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Abstract

We present a novel method for frequentist statistical inference in M -estimation problems, based on
stochastic gradient descent (SGD) with a fixed step size: we demonstrate that the average of such SGD
sequences can be used for statistical inference, after proper scaling. An intuitive analysis using the Ornstein-
Uhlenbeck process suggests that such averages are asymptotically normal. From a practical perspective, our
SGD-based inference procedure is a first order method, and is well-suited for large scale problems. To show
its merits, we apply it to both synthetic and real datasets, and demonstrate that its accuracy is comparable to
classical statistical methods, while requiring potentially far less computation.

1 Introduction

In M -estimation, minimizing empirical risk functions (RFs) provides point estimates of the model parameters.
Statistical inference then seeks to assess the quality of these estimates, for example, obtaining confidence
intervals or solving hypothesis testing problems. A classical result in statistics states that the asymptotic
distribution of the empirical RF’s minimizer is normal, centered around the population RF’s minimizer [23].
Thus, given the mean and covariance of this normal distribution, one can infer a range of values, along with
probabilities, to quantify the probability that this interval includes the true minimizer.

The Bootstrap [8, 9] is a classical tool for obtaining estimates of the mean and covariance of this distribution.
The Bootstrap operates by generating samples from this distribution. These are obtained by repeating the
estimation procedure over different re-samplings of the entire data set. As the data dimensionality and size
grow, the Bootstrap becomes increasingly –even prohibitively– expensive.

We follow a different path: we show that inference can also be accomplished by using stochastic gradient
descent (SGD) with a fixed step size over the data set. Significantly, fixed step-size SGD is by and large the
dominant method used for large scale data analysis. We prove, and also demonstrate empirically, that the
average of SGD sequences can be used for statistical inference. Unlike the Bootstrap, our approach does not require
creating many large-size subsamples from the data. Our method only uses first order information from
gradient computations, and does not require any second order information. Both of these are important
for large scale problems where re-sampling many times, or computing Hessians may be computationally
prohibitive.

Outline and main contributions: This paper studies and analyzes a simple, fixed step size1, SGD-based
algorithm for inference in M -estimation problems. Our algorithm produces samples, whose covariance
converges to the covariance of theM -estimate, without relying on bootstrap-based schemes, and also avoiding
direct and costly computation of second order information. Much work has been done on asymptotic
normality of SGD, as well as on Stochastic Gradient Langevin Dynamics (and variants) in the Bayesian
setting. As we discuss in detail in Section 4, this is the first work to provide finite sample inference results for
the quality of the estimates, using fixed step size, and without imposing overly restrictive assumptions on
the convergence of fixed step size SGD.

The remainder of the paper is organized as follows. In Section 2 we define the inference problem for
M -estimation, and recall basic results of asymptotic normality and how these are used. Section 3 is the main

1Fixed step size means we use the same step size every iteration, but the step size is smaller with more total number of iterations.
Constant step size means the step size is constant no matter how many iterations taken.
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body of the paper: we provide the algorithm for creating bootstrap-like samples, and also provide the main
theorem of this work. As the details are involved, we provide an intuitive analysis of our algorithm and
explanation of our main results, using an asymptotic Ornstein-Uhlenbeck process approximation for the
SGD process [11, 17, 4, 12, 14], postponing the full proof to the appendix. We specialize our main theorem to
the case of linear regression (see supplementary material), and also that of logistic regression. For logistic
regression in particular, we require a somewhat different approach, as the logistic regression objective is not
strongly convex. In Section 4, we present related work and elaborate how this work differs from existing
research in the literature. Finally, in Section 5, we provide parts of our numerical experiments that illustrate
the behavior of our algorithm, and corroborate our theoretical findings. We do this using synthetic data for
linear and logistic regression, and also by considering the Higgs detection data set [3] and the LIBSVM Splice
data set. A considerably expanded set of empirical results is deferred to the appendix.

Supporting our theoretical results, our empirical findings suggest that the SGD inference procedure
produces results similar to bootstrap while using far fewer operations, thereby producing a more efficient
inference procedure applicable in large scale settings where other approaches fail.

2 Statistical inference for M -estimators

Consider the problem of estimating a set of parameters θ? ∈ Rp using n samples {Xi}ni=1, drawn from some
distribution P on the sample space X . In frequentist inference, we are interested in estimating the minimizer
θ? of the population risk:

θ? = argmin
θ∈Rp

EP [f(θ;X)] = argmin
θ∈Rp

∫
x

f(θ;x) dP (x), (1)

where we assume that f(·;x) : Rp → R is real-valued and convex; henceforth, we use E ≡ EP , unless
otherwise stated. In practice, the distribution P is unknown to us. We thus estimate θ? by solving an
empirical risk minimization (ERM) problem, where we use the estimate θ̂:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

f(θ;Xi). (2)

Statistical inference consists of techniques for obtaining confidence intervals about the estimate θ̂. These
can be performed if there is an asymptotic limiting distribution associated with θ̂ [24]. Indeed, under standard
and well-understood regularity conditions, the solution to M -estimation problems satisfies asymptotic
normality. That is, the distribution

√
n(θ̂ − θ?) converges weakly to a normal:

√
n(θ̂ − θ?) −→ N (0, H?−1G?H?−1), (3)

where H? = E[∇2f(θ?;X)], and G? = E[∇f(θ?;X)∇f(θ?;X)>] (Theorem 5.21, [23]). We can therefore use
this result, as long as we have a good estimate of the covariance matrix: H?−1G?H?−1. The central goal of
this paper is obtaining accurate estimates for H?−1G?H?−1.

A naive way to estimate H?−1G?H?−1 is through the empirical estimator Ĥ−1ĜĤ−1 where:

Ĥ =
1

n

n∑
i=1

∇2f(θ̂;Xi) and Ĝ =
1

n

n∑
i=1

∇f(θ̂;Xi)∇f(θ̂;Xi)
>.

Beyond calculating Ĥ and Ĝ,2 this computation requires an inversion of Ĥ and matrix-matrix multiplications
in order to compute Ĥ−1ĜĤ−1 – a key computational bottleneck in high dimensions. Instead, our method
uses SGD to directly estimate Ĥ−1ĜĤ−1.

2In the case of maximum likelihood estimation, we have H? = G? which is called Fisher information, thus the covariance of interest
is H?−1 = G?−1. This can be estimated either using Ĥ or Ĝ.
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3 Statistical inference using SGD

In this section, we provide our main results, including the algorithm and its theoretical guarantees. We also
describe its specialization to logistic regression (linear regression is deferred to the supplementary material).

Consider the optimization problem in (2). For instance, in maximum likelihood estimation (MLE), fi(θ;Xi)
is a negative log-likelihood function. For simplicity of notation, we use fi(θ) and f(θ) in the rest of the paper.

The SGD algorithm with a fixed step size η, is given by the iteration

θt+1 = θt − ηgs(θt), (4)

where gs(·) is an unbiased estimator of the gradient, i.e., E[gs(θ) | θ] = ∇f(θ), where the expectation is w.r.t.
the stochasticity in the gs(·) calculation. A classical example of an unbiased estimator of the gradient is
gs(·) ≡ ∇fj(·), where j is a uniformly random index over the samples Xj .

burn in︷ ︸︸ ︷
θ−b, θ−b+1, · · · θ−1, θ0,

↙
θ̄
(i)
t = 1

t

∑t
j=1 θ
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t θ
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Figure 1: Our SGD inference procedure

Our inference procedure uses the average of t SGD iterations.
Denote such sequences as θ̄t:

θ̄t =
1

t

t∑
i=1

θi. (5)

The algorithm proceeds as follows: Given a sequence of SGD
iterates, we use the first SGD iterates θ−b, θ−b+1, . . . , θ0 as a
burn in period; we discard these iterates. Next, for each “seg-
ment” of t + d iterates, we use the first t iterates to compute
θ̄

(i)
t = 1

t

∑t
j=1 θ

(i)
j and discard the last d iterates, where i indi-

cates the i-th segment. This procedure is illustrated in Figure
1.

Similar to ensemble learning [16], we use i = 1, 2, . . . , R
estimators for statistical inference.

θ(i) = θ̂ +

√
Ks

√
t√

n
(θ̄

(i)
t − θ̂). (6)

Here, Ks is a scaling factor that depends on how the stochastic gradient gs is computed. We show examples of
Ks for mini batch SGD in linear regression and logistic regression in the corresponding sections. In practice,
we can use θ̂ ≈ 1

R

∑R
i=1 θ̄

(i)
t [5].

