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Abstract—The maximization of a positive (semi)definite com-
plex quadratic form over a finite alphabet is NP-hard and
achieved through exhaustive search when the form has full rank.
However, if the form is rank-deficient, the optimal solution can
be computed with only polynomial complexity in the lengthN of
the maximizing vector. In this work, we consider the generalcase
of a rank-D positive (semi)definite complex quadratic form and
develop a method that maximizes the form with respect to aM -
phase vector with polynomial complexity. The proposed method
efficiently reduces the size of the feasible set from exponential
to polynomial. We also develop an algorithm that constructsthe
polynomial-size candidate set in polynomial time and observe
that it is fully parallelizable and rank-scalable.

Index Terms—Quadratic form maximization, M -PSK, Polyno-
mial complexity

I. I NTRODUCTION

The problem of unconstrained complex quadratic maxi-
mization over a finite alphabet captures many problems that
are of interest to the communications and signal processing
community. Many recent developments on the semidefinite
relaxation (SDR) technique have indicated that SDR is capable
of providing near optimal (and sometimes accurate) approxi-
mations in polynomial time [1]. Although SDR algorithm has,
at worst, moderate approximation accuracy [2], in most of
the times it remains an approximation algorithm that does not
guarantee the computation of the optimal solution.

Interestingly, it has been recently proven that the maximiza-
tion of a quadratic form with a binary vector argument1 is no
longerNP-hard if the rank of the form is not a function of the
problem size [3] and can be computed optimally and efficiently
in polynomial time through a variety of computational geom-
etry (CG) algorithms, such as the incremental algorithm for
cell enumeration in arrangements [4] and the reverse search
method [5],[6]. However, it should be noted that, although
the incremental algorithm is optimal and applicable toM -ary
phase-shift keying (PSK) modulation withM > 4, it is not
known whether has practical importance in higher dimensions
due to lack of parallelizability and memory management
inefficiency. On the other hand, the reverse search method
is highly parallelizable, speed and memory efficient but can
be applied only for binary phase-shift keying (BPSK) and
quaternary phase-shift keying (QPSK) modulations.

1In this work, a vector is called binary if and only if each element of it
equals+1 or −1. Contrarily, if each element of it equals0 or 1, then the
vector is said to belong to the0/1 field.

On the other hand, recent developments on various telecom-
munications problems led to algorithms that optimally solve
the problem of maximization of a rank-D quadratic form over
the M -PSK alphabet for low values ofD. Specifically, the
authors in [7] (see also references therein) devised a new
lattice decoding algorithm for the efficient computation ofthe
M -phase vector when the rank of the quadratic form satisfies
D ≤ 2; if D > 2, the proposed algorithm provides suboptimal
solutions.

In the present work, we modify the algorithm in [8] to serve
complex-domain optimization problems. More specifically,we
present an algorithm for the efficient computation of the
M -ary phase vector of lengthN that maximizes a rank-D

quadratic form with polynomial complexity whereD < N

andD independent ofN . The algorithm uses2D−1 auxiliary
hyperspherical coordinates that partition the multidimensional
hypercube into distinct regions of polynomial size, each of
which corresponds to a different candidate vector. Therefore,
the method reduces the size of the candidate vector set from
exponential to polynomial and the proposed algorithm turns
out to be time and memory efficient, fully parallelizable and
rank-scalable.

II. PROBLEM STATEMENT

We consider the quadratic expression2

sHQs (1)

where Q ∈ CN×N is a positive (semi)definite matrix and
s ∈ AN

M is a M -PSK N -tuple vector argument. We assume

AM =
{

e
j2πm

M

∣
∣ m = 0, 1, . . . , M − 1

}

as theM -phase

alphabet andM ∈ {2k | k = 1, 2 . . .}.
In our problem, we focus on the computation of theM -PSK

vector that maximizes the quadratic form

sopt , arg max
s∈AN

M

sHQs. (2)

2Notation: Upper and lower case bold symbols denote matrices and column
vectors, respectively;xi denotes thei-th element of vectorx and Ai,j the
(i, j)-th entry of matrixA; Ai:j,k:l follows a MATLAB-like notation that
denotes the submatrix ofA that consists of thei-th up to j-th rows andk-
th up to l-th columns of it;(·)∗ denotes conjugation;(·)T transpose;(·)H
Hermitian transpose;0N×1 theN ×1 vector of all zeros;‖ · ‖ the Frobenius
norm; | · | the cardinality of a set andj ,

√
−1.



