
ar
X

iv
:1

50
8.

00
62

5v
1 

 [s
ta

t.M
L]

  4
 A

ug
 2

01
5

Sparse PCA via Bipartite Matchings

Megasthenis Asteris� , Dimitris Papailiopoulos� , Anastasios Kyrillidis�

Alexandros G. Dimakis�

� UT Austin, � UC Berkeley

August 2015

Abstract

We consider the following multi-component sparse PCA problem: givena set of data points,
we seek to extract a small number of sparse components withdisjoint supports that jointly
capture the maximum possible variance. These components can be computed one by one,
repeatedly solving the single-component problem and de
ating the input data matrix, but as
we show this greedy procedure is suboptimal. We present a novel algorithm for sparse PCA
that jointly optimizes multiple disjoint components. The extracted f eatures capture variance
that lies within a multiplicative factor arbitrarily close to 1 from the opt imal. Our algorithm
is combinatorial and computes the desired components by solving multiple instances of the
bipartite maximum weight matching problem. Its complexity grows as a low order polynomial
in the ambient dimension of the input data matrix, but exponentially in it s rank. However,
it can be e�ectively applied on a low-dimensional sketch of the data; this allows us to obtain
polynomial-time approximation guarantees via spectral bounds. Weevaluate our algorithm on
real data-sets and empirically demonstrate that in many cases it outperforms existing, de
ation-
based approaches.

1 Introduction

Principal Component Analysis (PCA) reduces the dimensionality of a data set by projecting it onto
principal subspaces spanned by the leading eigenvectors ofthe sample covariance matrix. Sparse
PCA is a useful variant that o�ers higher data interpretabili ty [1, 2, 3], a property that is sometimes
desired even at the cost of statistical �delity [4]. Further more, when the obtained features are used
in subsequent learning tasks, sparsity potentially leads to better generalization error [5].

Given a real n � d data matrix S representingn centered data points supported ond features,
the leading sparse principal component of the data set is thesparse vector that maximizes the
explained variance:

x? , arg max
kx k2=1 ;kx k0= s

x> Ax ; (1)

where A = 1=n � S> S is the d � d empirical covariance matrix. The sparsity constraint makes
the problem NP-hard and hence computationally intractable in general, and hard to approximate
within some small constant [6]. A signi�cant volume of prior work has focused on algorithms that
approximately solve the optimization problem [2, 3, 4, 7, 8,9, 10, 11, 12, 13, 14, 15], while a large
volume of theoretical results has been established under planted statistical models [16, 17, 18, 19,
20, 21, 22, 23, 24].
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In most practical settings, we tend to go beyond computing a single sparse PC. Contrary to the
single-component problem, there has been limited work on computing multiple components. The
scarcity is partially attributed to conventional PCA wisdo m: multiple components can be computed
one-by-one, repeatedly, by solving the single-component sparse PCA problem (1) andde
ating the
input data to remove information captured by previously extracted components [25]. In fact,
the multi-component version of sparse PCA is not uniquely de�ned in the literature. Di�erent
de
ation-based approaches can lead to di�erent outputs: extracted components may or may not be
orthogonal, while they may have disjoint or overlapping supports [25]. In the statistics literature,
where the objective is typically to recover a \true" princip al subspace, a branch of work has focused
on the \subspace row sparsity" [26], an assumption that leads to sparse components all supported
on the same set of variables. While in [27], the authors discuss an alternative perspective on the
fundamental objective of the sparse PCA problem.

In this work, we develop a novel algorithm for the multi-component sparse PCA problem with
disjoint supports. Formally, we are interested in �nding k components that are s-sparse, have
disjoint supports, and jointly maximize the explained variance:

X ? , arg max
X 2X k

Tr
�
X > AX

�
; (2)

where the feasible set is

Xk ,
�

X 2 Rd� k : kX j k2 = 1 ; kX j k0 = s;supp(X i ) \ supp(X j ) = ; ; 8 j 2 [k]; i < j
	

;

with X j denoting the j th column of X . The number k of the desired components is a user de�ned
parameter and we consider it to be a small constant.

Contrary to the greedy sequential approach that repeatedlyuses de
ation, our algorithm jointly
computes all the vectors inX , and comes with theoretical approximation guarantees. We note that
even if one could solve each single-component sparse PCA problem (1) exactly, greedy de
ation
can be highly suboptimal. We show this through a simple example in Section 7.

Our Contributions

1. We develop an algorithm that provably approximates the solution to the sparse PCA problem (2)
within a multiplicative factor arbitrarily close to 1. To th e best of our knowledge, this is the
�rst algorithm that jointly optimizes multiple components with disjoint supports, provably. Our
algorithm is combinatorial; it recasts sparse PCA as multiple instances ofbipartite maximum
weight matchingon graphs determined by the input data.

2. The computational complexity of our algorithm grows as a low order polynomial in the ambient
dimension d, but is exponential in the intrinsic dimension of the input d ata, i.e., the rank
of A . To alleviate the impact of this dependence, our algorithm can be applied on a low-
dimensional sketch of the input data to obtain an approximate solution to (2). This extra level
of approximation introduces an additional penalty in our th eoretical approximation guarantees,
which naturally depends on the quality of the sketch and, in turn, the spectral decay ofA . We
show how these bounds further translate to an additivePTAS (polynomial-time approximation
scheme) for sparse PCA. Our additive PTAS outputs an approximate solution with explained
variance of at least OPT � � � s, for any sparsity s 2 f 1; : : : ; ng, any constant error � > 0 and
any k = O(1) number of orthogonal components.1

1Here, OPT is the explained variance captured by the optimal set of k components that are s sparse and have
disjoint supports.
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3. We empirically evaluate our algorithm on real datasets, and compare it against state-of-the-art
methods for the single-component sparse PCA problem (1) in conjunction with the appro-
priate de
ation step. In many cases, our algorithm|as a resu lt of jointly optimizing over
multiple components|leads to signi�cantly improved resul ts, and outperforms de
ation-based
approaches.

2 Sparse PCA through Bipartite Matchings

Our algorithm approximately solves the constrained maximization (2) on a d � d rank-r PSD
matrix A within a multiplicative factor arbitrarily close to 1. It op erates by recasting the maxi-
mization into multiple instances of the bipartite maximum w eight matching problem. Each instance
ultimately yields a feasible solution: a set ofk components that ares-sparse and have disjoint sup-
ports. The algorithm examines these solutions, and outputsthe one that maximizes the explained
variance, i.e., the quadratic objective in (2).

The computational complexity of our algorithm grows as a loworder polynomial in the ambient
dimension d of the input, but exponentially in its rank r . Despite the unfavorable dependence on
the rank, it is unlikely that a substantial improvement can b e achieved in general [6]. However, de-
coupling the dependence on the ambient and the intrinsic dimension of the input has an interesting
rami�cation; instead of the original input A , our algorithm can be applied on a low-rank surrogate
to obtain an approximate solution, alleviating the dependence onr . We discuss this in Section 3,
and present the approximation bound that this allows us to obtain.

Let A = U�U > denote the truncated eigenvalue decomposition ofA ; � is a diagonal r � r
whosei th diagonal entry is equal to the i th largest eigenvalue ofA , while the columns of U are
the corresponding eigenvectors. By the Cauchy-Schwartz inequality, for any x 2 Rd,

x> Ax =



 � 1=2U > x




 2

2 �


� 1=2U > x; c

� 2; 8 c 2 Rr : kck2 = 1 : (3)

In fact, equality in (3) can always be achieved forc colinear to � 1=2Ux 2 Rr and in turn

x> Ax = max
c2 Sr � 1

2



x ; U� 1=2c

� 2;

where Sr � 1
2 denotes the`2-unit sphere in r dimensions. More generally, for anyX 2 Rd� k ,

Tr
�

X > AX
�

=
kX

j =1

X j >
AX j = max

C :C j 2 Sr � 1
2 8j

kX

j =1



X j ; U� 1=2C j � 2: (4)

Under the variational characterization of the trace objective in (4), the sparse PCA problem (2)
can be re-written as a joint maximization over the variablesX and C as follows:

max
X 2X k

Tr
�
X > AX

�
= max

X 2X k

max
C :C j 2 Sr � 1

2 8j

kX

j =1



X j ; U� 1=2C j � 2: (5)

The alternative formulation of the sparse PCA problem in (5) takes a step towards decoupling the
dependence of the optimization on the ambient and intrinsicdimensionsd and r , respectively. The
motivation behind the introduction of the auxiliary variab le C will become clear in the sequel.

For a given C, the value of X 2 X k that maximizes the objective in (5) for that C is

bX , arg max
X 2X k

kX

j =1



X j ; W j � 2

; (6)
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where W , U� 1=2C is a real d � k matrix. The constrained, non-convex maximization (6) plays a
central role in our developments. We will later describe a combinatorial O(d � (s � k)2) procedure to
e�ciently compute bX , reducing the maximization to an instance of the bipartite maximum weight
matching problem. For now, however, let us assume that such aprocedure exists.

