
Negative sampling in semi-supervised learning

John Chen 1 Vatsal Shah 2 Anastasios Kyrillidis 1

Abstract
We introduce Negative Sampling in Semi-
Supervised Learning (NS3L), a simple, fast, easy
to tune algorithm for semi-supervised learning
(SSL). NS3L is motivated by the success of nega-
tive sampling/contrastive estimation. We demon-
strate that adding the NS3L loss to state-of-the-
art SSL algorithms, such as the Virtual Adversar-
ial Training (VAT), significantly improves upon
vanilla VAT and its variant, VAT with Entropy
Minimization. By adding the NS3L loss to Mix-
Match, the current state-of-the-art approach on
semi-supervised tasks, we observe significant im-
provements over vanilla MixMatch. We con-
duct extensive experiments on the CIFAR10, CI-
FAR100, SVHN and STL10 benchmark datasets.
Finally, we perform an ablation study for NS3L
regarding its hyperparameter tuning.

1. Introduction
Deep learning has been hugely successful in areas such
as image classification (Krizhevsky et al., 2012; He et al.,
2016; Zagoruyko & Komodakis, 2016; Huang et al., 2017)
and speech recognition (Sak et al., 2014; Sercu et al., 2016),
where a large amount of labeled data is available. However,
in practice it is often prohibitively expensive to create a large,
high quality labeled dataset, due to lack of time, resources,
or other factors. For example, the ImageNet dataset—which
consists of 3.2 million labeled images in 5247 categories—
took nearly two and half years to complete with the aid
of Amazon’s Mechanical Turk (Deng et al., 2009). Some
medical tasks may require months of preparation, expensive
hardware, the collaboration of many experts, and often are
limited by the number of participants (Miotto et al., 2016).
As a result, it is desirable to exploit unlabeled data to aid
the training of deep learning models.
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This form of learning is semi-supervised learning (Chapelle
& Scholkopf, 2006) (SSL). Unlike supervised learning, the
aim of SSL is to leverage unlabeled data, in conjunction
with labeled data, to improve performance. SSL is typically
evaluated on labeled datasets where a certain proportion of
labels have been discarded. There have been a number of
instances in which SSL is reported to achieve performance
close to purely supervised learning (Laine & Aila, 2017;
Miyato et al., 2017; Tarvainen & Valpola, 2017; Berthelot
et al., 2019), where the purely supervised learning model is
trained on the much larger whole dataset. However, despite
significant progress in this field, it is still difficult to quantify
when unlabeled data may aid the performance except in a
handful of cases (Balcan & Blum, 2005; Ben-David et al.,
2008; Kääriäinen, 2005; Niyogi, 2013; Rigollet, 2007; Singh
et al., 2009; Wasserman & Lafferty, 2008).

In this work, we restrict our attention to SSL algorithms
which add a loss term to the neural network loss. These
algorithms are the most flexible and practical given the
difficulties in hyperparameter tuning in the entire model
training process, in addition to achieving the state-of-the-art
performance.

We introduce Negative Sampling in Semi-Supervised Learn-
ing (NS3L): a simple, fast, easy to tune SSL algorithm, moti-
vated by negative sampling/contrastive estimation (Mikolov
et al., 2013; Smith & Eisner, 2005). In negative sam-
pling/contrastive estimation, in order to train a model on un-
labeled data, we exploit implicit negative evidence, originat-
ing from the unlabeled samples: Using negative sampling,
we seek for good models that discriminate a supervised ex-
ample from its neighborhood, comprised of unsupervised
examples, assigned with a random (and potentially wrong)
class. Stated differently, the learner learns that not only the
supervised example is good, but that the same example is
locally optimal in the space of examples, and that alternative
examples are inferior. With negative sampling/contrastive
estimation, instead of explaining and exploiting all of the
data (that is not available during training), the model im-
plicitly must only explain why the observed, supervised
example is better than its unsupervised neighbors.

Overall, NS3L adds a loss term to the learning objective,
and is shown to improve performance simply by doing so to
other state-of-the-art SSL objectives. Since modern datasets
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often have a large number of classes (Russakovsky et al.,
2014), we are motivated by the observation that it is often
much easier to label a sample with a class or classes it is
not, as opposed to the one class it is, exploiting ideas from
negative sampling/contrastive estimation (Mikolov et al.,
2013; Smith & Eisner, 2005).