SinceQ is symmetric, the matrix can be represented in terms
of its eigenvalues and eigenvectors using spectral factorization

Q =

N∑

n=1

λnqnqH
n , λ1 ≥ λ2 ≥ · · · ≥ λN , qn ∈ C

N ,

‖qn‖ = 1, qH
n qk = 0, n 6= k, n, k = 1, 2, . . . , N, (3)

whereλn andqn are then-th eigenvalue and eigenvector of
the matrixQ, respectively. IfλN > 0, thenQ is full rank and
our problem in (2) becomesNP-hard where the computation
of sopt can be implemented using exhaustive search over the
setAN

M with complexity3 O(MN ) since|AN
M | = MN .

On the other hand, ifλn = λn+1 = · · · = λN = 0, n ∈
{2, 3, . . . , N}, then Q is rank-deficient. Therefore, in the
following, without loss of generality (w.l.o.g.),Q is assumed
a positive (semi)definite complex matrix with rankD ≤ N ,
i.e

Q =

D∑

n=1

λnqnqH
n , λ1 ≥ λ2 ≥ · · · ≥ λD > 0. (4)

Furthermore, sinceλn > 0, n = 1, 2, . . . , D, we define the
weighted principal component

vn ,
√

λnqn, n = 1, 2, . . . , D, (5)

and the correspondingV ∈ CN×D complex matrix

V ,

[

v1 v2 . . .vD

]

(6)

such thatVVH =
∑D

n=1 vnvH
n =

∑D

n=1 λnqnqH
n = Q.

Thus, our initial problem statement in (2) can be transformed
into the following optimization problem

sopt , arg max
s∈AN

M

{

sHVVHs
}

. (7)

We underline thatV is a full rank complex matrix and matrices
Q andV have the same rankD ≤ N .

In the next section, we use the framework presented in [8]
and propose a more generalized algorithm for the maximiza-
tion of a rank-deficient quadratic form over anyM -ary PSK
alphabet whereM ∈ {2k | k = 1, 2 . . .}.

III. E FFICIENT MAXIMIZATION OF RANK -DEFICIENT

QUADRATIC FORM WITH A MPSK VECTORARGUMENT

A. Problem Reformulation

SincesHVVHs = ‖VHs‖2, we can rewrite our problem
as

sopt , arg max
s∈AN

M

‖VHs‖. (8)

W.l.o.g., we assume that each row ofV has at least one
nonzero element, i.e.Vn,1:D 6= 01×D, ∀n ∈ {1, 2, . . . , N}.

3Since rotated candidate vectorŝs = sej 2πm
M , m = 0, 1, . . . , M −

1, give the same result in our maximization problem, i.e.ŝHQŝ =

(sej 2πm
M )HQ(sej 2πm

M ) = sHQs, we can focus only on the1
M

-th of the
elements ofAN

M
. In this case, the complexity of the resulting maximization

quadratic form reduces toO(MN−1), which is still intractable for moderate
values ofN .

In opposite case the value of the maximization argument
sn, n ∈ {1, 2, . . . , N}, related with then-th all-zero row of
VN×D would have no effect on the maximization. Therefore,
assuming that we haveK ∈ {1, 2, . . .N} rows of V equal to
01×D, we can simply ignore these rows, reduce the dimension
of our problem fromN to N −K and assign arbitrary values
to the elements of the maximizing vector related to theK
all-zero rows ofV.

Let φi:j , [φi, φi+1, . . . , φj ]
T . To develop an efficient

method for the maximization in (8), we introduce2D−1 aux-
iliary hyperspherical coordinatesφ1:2D−1 ∈ (−π

2 , π
2 ]2D−2 ×

(−π, π] and define the hyperspherical real vector with unit
radial coordinate,

c̃(φ1:2D−1) ,














sinφ1

cosφ1 sin φ2

cosφ1 cosφ2 sin φ3

...
[
∏2D−2

i=1 cosφi

]

sin φ2D−1
[
∏2D−2

i=1 cosφi

]

cosφ2D−1














2D×1

(9)

as well as the D × 1 hyperspherical complex vector
c(φ1:2D−1) , c̃2:2:2D(φ1:2D−1) + jc̃1:2:2D−1(φ1:2D−1).