Let X ?, C? be the pair that attains the maximum in (5); in other words, X ? is the desired
solution to the sparse PCA problem. If the optimal auxiliary variable C? was known, then we
would be able to recoverX ? by solving the maximization (6) for C = C?. Of course, C? is not
known, and it is not possible to exhaustively consider all possible values in the domain ofC.
Instead, we examine only a �nite number of possible values ofC over a �ne discretization of its
domain. In particular, let N � =2(Sr � 1

2 ) denote a �nite �=2-net of the r -dimensional `2-unit sphere; for
any point in Sr � 1

2 , the net contains a point within an �=2 radius from the former. There are several
ways to construct such a net [28]. Further, let [N � =2(Sr � 1

2 )]
 k � Rd� k denote the kth Cartesian
power of the aforementioned�=2-net. By construction, this collection of points contains a matrix C
that is column-wise close toC?. In turn, it can be shown using the properties of the net, that the
candidate solution X 2 X k obtained through (6) at that point C will be approximately as good as
the optimal X ? in terms of the quadratic objective in (2).

Algorithm 1 Sparse PCA (Multiple disjoint components)

input : PSD d � d rank-r matrix A , � 2 (0; 1), k 2 Z+ .
output : X 2 X k f Theorem 1g

1: C  fg
2: [U ; � ]  EIG(A )
3: for each C 2 [N � =2(Sr � 1

2 )]
 k do
4: W  U� 1=2C f W 2 Rd� kg
5: bX  arg maxX 2X k

P k
j =1



X j ; W j

� 2 f Alg. 2g

6: C  C [
� bX

	

7: end for
8: X  arg maxX 2C Tr

�
X > AX

�

All above observations yield a
procedure for approximately solving
the sparse PCA problem (2). The
steps are outlined in Algorithm 1.
Given the desired number of com-
ponents k and an accuracy parame-
ter � 2 (0; 1), the algorithm gener-
ates a net [N � =2(Sr � 1

2 )]
 k and iterates
over its points. At each point C, it
computes a feasible solution for the
sparse PCA problem { a set ofk s-
sparse components { by solving the
maximization in (6) via a procedure
(Alg. 2) that will be described in the
sequel. The algorithm collects the candidate solutions identi�ed at the points of the net. The best
among them achieves an objective in (2) that provably lies close to optimal. More formally,

Theorem 1. For any real d � d rank-r PSD matrix A , desired number of componentsk, number s
of nonzero entries per component, and accuracy parameter� 2 (0; 1), Algorithm 1 outputs X 2 X k

such that

Tr
�
X

>
A X

�
� (1 � � ) � Tr

�
X >

? AX ?
�
;

where X ?, arg maxX 2X k
Tr

�
X > AX

�
; in time TSVD(r ) + O

�� 4
�

� r �k � d � (s � k)2
�
.

Algorithm 1 is the �rst nontrivial algorithm that provably a pproximates the solution of the
sparse PCA problem (2). According to Theorem 1, it achieves an objective value that lies within
a multiplicative factor from the optimal, arbitrarily clos e to 1. Its complexity grows as a low-order
polynomial in the dimension d of the input, but exponentially in the intrinsic dimension r . Note,
however, that it can be exponentially faster compared to theO(ds�k) brute force approach that
exhaustively considers all candidate supports for thek sparse components. The complexity of our
algorithm follows from the cardinality of the net and the complexity of Algorithm 2, the subroutine
that solves the constrained maximization (6). The latter is a key ingredient of our algorithm, and is
discussed in detail in the next subsection. A formal proof ofTheorem 1 is provided in Section 9.2.
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2.1 Sparse Components via Bipartite Matchings

In the core of Algorithm 1 lies Algorithm 2, a procedure that solves the constrained maximization
in (6). The algorithm breaks down the maximization into two stages. First, it identi�es the support
of the optimal solution bX . Determining the support reduces to an instance of the maximum
matching problem on a weighted bipartite graph G. Then, it recovers the exact values of the
nonzero entries in bX based on the Cauchy-Schwarz inequality. In the sequel, we provide a brief
description of Algorithm 2, leading up to its guarantees in Lemma 2.1.

Let I j , supp(bX j ) be the support of the j th column of bX , j = 1 ; : : : ; k. The objective in (6)
becomes

kX

j =1


 bX j ; W j � 2 =
kX

j =1

� X

i 2I j

bX ij � Wij

� 2
�

kX

j =1

X

i 2I j

W 2
ij : (7)

The last inequality is an application of the Cauchy-SchwarzInequality and the constraint kX j k2 = 1
8 j 2 f 1; : : : ; kg. In fact, if an oracle reveals the supportsI j , j = 1 ; : : : ; k, the upper bound in (7)
can always be achieved by setting the nonzero entries ofbX as in Algorithm 2 (Line 6). Therefore,
the key in solving (6) is determining the collection of supports to maximize the right-hand side
of (7).

u( 1)
1

u( 1)
s

...

u( k )
1

u( k )
s

...

v1

vd

vi

...

...

...

W 2
i 1

W 2
i 1

W 2
i k

W 2
i k

U1

Uk

V

Figure 1: The graph G generated by
Alg. 2. It is used to determine the support
of the solution bX in (6).

By constraint, the sets I j must be pairwise dis-
joint, each with cardinality s. Consider a weighted
bipartite graph G =

�
U = f U1; : : : ; Ukg; V; E

�
con-

structed as follows2 (Fig. 1):

ˆ V is a set ofd vertices v1; : : : ; vd, corresponding to
the d variables, i.e., the d rows of bX .

ˆ U is a set ofk � s vertices, conceptually partitioned
into k disjoint subsets U1; : : : ; Uk , each of cardinal-
ity s. The j th subset, Uj , is associated with the
support I j ; the s vertices u( j )

� , � = 1 ; : : : ; s in Uj

serve as placeholders for the variables/indices inI j .

ˆ Finally, the edge set is E = U � V . The edge
weights are determined by thed� k matrix W in (6).
In particular, the weight of edge (u( j )

� ; vi ) is equal
to W 2

ij . Note that all vertices in Uj are e�ectively
identical; they all share a common neighborhood
and edge weights.

Any feasible support fI j gk
j =1 corresponds to aperfect matching in G and vice-versa. Recall that

a matching is a subset of the edges containing no two edges incident to the same vertex, while a
perfect matching, in the case of an unbalanced bipartite graph G = ( U; V; E) with jUj � j V j, is a
matching that contains at least one incident edge for each vertex in U. Given a perfect matching
M � E, the disjoint neighborhoods of Uj s under M yield a support fI j gk

j =1 . Conversely, any
valid support yields a unique perfect matching in G (taking into account that all vertices in Uj

are isomorphic). Moreover, due to the choice of weights inG, the right-hand side of (7) for a
given support fI j gk

j =1 is equal to the weight of the matching M in G induced by the former, i.e.,

2The construction is formally outlined in Algorithm 4 in Sect ion 8.
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Algorithm 2 Compute Candidate Solution

input Real d � k matrix W
output bX = arg max X 2X k

P k
j =1



X j ; W j

� 2

1: G
�
f Uj gk

j =1 ; V; E
�

 GenBiGraph (W ) f Alg. 4g
2: M  MaxWeightMatch (G) f� Eg
3: bX  0d� k

4: for j = 1 ; : : : ; k do
5: I j  f i 2 f 1; : : : ; dg : (u; vi ) 2 M ; u 2 Uj g
6: [ bX j ]I j  [W j ]I j =k[W j ]I j k2

7: end for

P k
j =1

P
i 2I j

W 2
ij =

P
(u;v )2M w(u; v). It follows that determining the support of the solution in (6),

reduces to solving the maximum weight matching problem on the bipartite graph G.
Algorithm 2 readily follows. Given W 2 Rd� k , the algorithm generates a weighted bipartite

graph G as described, and computes its maximum weight matching. Based on the latter, it �rst
recovers the desired support ofbX (Line 5), and subsequently the exact values of its nonzero entries
(Line 6). The running time is dominated by the computation of the matching, which can be done
in O

�
jE jjUj + jUj2 log jUj

�
using a variant of the Hungarian algorithm [29]. Hence,

Lemma 2.1. For any W 2 Rd� k , Algorithm 2 computes the solution to(6), in time O
�
d � (s � k)2

�
.

A more formal analysis and proof of Lemma 2.1 is available in Section 9.1. With Algorithm 2
and Lemma 2.1 in place, we complete the description of our sparse PCA algorithm (Algorithm 1)
and the proof sketch of Theorem 1.

3 Sparse PCA on Low-Dimensional Sketches

Algorithm 3 Sparse PCA on Low Dim. Sketch

input : Real n � d S, r 2 Z+ , � 2 (0; 1), k 2 Z+ .
output X ( r ) 2 X k . f Thm. 2g

1: S  Sketch (S; r )

2: A  S
>

S
3: X ( r )  Algorithm 1 (A ; �; k ).

