=ε

Further, assume that x1 =
[
−1.7338 0 0

]> and x2 =
[
1.5415 0 0

]>. Observe that ‖b−Φx1‖2 = 1.1328
and ‖b − Φx2‖2 = 0.2224, i.e., we are “heading" towards the correct direction. However, for any τ > 0,
‖b− Φv2‖2 increases; see Figure 4. This suggests that, unless there is an easy closed-form solution for τ ,
setting τ differently does not guarantee that the function value f(vi+1) will not increase, and the analysis
in [33] does not apply.

Appendix E. More experiments

E.1. Group sparse, `2-norm regularized logistic regression. For this task, we use the tumor classi-
fication on breast cancer dataset in [62] and test Algorithm 1 on group sparsity model A: we are interested
in finding groups of genes that carry biological information such as regulation, involvement in the same
chain of metabolic reactions, or protein-protein interaction. We follow the procedure in [14]10 to extract
misclassification rates and running times for FW variants, IHT and Algorithm 1. The groupings of genes
are overlapping, which means that exact projections are hard to obtain. We apply the greedy projection
algorithm of [14] to obtain approximate projections. For cross-validating for the FW variants, we sweep
over {10−3, 10−2, 10−1, 1, 10, 100} for regularization parameter, and {10−1, 1, 5, 10, 50, 100} for the scaling
of the `1 norm ball for sparsity inducing regularization. For IHT variants, we use the same set for the
sweep for regularization parameter as we used for FW variants, and use {2, 5, 10, 15, 20, 50, 75, 100} for
sweep over the number of groups selected. After the best setting is selected for each algorithm, the time
taken is calculated for time to convergence with the respective best parameters. The results are tabulated
in Table 1. We note that this setup is out of the scope of our analysis, since our results assume exact
projections. Nevertheless, we obtain competitive results suggesting that the acceleration scheme we propose
for IHT warrants further study for the case of inexact projections.

10I.e., 5-fold cross validation scheme to select parameters for group sparsity and `2-norm regularization parameter - we use β̂
as in subsection 6.1.

PROVABLE ACCELERATED IHT 21

Algorithm Test error Time (sec)

FW [8] 0.2938 58.45
FW-Away [8] 0.2938 40.34
FW-Pair [8] 0.2938 38.22
IHT [14] 0.2825 5.24

Algorithm 1 0.2881 3.45

Table 1. Results for `2-norm regularized logistic regression for tumor classification on the
breast cancer dataset.

Time (sec.)
0 200 400 600

f
(
b X)!

f
(X

?
)

10-5

100

105

1010

AccIHT - Iter. = 412
IHT - Iter. = 965
BFGD - Iter. = 4187
FW - Iter. = 5000

Time (sec.)
0 500 1000 1500

f
(
b X)!

f
(X

?
)

10-5

100

105

1010

AccIHT - Iter. = 88
IHT - Iter. = 222
BFGD - Iter. = 5000
FW - Iter. = 5000

Figure 5. Time spent vs. function values gap f(x̂)− f(x?). Left plot corresponds to the
“bikes" image, while the right plot to the “children" image.

E.2. Low rank image completion from subset of entries. Here, we consider the case of matrix
completion in low-rank, subsampled images. In particular, let X? ∈ Rp×n be a low rank image; see
Figures 6-7 for some “compressed" low rank images in practice. In the matrix completion setting, we
observe only a subset of pixels in X?: b =M(X?) whereM : Rp×n → Rm is the standard mask operation
that down-samples X? by selecting only m � p · n entries. The task is to recover X? by minimizing
f(X) = 1

2‖b−M(X)‖22, under the low-rank model A. According to [63], such setting satisfies a slightly
different restricted strong convexity/smoothness assumption; nevertheless, in Figures 5-7 we demonstrate
in practice that standard algorithms could still be applied: we compare accelerated IHT with plain IHT
[10], an FW variant [7], and the very recent matrix factorization techniques for low rank recovery (BFGD)
[64, 65]. In our experiments, we use a line-search method for step size selection in accelerated IHT and
IHT. We observe the superior performance of accelerated IHT, compared to the rest of algorithms; it is
notable to report that, for moderate problem sizes, non-factorized methods seem to have advantages in
comparison to non-convex factorized methods, since low-rank projections (via SVD or other randomized
algorithms) lead to significant savings in terms of number of iterations. Similar comparison results can be
found in [12, 29]. Overall, it was obvious from our findings that Algorithm 1 obtains the best performance
among the methods considered.

22 KHANNA, KYRILLIDIS

Acceletared IHT - PSNR: 80.76 (dB) SVP - PSNR: 68.58 (dB) BFGD - PSNR: -18.87 (dB) FW - PSNR: -9.30 (dB)

Figure 6. Reconstruction performance in image denoising settings. The image size is
512× 768 (393, 216 pixels) and the approximation rank is preset to r = 60. We observe 35%
of the pixels of the true image. Top row: Original, low rank approximation, and observed
image. Bottom row: Reconstructed images.

Acceletared IHT - PSNR: 84.55 (dB) SVP - PSNR: 75.87 (dB) BFGD - PSNR: -15.11 (dB) FW - PSNR: -2.38 (dB)

Figure 7. Reconstruction performance in image denoising settings. The image size is
683× 1024 (699, 392 pixels) and the approximation rank is preset to r = 60. We observe
35% of the pixels of the true image. Top row: Original, low rank approximation, and
observed image. Bottom row: Reconstructed images.

	1. Introduction
	2. Problem statement
	2.1. Low-dimensional structures
	2.2. Loss function f
	2.3. Optimization criterion

	3. Accelerated IHT variant
	4. Theoretical study
	5. Related work
	6. Experiments
	6.1. Sparse linear regression setting

	7. Overview and future directions
	References
	Appendix A. Proof of Lemma 1
	Appendix B. Implementation details
	B.1. Setting structure hyper-parameter k
	B.2. Selecting and step size in practice
	B.3. Inexact projections k, A()

	Appendix C. Proof of Lemma 3
	Appendix D. Non-increasing function values and momentum
	Appendix E. More experiments
	E.1. Group sparse, 2-norm regularized logistic regression
	E.2. Low rank image completion from subset of entries