Key Contributions. Our findings can be summarized as
follows:

i) We propose a new SSL algorithm, which is easy to tune,
and improves SSL performance of other state of the art
algorithms across a wide range of reasonable hyperparam-
eters, simply by adding the NS3L loss in their objective.

ii) Adding the NS3L loss to a variety of losses, including Vir-
tual Adversarial Training (VAT) (Miyato et al., 2017), Π
model, and MixMatch (Berthelot et al., 2019), we observe
improved performance compared to vanilla alternatives as
well as the addition of Pseudo-Labeling or Entropy Min-
imization, for the standard SSL benchmarks of SVHN,
CIFAR10, and CIFAR100.

iii) Adding the NS3L loss to the state-of-the-art SSL algo-
rithm, i.e., the MixMatch procedure (Berthelot et al.,
2019), NS3L combined with MixMatch produces supe-
rior performance for the standard SSL benchmarks of
SVHN, CIFAR10 and STL-10.

Namely, adding the NS3L loss to existing SSL algorithms is
an easy way to improve performance, and requires limited
extra computational resources for hyperparameter tuning,
since it is interpretable, fast, and sufficiently easy to tune.

2. Related Work
In this paper, we restrict our attention to a subset of SSL
algorithms which add a loss to the supervised loss func-
tion. These algorithms tend to be more practical in terms
of hyperparameter tuning (Berthelot et al., 2019). There
are a number of SSL algorithms not discussed in this paper,
following and as mentioned in (Berthelot et al., 2019): in-
cluding ”transductive” models (Joachims, 1999; 2003; Gam-
merman et al., 1998), graph-based methods (Zhu et al., 2003;
Bengio et al., 2006), and generative modeling (Joachims,
2003; Belkin & Niyogi, 2002; Salakhutdinov & Hinton,
2007; Coates & Ng, 2011; Goodfellow et al., 2011; Kingma
et al., 2014; Odena, 2016; Pu et al., 2016; Salimans et al.,
2016). For a comprehensive overview of SSL methods, refer
to (Chapelle & Scholkopf, 2006), or (Zhu et al., 2003).

2.1. Consistency Regularization

Consistency regularization applies data augmentation to
semi-supervised learning with the following intuition: Small

perturbations for each sample should not significantly
change the output of the network. This is usually achieved
by minimizing some distance measure between the out-
put of the network, with and without perturbations in the
input. The most straightforward distance measure is the
mean squared error used by the Π model (Laine & Aila,
2017; Sajjadi et al., 2016). The Π model adds the distance
term d(fθ(x), fθ(x̂)), where x̂ is the result of a stochastic
perturbation to x, to the supervised classification loss as a
regularizer, with some weight.

Mean teacher (Tarvainen & Valpola, 2017) observes the
potentially unstable target prediction over the course of
training with the Π model approach, and proposes a pre-
diction function, parameterized by an exponential moving
average of model parameter values. Mean teacher adds
d(fθ(x), fθ′(x)), where θ′ is an exponential moving aver-
age of θ, to the supervised classification loss with some
weight. However, the stochastic perturbation used in these
methods are domain specific.

2.2. Virtual Adversarial Training

Virtual Adversarial Training (Miyato et al., 2017) (VAT)
approximates perturbations to be applied over the input
to most significantly affect the output class distribution,
inspired by adversarial examples (Goodfellow et al., 2015;
Szegedy et al., 2014). VAT computes an approximation of
the perturbation as:

r ∼ N
(

0, ξ√
dim(x)

I

)
g = ∇rd (fθ(x), fθ(x+ r))

radv = ε · g/‖g‖2
where x is an input data sample, dim(·) is its dimension, d
is a non-negative function that measures the divergence be-
tween two distributions, ξ and ε are scalar hyperparameters.
Consistency regularization is then used to minimize the dis-
tance between the output of the network, with and without
the perturbations in the input. Since we follow the work
in (Oliver et al., 2018) almost exactly, we select the best
performing consistency regularization SSL method in that
work, VAT, for comparison and combination with NS3L for
non-Mixup SSL; Mixup procedure will be described later.

2.3. Entropy minimization

The goal of entropy minimization (Grandvalet & Bengio,
2005) is to discourage the decision boundary from passing
near samples where the network produces low-confidence
predictions. One way to achieve this is by adding a simple
loss term to minimize the entropy for unlabeled data x with
total K classes: −

∑K
k=1 µxk logµxk. Entropy minimiza-

tion on its own has not demonstrated competitive perfor-
mance in SSL, however it can be combined with VAT for
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Figure 1: Left: Diagram of NS3L with VAT. For NS3L, an augmented example is fed into the model, which outputs a
probability for each class. A threshold T is used to determine classes with sufficiently low probability, and these classes
are fed into the NS3L loss. The NS3L loss is combined with the existing VAT loss and Cross Entropy loss. Right: Similar
diagram of NS3L with MixMatch; the NS3L loss is combined with the existing MixMatch loss.

stronger results (Miyato et al., 2017; Oliver et al., 2018). We
include entropy minimization with VAT in our experiments.

