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Abstract—Compressive sensing (CS) is a data acquisition and recovery
technique for finding sparse solutions to linear inverse problems from
sub-Nyquist measurements. CS features a wide range of computation-
ally efficient and robust signal recovery methods, based on sparsity
seeking optimization. In this paper, we present and analyze a class
of sparse recovery algorithms, known as hard thresholding methods.
We provide optimal strategies on how to set up these algorithms via
basic “ingredients” for different configurations to achieve complexity vs.
accuracy tradeoffs. Simulation results demonstrate notable performance
improvements compared to state-of-the-art algorithms both in terms of
data reconstruction and computational complexity.

I. INTRODUCTION

We consider the following underdetermined linear inverse problem:
assume that high-dimensional signal x∗ ∈ RN is observed through a
low-dimensional observation vector u ∈ RM (M < N) via:

u = Φx∗ + n. (1)

In this setting, Φ ∈ RM×N represents the regression/sensing matrix
and n ∈ RM is an additive noise term. Given u and Φ, unconstrained
least-squares method is the classic approach to the solution of linear
systems by minimizing the data error function f(x) , ‖u − Φx‖22.
Nevertheless, the reconstruction of x∗ from u is an ill-posed problem
since M < N and there is no hope in finding the true vector without
ambiguity; additional prior information is needed. In CS, we assume
that x∗ is a sparse vector with structure defined by a combinatorial
sparsity model (CSM) CK where K � N represents the sparsity
parameter (c.f., [1] for details on such sets).

In this paper, we concentrate on the following constrained mini-
mization problem to recover x∗:

minimize
x

f(x) subject to x ∈ CK . (2)

Unfortunately, prior knowledge on signal structure does not guarantee
successful recovery of the true vector for any sensing matrix. Many
conditions on Φ have been proposed in the literature to establish
solution uniqueness and reconstruction stability such as null space
property, spark, unique representation property to name a few. Here,
we focus on the so-called restricted isometry property (RIP). Given
CSM CK , Φ satisfies the RIP with constant δK if and only if

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22, ∀x ∈ CK . (3)

While the majority of CS results assume (3) is satisfied with sym-
metry, we further consider the non-symmetric analog of the RIP:

αK‖x‖22 ≤ ‖Φx‖2 ≤ βK‖x‖22, ∀x ∈ CK , (4)

for positive constants αK , βK .
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In contrast to the conventional convex relaxation of this problem
[2], we maintain the combinatorial nature of (2) and focus on the
class of hard thresholding methods; c.f., [3] for a compact overview of
existing variants. As a running example for our analysis, model-based
Iterative Hard Thresholding (IHT) algorithm [4] is used, characterized
by the following two-step recursion:

x̄i = xi −
µ

2
∇f(xi), xi+1 = PCK (x̄i) . (5)

Here, i is the iteration number, µ is the gradient descent step size,
∇f(x) , −2ΦT (u − Φx) denotes the gradient of the objective
function f(x), and PCK (·) is the combinatorial projection onto the
subspace defined by CSM CK according to:

PCK (y) = argminx:x∈CK‖x− y‖2. (6)

In this paper, we concentrate on CSM cases where PCK (·) projection
is exactly computed in polynomial time (defined as PMAP0 in [1]);
examples include the simple sparsity model, and models with matroid
or totally unimodular constraints.

To characterize the performance of the iterative process (5) both in
terms of convergence rate and noise resilience, we use the following
recursive expression:

‖xi+1 − x∗‖2
‖x∗‖2

≤ ρ‖xi − x
∗‖2

‖x∗‖2
+ γ

1

SNR
, (7)

where SNR , ‖x∗‖2
‖n‖2 represents the signal-to-noise ratio metric. In

(7), γ denotes the approximation guarantee and provides insights into
algorithm’s reconstruction capabilities when additive noise is present;
|ρ| < 1 expresses the convergence rate towards the true vector x∗.

In each iteration, resource requirements of hard thresholding meth-
ods mainly depend on the total number of matrix-vector multiplica-
tion operations. Different problem configurations (e.g. comparable
sparsity level with respect to the number of available measurements,
etc.) lead to hard thresholding variants that guarantee stability and
noise robustness but additional matrix Φ applications (and its adjoint
ΦT ) are required per iteration; hence, low iteration counts are
desired to trade-off these operations. Furthermore, assuming CSM
instead of the simple sparsity model introduces elaborate structure
constraints, rendering the total number of combinatorial projections
a non-negligible factor with respect to the overall complexity of the
algorithm.