Step size η selection and length t: Theorem 1 below is consistent only for SGD with fixed step size that
depends on the number of samples taken. Our experiments, however, demonstrate that choosing a constant
(large) η gives equally accurate results with significantly reduced running time. A better understanding of
t’s and η’s influence requires (conjectured) stronger bounds for SGD with constant step size. Heuristically,
calibration methods for parameter tuning in subsampling methods ([18], Ch. 9) could be used for hyper-
parameter tuning in our SGD procedure. We leave the problem of finding maximal (provable) learning rates
for future work.

Discarded length d: Based on the analysis of mean estimation, if we discard d SGD iterates in every segment,
the correlation between consecutive θ(i) and θ(i+1) is on the order of C1e

−C2ηd, where C1 and C2 are data
dependent constants. This can be used as a rule of thumb to reduce correlation between samples from our
SGD inference procedure.

Burn-in period b: The purpose of the burn-in period b, is to ensure that samples are generated when SGD
iterates are sufficiently close to the optimum. This can be determined using heuristics for SGD convergence
diagnostics. Another approach is to use other methods (e.g., SVRG [10]) to find the optimum, and use a
relatively small b for SGD to reach stationarity, similar to Markov Chain Monte Carlo burn in.

3.1 Theoretical guarantees

Next, we provide the main theorem of our paper. Essentially, this provides conditions under which our
algorithm is guaranteed to succeed, and hence has inference capabilities.
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Theorem 1. For a differentiable convex function f(θ) = 1
n

∑n
i=1 fi(θ), with gradient ∇f(θ), let θ̂ ∈ Rp be its

minimizer, according to (2), and denote its Hessian at θ̂ by H := ∇2f(θ̂) . Assume that ∀θ ∈ Rp, f satisfies:

(F1) Weak strong convexity: (θ − θ̂)>∇f(θ) ≥ α‖θ − θ̂‖22, for constant α > 0,

(F2) Lipschitz gradient continuity: ‖∇f(θ)‖2 ≤ L‖θ − θ̂‖2, for constant L > 0,

(F3) Bounded Taylor remainder: ‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22, for constant E > 0,

(F4) Bounded Hessian spectrum at θ̂: 0 < λL ≤ λi(H) ≤ λU <∞, ∀i.

Furthermore, let gs(θ) be a stochastic gradient of f , satisfying:

(G1) E [gs(θ) | θ] = ∇f(θ),

(G2) E
[
‖gs(θ)‖22 | θ

]
≤ A‖θ − θ̂‖22 +B,

(G3) E
[
‖gs(θ)‖42 | θ

]
≤ C‖θ − θ̂‖42 +D,

(G4)
∥∥E [gs(θ)gs(θ)> | θ]−G∥∥2

≤ A1‖θ − θ̂‖2 +A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42,

for positive, data dependent constants A,B,C,D,Ai, for i = 1, . . . , 4. Assume that ‖θ1 − θ̂‖22 = O(η); then for
sufficiently small step size η > 0, the average SGD sequence in (5) satisfies:∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1

∥∥∥
2
.
√
η +

√
1
tη + tη2,

where G = E[gs(θ̂)gs(θ̂)
> | θ̂].

We provide the full proof in the appendix, and also we give precise (data-dependent) formulas for the
above constants. For ease of exposition, we leave them as constants in the expressions above.

Discussion. For linear regression, assumptions (F1), (F2), (F3), and (F4) are satisfied when the empirical
risk function is not degenerate. In mini batch SGD using sampling with replacement, assumptions (G1), (G2),
(G3), and (G4) are satisfied. Linear regression’s result is presented in Corollary 1.

For logistic regression, assumption (F1) is not satisfied because the empirical risk function in this case is
strictly but not strongly convex. Thus, we cannot apply Theorem 1 directly. Instead, we consider the use
of SGD on the square of the empirical risk function plus a constant; see eq. (12) below. When the empirical risk
function is not degenerate, (12) satisfies assumptions (F1), (F2), (F3), and (F4). We cannot directly use vanilla
SGD to minimize (12), instead we describe a modified SGD procedure for minimizing (12) in Section 3.5,
which satisfies assumptions (G1), (G2), (G3), and (G4). We believe that this result is of interest by its own. We
present the result specialized for logistic regression in Corollary 2.

Note that Theorem 1 proves consistency for SGD with fixed step size, requiring η → 0 when t → ∞.
However, we empirically observe in our experiments that a sufficiently large constant η gives better results.
We conjecture that the average of consecutive iterates in SGD with larger constant step size converges to the
optimum and we consider it for future work.

3.2 Intuitive interpretation via the Ornstein-Uhlenbeck process approximation

Here, we describe a continuous approximation of the discrete SGD process and relate it to the Ornstein-
Uhlenbeck process [20], to give an intuitive explanation of our results—the complete proofs appear in the
appendix. In particular, under regularity conditions, the stochastic process ∆t = θt − θ̂ asymptotically
converges to an Ornstein-Uhlenbeck process ∆(t), [11, 17, 4, 12, 14] that satisfies:

d∆(T ) = −H∆(T ) dT +
√
ηG

1
2 dB(T ), (7)

where B(T ) is a standard Brownian motion. Given (7),
√
t(θ̄t − θ̂) can be approximated as

√
t(θ̄t − θ̂) = 1√

t

t∑
i=1

(θi − θ̂) = 1
η
√
t

t∑
i=1

(θi − θ̂)η ≈ 1
η
√
t

∫ tη

0

∆(T ) dT, (8)
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where we use the approximation that η ≈ dT . By rearranging terms in (7) and multiplying both sides by
H−1, we can rewrite the stochastic differential equation (7) as ∆(T ) dT = −H−1 d∆(T ) +

√
ηH−1G

1
2 dB(T ).

Thus, we have ∫ tη

0

∆(T ) dT = −H−1(∆(tη)−∆(0)) +
√
ηH−1G

1
2B(tη). (9)

After plugging (9) into (8) we have

√
t
(
θ̄t − θ̂

)
≈ − 1

η
√
t
H−1 (∆(tη)−∆(0)) + 1√

tη
H−1G

1
2B(tη).

When ∆(0) = 0, the variance Var
[
−1/η

√
t ·H−1 (∆(tη)−∆(0))

]
= O (1/tη). Since 1/

√
tη · H−1G

1
2B(tη) ∼

N (0, H−1GH−1), when η → 0 and ηt→∞, we conclude that
√
t(θ̄t − θ̂) ∼ N (0, H−1GH−1).

3.3 Exact analysis of mean estimation

In this section, we give an exact analysis of our method in the least squares, mean estimation problem. For n
i.i.d. samples X1, X2, . . . , Xn, the mean is estimated by solving the following optimization problem

θ̂ = argmax
θ∈Rp

1

n

n∑
i=1

1
2‖Xi − θ‖22 =

1

n

n∑
i=1

Xi.

In the case of mini-batch SGD, we sample S = O(1) indexes uniformly randomly with replacement from [n];
denote that index set as It. For convenience, we write Yt = 1

S

∑
i∈It Xi, Then, in the tth mini batch SGD step,

the update step is

θt+1 = θt − η(θt − Yt) = (1− η)θt + ηYt, (10)

which is the same as the exponential moving average. And we have

√
tθ̂t = − 1

η
√
t
(θt+1 − θ1) +

1√
t

n∑
i=1

Yi. (11)

Assume that ‖θ1 − θ̂‖22 = O(η), then from Chebyshev’s inequality − 1
η
√
t
(θt+1 − θ1)→ 0 almost surely when

tη → ∞. By the central limit theorem, 1√
t

∑n
i=1 Yi converges weakly to N (θ̂, 1

S Σ̂) with Σ̂ = 1
n

∑n
i=1(Xi −

θ̂)(Xi − θ̂)>. From (10), we have ‖Cov(θa, θb)‖2 = O(η(1− η)|a−b|) uniformly for all a, b, where the constant
is data dependent. Thus, for our SGD inference procedure, we have ‖Cov(θ(i), θ(j))‖2 = O(η(1− η)d+t|i−j|).
Our SGD inference procedure does not generate samples that are independent conditioned on the data,
whereas replicates are independent conditioned on the data in bootstrap, but this suggests that our SGD
inference procedure can produce “almost independent” samples if we discard sufficient number of SGD
iterates in each segment.