Algorithm 1 approximately solves the
sparse PCA problem (2) on ad � d rank-r
PSD matrix A , in time that grows as a
low-order polynomial in the ambient dimen-
sion d, but depends exponentially onr . This
dependence can be prohibitive in practice.
To mitigate its e�ect, instead of the origi-
nal input, we can apply our sparse PCA al-
gorithm on a low-rank approximation of A .
Intuitively, the quality of the extracted components should depend on how well that low-rank
surrogate approximates the original input.

More formally, let S be the real n � d data matrix representing n (potentially centered) dat-
apoints in d variables, and A the corresponding d � d covariance matrix. Further, let S be a
low-dimensional sketch of the original data; ann � d matrix whose rows lie in an r -dimensional
subspace, with r being an accuracy parameter. Such a sketch can be obtained inseveral ways,
including for example exact or approximate SVD, or online sketching methods [30]. Finally, let
A = 1=n � S

>
S be the covariance matrix of the sketched data. Then, insteadof A , we can approxi-

mately solve the sparse PCA problem by applying Algorithm 1 on the low-rank surrogate A . The
above are formally outlined in Algorithm 3. We note that the covariance matrix A does not need
to be explicitly computed; Algorithm 1 can operate directly on the (sketched) input data matrix.
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Theorem 2. For any n � d input data matrix S, with corresponding empirical covariance matrix
A = 1=n � S> S, any desired number of componentsk, and accuracy parameters� 2 (0; 1) and r ,
Algorithm 3 outputs X ( r ) 2 X k such that

Tr
�
X >

( r ) AX ( r )

�
� (1 � � ) � Tr

�
X >

? AX ?
�

� 2 � k � � 1;s(A � A );

in time TSKETCH(r ) + TSVD(r ) + O
�� 4

�

� r �k � d � (s � k)2
�
. Here, X ?, arg maxX 2X k

Tr
�
X > AX

�
, and

� 1;s(A ) denotes thesparse eigenvalue, i.e., the eigenvalue that corresponds tothe principal s-sparse
eigenvector ofA .

The error � 1;s(A � A ) and in turn the tightness of the approximation guarantees hinges on the
quality of the sketch A . Higher values of the parameterr (the rank of the sketch) can allow for
a more accurate solution and tighter guarantees. That is thecase, for example, when the sketch
is obtained through exact SVD. In that sense, Theorem 2 establishes a natural trade-o� between
the running time of Algorithm 3 and the quality of the approxi mation guarantees. A formal proof
of Theorem 2 is provided in Section 9.3. Observe that the error term itself is a sparse eigenvalue
that is hard to approximate, however even loose bounds provide tight conditional approximation
results, as we see next.

Using the main matrix approximation result of [31], the next theorem establishes that Algo-
rithm 3 can be turned into an additive PTAS.

Theorem 3. Let A be a d � d positive semide�nite matrix with entries in [� 1; 1], V be a d � d
matrix such that A = VV > . Further, let R be a random d � r matrix with entries drawn i.i.d.
according to N (0; 1=r), and de�ne

A , VRR > V > :

For any constant � 2 (0; 1], let r = O(� � 2 logd). Then, for any desired sparsity s, and number
of componentsk = O(1), Algorithm 1 with input argument A and accuracy parameter� , outputs
X ( r ) 2 X k such that

Tr
�
X >

( r ) AX ( r )

�
� Tr

�
X >

? AX ?
�

� � � s

with probability at least 1 � 1=poly(d), in time nO(log(1 =� )=� 2 )) .

Remark 3.1. Note that � 1(A � A ) serves as another elementary upper bound on� 1;s(A � A ). If
A is a the rank-d SVD approximation of A , then|similar to [32]|we can obtain a multiplicative
PTAS for sparse PCA, under the assumption of a decaying spectrum (e.g., under a power-law
decay), and for s = 
( n).

4 Related Work

We are not aware of any algorithm with provable guarantees for sparse PCA with disjoint supports.
Multiple components can be extracted by repeatedly solving(1) using one of the aforementioned
methods. To ensure disjoint supports, variables \selected" by a component are removed from
the dataset. This greedy approach, however, can result in highly suboptimal objective value (See
example in Sec. 7).

A signi�cant volume of work has focused on the single-component sparse PCA problem (1);
we scratch the surface and refer the reader to citations therein. Representative examples range
from early heuristics in [2], to the LASSO based techniques in [3], the elastic net `1-regression in
[4], `1 and `0 regularized optimization methods such as GPower in [7], a greedy branch-and-bound

7



technique in [8], or semide�nite programming approaches [9, 10, 11]. The authors of [13] present
an approach that uses ideas from an expectation-maximization (EM) formulation of the problem.
More recently, [12] presents a simple and very e�cient truncated version of the power iteration
(TPower). Finally, [15] introduces an exact solver for the low-rank case of the problem; this solver
was then used on low-rank sketches in the work of [14] (SpanSPCA), that provides conditional
approximation guarantees under spectral assumptions on the input data. Several ideas in this work
are inspired by the aforementioned low-rank solvers. In ourexperiments, we compare against EM,
TPower, and SpanSPCA, which all are experimentally achieving state-of-the-art performance.

Parallel to the algorithmic and optimization perspective, there is large line of statistical analysis
for sparse PCA that focuses on guarantees pertaining to planted models and the recovery of a \true"
sparse component [16, 17, 18, 19, 20, 21, 22, 23, 24].

There has been some work on the explicit estimation of principal subspaces or multiple compo-
nents under sparsity constraints. Non-de
ation-based algorithms include extensions of the diagonal
thresholding algorithm [33] and iterative thresholding approaches [17], while [34] and [35] propose
methods that rely on the \row sparsity for subspaces" assumption of [26]. These methods yield
components supported on a common set of variables, and hencesolve a problem di�erent from (2).
Magdon-Ismail and Boutsidis [27] discuss the multiple component Sparse PCA problem, propose
an alternative objective function and for that problem obtain interesting theoretical guarantees.
Finally, [36] develops a framework for sparse matrix factorizaiton problems, based on a novel atomic
norm. That framework captures sparse PCA { although not explicitly the constraint of disjoint
supports { but the resulting optimization problem, albeit c onvex, is NP-hard.

5 Experiments

We evaluate our algorithm on a series of real datasets, and compare it to de
ation-based approaches
for sparse PCA using TPower [12], EM [13], and SpanSPCA [14].The latter are representative
of the state of the art for the single-component sparse PCA problem (1). Multiple components
are computed one by one. To ensure disjoint supports, the de
ation step e�ectively amounts to
removing from the dataset all variables used by previously extracted components. For algorithms
that are randomly initialized, we depict best results over multiple random restarts. Additional
experimental results are listed in Section 11 of the appendix.

Our experiments are conducted in a Matlab environment. Due to its nature, our algorithm
is easily parallelizable; its prototypical implementation utilizes the Parallel Pool Matlab feature
to exploit multicore (or distributed cluster) capabilitie s. Recall that our algorithm operates on a
low-rank approximation of the input data. Unless otherwise speci�ed, it is con�gured for a rank-4
approximation obtained via truncated SVD. Finally, we put a time barrier in the execution of
our algorithm, at the cost of the theoretical approximation guarantees; the algorithm returns best
results at the time of termination. This \early termination " can only hurt the performance of our
algorithm.

Leukemia Dataset. We evaluate our algorithm on the Leukemia dataset [37]. The dataset
comprises 72 samples, each consisting of expression valuesfor 12582 probe sets. We extractk = 5
sparse components, each active ons = 50 features. In Fig. 2(a), we plot the cumulative explained
variance versus the number of components. De
ation-based approaches are greedy: the leading
components capture high values of variance, but subsequentones contribute less. On the contrary,
our algorithm jointly optimizes the k = 5 components and achieves highertotal cumulative variance;
one cannot identify a top component. We repeat the experiment for multiple values of k. Fig. 2(b)
depicts the total cumulative variance capture by each method, for each value ofk.
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(a) (b)

Figure 2: Cumulative variance captured by the k s-sparse extracted components { Leukemia
dataset [37]. Sparsity is arbitrarily set to s = 50 nonzero entries per component. Fig. 2(a) de-
picts the cum. variance versus the number of components, fork = 5. De
ation-based approaches
are greedy; �rst components capture high variance, but subsequent ones contribute less. Our algo-
rithm jointly optimizes the k = 5 components and achieves highertotal cum. variance. Fig. 2(b)
depicts the total cum. variance achieved for various valuesof k.

Additional Datasets. We repeat the experiment on multiple datasets, arbitrarily selected
from [37]. Table 1 lists the total cumulative variance captured by k = 5 components, each with
s = 40 nonzero entries, extracted using the four methods. Our algorithm achieves the highest values
in most cases.

Bag of Words (BoW) Dataset. [37] This is a collection of text corpora stored under the
\bag-of-words" model. For each text corpus, a vocabulary ofd words is extracted upon tokenization,
and the removal of stopwords and words appearing fewer than ten times in total. Each document
is then represented as a vector in thatd-dimensional space, with thei th entry corresponding to the
number of appearances of thei th vocabulary entry in the document.

