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Abstract—The maximization of a positive (semi)definite com-
plex quadratic form over a finite alphabet is NP-hard and
achieved through exhaustive search when the form has full mak.
However, if the form is rank-deficient, the optimal solution can
be computed with only polynomial complexity in the length NV of
the maximizing vector. In this work, we consider the generatase
of a rank-D positive (semi)definite complex quadratic form and
develop a method that maximizes the form with respect to a/-
phase vector with polynomial complexity. The proposed metbd
efficiently reduces the size of the feasible set from expongéal
to polynomial. We also develop an algorithm that constructshe
polynomial-size candidate set in polynomial time and obsee
that it is fully parallelizable and rank-scalable.

Index Terms—Quadratic form maximization, M-PSK, Polyno-
mial complexity

|I. INTRODUCTION

On the other hand, recent developments on various telecom-
munications problems led to algorithms that optimally solv
the problem of maximization of a rank-quadratic form over
the M-PSK alphabet for low values ab. Specifically, the
authors in [7] (see also references therein) devised a new
lattice decoding algorithm for the efficient computationtiod
M-phase vector when the rank of the quadratic form satisfies
D < 2;if D > 2, the proposed algorithm provides suboptimal
solutions.

In the present work, we modify the algorithm in [8] to serve
complex-domain optimization problems. More specificallg,
present an algorithm for the efficient computation of the
M-ary phase vector of lengtlv that maximizes a rank
guadratic form with polynomial complexity wherB < N
and D independent ofV. The algorithm use8D — 1 auxiliary

The problem of unconstrained complex quadratic maxyperspherical coordinates that partition the multidisienal
mization over a finite alphabet captures many problems thgafyercube into distinct regions of polynomial size, each of
are of interest to the communications and signal processigiich corresponds to a different candidate vector. Theegfo

community. Many recent developments on the semidefin

#8e method reduces the size of the candidate vector set from

relaxation (SDR) technique have indicated that SDR is d‘*pa*éxponential to polynomial and the proposed algorithm turns

of providing near optimal (and sometimes accurate) approgjyt to be time and memory efficient, fully parallelizable and
mations in polynomial time [1]. Although SDR algorithm hasyzk-scalable.

at worst, moderate approximation accuracy [2], in most of

the times it remains an approximation algorithm that dods no

guarantee the computation of the optimal solution.

Il. PROBLEM STATEMENT

Interestingly, it has been recently proven that the maxamiz We consider the quadratic expression

tion of a quadratic form with a binary vector argumteist no

longerN"P-hard if the rank of the form is not a function of the
problem size [3] and can be computed optimally and efficjentl

in polynomial time through a variety of computational geo

m-
etry (CG) algorithms, such as the incremental algorithm f6r
cell enumeration in arrangements [4] and the reverse searth =

s"Qs (1)

hereQ € CV*V is a positive (semi)definite matrix and
€ A%, is a M-PSK N-tuple vector argument. We assume

| m =0,1,...,M — 1} as the M-phase

w

Jj2mm
e M

method [5],[6]. However, it should be noted that, althougalphabet and/ € {2* |k =1,2...}.

the incremental algorithm is optimal and applicableMoeary
phase-shift keying (PSK) modulation with/ > 4, it is not

In our problem, we focus on the computation of thiePSK
vector that maximizes the quadratic form

known whether has practical importance in higher dimerssion

due to lack of parallelizability and memory management
inefficiency. On the other hand, the reverse search method

)

A
Sopt = arg max s"Qs.
seAY,

is highly parallelizable, speed and memory efficient but can

be applied only for binary phase-shift keying (BPSK) an
guaternary phase-shift keying (QPSK) modulations.

1In this work, a vector is called binary if and only if each ekamh of it
equals+1 or —1. Contrarily, if each element of it equals or 1, then the
vector is said to belong to th&/1 field.

d 2Notation: Upper and lower case bold symbols denote matrices and column
vectors, respectivelyz; denotes the-th element of vectox and A; ; the
(4,7)-th entry of matrixA; A;.; ., follows a MATLAB-like notation that
denotes the submatrix A that consists of thé-th up to j-th rows andk-

th up tol-th columns of it;(-)* denotes conjugation(-)” transposej-)*
Hermitian transpose) i x 1 the N x 1 vector of all zeros]| - || the Frobenius
norm; | - | the cardinality of a set ang £ \/—1.