From Cauchy-Swartz inequality, we observe that for any
a ∈ CD,

∣
∣
∣a

Hc(φ1:2D−1)
∣
∣
∣ ≤ ‖a‖ ‖c(φ1:2D−1)‖

︸ ︷︷ ︸

=1

= ‖a‖. (10)

The equality of (10) is achieved if and only ifφ1:2D−1 ∈
(−π

2 , π
2 ]2D−2 × (−π, π] are the hyperspherical coordinates of

vectora, i.e. if 4

c(φ1:2D−1) =
a

‖a‖
(11)

since
∣
∣
∣aHc(φ1:2D−1)

∣
∣
∣ =

∣
∣
∣aH a

‖a‖

∣
∣
∣ = ‖a‖. Using the above, a

critical equality for our subsequent developments is

sopt = arg max
s∈AN

M

‖VHs‖

= arg max
s∈AN

M

max
φ1:2D−1∈(−π

2 , π
2 ]2D−2×(−π,π]

∣
∣
∣s

HVc(φ1:2D−1)
∣
∣
∣.

(12)

Furthermore, we observe that for anya ∈ CD and anyθ̂ ∈
(−π, π],

ℜ
{

aHc(φ1:2D−1)e
−jθ̂
}

≤
∣
∣
∣a

Hc(φ1:2D−1)
∣
∣
∣ (13)

with equality if and only ifθ̂ = arg
{
aHc(φ1:2D−1)

}
.

It can be easily observed that expressions (10) and (13) are
simultaneously satisfied with equality if and only ifφ1:2D−1 ∈
(−π

2 , π
2 ]2D−2 × (−π, π] are the hyperspherical coordinates of

4We observe that the equality of (10) is also achieved for any rotated version
of c(φ

1:2D−1
), i.e. ejωc(φ

1:2D−1
) = ejω a

‖a‖
for any ω ∈ (−π, π] since

˛

˛

˛
aHejωc(φ

1:2D−1
)
˛

˛

˛
=

˛

˛

˛
aHejω a

‖a‖

˛

˛

˛
=

˛

˛

˛
ejω‖a‖

˛

˛

˛
= ‖a‖. But, for clarity

reasons and w.l.o.g., we present the case forω = 0 in the above statement.



vectora and θ̂ = θ. Then, applying some computations, (12)
can be further transformed into:

sopt = arg max
s∈AN

M

max
φ1:2D−1∈

(−π
2 , π

2 ]2D−2×(−π,π]

ℜ
{

sHVc(φ1:2D−1)
}

.

(14)

Next, we note the following: given a hyperspherical com-
plex vector c(φ1:2D−1) and φ2D−1 ∈ (−π, π], there al-
ways exists an angleα ∈ arg{AM} where arg{AM} ={

2πm
M

∣
∣ m = 0, 1, . . . , M−1

}

that relocates the angular coor-

dinateφ2D−1 of the hyperspherical vector
{

c(φ1:2D−1)e
jα
}

in the interval(− π
M

, π
M

] and results to the same value in the
metric of (14).

Thus, without loss of optimality, we chooseα ∈ arg{AM}
such thatφ2D−1 ∈ (− π

M
, π

M
]. Thus, (14) becomes

sopt = arg max
s∈AN

M

max
φ1:2D−1∈

(−π
2 , π

2 ]2D−2×(− π
M

, π
M

]

ℜ
{

sHVc(φ1:2D−1)
}

.

(15)

Dropping the arg operator and interchanging the maxi-
mizations in (15) we obtain the equivalent problem where
Φ ,

(

− π
2 , π

2

]

max
φ1:2D−1∈Φ2D−2×(− π

M
, π

M
]

N∑

n=1

max
sn∈AM

ℜ
{

s∗nVn,1:Dc(φ1:2D−1)
}

.

(16)

B. Decision Functions and Candidate Vector SetS(VN×D)

We observe that the original maximization problem in (8) is
decomposed in a set of symbol-by-symbol maximization rules
for a given set of anglesφ1:2D−1 ∈ Φ2D−2 × (− π

M
, π

M
]. For

such a set of angles, the maximization argument of the sum in
(16), e.g. symbolsn, depends only on the corresponding row
of matrix V. As φ1:2D−1 vary, the decision in favor ofsn is
maintained as long as a decision boundary is not crossed.