We solve the sparse PCA problem (2) on the word-by-word cooccurrence matrix, and extract
k = 8 sparse components, each with cardinalitys = 10. We note that the latter is not explicitly
constructed; our algorithm can operate directly on the input word-by-document matrix. Table 2
lists the variance captured by each method; our algorithm consistently outperforms the other

TPower EM sPCA SpanSPCA SPCABiPart

Amzn Com Rev (1500� 10000) 7:31e + 03 7:32e + 03 7:31e + 03 7:79e + 03
Arcence Train (100� 10000) 1:08e + 07 1:02e + 07 1:08e + 07 1:10e + 07
CBCL Face Train (2429� 361) 5:06e + 00 5:18e + 00 5:23e + 00 5:29e + 00
Isolet-5 (1559� 617) 3:31e + 01 3:43e + 01 3:34e + 01 3:51e + 01
Leukemia (72� 12582) 5:00e + 09 5:03e + 09 4:84e + 09 5:37e + 09
Pems Train (267� 138672) 3:94e + 00 3:58e + 00 3:89e + 00 3:75e + 00
Mfeat Pix (2000� 240) 5:00e + 02 5:27e + 02 5:08e + 02 5:47e + 02

Table 1: Total cumulative variance captured by k = 5 40-sparse extracted components on various
datasets [37]. For each dataset, we list the size (#samples� #variables) and the value of variance
captured by each method. Our algorithm operates on a rank-4 sketch in all cases.
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TPower EM sPCA SpanSPCA SPCABiPart

BoW:NIPS (1500� 12419) 2:51e + 03 2:57e + 03 2:53e + 03 3:34e + 03 (+29 :98%)
BoW:KOS (3430� 6906) 4:14e + 01 4:24e + 01 4:21e + 01 6:14e + 01 (+44 :57%)
BoW:Enron (39861� 28102) 2:11e + 02 2:00e + 02 2:09e + 02 2:38e + 02 (+12 :90%)
BoW:NyTimes (300000� 102660) 4:81e + 01 � 4:81e + 01 5:31e + 01 (+10 :38%)

Table 2: Total variance captured by k = 8 extracted components, each withs = 15 nonzero entries
{ Bag of Words dataset [37]. For each corpus, we list the size (#documents� #vocabulary-size)
and the explained variance. Our algorithm operates on a rank-5 sketch in all cases.

approaches.
Finally, note that here each sparse component e�ectivelyselectsa small set of words. In turn,

the k extracted components can be interpreted as a set of well-separated topics. In Table 3, we list
the topics extracted from the NY Times corpus (part of the Bag of Words dataset). The corpus
consists of 3� 105 news articles and a vocabulary ofd = 102660 words.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1: percent zzz united states zzz bush company team cup school zzz al gore
2: million zzz u s o�cial companies game minutes student zzz george bush
3: money zzz american government market season add children campaign
4: high attack president stock player tablespoon women election
5: program military group business play oil show plan
6: number palestinian leader billion point teaspoon book tax
7: need war country analyst run water family public
8: part administration political �rm right pepper look zzz washington
9: problem zzz white house american sales home large hour member

10: com games law cost won food small nation

Table 3: BoW:NyTimes dataset [37]. The table lists the words corresponding to thes = 10
nonzero entries of each of thek = 8 extracted components (topics). Words corresponding to higher
magnitude entries appear higher in the topic.

6 Conclusions

We considered the sparse PCA problem for multiple components with disjoint supports. Existing
methods for the single component problem can be used along with an appropriate de
ation step to
compute multiple components one by one, leading to potentially suboptimal results. We presented
a novel algorithm for jointly optimizing multiple sparse an d disjoint components with provable
approximation guarantees. Our algorithm is combinatorial and exploits interesting connections
between the sparse PCA and the bipartite maximum weight matching problems. It runs in time
that grows as a low-order polynomial in the ambient dimension of the input data, but depends
exponentially on its rank. To alleviate this dependency, wecan apply the algorithm on a low-
dimensional sketch of the input, at the cost of an additionalerror in our theoretical approximation
guarantees. Empirical evaluation of our algorithm demonstrated that in many cases it outperforms
de
ation-based approaches.
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Supplemental Material

7 On the sub-optimality of de
ation { An example

We provide a simple example demonstrating the sub-optimality of de
ation based approaches for
computing multiple sparse components with disjoint supports. Consider the real 4� 4 matrix

A =

2

6
6
6
4

1 0 0 �
0 � 0 0
0 0 � 0
� 0 0 1

3

7
7
7
5

;

with �; � > 0 such that � + � < 1. Note that A is PSD; A = B > B for

B =

2

6
6
6
4

1 0 0 �
0

p
� 0 0

0 0
p

� 0
0 0 0

p
1 � � 2

3

7
7
7
5

:

We seek two 2-sparse components with disjoint supports,i.e., the solution to

max
X 2X

2X

j =1

x>
j Ax j ; (8)

where

X ,
�

X 2 R4� 2 : kx i k2 � 1; kx i k0 � 2 8 i 2 f 1; 2g; supp(x1) \ supp(x2) = ;
	

:
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Iterative computation with de
ation. Following an iterative, greedy procedure with a
de
ation step, we compute one component at the time. The �rst component is

x1 = arg max
kx k0 =2 ;kx k2=1

x> Ax : (9)

Recall that for any unit norm vector x with support I = supp(x),

x> Ax � � max (A I;I ) ; (10)

where A I;I denotes the principal submatrix of A formed by the rows and columns indexed byI .
Equality can be achieved in (10) forx equal to the leading eigenvector ofA I;I . Hence, it su�ces to
determine the optimal support for x1. Due to the small size of the example, it is easy to determine
that the set I 1 = f 1; 4g maximizes the objective in (10) over all sets of two indices,achieving value

x>
1 Ax 1 = � max

 "
1 �
� 1

#!

= 1 + �: (11)

Since subsequent components must have disjoint supports, it follows that the support of the second
2-sparse componentx2 is I 2 = f 2; 3g, and x2 achieves value

x>
2 Ax 2 = � max

 "
� 0
0 �

#!

= �: (12)

In total, the objective value in (8) achieved by the greedy computation with a de
ation step is

2X

j =1

x>
j Ax j = 1 + � + �: (13)

The sub-optimality of de
ation. Consider an alternative pair of 2-sparse componentsx0
1 and x0

2
with support sets I 0

1 = f 1; 2g and I 0
2 = f 3; 4g, respectively. Based on the above, such a pair achieves

objective value in (8) equal to

� max

 "
1 0
0 �

#!

+ � max

 "
� 0
0 1

#!

= 1 + 1 = 2 ;

which clearly outperforms the objective value in (13) (under the assumption � + � < 1), demon-
strating the sub-optimality of the x1, x2 pair computed by the de
ation-based approach. In fact,
for small �; � the objective value in the second case is larger than the former by almost a factor of
two.

8 Construction of Bipartite Graph

The following algorithm formally outlines the steps for generating the bipartite graph G =
�
f Uj gk

j =1 ; V; E
�

given a weight d � k matrix W .
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Algorithm 4 Generate Bipartite Graph

input Real d � k matrix W
output Bipartite G =

�
f Uj gk

j =1 ; V; E
�

f Fig. 1g
1: for j = 1 ; : : : ; k do
2: Uj  

�
u(j )

1 ; : : : ; u(j )
s

	

3: end for
4: U  [ k

j =1 Uj fj Uj = k � sg
5: V  

�
1; : : : ; d

	

6: E  U � V
7: for i = 1 ; : : : ; d do
8: for j = 1 ; : : : ; k do
9: for each u 2 Uj do

10: w
�
u; vi

�
 W 2

ij
11: end for
12: end for
13: end for

9 Proofs

9.1 Guarantees of Algorithm 2

Lemma 2.1. For any real d � k matrix W , and Algorithm 2 outputs

eX = arg max
X 2X k

kX

j =1



X j ; W j � 2 (14)

in time O
�
d � (s � k)2

�
.

Proof. Consider a matrix X 2 X k and let I j , j = 1 : : : ; k denote the support sets of its columns.
By the constraints in Xk , those sets are disjoint,i.e., I j 1 \ I j 2 = ; 8 j 1; j 2 2 f 1; : : : ; kg; j 1 6= j 2, and

kX

j =1



X j ; W j � 2 =

kX

j =1

� X

i 2 I j

X ij � Wij

� 2
�

kX

j =1

� X

i 2 I j

W 2
ij

�
: (15)

The last inequality is due to Cauchy-Schwarz and the fact that kX j k2 � 1, 8 j 2 f 1; : : : ; kg. In
fact, if the supports sets I j , j = 1 ; : : : ; k were known, the upper bound in (15) would be achieved
by setting X j

I j
= W j

I j
=kW j

I j
k2, i.e., setting the nonzero subvector of thej th column of X colinear

to the corresponding subvector of thej th column of W . Hence, the key step towards computing
the optimal solution eX is to determine the support setsI j , j = 1 ; : : : ; k of its columns.