SinceQ is symmetric, the matrix can be represented in ternkis opposite case the value of the maximization argument
of its eigenvalues and eigenvectors using spectral faetion s,,n € {1,2,..., N}, related with then-th all-zero row of

N V v« p Wwould have no effect on the maximization. Therefore,
Q= § :Anqan M > > > Ay, gqneCY assuming that we hav€ € {1,2,... N} rows of V equal to
n jal - - 9 ) . . . .
o 0, « p, we can simply ignore these rows, reduce the dimension

lanll =1, a®ar =0, n#k, nk=12,...,N, (3) of our problem fromN to N—_IC_ qnd assign arbitrary values
to the elements of the maximizing vector related to the
where \,, andq,, are then-th eigenvalue and eigenvector ofg||-zero rows ofV.
the matrixQ, respectively. IfAxy > 0, thenQ is full rank and Let ¢,.; 2 [¢i, iv1,---,0;]T. To develop an efficient

our problem in (2) become&”P-hard where the computationmethod for the maximization in (8), we introdu2® — 1 aux-

of sopt can be implemented using exhaustive search over tfigry hyperspherical coordinates,.,,_, € (—Z, g]2D72 %

set A}, with complexity O(M ") since|A};| = M™Y. (—m,n] and define the hyperspherical real vector with unit
On the other hand, i, = \yy1 = --- = Ay = 0,n € radial coordinate,
{2,3,...,N}, then Q is rank-deficient. Therefore, in the - . -
following, without loss of generality (w.l.o.g.XQ is assumed s ¢,1
a positive (semi)definite complex matrix with radk < N, €08 ¢1 8in P2
ie COS (b1 COS P2 Sin @3
D é(¢1:2D—1) £ : (9)
_ H _
Q= Z AnQndy s A1 > A2 > >Ap >0  (4) 12272 cos ¢ | sin dap-1
n:1- . HQD*Q coS ¢; | cos ¢
Furthermore, since\,, > 0,n = 1,2,..., D, we define the || Hi=1 i 2D=1] ,hoq
weighted principal component as well as theD x 1 hyperspherical complex vector
Vo 2V Aln, n=1,2,...,D, (5) (Prop 1) = C22:20(Pr0p 1) + 122D 1(Prop 1)-
i ] From Cauchy-Swartz inequality, we observe that for any
and the correspondiny € CY*P complex matrix acCP
N
VE [ vl © a"c(¢rap-1)| < llall le(@r2p_1)| = llall.  (20)
—————
such thatVvv’? = Zle v Vit = 25:1 Anana? = Q. =1
Thus, our initial problem statement in (2) can be transf@mé&he equality of (10) is achieved if and only &#,.,,_; €
into the following optimization problem (=3, g]w‘Q x (—m, ] are the hyperspherical coordinates of

vectora, i.e. if 4
Sopt £ arg max {SHVVHS}.

N a
s€ Ay,

c(¢r.op-1) = m (11)
We underline thaV is a full rank complex matrix and matrices

Q andV have the same rank < N. _since|a”c(d10p_1)| = |a" 2| = |la]. Using the above, a
In the next section, we use the framework presented in [8liical equality for our subsequent developments is
and propose a more generalized algorithm for the maximiza-

tion of a rank-deficient quadratic form over afy-ary PSK Sop; = arg max ||[V's|
alphabet wheré/ € {2F [k =1,2...}. s€Aw
= arg max max SHVC(¢1:2D71)‘.
I1l. EFFICIENT MAXIMIZATION OF RANK-DEFICIENT SEAY #12p_1€(=3, 312272 x (=7 7]
QUADRATIC FORM WITH A MPSK VECTORARGUMENT (12)

A E’roblem Reformulation . Furthermore, we observe that for anye CP and anyd
Sinces"VV’s = |[V™s||?, we can rewrite our problem (_ ),
as

g%{E‘HC(ﬁbl:zD—l)‘fjé} < ‘aHC(¢1:2D—1)‘ (13)

with equality if and only ifd = arg {a™c(¢y.0p_1)}-
W.l.0.g., we assume that each row 8f has at least one i can pe easily observed that expressions (10) and (13) are
nonzero element, i.€V,,1.p # O1xp,¥n € {1,2,.... N}.  gimultaneously satisfied with equality if and onlyf ., _; €