Due to the structure ofAM and given the definitions above,
the M

2 decision boundaries for the determination ofsn are
given by

Vn,1:Dc(φ1:2D−1) =Aejπ 2k+1
M ,

A ∈ R, k = 0, 1, . . . ,
M

2
− 1, (17)

or equivalently

ℑ
{

e−jπ 2k+1
M Vn,1:Dc(φ1:2D−1)

}

= 0, k = 0, 1, . . . ,
M

2
− 1.

(18)

For n = 1, 2, . . . , N andk = 0, 1, . . . , M
2 − 1, we can rewrite

(18) as

Ṽl,1:2D c̃(φ1:2D−1) = 0, l = 1, 2, . . . ,
MN

2
(19)

where

Ṽ:,1:2:2D−1 = ℜ
(
V̂
)

and Ṽ:,2:2:2D = ℑ
(
V̂
)

(20)

with V̂ = V ⊗ [ej π
M ej 3π

M · · · ej
(M−1)π

M ]T and⊗ denotes the
Kronecker product.

Motivated by the statements above and the inner maximiza-
tion rule in (16), for eachD × 1 complex vectorv we define
the decision functions that mapsφ1:2D−1 to AM according
to

s(vT ; φ1:2D−1) , arg max
s∈AM

ℜ{s∗vT c(φ1:2D−1)}. (21)

Furthermore, for the givenN ×D complex observation matrix
V, we can construct the vector decision functions using (21)
where each pointφ1:2D−1 ∈ Φ2D−2 × (− π

M
, π

M
] is mapped

to a candidateM -PSK vector according to

s(VN×D; φ1:2D−1) ,








s(V1,1:D; φ1:2D−1)
s(V2,1:D; φ1:2D−1)

...
s(VN,1:D; φ1:2D−1)








(22)

Computings(VN×D; φ1:2D−1) for ∀φ1:2D−1 ∈ Φ2D−2 ×
(− π

M
, π

M
], we collect allM -phase candidate vectors into a set

S(VN×D) ,
⋃

φ1:2D−1∈

Φ2D−2×(− π
M

, π
M

]

{

s(VN×D; φ1:2D−1)
}

⊆ AN
M .

(23)

Sinceφ1:2D−1 take values from the setΦ2D−2 × (− π
M

, π
M

],
our problem in (7) becomes

sopt , arg max
s∈S(V)

{

sHVVHs
}

, (24)

i.e. the M -phase candidate vectorsopt that maximizes the
expression above belongs into the setS(VN×D).

In the following, we (i) show that |S(VN×D)| =
∑D

d=1

∑d−1
i=0

(
N
i

)(
N−i

2(d−i)−1

)(
M
2

)2(d−i)−2(M
2 − 1

)i
and (ii)

develop an algorithm for the construction ofS(VN×D) with
complexityO((MN

2 )2D).

C. Hypersurfaces and Cardinality ofS(VN×D)

According to eq. (19), the rows of̃VMN
2 ×2D deter-

mine MN
2 hypersurfacesH , {H(Ṽ1,1:2D),H(Ṽ2,1:2D),

. . . ,H(ṼMN
2 ,1:2D)} that partition the(2D − 1)-dimensional

hypercubeΦ2D−2 × (− π
M

, π
M

] into K non-interleaving cells
C1, C2, . . . , CK such that the union of all cells is equal to
Φ2D−2 × (− π

M
, π

M
] and the intersection of any two dis-

tinct cells, say Ck, Cj for k 6= j, is empty. Each cell
Ck corresponds to adistinct sk ∈ AN

M in the sense that
s(VN×D; φ1:2D−1) = sk for any φ1:2D−1 ∈ Ck andsk 6= sj

if k 6= j, k, j ∈ {1, 2, . . . , K}.
Let I2D−1 , {i1, i2, . . . , i2D−1} ⊂ {1, 2, . . . , MN

2 } denote
the subset of2D− 1 indices that correspond to hypersurfaces
H(Ṽi1,1:2D),H(Ṽi2,1:2D), . . . , H(Ṽi2D−1,1:2D). We detect
the following cases:
(a) Intersections of2D−1 hypersurfaces where at most two

surfaces originate from the same row ofV.
(b) Intersections of2D−1 hypersurfaces where at least three

surfaces originate from the same row ofV.