Consider the set of binary matrices

Z ,
n

Z 2 f 0; 1gd� k : kZ j k0 � s 8 j 2 [k]; supp(Z i ) \ supp(Z j ) = ; 8 i; j 2 [k]; i 6= j
o

:

The set represents all possible supports for the members ofXk . Taking into account the previous
discussion, the maximization in (14) can be written with respect to Z 2 Z :

max
X 2X k

kX

j =1



X j ; W j � 2 = max

Z 2Z

kX

j =1

dX

i =1

Z ij W 2
ij : (16)
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Let eZ 2 Z denote the optimal solution, which corresponds to the (support) indicator of eX . Next,
we show that computing eZ boils down to solving a maximum weight matching problem on the
bipartite graph generated by Algorithm 4. Recall that given W 2 Rd� k , Algorithm 4 generates a
complete weighted bipartite graph G = ( U; V; E) where

ˆ V is a set ofd vertices v1; : : : ; vd, corresponding to thed variables, i.e., the d rows of bX .
ˆ U is a set of k � s vertices, conceptually partitioned into k disjoint subsets U1; : : : ; Uk , each of

cardinality s. The j th subset,Uj , is associated with the supportI j ; the s verticesu( j )
� , � = 1 ; : : : ; s

in Uj serve as placeholders for the variables/indices inI j .
ˆ Finally, the edge set isE = U � V . The edge weights are determined by thed � k matrix W

in (6). In particular, the weight of edge (u( j )
� ; vi ) is equal to W 2

ij . Note that all vertices in Uj are
e�ectively identical; they all share a common neighborhood and edge weights.

It is straightforward to verify that any Z 2 Z corresponds to a perfect matching inG and vice
versa; Z ij = 1 if and only if vertex vi 2 V is matched with a vertex in Uj (all vertices in Uj are
equivalent with respect to their neighborhood). Further, the objective value in (16) for a given
Z 2 Z is equal to the weight of the corresponding matching inG. More formally,

ˆ Given a perfect matching M , the support I j of the j th column of Z is determined by the
neighborhood ofUj in the matching:

I j  
�

i 2 [d] : (u; vi ) 2 M ; u 2 Uj
	

; j = 1 ; : : : ; k: (17)

Note that the sets I j , j = 1 ; : : : ; k are indeed disjoint, and each has cardinality equal tos. The
weight of the matching M is

X

(u;v )2M

w(u; v) =
kX

j =1

X

(u;v i )2M :
u2 Uj

w(u; vi ) =
kX

j =1

X

i 2 I j

W 2
ij =

kX

j =1

dX

i =1

Z ij � W 2
ij ; (18)

which is equal to the objective function in (16).
ˆ Conversely, given an indicator matrix Z 2 Z , let I j , supp(Z j ), and let I j (� ) denote the � th

element in the set, � = 1 ; : : : ; s (with an arbitrary ordering). Then,

M =
n

(u( j )
� ; vI j (� ) ); � = 1 ; : : : ; s; j = 1 ; : : : ; k

o
� E

is a perfect matching in G. The objective value achieved byZ is equal to the weight of M :

kX

j =1

dX

i =1

Z ij � W 2
ij =

kX

j =1

X

i 2 I j

W 2
ij =

kX

j =1

sX

� =1

W 2
I j (� );j =

X

(u;v )2M

w(u; v): (19)

It follows from (18) and (19) that to determine eZ, it su�ces to compute a maximum weight perfect
matching in G. The desired support is then obtained as described in (17) (lines 4-7 of Algorithm 2).
This complete the proof of correctness of Algorithm 2 which proceeds in the steps described above
to determine the support of eX .

The weighted bipartite graph G is generated inO(d� (s� k)). The running time of Algorithm 2 is
dominated by computing the maximum weight matching of G. For the case of unbalanced bipartite
graph with jUj = s � k < d = jV j the Hungarian algorithm can be modi�ed [29] to compute
the maximum weight bipartite matching in time O

�
jE jjUj + jUj2 log jUj

�
= O

�
d � (s � k)2

�
. This

completes the proof.
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9.2 Guarantees of Algorithm 1 { Proof of Theorem 1

We �rst prove a more general version of Theorem 1 for arbitrary constraint sets. Combining that
with the guarantees of Algorithm 2, we prove the Theorem 1.

Lemma 9.2. For any real d � d rank-r PSD matrix A and arbitrary set X � Rd� k , let X ?,
arg maxX 2X Tr

�
X > AX

�
: Assuming that there exists an operatorPX : Rd� k ! X such thatPX (W ),

arg maxX 2X


x j ; w j

� 2, then Algorithm 1 outputs X 2 X such that

Tr
�
X

>
A X

�
� (1 � � ) � Tr

�
X >

? A X ?
�
;

in time TSVD(r )+ O
�� 4

�

� r �k �
�
TX + kd

��
, where TX is the time required to computePX (�) and TSVD(r )

the time required to compute the truncated SVD ofA .

Proof. Let A = U � U
>

denote the truncated eigenvalue decomposition ofA ; � is a diagonalr � r
whosei th diagonal entry � ii is equal to the i th largest eigenvalue ofA , while the columns of U
contain the corresponding eigenvectors. By the Cauchy-Schwartz inequality, for any x 2 Rd,

x> Ax =



 �

1=2
U

>
x




 2

2 �


�

1=2
U

>
x; c

� 2; 8 c 2 Rr : kck2 = 1 : (20)

In fact, equality in (20) is achieved for c colinear to �
1=2

Ux , and hence,

x> Ax = max
c2 Sr � 1

2



�

1=2
U

>
x; c

� 2: (21)

In turn,

Tr
�

X > AX
�

=
kX

j =1

X j >
AX j = max

C :C j 2 Sr � 1
2 8j

kX

j =1



�

1=2
U

>
X j ; C j � 2: (22)

Recall that X ? is the optimal solution of the trace maximization on A , i.e.,

X ?, arg max
X 2X

Tr
�

X > AX
�

:

Let C? be the maximizing value ofC in (22) for X = X ?, i.e., C? is an r � k matrix with unit-norm
columns such that for all j 2 f 1; : : : ; kg,

X j
?

>
A X j

? =


�

1=2
U

>
X j

?; C j
?

� 2: (23)

Algorithm 1 iterates over the points (r � k matrices) C in N 
 k
�=2

�
Sr � 1

2

�
, the kth cartesian power of

a �nite �=2-net of the r -dimensional l2-unit sphere. At each such pointC, it computes a candidate

eX = arg max
X 2X

kX

j =1



X j ; U� 1=2C j � 2

via Algorithm 2 (See Lemma 9.1 for the guarantees of Algorithm 2). By construction, the set
N 
 k

�=2

�
Sr � 1

2

�
contains a C ] such that

kC ] � C?k1 ;2 = max
j 2f 1;:::;k g

kC j
] � C j

?k2 � �=2: (24)
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Based on the above, for allj 2 f 1; : : : ; kg,
�
X j

?
>

A X j
?

� 1=2 =
�
� 
 �

1=2
U

>
X j

?; C j
?

� �
�

=
�
� 
 �

1=2
U

>
X j

?; C j
]

�
+



�

1=2
U

>
X j

?;
�
C j

? � C j
]

�� �
�

�
�
� 
 �

1=2
U

>
X j

?; C j
]

� �
� +

�
�
 �

1=2
U

>
X j

?;
�
C j

? � C j
]

�� �
�

�
�
� 
 �

1=2
U

>
X j

?; C j
]

� �
� +




 �

1=2
U

>
X j

?




 �




 C j

? � C j
]






�
�
� 
 �

1=2
U

>
X j

?; C j
]

� �
� + ( �=2) �

�
X j

?
>

A X j
?

� 1=2: (25)

The �rst step follows by the de�nition of C?, the second by the linearity of the inner product,
the third by the triangle inequality, the fourth by Cauchy-S chwarz inequality and the last by (24).
Rearranging the terms in (25),

�
� 
 �

1=2
U

>
X j

?; C j
]

� �
� �

�
1 � �

2

�
�
�
X j

?
>

A X j
?

� 1=2 � 0;

and in turn,


�

1=2
U

>
X j

?; C j
]

� 2 �
�
1 � �

2

� 2 � X j
?

>
A X j

? � (1 � � ) � X j
?

>
A X j

? (26)

Summing the terms in (26) over all j 2 f 1; : : : ; kg,

kX

j =1



�

1=2
U

>
X j

?; C j
]

� 2 � (1 � � ) � Tr
�

X >
? A X ?

�
: (27)

Let X ] 2 X be the candidate solution produced by the algorithm atC ] , i.e.,

X ] , arg max
X 2X

kX

j =1



x j ; U �

1=2
C j

]

� 2: (28)

Then,

Tr
�

X >
] AX ]

�
(� )
= max

C :C j 2 Sr � 1
2 8j

kX

j =1



�

1=2
U

>
X j

] ; C j � 2

(� )
�

kX

j =1



�

1=2
U

>
X j

] ; C j
]

� 2

(
 )
�

kX

j =1



X j

?; U �
1=2

C j
]

� 2

(� )
� (1 � � ) � Tr

�
X >

? A X ?