Contributions: We analyze the behaviour and performance of hard
thresholding methods from a global perspective. Three basic building
blocks (“ingredients”) are studied: i) step size selection µi, ii)
memory exploitation, and iii) gradient or least-squares updates over
restricted support sets. We highlight the impact of these blocks on the
convergence rate and signal reconstruction performance and provide
optimal and/or efficient strategies on how to set up these “ingredients”
under different problem conditions. Finally, we provide empirical



support for our claims for better data recovery performance and
reduced complexity through experimental results on synthetic data.

Notation: We use [x]j to denote the j-th element of x, and let xi
represent the i-th iterate of the hard thresholding method. The index
set of N dimensions is denoted as N = {1, 2, . . . , N}. Given S ⊆
N , we define the complement set Sc = N \S. Moreover, given a set
S ⊆ N and a vector x ∈ RN , xS ∈ RN denotes a vector with the
following properties: [xS ]S = [x]S and [xS ]Sc = 0. The notation
∇Sf(x) is shorthand for [∇f(x)]S . ΦT represents the restriction of
the matrix Φ to a column submatrix whose columns are listed in the
set T . The support set of x is defined as supp(x) = {i : [x]i 6= 0}.
We use |S| to denote the cardinality of the set S. The inner product
between two vectors α, β ∈ RN is denoted as 〈α, β〉 = αTβ =∑N
i=1[α]i[β]i where T is the transpose operation. ‖ · ‖2 denotes the

l2-norm where ‖x‖2 =
√
〈x, x〉. I represents an identity matrix with

dimensions apparent from the context.

II. STEP SIZE SELECTION

To emphasize how step size selection µi affects both the conver-
gence rate ρ and the approximation guarantee γ, we derive the con-
vergence proof of model-based IHT where step size µi is considered
as a variable, using techniques described in [6]. Given non-symmetric
RIP assumption, the following recursive formula holds true:

‖xi+1 − x∗‖2
‖x∗‖2

≤ 2‖I− µiΦ∗TΦT ‖2→2
‖xi − x∗‖2
‖x∗‖2

+
2µi
√
β2K

SNR
,

(8)

where T = supp(x∗) ∪ supp(xi+1) ∪ supp(xi) with |T | ≤ 3K and

‖I− µiΦ∗TΦT ‖2→2 ≤

max
{
µiλmax(Φ

∗
TΦT )− 1, 1− µiλmin(Φ

∗
TΦT )

}
. (9)

In the case of hard thresholding methods, recent works on the
performance of IHT algorithm provide strong convergence rate guar-
antees in terms of RIP constants; c.f. [5] and [6] to name a few.
However, as a prerequisite to achieve these strong isometry constant
bounds, the step size is set µi = 1,∀i, given that ‖Φ‖22 < 1.
From a different perspective, [3] proposes a constant step size
µi = 1/(1 + δ2K), ∀i, based on a simple convergence analysis
of the gradient descent method.

Unfortunately, most of the above problem assumptions are not
naturally met; the authors in [7] provide an intuitive example where
IHT algorithm behaves differently under various scalings of the
sensing matrix Φ. Violation of these configuration details usually lead
to unpredictable signal recovery performance of hard thresholding
methods. Therefore, more sophisticated step size selection procedures
should be devised to tackle these computational issues during actual
recovery. On the other hand, the computation of RIP constants is
NP-hard for the strategy of [3] and exhaustive combinatorial search
is necessary.

Existing approaches broadly fall into two categories: constant and
adaptive step size selection.

A. Constant step size selection

As a first scenario, assume Φ satisfies the non-symmetric RIP with
known αcK , βcK , (c = 2, 3) constants. In this case,

λ(Φ∗TΦT ) ∈ [α3K , β3K ]. (10)

To optimize the convergence rate, we can pick µi as the minimizer
of the expression:

min
µi

‖I− µiΦ∗TΦT ‖2→2 ≤ min
µi

max
{
µiβ3K − 1, 1− µiα3K

}
,

(11)

which leads to the following result, inspired by convex optimization
constant step size strategies [9].