When estimating a mean using our SGD inference procedure where each mini batch is S elements sampled
with replacement, we set Ks = S in (6).

3.4 Linear Regression

In linear regression, the empirical risk function satisfies:

f(θ) =
1

n

n∑
i=1

1
2 (θ>xi − yi)2,

5



where yi denotes the observations of the linear model and xi are the regressors. To find an estimate to θ?, one
can use SGD with stochastic gradient give by:

gs[θt] =
1

S

∑
i∈It

∇fi(θt),

where It are S indices uniformly sampled from [n] with replacement.
Next, we state a special case of Theorem 1. Because the Taylor remainder ∇f(θ)−H(θ − θ̂) = 0, linear

regression has a stronger result than general M -estimation problems.

Corollary 1. Assume that ‖θ1 − θ̂‖22 = O(η), we have∥∥∥tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

1√
tη
,

where H = 1
n

∑n
i=1 xix

>
i and G = 1

S
1
n

∑n
i=1(x>i θ̂ − yi)2xix

>
i .

We assume that S = O(1) is bounded, and quantities other than t and η are data dependent constants.

As with our main theorem, in the appendix we provide explicit data-dependent expressions for the
constants in the result.

Because in linear regression the estimate’s covariance is 1
n ( 1

n

∑n
i=1 xix

>
i )−1)( 1

n (x>i θ̂−yi)(x>i θ̂−yi)>)( 1
n

∑n
i=1 xix

>
i )−1),

we set the scaling factor Ks = S in (6) for statistical inference.

3.5 Logistic regression

In logistic regression, we have n samples (X1, y1), (X2, y2), . . . (Xn, yn) where Xi ∈ Rp consists of features
and yi ∈ {+1,−1} is the label. We estimate θ of a linear classifier sign(θTX) by:

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

log(1 + exp(−yiθ>Xi)).

We cannot apply Theorem 1 directly because the empirical logistic risk is not strongly convex; ‘it does not
satisfy assumption (F1). Instead, we consider the convex function

f(θ) =
1

2

(
c+

1

n

n∑
i=1

log
(
1 + exp(−yiθ>Xi)

))2

, where c > 0 (e.g., c = 1). (12)

The gradient of f(θ) is a product of two terms

∇f(θ) =

(
c+

1

n

n∑
i=1

log
(
1 + exp(−yiθ>Xi)

))
︸ ︷︷ ︸

Ψ

· ∇
(

1

n

n∑
i=1

log
(
1 + exp(−yiθ>Xi)

))
︸ ︷︷ ︸

Υ

.

Therefore, we can compute a stochastic gradient, gs = ΨsΥs, using two independent random variables satisfying
E[Ψs | θ] = Ψ and E[Υs | θ] = Υ. For Υs, we have Υs = 1

SΥ

∑
i∈IΥ

t
∇ log(1 + exp(−yiθ>Xi)), where IΥ

t are SΥ

indices sampled from [n] uniformly at random with replacement. For Ψs, we have Ψs = c+ 1
SΨ

∑
i∈IΨ

t
log(1 +

exp(−yiθ>Xi)), where IΨ
t are SΨ indices uniformly sampled from [n] with or without replacement. Given

the above, we have ∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some constant α by the generalized self concordance of
logistic regression [1, 2], and therefore the assumptions are now satisfied.

For convenience, we write k(θ) = 1
n

∑n
i=1 ki(θ) where ki(θ) = log(1 + exp(−yiθ>Xi)). Thus f(θ) =

(k(θ + c)2, E[Ψs | θ] = k(θ) + c, and E[Υs | θ] = ∇k(θ).

Corollary 2. Assume ‖θ1 − θ̂‖22 = O(η); also SΨ = O(1), SΥ = O(1) are bounded. Then, we have∥∥∥tE [(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1
∥∥∥

2
.
√
η +

√
1
tη + tη2,

where H = ∇2f(θ̂) = (c + k(θ̂))∇2k(θ̂). Here, G = 1
SΥ
KG(θ̂) 1

n

∑n
i=1∇ki(θ̂)ki(θ̂)> with KG(θ) = E[Ψ(θ)2]

depending on how indexes are sampled to compute Ψs:

6



• with replacement: KG(θ) = 1
SΨ

( 1
n

∑n
i=1(c+ ki(θ))

2) + SΨ−1
SΨ

(c+ k(θ))2 ,

• without replacement: KG(θ) =
1−SΨ−1

n−1

SΨ
( 1
n

∑n
i=1(c+ ki(θ))

2) + SΨ−1
SΨ

n
n−1 (c+ k(θ))2 .

Quantities other than t and η are data dependent constants.

As with the results above, in the appendix we give data-dependent expressions for the constants. Simu-
lations suggest that the term tη2 in our bound is an artifact of our analysis. Because in logistic regression

the estimate’s covariance is 1
n

(
∇2k(θ̂)

)−1

·
(

1
n

∑n
i=1∇ki(θ̂)∇ki(θ̂)>

)
·
(
∇2k(θ̂)

)−1

, we set the scaling factor

Ks = (c+k(θ̂))2

KG(θ̂)
in (6) for statistical inference. Note that Ks ≈ 1 for sufficiently large SΨ.

4 Related work

Bayesian inference: First and second order iterative optimization algorithms –including stochastic gradient
descent, gradient descent, and variants– naturally define a Markov chain. Based on this principle, there is a
long line of works focused on creating variants that have a particular steady state distribution. Most related
to this work is the case of stochastic gradient Langevin dynamics (SGLD) for Bayesian inference –namely, for
sampling from the posterior distributions– using a variant of stochastic gradient descent [25, 6, 14, 15]. We
note that, here as well, the vast majority of the results rely on using a decreasing step size. Very recently, [15]
uses a heuristic approximation for Bayesian inference, and provides results for fixed step size.

Our problem is different in important ways from the Bayesian inference problem. In such likelihood
parameter estimation problems, the covariance of the estimator only depends on the gradient of the likelihood
function. This is not the case, however, in general frequentist M -estimation problems (e.g., linear regression),
which is exactly the setting of this paper. In these cases, the covariance of the estimator depends both on
the gradient and Hessian of the empirical risk function. For this reason, without second order information,
SGLD methods are poorly suited for general M -estimation problems in frequentist inference. In contrast,
our method exploits properties of averaged SGD, and computes the estimator’s covariance without second
order information. As we discuss below, a central challenge we face, therefore, is estimating second order
information even though SGD’s covariance need not converge if using fixed step size. This issue is avoided
in the Bayesian setting since only first order information is needed, and (see more below) in the stochastic
approximation setting by using decreasing step size.

Connection with Bootstrap methods: While methodologically different, the classical approach for statistical
inference is to use the bootstrap [9, 21]. Bootstrap samples are generated by essentially replicating the entire
data set by resampling, and then solving the optimization problem (by any means) on each generated set of
the data. Our approach offers an alternative to this, using fixed step size SGD. We identify our algorithm and
its analysis as an alternative to bootstrap methods. Our analysis is also specific to SGD, and thus sheds light
on the statistical properties of this very widely used algorithm.

Connection with stochastic approximation methods: It has been long observed in stochastic approximation
that under certain conditions, SGD displays asymptotic normality for both the setting of decreasing step size,
e.g., [13, 19], and more recently, [22, 7]; and also for fixed step size, e.g., [4], Chapter 4. All of these results,
however, provide their guarantees with the requirement that the stochastic approximation iterate converges
to the optimum. For decreasing step size, this is not an overly burdensome assumption, since with mild
assumptions it can be shown directly. As far as we know, however, it is not clear if this holds in the fixed step
size regime. To side-step this issue, [4] provides results only when the (constant) step-size approaches 0 (see
Section 4.4 and 4.6, and in particular Theorem 7 in [4]). Similarly, while [12] has asymptotic results on the
average of consecutive stochastic approximation iterates with constant step size, it assumes convergence of
iterates (assumption A1.7 in Ch. 10) – an assumption we are unable to justify in even simple settings.

Indeed, the challenge with SGD is that, when using constant step size, each iterate is distributed around
the optimum with non-vanishing variance, and individual iterates do not converge to the optimum.