Two basic properties of such intersections are presented in
the following proposition.

Proposition 2: The following hold true.

(i) Each subset ofH that consists of2D − 1 hypersurfaces
has either a single or uncountably many intersections in
Φ2D−2 × (− π

M
, π

M
].

(ii) Each combination of2D − 1 hypersurfaces from the set
H has a unique intersection point that constitutes a vertex
of a cell if and only if no more than two hypersurfaces
originate from the same row of the matrixV.

According to Proposition 2, Part(ii), combinations of the
form (b) do not have a unique intersection point but infinitely
many intersection points; thus no cell is created and these
combinations can be ignored.

On the other hand, combinations of the form(a) have
a unique intersection pointφ(VN×D; I2D−1) ∈ Φ2D−2 ×
(− π

M
, π

M
] that leads Q cells, say C1(VN×D; I2D−1),

C2(VN×D; I2D−1), . . . , CQ(VN×D; I2D−1), Q ∈
{

(M
2 −

1)0, (M
2 − 1)1, . . . , (M

2 − 1)D−1
}

and each cell is associated

with a distinctM -phase candidate vectorsq(VN×D; I2D−1),
q = 1, 2, . . . ,Q, in the sense thatsq(VN×D; φ2D−1) =
sq(VN×D; I2D−1) for all φ1:2D−1 ∈ Cq(VN×D; I2D−1) and
φ(VN×D; I2D−1) is a single point ofCq(VN×D; I2D−1)
whereφ2D−1 is minimized. The number of cellsQ “led” by
an intersection point depends on the numberp of participating
pairs of hypersurfaces that originate from the same row of
matrix V and equals to(M

2 − 1)p.

Since each cell is associated with a distinctM -PSK candi-
date vector, we can collect all these vectors into

J (VN×D) ,
⋃

I2D−1⊂{1,2,..., MN
2 },

φ(VN×D;I2D−1)∈

Φ2D−2×(− π
M

, π
M

]

{

s(VN×D; I2D−1)
}

⊆ AN
M .

(25)

Taking into consideration only cells into the region of in-
terestΦ2D−2 × (− π

M
, π

M
], we observe that|J (VN×D)| =

∑D−1
i=0

(
N
i

)(
N−i

2(D−i)−1)

)
M
2

2(D−i)−2(M
2 − 1

)i
, i.e. there are

|J (VN×D)| candidate vectorss in Φ2D−2 × (− π
M

, π
M

], as-
sociated with cells each of which minimizesφ2D−1 com-
ponent at a single point that constitutes the intersection of
the corresponding2D − 1 hypersurfaces. Additionally, it can
be shown that if we take into consideration all regions in
Φ2D−2 × (− π

M
, π

M
], all candidates form the candidate setS

given by

S(VN×D) = J (VN×D) ∪ J (VN×(D−1)) ∪ · · · ∪ J (VN×1)

=

D−1⋃

d=0

J (VN×(D−d)). (26)

with cardinality

|S(VN×D)|

= |J (VN×D)| + · · · + |J (VN×1)|

=

D∑

d=1

d−1∑

i=0

(
N

i

)(
N − i

2(d − i) − 1

)(M

2

)2(d−i)−2(M

2
− 1
)i

= O

(
(MN

2

)2D−1
)

. (27)

To summarize the results, we have partitioned the hypercube
Φ2D−2 × (− π

M
, π

M
] into a finite number of cellsS(VN×D)

that are associated with distinctM -phase vectors and proved
that sopt ∈ S(VN×D). Therefore, the initial problem in (8)
has been converted into numerical maximization of‖VHs‖
among all vectorss ∈ S(VN×D).

IV. A LGORITHMIC DEVELOPMENTS ANDCOMPLEXITY

STUDY

In this section, we present the basic steps of the proposed
algorithm for the construction ofS(VN×D) for arbitrary
N, D ∈ N, D < N and M ∈ {2k | k = 1, 2 . . .}. From eq.
(26), we observe that the initial problem of the determination
of S(VN×D) can be divided into smaller parallel construction
problems ofJ (VN×d) for d = 1, . . . , D. Moreover, the
construction ofJ (VN×d)) can be fully parallelized since
the candidate vector(s)s(VN×d; I2d−1) can be computed
independently for eachI2d−1.