(=%, 2]*P~2 x (—m,n] are the hyperspherical coordinates of

Sopt = arg max Vs (8)
M

3Since rotated candidate vectofs = sejzﬁw,m = 0,1,...,M —

1, give the same result in our maximization problem, i€1Qs = 4 . . ) .
j2mm g, j2mm . gy 1 We observe that the equality of (10) is also achieved for amgted version
(se’ 73 ) 7 Q(se? "2 ) = s""Qs, we can focus only on thez-th of the (¢ ), i.e. eiv (g ) = e 2 for anyw € (—, 7] since
elements ofA%. In this case, the complexity of the resulting maximization “Li2D—1/7 1:2b—1 [EY] ’ _
quadratic form reduces (M N—1), which is still intractable for moderate ’aH@J“’C(%;zDﬂ)‘ = ’aHerﬁ = ‘EJ“’HaH’ = ||a||. But, for clarity
values of N. reasons and w.l.0.g., we present the case.fet 0 in the above statement.
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vectora and 6 = 4. Then, applying some computations, (12)vith V = V @ [/ 57 /% --- ¢ T and® denotes the

can be further transformed into: Kronecker product.
H Motivated by the statements above and the inner maximiza-
Sopt = A8 S@j@ o aX %{S Vc(qbl:?D—l)}' tion rule in (16), for eachD x 1 complex vectow we define
(=557 x (=m,m] the decision functions that mapsg,..,_; to Ay according
(14) to

Next, we note the following: given a hyperspherical com-  g(v7: ¢, ;) 2 arg max R{s*vIc(¢.op_1)}. (21)
plex vector c(¢,..p_4) and ¢2p_1 € (—m, x|, there al- ' sEAM '

ways exists an anglee € arg{Ay} wherearg{ Ay} = Furthermore, for the giveiV x D complex observation matrix
{271{_}” ‘ m=0,1,..., M—l} that relocates the angular coor-V, we can construct the vector decision functionsing (21)
' where each point,.,,_, € ®*P~2 x (-, ] is mapped

dinate,p—, of the hyperspherical vect rc(¢1:2D—1)e'ja} to a candidatel/-PSK vector according to
in the interval(—7, f7] and results to the same value in the .
metric of (14). zEXLl:D? $1:2D—1§
Thus, without loss of optimality, we choosec arg{.A,} S(Vxn: b )2 2,1:D; P1:2p—1 (22)
such thatpop_1 € (=%, =]. Thus, (14) becomes xD> P1:2D-1 :

S(VN,LD; ®1.0p-1)

Sopt = arg max max %{SHVC(¢1:2D71)}.
sEAY, s 242523;1(6_1 o Computings(Vnxp; @1.0p_1) for Vo .0p 1 € ®2P72 x
3% by (15) (=47 77)» we collect allM -phase candidate vectors into a set
Dropping thearg operator and interchanging the maxi<S(Vyxp) = U {S(VNxD;¢1;2D_1)} C Aj.
mizations in (15) we obtain the equivalent problem where $1.0p 1€
(I)é i @2D—2X(_%7%]
272 (23)
N .
. Since¢,.,p_, take values from the seb?”~2 x (-, I,
Grap €D Sz Z_:lsfé‘%[ %{S”V"J:Dc(%:w*l)}' our problem in (7) becomes
(16) Sopt £ argsggg(/) {SHVVHS}, (24)

B. Decision Functions and Candidate Vector 8¢V yxp) . o
We observe that the original maximization problem in (8) ik®- the M—phbase %ar|1d|dat(_a ;’eﬁg%g thhat maximizes the
decomposed in a set of symbol-by-symbol maximization rul&&Pression above belongs into the V).
T ron In the following, we (i) show that |[S(Vnxp)| =
M> M i

for a given set of angleg;.,p_y € ®*7 72 X (=47, 771 FOr 0 1 vy N g ara2(d—i)—2  ay ) -
such a set of angles, the maximization argument of the SUMIIRI=1 2=i—0 (i)(g(dﬂ-)q) (7) (7 - ) and (?Z)
(16), e.g. symbok,,, depends only on the corresponding roW#€velop an algl?{rjgh%for the construction 8tV v« p) with
of matrix V. As ¢,.,,_, vary, the decision in favor of, is complexity O((=5~)"").
maintained as long as a decision_boundary i_s _n_ot crossed.c. Hypersurfaces and Cardinality &(V xyp)

Due to the structure ofl,; and given the definitions above,

the % decision boundaries for the determination %f are According to eq. (19), the rows ON@WD deter-

given by mine 22X hypersurfacesH é {H(VLLQD),H.(VZLQ.D),
it ...,H(V%J:w)} that partition the(2D — 1)-dimensional
Vi 1:0C(¢1.2p-1) =A™, hypercubed?’—2 x (—I, I into K non-interleaving cells

AR k0t @ Sy O suen e uon of al cels s sl
MM y two dis
or equivalently tinct cells, sayCy,C; for k # j, is empty. Each cell
. M Cj. corresponds to alistinct s, € A}, in the sense that
3{6”” M Vn,l:DC(¢1;2D_1)} =0, k=0,1,.... = =1 s(VNxpi¢rop_1) = sk forany ¢, ,p_, € Cy andsy #s;

(18) if k#5.kje{l1,2,....K}.