Beyond the critical difference in the assumptions, the majority of the “classical” subject matter seeks to
prove asymptotic results about different flavors of SGD, but does not properly consider its use for inference.
Key exceptions are the recent work in [22] and [7], which follow up on [19]. Both of these rely on decreasing
step size, for reasons mentioned above. The work in [7] uses SGD with decreasing step size for estimating
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Figure 2: Estimation in univariate models.

an M -estimate’s covariance. Work in [22] studies implicit SGD with decreasing step size and proves results
similar to [19], however it does not use SGD to compute confidence intervals.

Through SGD with constant step size, we can generate almost “symmetric” samples for statistical
inference, and rescaling samples for statistical inference is nontrivial in SGD with decreasing step size. To the
best of our knowledge, there are no prior results establishing asymptotic normality for SGD with fixed step
size for general M-estimation problems (that do not rely on overly restrictive assumptions, as discussed).

5 Experiments

5.1 Synthetic data

The coverage probability is defined as 1
p

∑p
i=1 P[θ?i ∈ Ĉi] where θ? = arg minθ E[f(θ,X)] ∈ Rp, and Ĉi is the

estimated confidence interval for the ith coordinate. The average confidence interval width is defined as
1
p

∑p
i=1(Ĉui −Ĉli) where [Ĉli , Ĉ

u
i ] is the estimated confidence interval for the ith coordinate. In our experiments,

coverage probability and average confidence interval width are estimated through simulation. We use the
empirical quantile of our SGD inference procedure and bootstrap to compute the 95% confidence intervals
for each coordinate of the parameter. Because theoretical justifications of our SGD inference procedure do not
yet deal with pivotal quantities, here we have not included such comparisons. For results given as a pair
(α, β), it usually indicates (coverage probability, confidence interval length).

5.1.1 Univariate models

In Figure 2, we compare our SGD inference procedure with (i) Bootstrap and (ii) normal approximation with
inverse Fisher information in univariate models. We observe that our method and Bootstrap have similar
statistical properties. Figure 7 in the appendix shows Q-Q plots of samples from our SGD inference procedure.
Normal distribution mean estimation: Figure 2a compares 500 samples from SGD inference procedure and
Bootstrap versus the distribution N (0, 1/n), using n = 20 i.i.d. samples from N (0, 1). We used mini batch
SGD described in Sec. 3.3. For the parameters, we used η = 0.8, t = 5, d = 10, b = 20, and mini batch
size of 2. Our SGD inference procedure gives (0.916 , 0.806), Bootstrap gives (0.926 , 0.841), and normal
approximation gives (0.922 , 0.851). Exponential distribution parameter estimation: Figure 2b compares 500
samples from inference procedure and Bootstrap, using n = 100 samples from an exponential distribution
with PDF λe−λx where λ = 1. We used SGD for MLE with mini batch sampled with replacement. For the
parameters, we used η = 0.1, t = 100, d = 5, b = 100, and mini batch size of 5. Our SGD inference procedure
gives (0.922, 0.364), Bootstrap gives (0.942 , 0.392), and normal approximation gives (0.922, 0.393). Poisson
distribution parameter estimation: Figure 2c compares 500 samples from inference procedure and Bootstrap,
using n = 100 samples from a Poisson distribution with PDF λxe−λx where λ = 1. We used SGD for MLE
with mini batch sampled with replacement. For the parameters, we used η = 0.1, t = 100, d = 5, b = 100, and
mini batch size of 5. Our SGD inference procedure gives (0.942 , 0.364), Bootstrap gives (0.946 , 0.386), and
normal approximation gives (0.960 , 0.393).
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η t = 100 t = 500 t = 2500

0.1 (0.957, 4.41) (0.955, 4.51) (0.960, 4.53)
0.02 (0.869, 3.30) (0.923, 3.77) (0.918, 3.87)
0.004 (0.634, 2.01) (0.862, 3.20) (0.916, 3.70)

(a) Bootstrap (0.941, 4.14), normal approximation (0.928, 3.87)

η t = 100 t = 500 t = 2500

0.1 (0.949, 4.74) (0.962, 4.91) (0.963, 4.94)
0.02 (0.845, 3.37) (0.916, 4.01) (0.927, 4.17)
0.004 (0.616, 2.00) (0.832, 3.30) (0.897, 3.93)

(b) Bootstrap (0.938, 4.47), normal approximation (0.925, 4.18)

Table 1: Linear regression. Left: Experiment 1, Right: Experiment 2.

η t = 100 t = 500 t = 2500

0.1 (0.872, 0.204) (0.937, 0.249) (0.9391, 0.258)
0.02 (0.610, 0.112) (0.871, 0.196) (0.926, 0.237)
0.004 (0.312, 0.051) (0.596, 0.111) (0.86, 0.194)

(a) Bootstrap (0.932, 0.253), normal approximation (0.957, 0.264)

η t = 100 t = 500 t = 2500

0.1 (0.859, 0.206) (0.931, 0.255) (0.947, 0.266)
0.02 (0.600, 0.112) (0.847, 0.197) (0.931, 0.244)
0.004 (0.302, 0.051) (0.583, 0.111) (0.851, 0.195)

(b) Bootstrap (0.932, 0.245), normal approximation (0.954, 0.256)

Table 2: Logistic regression. Left: Experiment 1, Right: Experiment 2.

5.1.2 Multivariate models

In these experiments, we set d = 100, used mini-batch size of 4, and used 200 SGD samples. In all cases, we
compared with Bootstrap using 200 replicates. We computed the coverage probabilities using 500 simulations.
Also, we denote 1p =

[
1 1 . . . 1

]> ∈ Rp. Additional simulations comparing covariance matrix computed
with different methods are given in Sec. B.1.2.

Linear regression: Experiment 1: Results for the case where X ∼ N (0, I) ∈ R10, Y = w∗TX + ε, w∗ =
1p/
√
p, and ε ∼ N (0, σ2 = 102) with n = 100 samples is given in Table 1a. Bootstrap gives (0.941, 4.14), and

confidence intervals computed using the error covariance and normal approximation gives (0.928, 3.87).
Experiment 2: Results for the case where X ∼ N (0,Σ) ∈ R10, Σij = 0.3|i−j|, Y = w∗TX + ε, w∗ = 1p/

√
p, and

ε ∼ N (0, σ2 = 102) with n = 100 samples is given in Table 1b. Bootstrap gives (0.938, 4.47), and confidence
intervals computed using the error covariance and normal approximation gives (0.925, 4.18).

Logistic regression: Here we show results for logistic regression trained using vanilla SGD with mini
batch sampled with replacement. Results for modified SGD (Sec. 3.5) are given in Sec. B.1.2. Experiment 1:
Results for the case where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼ N (0.01Y 1p/

√
p, I) ∈ R10 with n = 1000

samples is given in Table 2a. Bootstrap gives (0.932, 0.245), and confidence intervals computed using inverse
Fisher matrix as the error covariance and normal approximation gives (0.954, 0.256). Experiment 2: Results
for the case where P[Y = +1] = P[Y = −1] = 1/2, X | Y ∼ N (0.01Y 1p/

√
p,Σ) ∈ R10, Σij = 0.2|i−j| with

n = 1000 samples is given in Table 2b. Bootstrap gives (0.932, 0.253), and confidence intervals computed
using inverse Fisher matrix as the error covariance and normal approximation gives (0.957, 0.264).

5.2 Real data

Here, we compare covariance matrix computed using our SGD inference procedure, bootstrap, and inverse
Fisher information matrix on the Higgs data set [3] and the LIBSVM Splice data set, and we observe that they
have similar statistical properties.

5.2.1 Higgs data set

The Higgs data set 3 [3] contains 28 distinct features with 11,000,000 data samples. This is a classification
problem between two types of physical processes: one produces Higgs bosons and the other is a background
process that does not. We use a logistic regression model, trained using vanilla SGD, instead of the modified
SGD described in Section 3.5.

3https://archive.ics.uci.edu/ml/datasets/HIGGS
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Figure 3: Higgs data set with n = 200
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Figure 4: Higgs data set with n = 50000

To understand different settings of sample size, we subsampled the data set with different sample
size levels: n = 200 and n = 50000. We investigate the empirical performance of SGD inference on this
subsampled data set. In all experiments below, the batch size of the mini batch SGD is 10.