For the following statements, we assume a certain value
for d ∈ {1, 2, . . . , D} and a certain set of indices
I2d−1 = {i1, i2, . . . , i2d−1}. According to the deriva-
tions in the previous section, the combination of hyper-
surfacesH(Ṽi1,1:2d),H(Ṽi2,1:2d), . . . ,H(Ṽi2d−1,1:2d) inter-
sects at a single pointφ(VN×d; I2d−1) that “leads” Q
cells associated withQ different M -phase candidate vectors
sq(VN×d; I2d−1), q = 1, 2, . . . ,Q. It can be shown that the
evaluation of the decision function in (21) at the intersection
of the 2D − 1 hypersurfaces under consideration determines
definitely the corresponding symbolsn if and only if no hyper-
surface originates fromVn,1:d. For the hypersurfaces that pass
through the intersection, the rule in (21) becomes ambiguous.
In such a case, we have constructed dissambiguation rules
that solve the ambiguity in polynomial time with respect to
the lengthN .

The algorithm visits independently|S(VN×D)| =
O
(
(MN

2 )2D−1
)

intersections and computes the candidate
M -phase vector(s) associated with each intersection. For
each I2d−1, the cost of the algorithm isO

(
MN

2

)
. There-

fore the overall complexity of the algorithm for the com-
putation of S(VN×D) with fixed D < N becomes
O
(
(MN

2 )2D−1
)
O
(

MN
2

)
= O

(
(MN

2 )2D
)
.

We observe that the computation of the candidate vectors of
S(VN×D) is performed independently from cell to cell, which
implies that there is no need to store the data that have been
used for each candidate and we only have to store the “best”
vector that has been met. Therefore, the proposed method is



fully parallelizable and its memory utilization is efficiently
minimized, in constrast to the incremental algorithm in [4].
We also mention that if the initial problem is of a high rank
that makes the optimization intractable, then the matrixQ in
(2) can be approximated by keeping theD strongest principal
components of it. In such a case, as seen in (26), the proposed
method is rank-scalable.

Compared to previous works on the maximization of a com-
plex rank-deficient quadratic form over a finite field, we recall
that the reverse search method [5],[6] computes

∑D−1
i=0

(
N−1

i

)

candidates for the BPSK case (as many as our proposed
algorithm) and

∑2D−1
i=0

(
2N−1

i

)
candidates for the QPSK

case (twice as many as our proposed algorithm) [see Fig.1].
Additionally, the corresponding complexity of the algorithm
proposed in [5],[6] is of the orderO(N2DLP(MN

2 , 2D)) and
O
(
(2N)2DLP(MN

2 , 2D)
)

for BPSK and QPSK respectively,
whereLP(MN

2 , 2D) is the time to solve a linear programming
(LP) optimization problem withMN

2 inequalities in2D vari-
ables. Given that the complexity ofLP(MN

2 , 2D) is linear in
MN

2 in the worst-case scenario, it turns out that the complexity

of reverse search method isO(MN
2

2D+1
) for M = 2, 4, i.e.

one order of magnitude more calculations than the proposed
algorithm. In addition, the reverse search method is restricted
only to BPSK and QPSK modulation.

On the other hand, the incremental algorithm proposed in
[4],[9] is a time efficient algorithm that solves the maxi-
mization problem of interest but becomes impractical even
for moderate values ofD since it follows an “incremental”
strategy to construct the candidate set: it solves the problem
inductively and, thus, it is too complicated to be implemented.
Furthermore, the critical disadvantage of this method is its
memory inefficienty since it needs to store all the extreme
points, all faces and their incidences in memory. Finally, the
algorithm proposed in [7] deals optimally the problem of
the maximization of a rank-deficient quadratic form for any
M = {2k|k = 0, 1, . . .} but only for D ≤ 2. For D > 2, the
algorithm in [7] provides suboptimal solutions.

V. CONCLUSION

In this paper, we presented a more generalized, fully paral-
lelizable, rank-scalable, time- and memory-efficient algorithm
for the computation of the maximizing argument of a rank-
deficient quadratic form over anyM -ary PSK alphabetAN

M in
polynomial time in the lengthN of the maximizing argument.
Thus, without loss of optimality, the proposed algorithm serves
as an efficient alternative approach to exhaustive search for the
computation of the maximizingM -ary phase vectors in the
quadratic formsHQs.
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