2.4. Pseudo-Labeling

Pseudo-Labeling (Lee, 2013) is a simple and easy to tune
method which is widely used in practice. For a particular
sample, it requires only the probability value of each class,
the output of the network, and labels the sample with a class
if the probability value crosses a certain threshold. The
sample is then treated as a labeled sample with the standard
supervised loss function. Pseudo-Labeling is closely related
to entropy minimization, but only enforces low-entropy
predictions for predictions which are already low-entropy.
We emphasize here that the popularity of Pseudo-Labeling
is likely due to its simplicity and limited extra cost for
hyperparameter search.

2.5. SSL with modern data augmentation techniques

Mixup (Zhang et al., 2017) combines pairs of samples and
their one-hot labels (x1, y1), (x2, y2) as in: x′ = λx1+(1−
λ)x2, y′ = λy1 + (1 − λ)y2, where λ ∼ Beta(α, α), to
produce a new sample (x′, y′) with α being a hyperparam-
eter. Mixup is a form of regularization which encourages
the neural network to behave linearly between training ex-
amples, justified by Occam’s Razor (Zhang et al., 2017). In
SSL, the labels y1, y2 are typically the predicted labels by a
neural network with some processing steps.

Applying Mixup to SSL led to Interpolation Consistency
Training (ICT) (Verma et al., 2019) and MixMatch (Berth-
elot et al., 2019), which significantly improved upon pre-
vious results with SSL on the standard benchmarks of CI-
FAR10 and SVHN. ICT trains the model fθ to output predic-
tions similar to a mean-teacher fθ′ , where θ′ is an exponen-
tial moving average of θ. Namely, on unlabeled data, ICT en-
courages fθ(Mixup(xi, xj)) ≈ Mixup(fθ′(xi), fθ′(xj)).

MixMatch applies a number of processing steps for labeled

and unlabeled data on each iteration and mixes both labeled
and unlabeled data together. The final loss is given by
L = Lsupervised + λ3Lubsupervised, where

X ′,U ′ = MixMatch(X ,U , E,A, α)

Lsupervised =
1

|X ′|
∑
i1∈X ′

K∑
k=1

yi1k logµi1k

Lunsupervised =
1

K|U ′|
∑
i2∈U ′

K∑
k=1

(yi2k − µi2k)2

where X is the labeled data {xi1 , yi1}ni1=1, U is the unla-
beled data {xui2}

nu
i2=1, X ′ and U ′ are the output samples

labeled by MixMatch, and E, A, α, λ3 are hyperparameters.
Given a batch of labeled and unlabeled samples, MixMatch
applies A data augmentations on each unlabeled sample xi2 ,
averages the predictions across the A augmentations,

p =
1

A

A∑
a=1

fθ(Augment(xui2))

and applies temperature sharpening,

Sharpen(p,E)k :=
p
1/E
k∑K

k=1 p
1/E
k

,

to the average prediction. A is typically 2 in practice, and
E is 0.5. The unlabeled data is labeled with this sharpened
average prediction.

Let the collection of labeled unlabeled data be Û . Stan-
dard data augmentation is applied to the originally la-
beled data and let this be denoted X̂ . Let W denote the
shuffled collection of Û and X̂ . MixMatch alters Mixup
by adding a max operation: λ ∼ Beta(α, α), λ′ =

max(λ, 1 − λ); it then produces X ′ = Mixup(X̂i1 ,Wi1)

and U ′ = Mixup(Ûi2 ,Wi2+|X̂ |).
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Since MixMatch performs the strongest empirically, we
select MixMatch as the best performing Mixup-based SSL
method for comparison and combination with NS3L. We
make a note here that more recently there is also work on
applying stronger data augmentation (Xie et al., 2019).

3. Negative Sampling in Semi-Supervised
Learning

In this section, we provide the pseudo-code for the Negative
Sampling with Semi-Supervised Learning (NS3L) algorithm
in Algorithm 1. NS3L assigns a random label to an unsu-
pervised sample as long as the probability of that random
label being correct is low. Adding NS3L to any existing
algorithms allows us to achieve significant performance im-
provements. We first provide the mathematical motivation
behind NS3L followed by intuition of why NS3L works
using a simple toy example in 1D.

3.1. Mathematical Motivation

Let the set of labeled samples be denoted as {xi, yi}ni=1, xi
being the input and yi being the associated label, and the
set of unlabeled samples be denoted as {xui }

nu
i=1, each with

unknown correct label yui . For the rest of the text, we will
consider the cross-entropy loss, which is one of the most
widely used loss functions for classification. The objective
function for cross entropy loss over the labeled examples is:

L ({xi, yi}ni=1) = − 1
n

n∑
i=1

K∑
k=1

yik logµik,

where there are n labeled samples, K classes, yik = 1k=yi
is the identity operator that equals 1 when k = yi, and µik
is the output of the classifier for sample i for class k.