Proposition 1 (Non-symmetric RIP constant step size strategy):
Assume Φ satisfies the non-symmetric RIP with known upper/lower
bounds αcK , βcK , (c = 2, 3). The step size µi that implies the
fastest convergence rate in (8) amounts to

µi =
2

α3K + β3K
, ∀i = {1, 2, . . . , },

where ρ = 2(β3K−α3K)
α3K+β3K

< 1⇒ β3K < 3α3K and γ =
2
√
β2K

α3K+β3K
.

Proof: It is obvious that the step size µi that minimizes (11)
lies at the intersection of the linear functions ψ1(µi) , µiβ3K −
1, ψ2(µi) , 1− µiα3K . Hence, the minima occurs when

ψ1(µi) = ψ2(µi)⇒ µi =
2

α3K + β3K
. (12)

In the special case where Φ satisfies the RIP (3) for some constant
δ3K , (8) becomes:

‖xi+1 − x∗‖2
‖x∗‖2

≤ 2‖I− µiΦ∗TΦT ‖2→2
‖xi − x∗‖2
‖x∗‖2

+
2µi
√

1 + δ2K
SNR

(13)

Following the same proof technique, we conclude to the same
convergence rate achieved in [6].

Corollary 1 (RIP constant step size strategy): Given Φ satisfies
the RIP for some δ3K , the step size µi that implies the fastest
convergence rate in (13) amounts to µi = 1, ∀i = {1, 2, . . . , },
with ρ = 2δ3K and γ = 2

√
1 + δ2K . Moreover, the iterations are

contractive iff |ρ| < 1⇒ δ3K < 1/2.

B. Adaptive step size selection

Since the computation of the exact RIP bounds is NP-hard, the
assumptions made for constant step size selection strategies are
unverifiable even for moderate-sized random matrices. To improve
stability, an adaptive scheme is mandatory.

There is limited work on the adaptive step size selection for hard
thresholding methods. To the best of our knowledge, [7]-[8] are the
only studies that attempt this via line searching.

According to (5), let xi ∈ CK be the K-sparse signal estimate
with known support Xi , supp(xi) at the i-th iteration. It then holds
that the non-zero elements [xi+1]j , ∀j ∈ Xi+1 , supp(xi+1) of the
new estimate satisfy:

[xi+1]j =

{
−µi

2
[∇f(xi)]j if [xi]j = 0,

[xi]j − µi
2

[∇f(xi)]j otherwise.

for any step size µi. Since |Xi+1| ≤ K, we easily deduce the
following key observation:

Remark 1: Let Si be a 2K-sparse support set defined as:

Si = Xi ∪ supp
(
PCK

(
∇Xc

i
f(xi)

))
(14)

Given Xi+1 is unknown at the i-th iteration, Si is the smallest index
set that contains it such that

PCK
(
xi −

µi
2
∇f(xi)

)
= PCK

(
xi −

µi
2
∇Sif(xi)

)
(15)



necessarily holds.
Using Remark 1, model-based IHT can be equivalently written as

x̄i = xi −
µ

2
∇Sif(xi), xi+1 = PCK (x̄i) . (16)

where x̄i ∈ C2K with supp(x̄i) ⊆ Si. To compute step-size µi, we
propose:

µi = argminµ
∥∥∥u− Φ

(
xi −

µ

2
∇Sif(xi)

)∥∥∥2
2

=
‖∇Sif(xi)‖22
‖Φ∇Sif(xi)‖22

,

(17)

i.e., µi is the minimizer of the objective function. Note that 1 −
δ2K ≤ 1/µi ≤ 1 + δ2K and α2K ≤ 1/µi ≤ β2K due to RIP
and non-symmetric RIP, respectively. The proposed adaptive step size
selection strategy leads to the following theorem, whose proof is
omitted due to lack of space:

Theorem 1 (Iteration Invariant): Assume Φ ∈ RM×N satisfies (4)
with αcK , βcK , (c = 2, 3) unknown. In the worst case scenario,
model-based IHT with adaptive step size selection (17) satisfies the
following recursive formula:

‖xi+1 − x∗‖2
‖x∗‖2

≤ ρ‖xi − x
∗‖2

‖x∗‖2
+ γ

1

SNR
, (18)

where ρ = 2 max{ β3K
α2K
− 1, 1− α3K

β2K
} and γ =

2
√
β2K

α2K
.