In the case n = 200, the asymptotic normality for the MLE is not a good enough approximation. Hence,
in this small-sample inference, we compare the SGD inference covariance matrix with the one obtained by
inverse Fisher information matrix and bootstrap in Figure 3.

For our SGD inference procedure, we use t = 100 samples to average, and discard d = 50 samples. We
use R = 20 averages from 20 segments (as in Figure 1). For bootstrap, we use 2000 replicates, which is much
larger than the sample size n = 200.

Figure 3 shows that the covariance matrix obtained by SGD inference is comparable to the estimation
given by bootstrap and inverse Fisher information.

In the case n = 50000, we use t = 5000 samples to average, and discard d = 500 samples. We use R = 20
averages from 20 segments (as in Figure 1). For this large data set, we present the estimated covariance of
SGD inference procedure and inverse Fisher information (the asymptotic covariance) in Figure 4 because
bootstrap is computationally prohibitive. Similar to the small sample result in Figure 3, the covariance of our
SGD inference procedure is comparable to the inverse Fisher information.

In Figure 5, we compare the covariance matrix computed using our SGD inference procedure and inverse
Fisher information with n = 90000 samples . We used 25 samples from our SGD inference procedure with
t = 5000, d = 1000, η = 0.2, and mini batch size of 10.

5.2.2 Splice data set

The Splice data set 4 contains 60 distinct features with 1000 data samples. This is a classification problem
between two classes of splice junctions in a DNA sequence. Similar to the Higgs data set, we use a logistic
regression model, trained using vanilla SGD.

4https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
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Figure 6: Splice data set

In Figure 5, we compare the covariance matrix computed using our SGD inference procedure and
bootstrap n = 1000 samples. We used 10000 samples from both bootstrap and our SGD inference procedure
with t = 500, d = 100, η = 0.2, and mini batch size of 6.

5.3 Discussion

In our experiments, we observed that using a larger step size η produces accurate results with significantly
accelerated convergence time. This might imply that the η term in Theorem 1’s bound is an artifact of our
analysis. Indeed, although Theorem 1 only applies to SGD with fixed step size, where ηt→∞ and η2t→ 0
imply that the step size should be smaller when the number of consecutive iterates used for the average is
larger, our experiments suggest that we can use a (data dependent) constant step size η and only require
ηt→∞.

In the experiments, our SGD inference procedure uses (t+ d) · S · p operations to produce a sample, and
Newton method uses n·(matrix inversion complexity = Ω(p2))·(number of Newton iterations t) operations
to produce a sample. The experiments therefore suggest that our SGD inference procedure produces results
similar to Bootstrap while using far fewer operations.
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A Proofs

A.1 Proof of Theorem 1

We first assume that θ1 = θ̂ for more precise constants in our bounds, the same analysis applies when ‖θ1‖22
For ease of notation, we denote

∆t = θt − θ̂, (13)

and, without loss of generality, we assume that θ̂ = 0. The stochastic gradient descent recursion satisfies:

θt+1 = θt − η · gs(θt)
= θt − η · (gs(θt)−∇f(θt) +∇f(θt))

= θt − η · ∇f(θt)− η · et,

where et = gs(θt)−∇f(θt). Note that e1, e2, . . . is a martingale difference sequence. We use

gi = ∇fi(θ̂) and Hi = ∇2fi(θ̂) (14)

to denote the gradient component at index i, and the Hessian component at index i, at optimum θ̂, respectively. Note that∑
gi = 0 and 1

n

∑
Hi = H .

For each fi, its Taylor expansion around θ̂ is

fi(θ) = fi(θ̂) + g>i (θ − θ̂) +
1

2
(θ − θ̂)>Hi(θ − θ̂) +Ri(θ, θ̂), (15)

where Ri(θ, θ̂) is the remainder term. For convenience, we write R = 1
n

∑
Ri.

For the proof, we require the following lemmata. The following lemma states that E[‖∆t‖22] = O(η) as t→∞ and η → 0.

Lemma 1. For data dependent, positive constants α,A,B according to assumptions (F1) and (G2) in Theorem 1, and given assumption
(G1), we have

E
[
‖∆t‖22

]
≤ (1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη , (16)

under the assumption η < 2α
A .

Proof. As already stated, we assume without loss of generality that θ̂ = 0. This further implies that: gs(θt) = gs(θt−θ̂) = gs(∆t),
and

∆t+1 = ∆t − η · gs(∆t).

Given the above and assuming expectation E[·] w.r.t. the selection of a sample from {Xi}ni=1, we have:

E
[
‖∆t+1‖22 | ∆t

]
= E

[
‖∆t − ηgs(∆t)‖22 | ∆t

]
= E

[
‖∆t‖22 | ∆t

]
+ η2 · E

[
‖gs(∆t)‖22 | ∆t

]
− 2η · E

[
gs(∆t)

>∆t | ∆t

]
= ‖∆t‖22 + η2 · E

[
‖gs(∆t)‖22 | ∆t

]
− 2η · ∇f(∆t)

>∆t

(i)

≤ ‖∆t‖22 + η2 ·
(
A · ‖∆t‖22 +B

)
− 2η · α‖∆t‖22

= (1− 2αη +Aη2)‖∆t‖22 + η2B. (17)
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where (i) is due to assumptions (F1) and (G2) of Theorem 1. Taking expectations for every step t = 1, · over the whole history,
we obtain the recursion:

E
[
‖∆t+1‖22

]
≤ (1− 2αη +Aη2)t−1‖∆1‖22 + η2B ·

t−1∑
i=0

(1− 2αη +Aη2)i

= (1− 2αη +Aη2)t−1‖∆1‖22 + η2B · 1−(1−2αη+Aη2)t

2αη−Aη2

≤ (1− 2αη +Aη2)t−1‖∆1‖22 + ηB
2α−Aη .

The following lemma states that E[‖∆t‖42] = O(η2) as t→∞ and η → 0.

Lemma 2. For data dependent, positive constants α,A,B,C,D according to assumptions (F1), (G1), (G2) in Theorem 1, we have:

E[‖∆t‖42] ≤(1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)−B(3 + η)− C(2η2 + η3)
. (18)

Proof. Given ∆t, we have the following sets of (in)equalities:

E
[
‖∆t+1‖42 | ∆t

]
=E

[
‖∆t − ηgs(∆t)‖42 | ∆t

]
=E

[
(‖∆t‖22 − 2η · gs(∆t)

>∆t + η2‖gs(∆t)‖22)2 | ∆t

]
=E
[
‖∆t‖42 + 4η2(gs(∆t)

>∆t)
2 + η4‖gs(∆t)‖42 − 4η · gs(∆t)

>∆t‖∆t‖22
+ 2η2 · ‖gs(∆t)‖22‖∆t‖22 − 4η3 · gs(∆t)

>∆t‖gs(∆t)‖22 | ∆t

]
(i)

≤E
[
‖∆t‖42 + 4η2 · ‖gs(∆t)‖22 · ‖∆t‖22 + η4‖gs(∆t)‖42 − 4η · gs(∆t)

>∆t‖∆t‖22
+ 2η2 · ‖gs(∆t)‖22 · ‖∆t‖22 + 2η3 · (‖gs(∆t)‖22 + ‖∆t‖22) · ‖gs(∆t)‖22 | ∆t

]
(ii)

≤ E
[
‖∆t‖42 + (2η3 + η4)‖gs(∆t)‖42 + (6η2 + 2η3)‖gs(∆t)‖22‖∆t‖22 | ∆t

]
− 4αη‖∆t‖42

(iii)

≤ (1− 4αη)‖∆t‖42 + (6η2 + 2η3)(A‖∆t‖22 +B)‖∆t‖22 + (2η3 + η4)(C‖∆t‖42 +D)

=(1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))‖∆t‖42 +B(6η2 + 2η3)‖∆t‖22 +D(2η3 + η4)

(iv)

≤ (1− 4αη +A(6η2 + 2η3) + C(2η3 + η4)) · ‖∆t‖42 +B(3η + η2)(η2 + ‖∆t‖42) +D(2η3 + η4)

=(1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)) · ‖∆t‖42 +Bη2(3η + η2) +D(2η3 + η4), (19)

where (i) is due to (gs(∆t)
>∆t)

2 ≤ ‖gs(∆t)‖22 · ‖∆t‖22 and −2gs(∆t)
>∆t ≤ ‖gs(∆t)‖22 + ‖∆t‖22, (ii) is due to assumptions (G1)

and (F1) in Theorem 1, (iii) is due to assumptions (G2) and (G3) in Theorem 1, and (iv) is due to 2η‖∆t‖22 ≤ η2 + ‖∆t‖42.
Similar to the proof of the previous lemma, applying the above rule recursively and w.r.t. the whole history of estimates, we
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obtain:

E
[
‖∆t+1‖42

]
≤ (1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
(
Bη2(3η + η2) +D(2η3 + η4)

)
·
t−1∑
i=0

(
1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4)

)i
≤ (1− 4αη +A(6η2 + 2η3) +B(3η + η2) + C(2η3 + η4))t−1‖∆1‖42

+
Bη2(3η + η2) +D(2η3 + η4)

4αη −A(6η2 + 2η3)−B(3η + η2)− C(2η3 + η4)
,

which is the target inequality, after simple transformations.