For the sake of simplicity, we will perform the following
relabeling: for all i ∈ [nu], xi+n = xui and yi+n = yui . In
the hypothetical scenario where the labels for the unlabeled
data are known and for w the parameters of the model, the
likelihood would be:

P
[
{yi}n+nu

i=1 | {xi}n+nu
i=1 , w

]
=

n+nu∏
i=1

P [yi | xi, w] =

n+nu∏
i=1

K∏
k=1

µyikik ,

=

(
n∏

i1=1

K∏
k=1

µ
yi1k

i1k

)
·

(
nu∏
i2=1

K∏
k=1

µ
yui2k

i2k

)

Observe that,
∏K
k=1 µ

yui2k

i2k
= 1 −

∑
j:yi2j 6=1 µi2j , which

follows from the definition of the quantities µ: that represent
a probability distribution and, consequently, sum up to one.

Taking negative logarithms allows us to split the loss func-
tion into two components: i) the supervised part and ii) the

Algorithm 1 NS3L

1: Input: Mini batch size B, batch of examples xb and
their predicted vector of label probabilities ŷb using the
output of the classifier {xb, ŷb}Bb=1, threshold T .

2: LNS3L = 0.
3: for b = 1, . . . , B do
4: 1ŷ′b = isTrue(ŷb < T ).

5: LNS3L = LNS3L − log
(

1−
∑K
k=1 1ŷ′bkµbk

)
.

6: end for
7: Return 1

BLNS3L

unsupervised part. The log-likelihood loss function can now
be written as follows:

L
(
{xi, yi}n+nu

i=1

)
= − 1

n

n∑
i1=1

K∑
k=1

yik logµik︸ ︷︷ ︸
:=supervised part

− 1
nu

nu∑
i2=1

log

1−
∑

j 6=True label

µi2j


︸ ︷︷ ︸

:=unsupervised part

While the true labels need to be known for the unsuper-
vised part to be accurate, we draw ideas from negative sam-
pling/contrastive estimation (Mikolov et al., 2013; Smith &
Eisner, 2005): i.e., for each unlabeled example in the unsu-
pervised part, we randomly assign P labels from the set of
labels; see also Appendix A.These P labels indicate classes
that the sample does not belong to: as the number of labels
in the task increase, the probability of including the correct
label in the set of P labels is small. The way labels are
selected could be uniformly at random or by using Nearest
Neighbor search, or even based on the output probabilities
of the network, where with high probability the correct label
is not picked.

The approach above assumes the use of the full dataset,
both for the supervised and unsupervised parts. In practice,
more often than not we train models based on stochastic
gradient descent, and we implement a mini-batch variant
of this approach with different batch sizes B1 and B2 for
labeled and unlabeled data, respectively. Particularly, for
the supervised mini-batch of size B1 for labeled data, the
objective term is approximated as:

1
n

n∑
i1=1

K∑
k=1

yik logµik ≈ 1
|B1|

∑
i1∈B1

K∑
k=1

yik logµik.

The unsupervised part with mini-batch size of B2 and NS3L
loss, where each unlabeled sample is connected with Pi2
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Figure 2: A toy example illustrating the effectiveness of Negative Sampling in Semi supervised learning

hopefully incorrect labels, is approximated as:

1
nu

nu∑
i2=1

log
(
1−

∑
j 6=True label

µi2j
)

≈ 1
|B2|

∑
i2∈B2

log

1−
Pi2∑
j=1

µi2j


Based on the above, our NS3L loss looks as follows:

L̂B1,B2

(
{xi, yi}n+nu

i=1

)
= − 1

|B1|

∑
i1∈B1

K∑
k=1

yik logµik

− 1
|B2|

∑
i2∈B2

log

1−
Pi2∑
j=1

µi2j


︸ ︷︷ ︸

:=NS3L loss

Thus, the NS3L loss is just an additive loss term that can
be easily included in many existing SSL algorithms, as we
show next. For clarity, a pseudocode implementation of the
algorithm where negative labels are identified by the label
probability being below a threshold T , as the output of the
classifier or otherwise, is given in Algorithm 1.

3.2. Intuition

Our aim is to illustrate how our simple idea aids the task
of learning with unlabeled data. We will consider a sim-
ple example in 1D (Figure 2), where we assume binary
classification with cross-entropy loss for simplicity.

Let w? denote the separating hyperplane and assume that
the data lies uniformly on either side of w?, indicated by the

shaded blue region (Figure 2a). Without loss of generality,
let the points on the left and right of the hyperplane have
the labels 1 and 0, respectively. Our aim is to recover w?.

It is possible for the labeled examples to have a selection
bias (Chawla & Karakoulas, 2005) (for example certain
images of cats are easier to label than others); assume that
this property leads the algorithm to converge to ŵ; Figure
2b. However, in the SSL setting, we do have access to a
large number of unlabeled examples. How can we utilize it
to improve our prediction?