Y ) LetZop_1 é{il,ig,...,igp_l}C{1,2,...,@} denote
Forn=1,2,...,N andk =0,1,...., 5 —1, we can rewrit¢ the subset oD — 1 indices that correspond to hypersurfaces
(18) as H(Vi1,1:2D)7 H(Vi271;2D)7 RN H(Viﬂp] ,1;2[)). We detect
- . MN the following cases:
Viaep8(gr2p-1) =0, {=12,..., 2 (19) (a) Intersections o2D — 1 hypersurfaces where at most two
where surfaces originate from the same row 6f

(b) Intersections 02D —1 hypersurfaces where at least three

Viizep1 = R(V) and Visoop = (V) (20) surfaces originate from the same row 6t



Two basic properties of such intersections are presentedwith cardinality
the following proposition.

L . IS(VNxD)|
Proposition 2: The following hold true.
- |j(VN><D)| + -+ |..7(VN><1)|
(i) Each subset oft that consists oD — 1 hypersurfaces D d=1 /n; N M 20d=i)—2 , \f i
has either a single or uncountably many intersections in = ZZ . , ! (—) (— — 1)
2D-2 o ; 1 )\2(d—i)—1)\ 2 2
) X (=17 77)- d=1i=0
(14) Each combination oD — 1 hypersurfaces from the set MN\2D-1
H has a unigue intersection point that constitutes a vertex = (T) . (27)
of a cell if and only if no more than two hypersurfaces

originate from the same row of the matr\. | To summarize the results, we have partitioned the hypercube
_ N - o 22 x (=7, %] into a finite number of cellsS(Vyxp)
According to Proposition 2, Pa(ti), combinations of the {hat are associated with distindt-phase vectors and proved

form (b_) do not_have a unique intersectio_n point but infinitely, ¢ Sopt € S(Vnxp). Therefore, the initial problem in (8)
many intersection points; thus no cell is created and thesgs peen converted into numerical maximization||8s||

combinations can be ignored. among all vectors € S(Vyp).
On the other hand, combinations of the forfm) have
a unique intersection poind(Vyyp;Zop_1) € ®2P-2 x IV. ALGORITHMIC DEVELOPMENTS AND COMPLEXITY
(-%,Z] that leads Q cells, say C1(Vnxp;Zep-1), Stupby
Co(VspiTop-1), -y Co(Vxp:iTap_1), Q € {(& — In this section, we present the basic steps of the proposed

) _ algorithm for the construction ofS(Vy«p) for arbitrary
DO (-1t (- l)Dfl} and each cell is associatedy p ¢ N, D < N and M € {2 | k = 1,2...}. From eq.
with a distinctM-phase candidate vectsf(Vnxp;Zap-1), (26), we observe that the initial problem of the determirati
q = 1,2,...,Q, in the sense thas,(Vnxp;®ap_1) = of S(Vnxp) can be divided into smaller parallel construction
s¢(Vnxp;Zap-1) forall ¢,.5p 1 € Cy(Vnxp;Zap-1) @and  problems of 7(Vyxq) for d = 1,...,D. Moreover, the
#(Vnxp;Iap-1) is a single point ofCy(Vnxp:Zap-1) construction of 7(Vyyq) can be fully parallelized since
wheregsp_1 is minimized. The number of cell® “led” by the candidate vector(s3(V yxq;Z2q¢-1) can be computed
an intersection point depends on the numpef participating independently for eacii,q_;.

pairs of hypersurfaces that originate from the same row offFor the following statements, we assume a certain value

matrix V and equals tg¢2 — 1)P. for d € {1,2,...,D} and a certain set of indices
Since each cell is associated with a distinétPSK candi- Z2a-1 = {i1,i2,...,424-1}. According to the deriva-
date vector, we can collect all these vectors into tions in the previous section, the combination of hyper-

surfacesH(Vi, 1.24), H(Viy1:24); -+ s H(Viy, , 1:24) inter-
sects at a single point(V nxa;Z2q—1) that “leads” Q

