
Provable Deterministic Leverage Score Sampling

Dimitris Papailiopoulos

Electrical and Computer

Engineering

UT Texas

dimitris@utexas.edu

Anastasios Kyrillidis

School of Computer and

Communication Sciences

EPFL

anastasios.kyrillidis@epfl.ch

Christos Boutsidis

Yahoo! Labs

New York, NY

boutsidis@yahoo-

inc.com

ABSTRACT
We explain theoretically a curious empirical phenomenon:
“Approximating a matrix by deterministically selecting a
subset of its columns with the corresponding largest leverage
scores results in a good low-rank matrix surrogate”. In this
work, we provide a novel theoretical analysis of deterministic
leverage score sampling. We show that such sampling can be
provably as accurate as its randomized counterparts, if the
leverage scores follow a moderately steep power-law decay.
We support this power-law assumption by providing empiri-
cal evidence that such decay laws are abundant in real-world
data sets. We then demonstrate empirically the performance
of deterministic leverage score sampling, which many times
matches or outperforms the state-of-the-art techniques.

Categories and Subject Descriptors
G.1.3 [Mathematics of Computing]: Numerical Analysis-
Numerical Linear Algebra; E.m [Data]: Miscellaneous

Keywords
Subset selection; low-rank matrix approximation; leverage
scores; deterministic sampling; power law distributions

1. INTRODUCTION
Recently, there has been a lot of interest on selecting

the “best” or “more representative” columns from a data
matrix [13, 26]. Qualitatively, these columns reveal the
most important information hidden in the underlying ma-
trix structure. This is similar to what principal compo-
nents carry, as extracted via Principal Components Analysis
(PCA) [23]. In sharp contrast to PCA, using actual columns
of the data matrix to form a low-rank surrogate o↵ers inter-
pretability, making it more attractive to practitioners and
data analysts [33, 5, 34, 26].

To make the discussion precise and to rigorously charac-
terize the “best” columns of a matrix, let us introduce the
following Column Subset Selection Problem (CSSP).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

KDD’14, August 24–27, 2014, New York, NY, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2956-9/14/08 ...$15.00.

http://dx.doi.org/10.1145/2623330.2623698.

Column Subset Selection Problem. Let A 2 Rm⇥n

and let c < n be a sampling parameter. Find c columns of
A – denoted as C 2 Rm⇥c – that minimize

kA�CC†AkF or kA�CC†Ak2,

where C† denotes the Moore-Penrose pseudo-inverse.

State of the art algorithms for the CSSP utilize both de-
terministic and randomized techniques; we discuss related
work in Section 5. Here, we describe two algorithms from
prior literature that su�ce to highlight our contributions.

A central part of our discussion will involve the leverage
scores of a matrix A, which we define below.

Definition 1. [Leverage scores] Let V
k

2 Rn⇥k contain
the top k right singular vectors of a m ⇥ n matrix A with
rank ⇢ = rank(A) � k. Then, the (rank-k) leverage score of
the i-th column of A is defined as

`
(k)
i

= k[V
k

]
i,:k22, i = 1, 2, . . . , n.

Here, [V
k

]
i,: denotes the i-th row of V

k

.

One of the first algorithms for column subset selection
dates back to 1972: in [21], Joli↵e proposes a determin-
istic sampling of the columns of A that correspond to the
largest leverage scores `(k)

i

, for some k < rank(A). Although
this simple approach has been extremely successful in prac-
tice [21, 22, 29, 8], to the best of our knowledge, there has
been no theoretical explanation why the approximation er-
rors kA�CC†AkF and kA�CC†Ak2 should be small.

One way to circumvent the lack of a theoretical analysis
for the above deterministic algorithm is by utilizing ran-
domization. Drineas et al. [13] proposed the following ap-
proach: for a target rank k < rank(A), define a probabil-
ity distribution over the columns of A, i.e., the ith column
is associated with a probability p

i

= `
(k)
i

/k; observe thatP
i

p
i

= 1, since
P

i

`
(k)
i

= kV
k

k2F = k. Then, in c in-
dependent and identically distributed passes, sample with
replacement c columns from A, with probabilities given by
p
i

. Drineas et al. [13], using results in [30], show that this
random subset of columns C 2 Rm⇥c approximates A, with
constant probability, within relative error: kA�CC†AkF
(1 + ") kA�A

k

kF, when the number of sampled columns is
c = O(k log k/"2), for some 0 < " < 1. Here, A

k

2 Rm⇥n is
the best rank-k matrix obtained via the SVD.

There are two important remarks that need to be made:
(i) the randomized algorithm in [13] yields a matrix esti-
mate that is “near optimal”, i.e., has error close to that of
the best rank-k approximation; and (ii) the above random

sampling algorithm is a straightforward randomized version
of the deterministic algorithm of Joli↵e [21].