Consider one of the highlighted samples (xu) (red dot with
black boundary in Figure 2c). Let us assume its underlying
true label is 1. The key difference in both approaches is that
in inductive SSL (Chapelle & Scholkopf, 2006; Zhu et al.,
2003) we make a gradient update by labeling any point in
the shaded yellow region as the predicted label while in
negative sampling we make a gradient update by labeling
the same point as not 0. Both these algorithms only perform
updates only if we are certain about the label.

Now, let us compare the gradients of a sample using the
classical inductive SSL approach and negative sampling.

Inductive SSL :∇L ({xu}) = −(1− µu)xu

NS3L :∇L ({xu}) = µuxu

From the equations above, it is clear that NS3L and Induc-
tive SSL push the gradients in opposite directions. The gra-
dient updates of supervised samples align with the gradient
updates of the unsupervised samples labeled using Induc-
tive SSL. However, that is not the case for NS3L. Since
the unsupervised data samples come from a uniform distri-
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bution, it is more likely that we will pick more “negative”
samples from the class on the right (intersection of yellow
and blue shaded regions). These negative samples have a
bias to the right side of the plane ultimately bringing back
the separating hyper-plane closer to w? (Figure 2d).

4. Experiments
We use the codebase from (Berthelot et al., 2019) for experi-
ments involving MixMatch, and otherwise use the codebase
from (Oliver et al., 2018). We make the distinction due to
the existence of some experimental differences, and this
is the best way to reproduce the reported performances.
Namely, (Berthelot et al., 2019) differs from (Oliver et al.,
2018) in that it evaluates an exponential moving average of
the model parameters, as opposed to using a learning rate
decay schedule, and uses weight decay.

4.1. Experimental Setup

Following (Oliver et al., 2018), the model employed is the
standard Wide ResNet (WRN) (Zagoruyko & Komodakis,
2016) with depth 28 and width 2, batch normalization (Ioffe
& Szegedy, 2015), and leaky ReLU activations (Maas & Ng,
2013). The optimizer is the Adam optimizer (Kingma & Ba,
2014). The batch size is 100, half of which are labeled and
half are unlabeled. Standard procedures for regularization,
data augmentation, and preprocessing are followed.

We use the standard training data/validation data split for
SVHN, with 65,932 training images and 7,325 validation
images. All but 1,000 examples are turned ”unlabeled”.
Similarly, we use the standard training/data validation data
split for CIFAR10, with 45,000 training images and 5,000
validation images. All but 4,000 labels are turned ”unla-
beled”. We also use the standard data split for CIFAR100,
with 45,000 training images and 5,000 validation images.
All but 10,000 labels are turned ”unlabeled”.

Hyperparameters are optimized to minimize validation error;
test error is reported at the point of lowest validation error.
We select hyperparameters which perform well for both
SVHN and CIFAR10. After selecting hyperparameters on
CIFAR10 and SVHN, we run the same hyperparameters
with practically no further tuning on CIFAR100 to determine
the ability of each method to generalize to new datasets.
Since VAT and VAT + EntMin use different hyperparameters
for CIFAR10 and SVHN, we use those tuned for CIFAR10
for the CIFAR100 dataset. For NS3L, NS3L + Π model,
NS3L + VAT, we divide the threshold T by 10 since there
are 10x classes in CIFAR100. We run 5 seeds for all cases.

Since models are typically trained on CIFAR10 (Krizhevsky,
2009) and SVHN (Netzer et al., 2011) for fewer than the
500,000 iterations (1,000 epochs) (Oliver et al., 2018), we
make the only changes of reducing the total iterations to

200,000, warmup period (Tarvainen & Valpola, 2017) to
50,000, and iteration of learning rate decay to 130,000. All
other methodology follows that work (Oliver et al., 2018).

For MixMatch experiments, we follow the methodology of
(Berthelot et al., 2019) and continue to use the same model
described above. Since the performance of MixMatch is
particularly strong using only a small number of labeled
samples, we also include experiments for SVHN with all
but 250 labels discarded, and CIFAR10 with all but 250
labels discarded, in addition to the previously mentioned
experiments. We also include experiments on STL10, a
dataset designed for SSL, which has 5,000 labeled images
and 100,000 unlabeled images drawn from a slightly differ-
ent distribution than the labeled data. All but 1,000 labels are
discarded for STL10. The median of the last 20 checkpoints’
test error is reported, following (Berthelot et al., 2019). Note
that we reduce the training epochs of STL10 significantly
in interest of training time. All other methodology follows
the work of MixMatch.

4.2. Baseline Methods

For baseline methods, we consider Pseudo-Labeling, due
to its simplicity on the level of NS3L, and MixMatch and
VAT for its performance, in addition to VAT + Entropy
Minimization and VAT + Psuedo-Labeling. We also include
Π model and omit Mean Teacher, although we follow the
experiments of (Oliver et al., 2018) and both produce worse
performance than VAT. The supervised baseline is trained
on the remaining labeled data after some labels have been
removed. We generally follow the tuned hyperparameters
in the literature and do not observe noticeable gains from
further hyperparameter tuning.