For SGD, we have

∆t = (I − ηH)∆t−1 − η(∇R(∆t−1) + et−1)

= (I − ηH)t−1∆1 − η
t−1∑
i=1

(I − ηH)t−1−i(ei +∇R(∆i)). (20)

For t ≥ 2,

t(θ̄ − θ̂) =

>∑
i=1

∆i

= (I − (I − ηH)t)
H−1

η
∆1 − η

t−1∑
j=1

j∑
i=1

(I − ηH)j−1−i(ei +∇R(∆i)). (21)

For the latter term,

η

t−1∑
j=1

j∑
i=1

(I − ηH)j−i(ei +∇R(∆i))

=η

t−1∑
i=1

(

t−i−1∑
j=0

(I − ηH)j)(ei +∇R(∆i))

=

t−1∑
i=1

(I − (I − ηH)t−i)H−1(ei +∇R(∆i))

=H−1
t−1∑
i=1

ei +H−1
t−1∑
i=1

∇R(∆i)−H−1
t−1∑
i=1

(I − ηH)t−i(ei +∇R(∆i))

(i)
=H−1

t−1∑
i=1

ei +H−1
t−1∑
i=1

∇R(∆i) +H−1(I − ηH)
1

η
(∆t − (I − ηH)t−1∆1), (22)

where step (i) follows from the fact
∑t−1
i=1(I − ηH)t−i(ei +∇R(∆i)) = (I − ηH) 1

η (∆t − (I − ηH)t−1∆1) .
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Thus, we have

√
t∆̄t =

1√
t
(I − (I − ηH)t)

H−1

η
∆1

− 1√
t
H−1

t−1∑
i=1

ei

− 1√
t
H−1

t−1∑
i=1

∇R(∆i)

− 1√
t
H−1(I − ηH)

1

η
(∆t − (I − ηH)t−1∆1). (23)

In the statement of the theorem we have ∆1 = 0 (however similar bounds will hold if ‖∆1‖22 = O(η)), thus for above terms
we have

1√
t
(I − (I − ηH)t)

H−1

η
∆1 = 0, (24)

E[‖ 1√
t
H−1(I − ηH)

1

η
(∆t − (I − ηH)t−1∆1)‖22]

≤1− ηλU
λL

E[
‖∆t‖22
η2t

]

≤1− ηλU
λL

1

η2t
((1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη )

≤1− ηλU
λL

B

tη(2α−Aη)

=O(
1

tη
). (25)

16



E[‖ 1√
t
H−1

t−1∑
i=1

∇R(∆i)‖22]

≤E[
1

λL

1

t
(

t−1∑
i=1

‖∇R(∆i)‖2)2]

≤E[
E2

λLt
(

t−1∑
i=1

‖∆i‖22)2]

≤ E
2

λLt
(t− 1)E[

t−1∑
i=1

‖∆i‖42]

≤E
2

λL

t

t− 1

t−1∑
i=1

((1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖42 +
B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
)

=
E2

λL
t

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)

=O(tη2). (26)

For the term − 1√
t
H−1

∑t−1
i=1 ei, we have

E[‖ − 1√
t
H−1

t−1∑
i=1

ei‖22]

(i)
=

1

t

t−1∑
i=1

E[‖H−1ei‖22]

≤λU
t

t−1∑
i=1

E[‖ei‖22]

=
λU
t

t−1∑
i=1

E[‖gs(∆i)−∇f(∆i)‖22]

≤2
λU
t

(

t−1∑
i=1

E[‖gs(∆i)‖22] +

t−1∑
i=1

E[‖∇f(∆i)‖22])

≤2
λU
t

((t− 1)B + (A+ L2)

t−1∑
i=1

‖∆i‖22)

≤2
λU
t

((t− 1)B + (A+ L2)

t−1∑
i=1

((1− 2αη +Aη2)t−1‖∆1‖22 +
Bη

2α−Aη ))

=2λU
t− 1

t
(B + (A+ L2)

Bη

2α−Aη )

=O(1), (27)

17



where step (i) follows from i 6= j leading to E[(H−1ei)
>H−1ej ] = 0. We also have

E[(− 1√
t
H−1

t−1∑
i=1

ei)(−
1√
t
H−1

t−1∑
i=1

ei)
>]

=
1

t
H−1(

t−1∑
i=1

E[eie
>
i ])H−1. (28)

For each term E[eie
>
i ], we have

‖E[eie
>
i ]−G‖2

=‖E[gs(∆i)gs(∆i)
>]− E[(∇f(∆i))(∇f(∆i))

>]−G‖2
≤E[‖∇f(∆i)‖22] + E[A1‖∆i‖2 +A2‖∆i‖22 +A3‖∆i‖32 +A4‖∆i‖42]

≤L2E[‖∆i‖22] +A1

√
E[‖∆i‖22] +A2E[‖∆i‖22] +

A3

2
E[‖∆i‖22 + ‖∆i‖42] +A4E[‖∆i‖42]

=A1

√
E[‖∆i‖22] + (L2 +A2 +

A3

2
)E[‖∆i‖22] + (

A3

2
+A4)E[‖∆i‖42]

≤A1

√
(1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη + (L2 +A2 +
A3

2
)((1− 2αη +Aη2)t−1‖∆1‖22 +

Bη

2α−Aη )

+ (
A3

2
+A4)((1− 4αη +A(6η2 + 2η3) + C(2η3 + η4))t−1‖∆1‖42 +

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
)

=A1

√
Bη

2α−Aη + (L2 +A2 +
A3

2
)

Bη

2α−Aη + (
A3

2
+A4)

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
. (29)

Thus, we have

‖1

t
H−1(

t−1∑
i=1

E[eie
>
i ])H−1 −H−1GH−1‖2

≤1

t
‖H−1GH−1‖2

+
t− 1

t

1

λ2
L

(A1

√
Bη

2α−Aη + (L2 +A2 +
A3

2
)

Bη

2α−Aη + (
A3

2
+A4)

B(3η2 + η3) +D(2η2 + η3)

4α−A(6η + 2η2)− C(2η2 + η3)
)

=O(
√
η). (30)
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For convenience, denote

�0 =
1√
t
(I − (I − ηH)t)

H−1

η
∆1,

�1 = − 1√
t
H−1(I − ηH)

1

η
(∆t − (I − ηH)t−1∆1),

�2 = − 1√
t
H−1

t−1∑
i=1

∇R(∆i),

�3 = − 1√
t
H−1

t−1∑
i=1

ei, (31)

and we have E[t∆̄t∆̄t] = E[(�0 +�1 +�2 +�3)(�0 +�1 +�2 +�3)>].
Combining above results, we can bound

‖tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1‖2
=‖E[(�0 +�1 +�2 +�3)(�0 +�1 +�2 +�3)>]−H−1GH−1‖2
=‖E[�3�

>
3 ]−H−1GH−1 + E[�3(�0 +�1 +�2)> + (�0 +�1 +�2)�>3 + (�0 +�1 +�2)(�0 +�1 +�2)>]‖2

.‖E[�3�
>
3 ]−H−1GH−1‖2 +

√
E[‖�3‖22](E[‖�0‖22] + E[‖�1‖22] + E[‖�2‖22]) + E[‖�0‖22] + E[‖�1‖22] + E[‖�2‖22]

.
√
η +

√
1

tη
+ tη2. (32)

Here we have used the fact that for two p-dimensional random vectors a and b, the expectation of the matrix ab> satisfies

‖E[ab>]‖2 ≤
√

E[‖a‖22]E[‖b‖22] ≤ 1

2
E[‖a‖22] + E[‖b‖22]. (33)

Indeed, for any fixed unit vector u we have ‖E[ab>]u‖2 = ‖E[a(b>u)]‖2 ≤ E[‖a‖2|b>u|] ≤ E[‖a‖2‖b‖2] ≤
√
E[‖a‖22]E[‖b‖22].