Corollary 2: Assuming RIP (3) with constants δcK , (c = 2, 3),
(18) is rewritten as:

‖xi+1 − x∗‖2
‖x∗‖2

≤ 2
δ3K + δ2K
1− δ2K

‖xi − x∗‖2
‖x∗‖2

+
2
√

1 + δ2K
1− δ2K

1

SNR
,

where 2 δ3K+δ2K
1−δ2K

< 1⇒ δ3K < 1/5.
We observe that adaptive µi scheme results in more restrictive

“worst-case” isometry constants compared to [6], but faster con-
vergence and better stability are empirically observed, as shown in
Section V.

III. MEMORY

Iterative algorithms can use memory to provide momentum in
convergence. The success of the memory-based approaches depends
on the iteration dependent momentum step size term that combines
the previous estimates. Based on Nesterov’s optimal gradient methods
[9], [12] proposes the following hard thresholding variant:

xi = HK(yi −
µi
2
∇Sif(yi)), yi+1 = xi + τi(xi − xi−1), (19)

where Yi = supp(yi), Si = Yi ∪ supp(HK(∇Yc
i
f(yi))) with |Si| ≤

3K and τi represents the momentum step size.
Similarly to µi strategies, τi can be preset as constant or adaptively

computed at each iteration. Constant momentum step size selection
has no additional computational cost but convergence rate acceler-
ation is not guaranteed for a wide range of problem formulations.
On the other hand, empirical evidence has shown that adaptive
τi selection strategies result to faster convergence with (almost)
equivalent complexity to zero-memory methods.

For the case of strongly convex objective functions, Nesterov
[9] proposed the following constant momentum step size selection
scheme for (19)1:

τi =
αi(1− αi)
α2
i + αi+1

, (20)

1We thank Francis Bach for pointing out this scheme.
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Fig. 1. Model-based IHT convergence rate example using memory; simple
sparsity model assumed with N = 2000,M = 600,K = 120. Blue and
black lines represent Nesterov’s τi selection scheme with q =

λmin(Φ
∗Φ)

λmax(Φ∗Φ)

and q ∼ µmin
i
µmax
i

, respectively; green line represents the proposed momentum
step size selection.

where α0 ∈ (0, 1) and αi+1 ∈ (0, 1) is computed as the root of

α2
i+1 = (1− αi+1)α2

i + qαi+1, for q ,
λmin(Φ

∗Φ)

λmax(Φ
∗Φ)

. (21)

In this scheme, exact calculation of q parameter is computationally
expensive for large-scale data problems and approximation schemes
are leveraged to compensate this complexity bottleneck.

Based upon the same ideas as adaptive µi selection, we propose
to select τi as the minimizer of the objective function2:

τi = argminτ‖u− Φyi+1‖22 =
〈u− Φxi,Φxi − Φxi−1〉
‖Φxi − Φxi−1‖22

, (22)

where Φxi,Φxi−1 are previously computed. According to (22), τi re-
quires only vector-vector inner product operations, a computationally
cheaper operation than q calculation. Convergence rate performance
of the above schemes is depicted in Fig. 1.

IV. UPDATES OVER RESTRICTED SUPPORT SETS

At each iteration, the new estimate xi+1 = PCK
(
xi − µi

2
∇f(xi)

)
can be further refined by applying a single or multiple gradient
descent updates with line search restricted on Xi+1 [11]:

xi+1 = xi+1 −
µ̄i
2
∇Xi+1f(xi+1), where µ̄i =

‖∇Xi+1f(xi+1)‖22
‖Φ∇Xi+1f(xi+1)‖22

,

or solving the minimization problem over Xi+1 [10]-[11]:

xi+1 = argminx:supp(x)⊆Xi+1
‖u− Φx‖22. (23)

Using the same ideas in our adaptive µi selection scheme, a more
accurate but computationally intensive alternative to gradient descent
update in (16) is the objective minimization problem restricted on the
support set Si, similar to (23).