4.3. Implementation of NS3L

We implement NS3L using the output probabilities of the
network with the unlabeled samples, namely

LNS3L = NS3L({xi2 , µi2}Bi2=1, T ).

The performance of NS3L with random negative sampling
assignment or Nearest Neighbor-based assignment is given
in Section ?? in the appendix. We label a sample with
negative labels for the classes whose probability value falls
below a certain threshold. We then simply add the NS3L
loss to the existing SSL loss function. Using NS3L on its
own gives

L = Lsupervised + λ1LNS3L

for some weighting λ1. For adding NS3L to VAT, this gives

L = Lsupervised + λ2LVAT + λ1LNS3L

for some weighting λi, i ∈ {1, 2}. This is applied similarly
to the Π model. The weighting is a common practice in SSL,
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Table 1: Test errors achieved by various SSL approaches on the standard benchmarks of CIFAR10, with all but 4,000 labels
removed, SVHN, with all but 1,000 labels removed, and CIFAR100, with all but 10,000 labels removed. ”Supervised” refers
to using only 4,000, 1,000, and 10,000 labeled samples from CIFAR10, SVHN, and CIFAR100 respectively without any
unlabeled data. VAT refers to Virtual Adversarial Training.

Dataset Supervised PL NS3L VAT VAT + EntMin Π model Π + NS3L VAT + NS3L

CIFAR10 20.76 ± .28 17.56 ± .29 16.03 ± .05 14.72 ± .23 14.34 ± .18 17.12 ± .19 16.06 ± .21 13.94 ± .10
SVHN 12.39 ± .53 7.70 ± .22 6.52 ± .22 6.20 ± .11 6.10 ± .02 8.48 ± .15 7.98 ± .18 5.51 ± .14

CIFAR100 48.26 ± .25 46.91 ± .31 46.34 ± .37 44.38 ± .56 43.92 ± .44 47.87 ± .34 46.98 ± .41 43.70 ± .19

also used in MixMatch and VAT + Entropy Minimization.
This is the simplest form of NS3L and we believe there
are large gains to be made with more complex methods of
choosing the negative labels.

Recall that MixMatch outputs X ′,U ′ =
MixMatch(X ,U , T, A, α) collections of samples
with their generated labels. We label each sample
xi ∈ X ′⋃U ′ with negative labels for the classes whose
generated probability value falls below a certain threshold.
We then simply add the NS3L loss to the existing SSL loss
function, computing the NS3L loss using the probability
outputs of the network as usual. Namely,

X ′,U ′ = MixMatch(X ,U , E,A, α)

Lsupervised =
1

|X ′|
∑
i1∈X ′

K∑
k=1

yi1k logµi1k

Lunsupervised =
1

K|U ′|
∑
i2∈U ′

K∑
k=1

(yi2k − µi2k)2

LNS3L = NS3L(X ′
⋃
U ′, T )

L = Lsupervised + λ3Lunsupervised + λ1LNS3L

4.4. Results

We follow the practice in (Oliver et al., 2018) and use the
same hyperparameters for plain NS3L and NS3L as added
to other losses, e.g. NS3L + VAT, for both CIFAR10 and
SVHN. After selecting hyperparameters on CIFAR10 and
SVHN, we run almost the exact same hyperparameters with
little further tuning on CIFAR100, where the threshold T is
divided by 10 since there are 10x classes in CIFAR100.

For MixMatch experiments, we follow the practice of
(Berthelot et al., 2019) and tune NS3L separately for each
dataset. MixMatch + NS3L only takes marginally longer
runtime than MixMatch on its own. The learning rate is
fixed.

CIFAR10: We evaluate the accuracy of each method with
4,000 labeled samples and 41,000 unlabeled samples, as is

standard practice. The results are given in Table 1. Further
results comparing the addition of Entropy Minimization,
Pseudo-Labeling and NS3L are given in Table 2. MixMatch
results are given in Table 3. For NS3L, we use a threshold
T = 0.04, learning rate of 6e-4, and λ1 = 1. Identical
hyperparameters are used for Π model + NS3L. For VAT +
NS3L, we use a shared learning rate of 6e-4 and reduce λ1
from 1 to 0.3, which is identical to λ2. We perform extensive
hyperparameter tuning for VAT + PL. For MixMatch, as in
(Berthelot et al., 2019), we use α = 0.75 and λ3 = 75. For
NS3L + MixMatch, we use a threshold of T = 0.05 and a
coefficient of λ1 = 5 for 250 labeled samples and λ1 = 10
for 4,000 labeled samples. All other settings remain as is
optimized individually.