Here we used the fact ‖E[x]‖2 ≤ E[‖x‖2] because ‖x‖2 is convex.
�

A.2 Proof of Corollary 1

Proof of Corollary 1. Here we use the same notations as the proof of Theorem 1.
Because linear regression satisfies ∇f(θ) −H(θ − θ̂) = 0, we do not have to consider the Taylor remainder term in our

analysis. And we do not need 4-th order bound for SGD.
Because the quadratic function is strongly convex, we have ∆>∇f(∆ + θ̂) ≥ λL‖∆‖22.
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By sampling with replacement, we have

E[‖gs(θt)‖22 | θt]
=‖∇f(θt)‖22 + E[‖et‖22 | θt]

=‖∇f(θt)‖22 +
1

S
(

1

n

∑
‖∇fi(θt)‖22 − ‖∇f(θt)‖22)

≤L2(1− 1

S
)‖∆t‖22 +

1

S

1

n

∑
‖xi(x>i θt − yi)‖22

=L2(1− 1

S
)‖∆t‖22 +

1

S

1

n

∑
‖xix>i ∆t + xix

>
i θ̂ − yixi‖22

≤L2(1− 1

S
)‖∆t‖22 + 2

1

S

1

n

∑
(‖xix>i ∆t‖22 + ‖xix>i θ̂ − yixi‖22)

≤(L2(1− 1

S
) + 2

1

S

1

n

∑
‖xi‖42)‖∆t‖22 + 2

1

S

1

n

∑
‖xix>i θ̂ − yixi‖22. (34)

We also have

‖E[gs(θ)gs(θ)
> | θ]−G‖2

=‖ 1

S

1

n

∑
∇fi(θ)fi(θ)> −∇f(θ)∇f(θ)> −G‖2

≤‖∇f(θ)‖22 +
1

S
‖ 1

n

∑
∇fi(θ)fi(θ)> −G‖2

≤‖∇f(θ)‖22 +
1

S
‖ 1

n

∑
(gi +Hi∆)(gi +Hi∆)> −G‖2

≤‖∇f(θ)‖22 +
1

S
‖ 1

n

∑
Hi∆g

>
i + gi∆

>Hi +Hi∆∆>Hi‖2

≤‖∇f(θ)‖22 +
1

S
(

2

n
‖Hi‖2‖gi‖2)‖∆‖2 +

1

S
(

1

n

∑
‖Hi‖22)‖∆‖22

≤ 1

S
(

2

n
‖Hi‖2‖gi‖2)‖∆‖2 + (L2 +

1

S

1

n

∑
‖Hi‖22)‖∆‖22, (35)

where gi = xi(x
>
i θ̂ − yi) and Hi = xix

>
i .

Following Theorem 1’s proof, we have

‖tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1‖2 .
√
η +

1√
tη
. (36)

A.3 Proof of Corollary 2

Proof of Corollary 2. Here we use the same notations as the proof of Theorem 1.
Because∇2f(θ) = ∇k(θ)∇k(θ)> + (k(θ) + c)∇2k(θ), f(θ) is convex.
The following lemma shows that∇f(θ) = (k(θ) + c)∇k(θ) is Lipschitz.

Lemma 3.

‖∇f(θ)‖2 ≤ L‖∆‖2 (37)

for some data dependent constant L.
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Proof. First, because

∇k(θ) =
1

n

∑
− −yixi

1 + exp(yiθ>xi)
, (38)

we have

‖∇k(θ)‖2 ≤
1

n

∑
‖xi‖2. (39)

Also, we have

‖∇2k(θ)‖2 =‖ 1

n

∑ exp(yiθ
>xi)

(1 + exp(yiθ>xi))2
xix
>
i ‖2

≤ 1

4

1

n

∑
‖xi‖22, (40)

which implies

‖∇k(θ)‖2 ≤
1

4

1

n

∑
‖xi‖22‖∆‖2. (41)

And, we have

k(θ) =
1

n

∑
log(1 + exp(−yi∆>xi − yiθ̂>xi))

≤ 1

n

∑
log(1 + exp(‖xi‖2‖∆‖2 − yiθ̂>xi))

(i)

≤ 1

n

∑
(log(1 + exp(−yiθ̂>xi)) + ‖xi‖2‖∆‖2) (42)

where step (i) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|. Thus, we have

‖∇f(θ)‖2
=‖(k(θ) + c)∇k(θ)‖2
≤k(θ)‖∇k(θ)‖2 + c‖∇k(θ)‖2
≤(c+

1

n

∑
log(1 + exp(−yiθ̂>xi)))‖∇k(θ)‖2 + (

1

n

∑
‖xi‖2)2‖∆‖2, (43)

and we can conclude that ‖∇f(θ)‖2 ≤ L‖∆‖2 for some data dependent constant L.

Next, we show that f(θ) has a bounded Taylor remainder.

Lemma 4.

‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22, (44)

for some data dependent constant E.
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Proof. Because∇f(θ) = (k(θ) + c)∇k(θ), we know that ‖∇f(θ)‖2 = O(‖∆‖2) when ‖∆‖2 = Ω(1) where the constants are data
dependent.

Because f(θ) is infinitely differentiable, by the Taylor expansion we know that ‖∇f(θ)−H(θ − θ̂)‖2 = O(‖θ − θ̂‖22) when
‖∆‖2 = O(1) where the constants are data dependent.

Combining the above, we can conclude ‖∇f(θ)−H(θ − θ̂)‖2 ≤ E‖θ − θ̂‖22 for some data dependent constant E.

In the following lemma, we will show that∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some data dependent constant α.

Lemma 5.

∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22, (45)

for some data dependent constant α.

Proof.

∇f(θ)>∆ = (k(θ) + c)∇k(θ)>∆. (46)

First, notice that locally (when ‖∆‖2 = O(λL

E )) we have

∇k(θ)>∆ & ∆>H∆ & λL‖∆‖22, (47)

because of the optimality condition. This lower bounds ∇f(θ)>(θ − θ̂) when ‖∆‖2 = O(λL

E ). Next we will lower bound it
when ‖∆‖2 = Ω(λL

E ).
Consider the function for t ∈ [0,∞), we have

g(t) = ∇f(θ̂ + ut)>ut

= (k(θ̂ + ut) + c)∇k(θ̂ + ut)>ut

= k(θ̂ + ut)∇k(θ̂ + ut)>ut+ c∇k(θ̂ + ut)>ut, (48)

where u = ∆
‖∆‖2 .

Because k(θ) is convex,∇k(θ̂ + ut)>u is an increasing function in t, thus we have∇k(θ̂ + ut)>u = Ω(
λ2
L

E ) when t = Ω(λL

E ).

And we can deduce ∇k(θ̂ + ut)>ut = Ω(
λ2
L

E t) when t = Ω(λL

E ).

Similarly, because k(θ) is convex, k(θ̂ + ut) is an increasing function in t. Its derivative ∇k(θ̂ + ut)>u = Ω(
λ2
L

E ) when

t = Ω(λL

E ). So we have k(θ̂ + ut) = Ω(
λ2
L

E t) when t = Ω(λL

E ).
Thus, we have

k(θ̂ + ut)∇k(θ̂ + ut)>ut = Ω(
λ4
L

E2
t2), (49)

when t = Ω( EλL
).

And we can conclude that∇f(θ)>(θ − θ̂) ≥ α‖θ − θ̂‖22 for some data dependent constant α = Ω(min{λL, λ
4
L

E2 }).
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Next, we will prove properties about gs = ΨsΥs.