�
; (29)

where (� ) follows from the observation in (22), (� ) from the sub-optimality of C ] , (
 ) by the
de�nition of X ] in (28), while ( � ) follows from (27). According to (29), at least one of the candidate
solutions produced by Algorithm 1, namely X ] , achieves an objective value within a multiplicative
factor (1 � � ) from the optimal, implying the guarantees of the lemma.

Finally, the running time of Algorithm 1 follows immediatel y from the cost per iteration and
the cardinality of the �=2-net on the unit-sphere. Note that matrix multiplications c an exploit the
singular value decomposition which is performed once.
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Theorem 1. For any real d � d rank-r PSD matrix A , desired number of componentsk, number s
of nonzero entries per component, and accuracy parameter� 2 (0; 1), Algorithm 1 outputs X 2 X k

such that

Tr
�
X

>
A X

�
� (1 � � ) � Tr

�
X >

? AX ?
�
;

where X ?, arg maxX 2X k
Tr

�
X > AX

�
; in time TSVD(r ) + O

�� 4
�

� r �k � d � (s � k)2
�
. TSVD(r ) is the time

required to compute the truncated SVD ofA .

Proof. Recall that Xk is the set of d � k matrices X whose columns have unit length and pairwise
disjoint supports. Algorithm 2, given any W 2 Rd� k , computesX 2 X k that optimally solves the
constrained maximization in line 5. (See Lemma 9.1 for the guarantee of Algorithm 2). in time
O

�
d � (s � k)2

�
. The desired result then follows by Lemma 9.2 for the constrained set Xk .

9.3 Guarantees of Algorithm 3 { Proof of Theorem 2

We prove Theorem 2 with the approximation guarantees of Algorithm 3.

Lemma 9.3. For any d � d PSD matrices A and A , and any setX � Rd� k let

X ?, arg max
X 2X

Tr
�

X > AX
�

; and X ?, arg max
X 2X

Tr
�
X > AX

�
:

Then, for any X 2 X such that Tr
�
X

>
A X

�
� 
 � Tr

�
X >

? A X ?
�

for some 0 < 
 < 1,

Tr
�
X

>
A X

�
� 
 � Tr

�
X >

? AX ?
�

� 2 � kA � A k2 � max
X 2X

kX k2
F :

Proof. By the optimality of X ? for A ,

Tr
�

X >
? A X ?

�
� Tr

�
X >

? AX ?

�
:

In turn, for any X 2 X such that Tr
�

X
>

A X
�

� 
 � Tr
�
X >

? A X ?
�

for some 0< 
 < 1,

Tr
�

X
>

A X
�

� 
 � Tr
�

X >
? AX ?

�
: (30)

Let E, A � A . By the linearity of the trace,

Tr
�

X
>

A X
�

= Tr
�

X
>

A X
�

� Tr
�

X
>

EX
�

� Tr
�

X
>

A X
�

+
�
�Tr

�
X

>
EX

� �
�: (31)

By Lemma 10.10,

�
�Tr

�
X

>
EX

� �
� � k X kF � kX kF � kEk2 � k Ek2 � max

X 2X
kX k2

F , R: (32)

Continuing from (31),

Tr
�

X
>

A X
�

� Tr
�

X
>

A X
�

+ R: (33)
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Similarly,

Tr
�

X >
? AX ?

�
= Tr

�
X >

? AX ?

�
� Tr

�
X >

? EX ?

�

� Tr
�

X >
? AX ?

�
�

�
�Tr

�
X >

? EX ?

� �
�

� Tr
�

X >
? AX ?

�
� R: (34)

Combining the above, we have

Tr
�

X
>

A X
�

� Tr
�

X
>

A X
�

� R

� 
 � Tr
�

X >
? AX ?

�
� R

� 
 �
�

Tr
�

X >
? AX ?

�
� R

�
� R

= 
 � Tr
�

X >
? AX ?

�
� (1 + 
 ) � R

� 
 � Tr
�

X >
? AX ?

�
� 2 � R;

where the �rst inequality follows from (33) the second from (30), the third from (34), and the last
from the fact that R � 0 and 0< 
 � 1. This concludes the proof.

Remark 9.2. If in Lemma 9.3 the PSD matrices A and A 2 Rd� d are such that A � A is also
PSD, then the following tighter bound holds:

Tr
�
X

>
A X

�
� 
 � Tr

�
X >

? AX ?
�

�
kX

i =1

� i
�
A � A

�
:

Proof. This follows from the fact that if E, A � A is PSD, then

Tr
�

X
>

EX
�

=
dX

j =1

x>
j Ex j � 0;

and the bound in (31) can be improved to

Tr
�

X
>

A X
�

= Tr
�

X
>

A X
�

� Tr
�

X
>

EX
�

� Tr
�

X
>

A X
�

:

Further, by Lemma 10.11, the bound in (32) can be improved to

Tr
�
X

>
EX

�
�

kX

i =1

� i
�
E

�
, R:

The rest of the proof follows as is.

Theorem 2. For any n � d input data matrix S, with corresponding empirical covariance matrix
A = 1=n � S> S, any desired number of componentsk, and accuracy parameters� 2 (0; 1) and r ,
Algorithm 3 outputs X ( r ) 2 X k such that

Tr
�
X >

( r ) AX ( r )

�
� (1 � � ) � Tr

�
X >

? AX ?
�

� 2 � k � kA � A k2;

where X ?, arg maxX 2X k
Tr

�
X > AX

�
, in time TSKETCH(r ) + TSVD(r ) + O

�� 4
�

� r �k � d � (s � k)2
�
.

Proof. The theorem follows from Lemma 9.3 and the approximation guarantees of Algorithm 1.
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9.4 Proof of Theorem 3

First, we restate and prove the following Lemma by [31].

Lemma 9.4. Let A 2 Rd� d be an positive semide�nite matrix with entries in [� 1; 1], and V 2 Rd� d

matrix such that A = VV > . Consider a random matrix R 2 Rd� r with entries drawn according to
a Gaussian distribution N (0; 1=r), and de�ne

A = VRR > V > :

Then, for r = O(� � 2 logd),
�
� [A ]i;j � [A ]i;j

�
� � �

for all i; j with probability at least 1 � 1=d.

Proof. The proof relies on the Johnson-Lindenstrauss (JL) Lemma [38], according to which for any
two unit norm vectors x; y 2 Rd and R generated as described

Pr
�

jx> RR > y � x> y j � �
	

� 2 � e� (� 2 � � 3)�r=4:

Observe that each element ofA is in [� 1; 1], hence can be rewritten as an inner product of two
unit-norm vectors:

[A ]i;j = V T
:;i V :;j :

Setting r = O(� � 2 logd) and using the JL lemma and a union bound over allO(d2) vector pairs
V :;i , V :;j we obtain the desired result.

Next, we provide the proof of Theorem 3 for the simple case ofk = 1; the proof easily generalizes
to the multi-component case k > 1. According to Lemma 9.4, choosingd = O

�
(�=6)� 2 logn

�
=

O
�
� � 2 logn

�
su�ces for all entries of A constructed as described in the lemma to satis�y

�
�[A ]i;j � [A ]i;j

�
� �

�
6

with probability at least 1 � 1=d. In turn, for any s-sparse, unit-norm x,

�
�x> Ax � x> Ax

�
� =

�
�
�
�
�
�

X

i;j

x i x j ([A ]ij � [A ]ij )

�
�
�
�
�
�

�
�
6

�

�
�
�
�
�
�

nX

i =1

jx i j
nX

j =1

jx j j

�
�
�
�
�
�

�
�
6

� kxk2
1 �

�
6

�
� p

s � kxk2
� 2 =

�
6

� s; (35)

where the second inequality follows from the fact thatx is s-sparse and unit norm.
We run Algorithm 1 (for k = 1) with input argument the rank- r matrix A , desired sparsitys and

accuracy parameter� = �=6. Algorithm 1 outputs a s-sparse unit-norm vector bx which according
to Theorem 1 satis�es

(1 � � =6) � xd
> Ax d � bx> A bx � xd

> Ax d; (36)

where xd is the true s-sparse principal component ofA . This, in turn, implies that bx satis�es

�
�
�bx> A bx � xd

> Ax d

�
�
� �

�
6

� xd
> Ax d �

�
6

�
1 +

�
6

�
s �

�
3

� s; (37)
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where the second inequality follows from the fact that the entries of A lie in [� 1 � �
6 ; 1 + �

6 ] and bx
is s-sparse and unit-norm.

In the following, we bound the di�erence of the performance ofbx on the original matrix A from
the optimal value. Let x? denote the s-sparse principal component ofA and de�ne

OPT, x?
T Ax ?:

Then,

jOPT � bx> A bxj = jx>
? Ax ? � bx> A bxj

= jx>
? Ax ? � x>

d Ax d + xd
> Ax d � bx> A bxj

� j x>
? Ax ? � xd

> Ax dj
| {z }

A

+ jxd
> Ax d � bx> A bxj

| {z }
B

: (38)

Utilizing (35) and the triangle inequality, one can verify t hat

A = jx?
> Ax ? � xd

> Ax d + xd
> Ax d � xd

> Ax dj

� j x?
> Ax ? � xd

> Ax dj + jxd
> Ax d � xd

> Ax dj

� x?
> Ax ? � xd

> Ax d| {z }
� 0

+
�
6

� s

� x?
> Ax ? � xd

> Ax d +
�
6

� s + xd
> Ax d � x?