We created 5 splits of the number of labeled samples, each
with a different seed. Each model is trained on a differ-
ent split and test error is reported with mean and standard
deviation. We find that NS3L performs reasonably well
and significantly better than Pseudo-Labeling, over a 1.5%
improvement. A significant gain over all algorithms is at-
tained by adding the NS3L loss to the VAT loss. VAT +
NS3L achieves almost a 1% improvement over VAT, and is
about 0.5% better than VAT + EntMin and VAT + PL. We
also find that adding NS3L immediately improves the per-
formance of MixMatch, with a 2% improvement with 250
labeled samples and a small improvement for 4,000 samples.
The 250 labeled samples case may be the more interesting
case since it highlights the sample efficiency of the method.
This underscores the flexibility of NS3L to improve existing
methods.

SVHN: We evaluate the accuracy of each method with
1,000 labeled samples and 64,932 unlabeled samples, as is
standard practice. The results are shown in Table 1. Mix-
Match results are shown in Table 4. We use the same hyper-
parameters for NS3L, Π model + NS3L and VAT + NS3L as
in CIFAR10. For MixMatch ollowing the literature, we use
α = 0.75 and λ3 = 250. For NS3L + MixMatch, we again
use a threshold of T = 0.05 and a coefficient of λ1 = 2 for
both 250 labeled samples and 1,000 labeled samples.

Again, 5 splits are created, each with a different seed. Each
model is trained on a different split and test error is reported
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Table 2: Test errors achieved by various SSL approaches on top of VAT on the standard benchmarks of CIFAR10, with
all but 4,000 labels removed, and CIFAR100, with all but 10,000 labels removed. VAT, EntMin and PL refer to Virtual
Adversarial Training, Entropy Minimization, and Pseudo-Labeling respectively.

Dataset VAT VAT + EntMin VAT + PL VAT + NS3L

CIFAR10 14.72 ± .23 14.34 ± .18 14.15 ± .14 13.94 ± .10
CIFAR100 44.38 ± .56 43.92 ± .44 43.93 ± .33 43.70 ± .19

Table 3: Test errors achieved by MixMatch and MixMatch
+ NS3L on the standard benchmark of CIFAR10, with all
but 250 labels removed and all but 4,000 labels removed.

CIFAR10 250 4,000

MixMatch 14.49 ± 1.60 7.05 ± 0.10
Mixmatch + NS3L 12.48 ± 1.21 6.92 ± 0.12

with mean and standard deviation. Here, NS3L achieves
competitive learning rate with VAT, 6.52% versus 6.20%,
and is significantly better than Pseudo-Labeling, at 7.70%.
By combining NS3L with VAT, test error is further reduced
by a notable margin, almost 1% better than VAT alone and
more than 0.5% better than VAT + EntMin.

By adding NS3L to MixMatch, the model achieves almost
the same test error with 250 labeled samples than it does
using only MixMatch on 1,000 labeled samples. In other
words, in this case applying NS3L improves performance al-
most equivalent to having 4x the amount of labeled data. In
the cases of 250 labeled samples and 1,000 labeled samples,
adding NS3L to MixMatch improves performance by 0.4%
and 0.15% respectively, achieving state-of-the-art results.

Table 4: Test errors achieved by MixMatch and MixMatch
+ NS3L on the standard benchmark of SVHN, with all but
250 labels removed and all but 1,000 labels removed.

SVHN 250 1,000

MixMatch 3.75 ± 0.09 3.28 ± 0.11
Mixmatch + NS3L 3.38 ± 0.08 3.14 ± 0.11

STL10: We evaluate the accuracy of MixMatch and Mix-
Match + NS3L with 1,000 labeled samples and 100,000
unlabeled samples. The results are given in Table 5. Fol-
lowing the literature, we use α = 0.75 and λ3 = 50. For
NS3L, we again use a threshold of T = 0.05 and λ1 = 2.
We trained the model for a significantly fewer epochs than
in (Berthelot et al., 2019), however even in this case NS3L
can improve upon MixMatch, reducing test error slightly.

Table 5: Test errors achieved by MixMatch and MixMatch
+ NS3L on the standard benchmark of STL10, with all but
1,000 labels removed.

STL10 1,000

MixMatch 22.20 ± 0.89
Mixmatch + NS3L 21.74 ± 0.33

CIFAR100; We evaluate the accuracy of each method
with 10,000 labeled samples and 35,000 unlabeled samples,
as is standard practice. The results are given in Table 1. For
NS3L, we use a threshold T = 0.04/10 = 0.004, learning
rate of 6e-4, and λ1 = 1, following the settings in CIFAR10
and SVHN. For VAT + NS3L in CIFAR100, we use a shared
learning rate of 3e-3 and λ1 = 0.3, λ2 = 0.6.