E[‖Υ‖22 | θ] =
1

SΥ
(

1

n

∑
‖∇ki(θ)‖22 − ‖∇k(θ)‖22) + ‖∇k(θ)‖22

.
1

n
‖xi‖22 (50)

E[Ψ2
s]

(i)

≤ 1

n

∑
(c+ ki(θ))

2

=
1

n

∑
(c+ log(1 + exp(−yiθ̂>xi − yi∆xi)))2

(ii)

.
1

n

∑
‖xi‖2‖∆‖22 +

1

n

∑
(c+ log(1 + exp(−yiθ̂>xi)))2, (51)

where (i) follows from E[(
∑S

j=1 Xj

S )2] ≤ E[
∑S

j=1 X
2
j

S ] and (ii) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|.
Thus we have

E[‖gs‖22(θ) | θ]
=E[Ψ2 | θ]E[‖Υ‖22 | θ]
.A‖∆‖22 +B (52)

for some data dependent constants A and B.

E[‖Υ‖42 | θ]

=E[‖ 1

SΥ

∑
i∈IΥ

t

∇ log(1 + exp(−yiθ>xi))‖42]

≤E[(
1

SΥ

∑
i∈IΥ

t

‖∇ log(1 + exp(−yiθ>xi))‖2)4]

≤E[(
1

SΥ

∑
i∈IΥ

t

‖xi‖2)4]

≤ 1

n

∑
‖xi‖42. (53)

E[Ψ4
s]

(i)

≤ 1

n

∑
(c+ ki(θ))

4

=
1

n

∑
(c+ log(1 + exp(−yiθ̂>xi − yi∆xi)))4

(ii)

.
1

n

∑
‖xi‖4‖∆‖42 +

1

n

∑
(c+ log(1 + exp(−yiθ̂>xi)))4, (54)
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where (i) follows from E[(
∑S

j=1 Xj

S )4] ≤ E[
∑S

j=1 X
4
j

S ] and (ii) follows from log(1 + exp(a+ b)) ≤ log(1 + eb) + |a|.
Thus we have

E[‖gs‖42(θ) | θ]
=E[Ψ4 | θ]E[‖Υ‖42 | θ]
.C‖∆‖42 +D, (55)

for some data dependent constants C and D.

‖E[∇gs(θ)∇gs(θ)>]−G‖2
≤‖KG(θ)

1

n

∑
∇ki(θ)∇ki(θ)> −KG(θ̂)

1

n

∑
∇ki(θ̂)∇ki(θ̂)>‖2

≤‖KG(θ)
1

n

∑
∇ki(θ)∇ki(θ)> −KG(θ)

1

n

∑
∇ki(θ̂)∇ki(θ̂)> +KG(θ)

1

n

∑
∇ki(θ̂)∇ki(θ̂)> −KG(θ̂)

1

n

∑
∇ki(θ̂)∇ki(θ̂)>‖2

≤KG(θ)
1

n
‖
∑

(∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>)‖2 + |KG(θ)−KG(θ̂)|‖ 1

n

∑
∇ki(θ̂)∇ki(θ̂)>‖2. (56)

Because

KG(θ) = O(1 + ‖∆‖2 + ‖∆‖22), (57)
1

n
‖
∑

(∇ki(θ)∇ki(θ)> −∇ki(θ̂)∇ki(θ̂)>)‖2 = O(‖∆‖2 + ‖∆‖22), (58)

|KG(θ)−KG(θ̂)| = O(‖∆‖2 + ‖∆‖22), (59)

where we have data dependent constants.
Then, we have

‖E[gs(θ)gs(θ)
> | θ]−G‖2 ≤ A1‖θ − θ̂‖2 +A2‖θ − θ̂‖22 +A3‖θ − θ̂‖32 +A4‖θ − θ̂‖42, (60)

for some data dependent constants A1, A2, A3, and A4.
Combining above results and using Theorem 1, we have

‖tE[(θ̄t − θ̂)(θ̄t − θ̂)>]−H−1GH−1‖2

.
√
η +

√
1

tη
+ tη2. (61)

B Experiments

Here we present additional experiments on our SGD inference procedure.

B.1 Synthetic data

B.1.1 Univariate models

Figure 7 shows Q-Q plots for samples shown in Figure 2.
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(a) Normal.
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(b) Exponential.
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(c) Poisson.

Figure 7: Estimation in univariate models: Q-Q plots for samples shown in Figure 2

B.1.2 Multivariate models

Here we show Q-Q plots per coordinate for samples from our SGD inference procedure.
Q-Q plots per coordinate for samples in linear regression experiment 1 is shown in Figure 8. Q-Q plots per coordinate for

samples in linear regression experiment 2 is shown in Figure 9.
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Figure 8: Linear regression experiment 1: Q-Q plots per coordinate

Q-Q plots per coordinate for samples in logistic regression experiment 1 is shown in Figure 10. Q-Q plots per coordinate
for samples in logistic regression experiment 2 is shown in Figure 11.

Additional experiments
2-Dimensional Linear Regression. Consider:

y = x1 + x2 + ε, where
[
x1

x2

]
∼ N

(
0,

[
1 0.8

0.8 1

])
and ε ∼ N (0, σ2 = 102).

Each sample consists of Y = y and X = [x1, x2]>. We use linear regression to estimate w1, w2 in y = w1x1 + w2x2. In this
case, the minimizer of the population least square risk is w?1 = 1, w?2 = 1.
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Figure 9: Linear regression experiment 2: Q-Q plots per coordinate
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Figure 10: Logistic regression experiment 1: Q-Q plots per coordinate

For 300 i.i.d. samples, we plotted 100 samples from SGD inference in Figure 12. We compare our SGD inference procedure
against bootstrap in Figure 12a. Figure 12b and Figure 12c show samples from our SGD inference procedure with different
parameters.

10-Dimensional Linear Regression.
Here we consider the following model

y = x>w? + ε,

where w? = 1√
10

[1, 1, · · · , 1]> ∈ R10, x ∼ N (0,Σ) with Σij = 0.8|i−j|, and ε ∼ N (0, σ2 = 202), and use n = 1000 samples.
We estimate the parameter using

ŵ = argmin
w

1

n

n∑
i=1

1
2 (x>i w − yi)2.

Figure 13 shows the diagonal terms of of the covariance matrix computed using the sandwich estimator and our SGD
inference procedure with different parameters. 100000 samples from our SGD inference procedure are used to reduce the
effect of randomness.
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Figure 11: Logistic regression experiment 2: Q-Q plots per coordinate

2-Dimensional Logistic Regression.
Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N

(
µ = 1.1 + 0.1Y, σ2 = 1

)
. (62)

We use logistic regression to estimate w, b in the classifier sign(wx+ b) where the minimizer of the population logistic risk is
w? = 0.2, b? = −0.22.

For 100 i.i.d. samples, we plot 1000 samples from SGD in Figure 14. In our simulations, we notice that our modified
SGD for logistic regression behaves similar to vanilla logistic regression. T his suggests that an assumption weaker than
(θ − θ̂)>∇f(θ) ≥ α‖θ − θ̂‖22 (assumption (F1) in Theorem 1) is sufficient for SGD analysis. Figure 14b and Figure 14d suggest
that the tη2 term in Corollary 2 is an artifact of our analysis, and can be improved.

11-Dimensional Logistic Regression.
Here we consider the following model

P[Y = +1] = P[Y = −1] =
1

2
, X | Y ∼ N (0.01Y µ,Σ) ,
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(a) SGD inference vs. bootstrap
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Figure 12: 2-dimensional linear regression
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Figure 13: 11-dimensional linear regression: covariance matrix diagonal terms of SGD inference and sandwich estimator
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(c) Vanilla SGD with t = 1000 and η = 0.1
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Figure 14: 2-dimensional logistic regression

where Σii = 1 and when i 6= j Σij = ρ|i−j| for some ρ ∈ [0, 1), and µ = 1√
10

[1, 1, · · · , 1]> ∈ R10. We estimate a classifier
sign(w>x+ b) using

ŵ, b̂ = argmin
w,b

1

n

n∑
i=1

log
(
1 + exp(−Yi(w>Xi + b))

)
. (63)

Figure 15 shows results for ρ = 0 with n = 80 samples. We use t = 100, d = 70, η = 0.8, and mini batch of size 4 in vanilla
SGD. Bootstrap and our SGD inference procedure each generated 2000 samples. In bootstrap, we used Newton method to
perform optimization over each replicate, and 6-7 iterations were used. In figure 16, we follow the same procedure for ρ = 0.6
with n = 80 samples. Here, we use t = 200, d = 70, η = 0.85; the rest of the setting is the same.
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Figure 15: 11-dimensional logistic regression: ρ = 0
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Figure 16: 11-dimensional logistic regression: ρ = 0.6
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