> Ax ?| {z }
� 0

� x?
> Ax ? � x?

> Ax ? +
�
6

� s + xd
> Ax d � xd

> Ax d

� j x?
> Ax ? � x?

> Ax ?j +
�
6

� s + jxd
> Ax d � xd

> Ax dj

�
�
2

� s: (39)

Similarly,

B =
�
�
�xd

> Ax d � bx> A bx + bx> A bx � bx> A bx
�
�
�

=
�
�
�xd

> Ax d � bx> A bx
�
�
� +

�
�
�bx> A bx � bx> A bx

�
�
�

�
�
�
�xd

> Ax d � bx> A bx
�
�
� +

�
6

� s

(� )
�

2�
6

� s +
�
6

� s

�
�
2

� s: (40)

where (� ) follows from (37). Continuing from (38), combining (39) and (40) we obtain

jOPT � bx> A bx
�
�
� � � � s;

which is the desired result. �
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10 Auxiliary Technical Lemmata

Lemma 10.5. For any real d � n matrix M , and any r; k � minf d; ng,

r + kX

i = r +1

� i (M ) �
k

p
r + k

� kM kF ;

where � i (M ) is the i th largest singular value ofM .

Proof. By the Cauchy-Schwartz inequality,

r + kX

i = r +1

� i (M ) =
r + kX

i = r +1

j� i (M )j �

 
r + kX

i = r +1

� 2
i (M )

! 1=2

� k1kk2 =
p

k �

 
r + kX

i = r +1

� 2
i (M )

! 1=2

:

Note that � r +1 (M ); : : : ; � r + k (M ) are the k smallest among ther + k largest singular values. Hence,

r + kX

i = r +1

� 2
i (M ) �

k
r + k

r + kX

i =1

� 2
i (M ) �

k
r + k

min f d;ngX

i =1

� 2
i (M ) =

k
r + k

kM k2
F :

Combining the two inequalities, the desired result follows.

Corollary 1. For any real d � n matrix M and k � minf d; ng, � k(M ) � k� 1=2 � kM kF .

Proof. It follows immediately from Lemma 10.5.

Lemma 10.6. Let a1; : : : ; an and b1; : : : ; bn be 2n real numbers and letp and q be two numbers
such that 1=p+ 1=q= 1 and p > 1. We have

�
�

nX

i =1

ai bi
�
� �

 
nX

i =1

jai jp
! 1=p

�

 
nX

i =1

jbi jq
! 1=q

:

Lemma 10.7. For any two real matrices A and B of appropriate dimensions,

kAB kF � minfk A k2kB kF ; kA kFkB k2g:

Proof. Let b i denote the i th column of B . Then,

kAB k2
F =

X

i

kAb i k2
2 �

X

i

kA k2
2kb i k2

2 = kA k2
2

X

i

kb i k2
2 = kA k2

2kB k2
F :

Similarly, using the previous inequality,

kAB k2
F = kB > A > k2

F � k B > k2
2kA > k2

F = kB k2
2kA k2

F :

Combining the two upper bounds, the desired result follows.

Lemma 10.8. For any A ; B 2 Rn� k ,

�
�hA ; B i

�
� ,

�
�Tr

�
A > B

� �
� � k A kFkB kF :

Proof. The inequality follows from Lemma 10.6 for p = q = 2, treating A and B as vectors.
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Lemma 10.9. For any real m � n matrix A , and any k � minf m; ng,

max
Y 2 Rn � k

Y > Y = I k

kAY kF =

 
kX

i =1

� 2
i (A )

! 1=2

:

The maximum is attained byY coinciding with the k leading right singular vectors ofA .

Proof. Let U�V > be the singular value decomposition ofA ; U and V are m � m and n � n
unitary matrices respectively, while � is a diagonal matrix with � j j = � j , the j th largest singular
value of A , j = 1 ; : : : ; d, where d, minf m; ng. Due to the invariance of the Frobenius norm under
unitary multiplication,

kAY k2
F = kU�V > Y k2

F = k�V > Y k2
F : (41)

Continuing from (41),

k�V > Y k2
F = Tr

�
Y > V� 2V > Y

�
=

kX

i =1

y>
i

� dX

j =1

� 2
j � v j v>

j

�
y i =

dX

j =1

� 2
j �

kX

i =1

�
v>

j y i

� 2
:

Let zj ,
P k

i =1

�
v>

j y i

� 2
, j = 1 ; : : : ; d. Note that each individual zj satis�es

0 � zj ,
kX

i =1

�
v>

j y i

� 2
� k v j k2 = 1 ;

where the last inequality follows from the fact that the columns of Y are orthonormal. Further,

dX

j =1

zj =
dX

j =1

kX

i =1

�
v>

j y i

� 2
=

kX

i =1

dX

j =1

�
v>

j y i

� 2
=

kX

i =1

ky i k2 = k:

Combining the above, we conclude that

kAY k2
F =

dX

j =1

� 2
j � zj � � 2

1 + : : : + � 2
k : (42)

Finally, it is straightforward to verify that if y i = v i , i = 1 ; : : : ; k, then (42) holds with equality.

Lemma 10.10. For any real d � n matrix A , and pair of d � k matrix X and n � k matrix Y such
that X > X = I k and Y > Y = I k with k � minf d; ng, the following holds:

�
�Tr

�
X > AY

� �
� �

p
k �

� kX

i =1

� 2
i (A )

� 1=2
:

Proof. By Lemma 10.8,

jhX ; AY ij =
�
�Tr

�
X > AY

� �
� � k X kF � kAY kF =

p
k � kAY kF :

where the last inequality follows from the fact that kX k2
F = Tr

�
X > X

�
= Tr (I k) = k. Combining

with a bound on kAY kF as in Lemma 10.9, completes the proof.
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Lemma 10.11. For any real d � d PSD matrix A , and k � d matrix X with k � d orthonormal
columns,

Tr
�

X > AX
�

�
kX

i =1

� i (A )

where � i (A ) is the i th largest eigenvalue ofA . Equality is achieved for X coinciding with the k
leading eigenvectors ofA .

Proof. Let A = VV > be a factorization of the PSD matrix A . Then, Tr
�
X > AX

�
= Tr

�
X > VV > X

�
=

kV > X k2
F . The desired result follows by Lemma 10.9 and the fact that� i (A ) = � 2

i (V ), i =
1; : : : ; d.

11 Additional Experimental Results

(a) (b)

Figure 3: Cumulative variance captured by k s-spars components computed on the word-by-word
matrix { BagOfWords:NIPS dataset [37]. Sparsity is arbitrarily set to s = 10 nonzero entries
per component. Fig. 3(a) depicts the cum. variance capturedby k = 6 components. De
ation leads
to a greedy formation of components; �rst components capture high variance, but subsequent ones
contribute less. On the contrary, our algorithm jointly opt imizes the k components and achieves
higher total cum. variance. Fig. 3(b) depicts the total cum. variance achieved for various values
of k. Our algorithm operates on a rank-4 approximation of the input.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

ow
er

network algorithm neuron parameter object classi�er word noise
2: model data cell point image net speech control
3: learning system pattern distribution recognition classi�cation level dynamic
4: input error layer hidden images class context step
5: function weight information space task test hmm term
6: neural problem signal gaussian features order character optimal
7: unit result visual linear feature examples processing component
8: set number �eld probability representation rate non equation
9: training method synaptic mean performance values approach single

10: output vector �ring case view experiment trained analysis

11:

S
pa

nS
P

C
A

network algorithm neuron parameter recognition control classi�er noise
12: model data cell distribution object action classi�cation order
13: input weight pattern point image dynamic class term
14: learning error layer linear word step net component
15: neural problem signal probability performance optimal test rate
16: function output information space task policy speech equation
17: unit result visual gaussian features states examples single
18: set number synaptic hidden representation reinforcement approach analysis
19: system method �eld case feature values experiment large
20: training vector response mean images controller trained form

21:

S
P

C
A

B
iP

ar
t

data function neuron unit learning network model training
22: distribution algorithm cell weight space input parameter hidden
23: gaussian set visual layer action neural information performance
24: probability error direction net order system control recognition
25: component problem �ring task step output dynamic classi�er
26: approach result synaptic connection linear pattern mean test
27: analysis number response activation case signal noise word
28: mixture method spike architecture values processing �eld speech
29: likelihood vector activity generalization term image local classi�cation
30: experiment point motion threshold optimal object equation trained