J(Vyxp) = U {S(VNxD;IQDﬂ)} C AJ}. cells associated witl® different AM/-phase candidate vectors
Top-1C{1,2,..., 4N} sq¢(VNxa;Zoa—1), ¢ = 1,2,...,Q. It can be shown that the
&V xpilap-1)€ evaluation of the decision function in (21) at the interiect
® (=] (25) of the 2D — 1 hypersurfaces under consideration determines

definitely the corresponding symhg] if and only if no hyper-
surface originates frorV,, 1.4. For the hypersurfaces that pass
Taking into consideration only cells into the region of inthrough the intersection, the rule in (21) becomes ambiguou
terest®2P~2 x (-7, L], we observe that7(Vyxp)| = In such a case, we have constructed dissambiguation rules
ZDfl (N) (2( N—i )MQ(D*i)*Q(% _ 1)1" i e. there are that solve the ambiguity in polynomial time with respect to

=0 \i/2AD=i) 1)) 2 : the lengthN
|7 (Vnxp)| candidate vectors in P~ x (-7, 7], as- = L
. : ) L The algorithm visits independentlyS(V =
sociated with cells each of which minimizesp_; com- ((MN)M??I) tersections a?wd Comgutés]\ic;g)t:andidate
2

ponent at a single point that constitutes the intersectibn
the correspondin@D — 1 hypersurfaces. Additionally, it can
be shown that if we take into consideration all regions i
202 x (-5, 7], all candidates form the candidate set
given by

1-phase vector(s) associated with each intersection. For
achZy4_1, the cost of the algorithm |§9(@) There-
ore the overall complexity of the algorithm for the com-
putation of S(Vnxp) with fixed D < N becomes
O((44* )20 O (*5%) = O((44)20).

We observe that the computation of the candidate vectors of
S(VNxp) =T (VNxp)UT (VNx(p-1)) U - UT(Vnx1) S(Vnxp)is performed independently from cell to cell, which
D1 implies that there is no need to store the data that have been
U T(VNs(D-a)- (26) used for each candidate and we only have to store the “best”
d=0 vector that has been met. Therefore, the proposed method is



fully parallelizable and its memory utilization is efficidy
minimized, in constrast to the incremental algorithm in. [4]
We also mention that if the initial problem is of a high rank
that makes the optimization intractable, then the mafixn

(2) can be approximated by keeping thestrongest principal
components of it. In such a case, as seen in (26), the propose(
method is rank-scalable.

Compared to previous works on the maximization of a com-
plex rank-deficient quadratic form over a finite field, we teca
that the reverse search method [5],[6] compg@S " (V)
candidates for the BPSK case (as many as our proposec
algorithm) and 370! (*V7!) candidates for the QPSK
case (twice as many as our proposed algorithm) [see Fig.1].
Additionally, the corresponding complexity of the algbrit
proposed in [5],[6] is of the orde®(N?PLP (XX 2D)) and
O((2N)*PLP (X 2D)) for BPSK and QPSK respectively, _
WhereLP(@, 2D) is the time to solve a linear programmin M.

10%
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1. Cardinality of candidate s&(Vnxp) of proposed algorithm (blue

gine), reverse search method (red line) and exhaustiveclsegreen line) -

(LP) optimization problem witiY inequalities in2D vari- D =2,M =4.

ables. Given that the complexity &P (22X, 2D) is linear in
@ in the worst-case scenario, it turns out that the complexity

of reverse search method (@(@wﬂ) for M = 2,4, i.e.
one order of magnitude more calculations than the proposed
algorithm. In addition, the reverse search method is ctetfi
only to BPSK and QPSK modulation.

On the other hand, the incremental algorithm proposed in
[4],[9] is a time efficient algorithm that solves the maxi-
mization problem of interest but becomes impractical even
for moderate values ob since it follows an “incremental”
strategy to construct the candidate set: it solves the enobl
inductively and, thus, it is too complicated to be implenseht
Furthermore, the critical disadvantage of this method ss it
memory inefficienty since it needs to store all the extreme
points, all faces and their incidences in memory. Finalg t
algorithm proposed in [7] deals optimally the problem of

the maximization of a rank-deficient quadratic form for ang,

M = {2¥|k = 0,1,...} but only for D < 2. For D > 2, the
algorithm in [7] provides suboptimal solutions.
V. CONCLUSION 2]

In this paper, we presented a more generalized, fully paral-
lelizable, rank-scalable, time- and memory-efficient alfyon IP]

for the computation of the maximizing argument of a ran
deficient quadratic form over any/-ary PSK alphabet}; in
polynomial time in the lengtliV of the maximizing argument. (4l
Thus, without loss of optimality, the proposed algorithnmves
as an efficient alternative approach to exhaustive searchéo [5]
computation of the maximizing/-ary phase vectos in the (6]
quadratic forms™Qs.
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