As before, we created 5 splits of 10,000 labeled samples,
each with a different seed, and each model is trained on a
different split. Test error is reported with mean and standard
deviation. NS3L is observed to improve 0.6% test error over
Pseudo-Labeling and adding NS3L to VAT reduces test error
slightly and achieves the best performance. This suggests
that EntMin and NS3L boosts VAT even with little hyperpa-
rameter tuning, and perhaps should be used as default. We
note that the performance of SSL methods can be sensitive
to hyperparameter tuning, and minor hyperparameter tuning
may improve performance greatly. Due to VAT performing
additional forward and backwards passes, NS3L alone runs
more than 2x faster than VAT.

5. Parameter Sensitivity
We provide experimental results on the sensitivity of NS3L
with respect to the threshold parameter T and the weighting
parameter λ1. We use the CIFAR10 dataset with all but
4,000 labels removed for NS3L and VAT + NS3L. We use
the SVHN dataset with all but 250 labels removed for Mix-
Match + NS3L. We fix all other optimal parameters given
in Section 4. Results are given in Figure 3, where 4 values
of threshold T and 3 values of weighting parameter λ1 are
selected. We interpolated the result for better readability.

Referring to Figure 3, the optimal λ1 depends on the set-
ting and is affected when used simultaneously with VAT
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Figure 3: Parameter sensitivity study. Left: Test errors achieved by NS3L on the standard benchmark of CIFAR10, with all
but 4,000 labels removed. Middle: Test errors achieved by VAT + NS3L on the standard benchmark of CIFAR10, with all
but 4,000 labels removed. Right row: Test errors achieved by Mixmatch + NS3L on the standard benchmark of SVHN, with
all but 250 labels removed.

or Mixmatch. E.g., the optimal λ1 for NS3L on CIFAR10
with all but 4,000 labels removed varies from approximately
1, when added to the existing cross entropy loss alone, to
0.3, when added to the cross entropy loss and VAT with a
coefficient of 0.3. When added to Mixmatch on SVHN with
all but 250 labels removed, the optimal λ1 is closer to 2.

The performance is more sensitive to the threshold T , and
an optimal threshold T ≈ 0.04 appears to hold empirically
across settings, and we note that the datasets are all of 10
classes. Referring to Table 1 and Table 4, we see a clear
improvement by adding NS3L, even when it is poorly tuned.

6. Conclusion
With simplicity, speed, and ease of tuning in mind, we
proposed Negative Sampling in Semi-Supervised Learning
(NS3L), a semi-supervised learning method inspired by neg-
ative sampling, which simply adds a loss function. We
demonstrate the effectiveness of NS3L when combined with
existing SSL algorithms, producing the overall best result
for non-Mixup-based SSL, by combining NS3L with VAT,
and Mixup-based SSL, by combining NS3L with MixMatch.
We show improvements across a variety of tasks with only
a minor increase in training time.

References
Balcan, M.-F. and Blum, A. A pac-style model for learning

from labeled and unlabeled data. In International Confer-
ence on Computational Learning Theory, pp. 111–126.
Springer, 2005.

Belkin, M. and Niyogi, P. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in
Neural Information Processing Systems, 2002.

Ben-David, S., Lu, T., and Pál, D. Does unlabeled data prov-
ably help? worst-case analysis of the sample complexity
of semi-supervised learning. In COLT, pp. 33–44, 2008.

Bengio, Y., Delalleau, O., and Le Roux, N. Label propaga-
tion and quadratic criterion. MIT Press, 2006.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, Nico-
las Oliver, A., and Raffel, C. Mixmatch: A holistic
approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249, 2019.

Chapelle, O. and Scholkopf, B. Semi-supervised learning.
MIT Press, 2006.

Chawla, N. V. and Karakoulas, G. Learning from labeled
and unlabeled data: An empirical study across techniques
and domains. Journal of Artificial Intelligence Research,
23:331–366, 2005.

Coates, A. and Ng, A. Y. The importance of encoding versus
training with sparse coding and vector quantization. In
International Conference on Machine Learning, 2011.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Gammerman, A., Vovk, V., and Vapnik, V. Learning by
transduction. In Proceedings of the Fourteenth Confer-
ence on Uncertainty in Artificial Intelligence, 1998.

Goodfellow, I. J., Courville, A., and Bengio, Y. Spike-and-
slab sparse coding for unsupervised feature discovery.
NIPS Workshop on Challenges in Learning Hierarchical
Models, 2011.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by
entropy minimization. In Advances in Neural Information
Processing Systems, 2005.



Negative sampling in semi-supervised learning

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training. In International Conference on
Machine Learning, 2015.

Joachims, T. Transductive inference for text classification
using support vector machines. In International Confer-
ence on Machine Learning, 1999.

Joachims, T. Transductive learning via spectral graph parti-
tioning. In International Conference on Machine Learn-
ing, 2003.
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