V. EXPERIMENTS

To set up our experiments, we incorporate these tricks into the
ALPS toolbox, which is available at http://lions.epfl.ch/ALPS. The
naming convention borrows from [13].

2Similar ideas were simultaneously proposed in [8].
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0-ALPS(0) [317]
1-ALPS(0) - τi = opt - [118]
NIHT - [373]
AIHT - [107.5]
1-ALPS(2) - τi = opt - [79]

Fig. 2. Median error per iter. - [median # of iter.] - #-ALPS(0): adaptive
µi with # memory, NIHT: Normalized IHT [7], AIHT: NIHT with Double
Relaxation [8], 1-ALPS(2): adaptive µi and additional gradient update.

A. Experiment 1: Computational complexity and convergence rate

We generate 50 random Monte-Carlo realizations according to
(1) where N = 5000,M = 2000 and K = 700. Φ is a dense
random matrix with independent entries, sampled from zero-mean
Gaussian distribution with variance 1/M . The sparse signal x∗

follows the simple sparsity model with K nonzero elements, acquired
according to standard normal distribution with ‖x∗‖2 = 1. In Fig.
2, we compare five different hard thresholding methods in terms of
convergence rate.

We also provide in Table 1 the matrix-vector multiplication com-
plexity (in Big-Oh notation) per iteration along with the total number
of projections PCK (·).

TABLE I

Complexity per iter.
0-ALPS(0) O(MN) + 3O(MK)

NIHT3 O(MN) + 2O(MK)

AIHT3 O(MN) + 3O(MK)
1-ALPS(0) O(MN) + 3O(MK)
1-ALPS(2) 2O(MN)+5O(MK)

# of PCK (·) per iter.
0-ALPS(0) 2
NIHT3 2
AIHT3 3
1-ALPS(0) 2
1-ALPS(2) 2

B. Experiment 2: Memory does not hurt

Fig. 3 illustrates the phase transition diagrams of 0-ALPS(0) and
1-ALPS(0) algorithms. The ambient dimension of the true signal is
N = 1000. We observe that memory acceleration does not degrade
the signal reconstruction performance compared to equivalent zero-
memory schemes. As a side remark, we note that 1-ALPS(0) behaves
better than AIHT [8] and NIHT [7] algorithms in terms of phase
transition performance.

C. Experiment 3: Phase transition performance

In this experiment, we compare the signal recovery behaviour of
0-ALPS(4) algorithm using our adaptive step size selection and HTP
algorithm [11] with NIHT adaptive µi selection [7]. Here, we assume
N = 1000. The empirical phase transition results are depicted in Fig.
4.

VI. CONCLUSIONS

In this paper, we present and review three building blocks of hard
thresholding methods along with optimal/efficient strategies for their
usage. In theory, constant µi selection schemes are accompanied
with strong RIP constant conditions but empirical evidence reveal

3Best case scenario where no additional binary line search over µi is
needed.

Fig. 3. Empirical phase transition performance of 0-ALPS(0) (left column)
and 1-ALPS(0) (right column) algorithms. A signal recovery with solution x̂
is considered successful provided that ‖x̂− x∗‖2 < 10−6. Solid black line
denotes the theoretical l1 minimization phase transition curve.

Fig. 4. Empirical phase transition performance of 0-ALPS(4) with the
proposed step size selection (left column) and HTP with NIHT step size
selection (right column). A signal recovery with solution x̂ is considered
successful provided that ‖x̂ − x∗‖2 < 10−6. Solid black line denotes the
theoretical l1 minimization phase transition curve.

signal reconstruction vulnerabilities even for small deviations from
the initial problem assumptions. While convergence derivations of
adaptive schemes are characterized by weaker bounds, the perfor-
mance gained by this choice, both in terms of convergence rate and
data recovery, is quite significant. Memory-based methods lead to
convergence speed with (almost) no extra cost on the complexity
of hard thresholding methods but more theoretical justification is
needed; future work will likely focus on this direction. Lastly, further
estimate refinement over sparse support sets using gradient update
steps or pseudoinversion optimization techniques provides signal
reconstruction efficacy, but more computational power is needed per
iteration. In all cases, experimental results illustrate the effectiveness
of the proposed schemes on different problem configurations.
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