Total Cum. Variance

TPower 2:5999 � 103

SpanSPCA 2:5981 � 103

SPCABiPart 3:2090 � 103

Table 4: BagOfWords:NIPS dataset [37]. We run various SPCA algorithms for k = 8 com-
ponents (topics) and s = 10 nonzero entries per component. The table lists the wordsselected by
each component (words corresponding to higher magnitude entries appear higher in the topic). Our
algorithm was con�gured to use a rank-4 approximation of the input data.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

ow
er

percent zzz bush team school women zzz enron drug palestinian
2: company zzz al gore game student show �rm patient zzz israel
3: million president season program book zzz arthur andersen doctor zzz israeli
4: companies o�cial player high com deal system zzz yasser arafat
5: market zzz george bush play children look lay problem attack
6: stock campaign games right american �nancial law leader
7: business government point group need energy care peace
8: money plan run home part executives cost israelis
9: billion administration coach public family accounting help israeli

10: fund zzz white house win teacher found partnership health zzz west bank

11:

S
pa

nS
P

C
A

percent team zzz bush palestinian school cup show won
12: company game zzz al gore attack student minutes com night
13: million season president zzz united states children add part left
14: companies player zzz george bush zzz u s program tablespoon look big
15: market play campaign military home teaspoon need put
16: stock games o�cial leader family oil book win
17: business point government zzz israel women pepper called hit
18: money run political zzz american public water hour job
19: billion right election war high large american ago
20: plan coach group country law sugar help zzz new york

21:

S
P

C
A

B
iP

ar
t

percent zzz united states zzz bush company team cup school zzz al gore
22: million zzz u s o�cial companies game minutes student zzz george bush
23: money zzz american government market season add children campaign
24: high attack president stock player tablespoon women election
25: program military group business play oil show plan
26: number palestinian leader billion point teaspoon book tax
27: need war country analyst run water family public
28: part administration political �rm right pepper look zzz washington
29: problem zzz white house american sales home large hour member
30: com games law cost won food small nation

Total Cum. Variance

TPower 45:4014
SpanSPCA 46:0075
SPCABiPart 47 :7212

Table 5: BagOfWords:NyTimes dataset [37]. We run various SPCA algorithms for k = 8
components (topics) ands = 10 nonzero entries per component. The table lists the wordsselected
by each component (words corresponding to higher magnitudeentries appear higher in the topic).
Our algorithm was con�gured to use a rank-4 approximation of the input data.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

ow
er

percent zzz bush team school com zzz enron law palestinian
2: company zzz al gore game student women �rm drug zzz israel
3: million zzz george bush season program book deal court zzz israeli
4: companies campaign player children web �nancial case zzz yasser arafat
5: market right play show american zzz arthur andersen federal peace
6: stock group games public information chief patient israelis
7: money political point need look executive system israeli
8: business zzz united states run part site analyst decision military
9: government zzz u s coach family zzz new york executives bill zzz palestinian

10: o�cial administration home help question lay member zzz west bank
11: billion leader win job number investor lawyer war
12: president attack won teacher called energy doctor security
13: plan zzz white house night country �nd investment cost violence
14: high tax left problem found employees care killed
15: fund zzz washington guy parent ago accounting health talk

16:

S
pa

nS
P

C
A

percent team o�cial zzz al gore cup show public night
17: company game zzz bush zzz george bush minutes com member big
18: million season zzz united states campaign add part system set
19: companies player attack election tablespoon look case �lm
20: market play zzz u s political teaspoon need number �nd
21: stock games palestinian vote oil book question room
22: business point military republican pepper women job place
23: money run leader voter water family told friend
24: billion right zzz american democratic large called put took
25: plan win war school sugar children zzz washington start
26: government coach zzz israel presidential serving help found car
27: president home country zzz white house butter ago information feel
28: high won administration law chopped zzz new york federal half
29: cost left terrorist zzz republican hour program student guy
30: group hit american tax pan problem court early

31:

S
P

C
A

B
iP

ar
t

company show cup team percent zzz al gore o�cial school
32: companies home minutes game million zzz george bush zzz bush student
33: stock run add season money campaign government children
34: market com tablespoon player plan right president women
35: billion high oil play business election zzz united states book
36: zzz enron need teaspoon games tax political zzz u s family
37: �rm look pepper coach cost point group called
38: analyst part water guy cut leader attack hour
39: industry night large yard job zzz washington zzz american friend
40: fund zzz new york sugar hit pay administration country found
41: investor help serving played deal question military �nd
42: sales left butter playing quarter member american set
43: customer put chopped ball chief won war room
44: investment ago fat fan executive win law �lm
45: economy big food shot �nancial told public small

Total Cum. Variance

TPower 48:140645
SpanSPCA 48:767864
SPCABiPart 51 :873063

Table 6: BagOfWords:NyTimes dataset [37]. We run various SPCA algorithms for k = 8
components (topics) and cardinality s = 15 per component. The table lists the words corresponding
to each component (words corresponding to higher magnitudeentries appear higher in the topic).
Our algorithm was con�gured to use a rank-4 approximation of the input data.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

1:

T
P

ow
er

percent zzz bush team school com zzz enron drug palestinian
2: company zzz al gore game student women court patient zzz israel
3: million zzz george bush season program book case doctor zzz israeli
4: companies campaign player children web �rm cell zzz yasser arafat
5: market zzz united states play show site federal care peace
6: stock zzz u s games public information lawyer disease israelis
7: government political point part zzz new york deal health israeli
8: o�cial attack run family www decision medical zzz palestinian
9: money zzz american home system hour chief test zzz west bank

10: business american coach help �nd power hospital security
11: president administration win problem mail industry research violence
12: billion leader won law found executive cancer killed
13: plan country left job put according treatment talk
14: group election night called set �nancial study meeting
15: high zzz washington hit look room o�ce death soldier
16: right military guy member big analyst human minister
17: fund zzz white house yard question told executives heart zzz sharon
18: need war played ago friend zzz arthur andersen blood �re
19: cost tax start teacher director employees trial zzz ariel sharon
20: number nation playing parent place investor bene�t zzz arab

21:

S
pa

nS
P

C
A

percent team zzz al gore attack school cup com drug
22: company game zzz bush zzz united states student minutes web patient
23: million season zzz george bush zzz u s children add site cell
24: companies player campaign palestinian program tablespoon information doctor
25: market play election military family oil computer disease
26: stock games political zzz american women teaspoon �nd care
27: business point tax zzz israel show pepper big health
28: money run republican war help water zzz new york test
29: billion win zzz white house country told large www research
30: government home vote terrorist parent sugar mail human
31: president won law american problem serving set medical
32: plan coach administration zzz taliban book butter put study
33: high left democratic zzz afghanistan job chopped director death
34: group night voter security found hour industry cancer
35: o�cial hit leader zzz israeli friend pan room hospital
36: need guy public nation ago fat small treatment
37: right yard zzz republican member question bowl car scientist
38: part played presidential support teacher gram zzz internet according
39: cost look federal called case food place blood
40: system start zzz washington forces number medium �lm heart

41:

S
P

C
A

B
iP

ar
t

palestinian percent zzz al gore cup school team company o�cial
42: zzz israel million zzz bush minutes right game companies government
43: zzz israeli money zzz george bush add group season market president
44: zzz yasser arafat billion campaign tablespoon show player stock zzz united states
45: peace business election oil home play zzz enron zzz u s
46: war fund political teaspoon high games analyst attack
47: terrorist tax zzz white house pepper program point �rm zzz american
48: zzz taliban cost administration water need run industry country
49: zzz afghanistan cut republican hour part coach investor law
50: forces job leader large com win sales plan
51: bin pay vote sugar american won customer public
52: troop economy democratic serving look left price zzz washington
53: laden deal presidential butter help night investment member
54: student big zzz clinton chopped problem hit quarter system
55: zzz pakistan chief support pan called guy executives nation
56: product executive zzz congress fat zzz new york yard consumer case
57: zzz internet �nancial military bowl number played technology federal
58: pro�t start policy gram question ball share information
59: earning record court food ago playing prices power
60: shares manager security league told lead growth e�ort

Total Cum. Variance

TPower 50:7686
SpanSPCA 52:8117
SPCABiPart 54 :8906

Table 7: BagOfWords:NyTimes dataset [37]. We run various SPCA algorithms for k = 8
components (topics) and cardinality s = 20 per component. The table lists the words corresponding
to each component (words corresponding to higher magnitudeentries appear higher in the topic).
Our algorithm was con�gured to use a rank-4 approximation of the input data.
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(a) (b)

Figure 4: Cumulative variance captured by k s-sparse (s = 10) extracted components on the
word-by-word matrix { BagOfWords:NyTimes dataset [37]. Fig. 4(a) depicts the cum. variance
captured by k = 6 components. De
ation leads to a greedy formation of components; �rst compo-
nents capture high variance, but subsequent ones contribute less. On the contrary, our algorithm
jointly optimizes the k components and achieves higher total cum. variance. Fig. 4(b) depicts the
total cum. variance achieved for various values ofk. Sparsity is arbitrarily set to s = 10 nonzero
entries per component. Our algorithm operates on a rank-4 approximation.

(a) (b)

Figure 5: Same as Fig. 4, but for sparsitys = 15.
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(a) (b)

Figure 6: Same as Fig. 4, but for sparsitys = 20.
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