From a practical perspective, the deterministic algorithm
of Joli↵e [21] is extremely simple to implement, and is com-
putationally e�cient. Unfortunately, as of now, it did not
admit provable performance guarantees. An important open
question [13, 29, 8] is: Can one simply keep the columns hav-
ing the largest leverage scores, as suggested in [21], and still
have a provably tight approximation?

1.1 Contributions
In this work, we establish a new theoretical analysis for

the deterministic leverage score sampling algorithm of Jo-
li↵e [21]. We show that if the leverage scores `

(k)
i

follow
a su�ciently steep power-law decay, then this determinis-
tic algorithm has provably similar or better performance
to its randomized counterparts (see Theorems 2 and 3 in
Section 2). This means that under the power-law decay
assumption, deterministic leverage score sampling provably
obtains near optimal low-rank approximations and it can be
as accurate as the “best” algorithms in the literature [4, 18].

From an applications point of view, we support the power
law decay assumption of our theoretical analysis by demon-
strating that several real-world data-sets have leverage scores
following such decays. We further run several experiments
on synthetic and real data sets, and compare deterministic
leverage score sampling with the state of the art algorithms
for the CSSP. In most experiments, the deterministic algo-
rithm obtains tight low-rank approximations, and is shown
to perform similar, if not better, than the state of the art.

1.2 Notation
We use A,B, . . . to denote matrices and a,b, . . . to denote

column vectors. I
n

is the n⇥n identity matrix; 0
m⇥n

is the
m ⇥ n matrix of zeros; e

i

belongs to the standard basis
(whose dimensionality will be clear from the context). Let
C = [a

i1 , . . . ,aic] 2 Rm⇥c contain c columns of A. We can
equivalently write C = AS, where the sampling matrix is
S = [e

i1 , . . . , eic] 2 Rn⇥c. We define the Frobenius and the
spectral norm of a matrix as kAk2F =

P
i,j

A2
ij

and kAk2 =
max

x:kxk2=1 kAxk2, respectively.

2. DETERMINISTIC COLUMN SAMPLING
In this section, we describe the details of the deterministic

leverage score sampling algorithm. In Section 3, we state
our approximation guarantees. In the remaining of the text,
given a matrix A of rank ⇢, we assume that the“target rank”
is k < ⇢. This means that we wish to approximate A using a
subset of c � k of its columns, such that the resulting matrix
has an error close to that of the best rank-k approximation.

The deterministic leverage score sampling algorithm can
be summarized in the following three steps:

Step 1: Obtain V
k

, the top-k right singular vectors of A.
This can be carried by simply computing the singular value
decomposition (SVD) of A in O(min{m,n}mn) time.

Step 2: Calculate the leverage scores `
(k)
i

. For simplicity,

we assume that `
(k)
i

are sorted in descending order, hence
the columns of A have the same sorting as well.1

1Otherwise, one needs to sort them in O(n log n) time-cost.

Step 3: Output the c columns of A that correspond to the
largest c leverage scores `

(k)
i

such that their sum
P

c

i=1 `
(k)
i

is more than ✓. This ensures that the selected columns have
accumulated “energy” at least ✓. In this step, we have to
carefully pick ✓, our stopping threshold. This parameter es-
sentially controls the quality of the approximation.

In Section 7, we provide some guidance on how the stop-
ping parameter ✓ should be chosen. Note that, if ✓ is such
that c < k, we force c = k. This is a necessary step that pre-
vents the error in the approximation from “blowing up” (see
Section 7). The exact steps are given in Algorithm 1.

Algorithm 1 LeverageScoresSampler(A, k, ✓)

Input: A 2 Rm⇥n, k, ✓
1: ComputeV

k

2Rn⇥k (top k right sing. vectors of A)
for i = 1, 2, . . . , n

2: `
(k)
i

= k[V
k

]
i,:k22

end for
without loss of generality, let `(k)

i

’s be sorted:

`
(k)
1 � · · · � `

(k)
i

� `
(k)
i+1 � · · · � `(k)

n

.

3: Find index c 2 {1, . . . , n} such that:

c = argmin
c

cX

i=1

`
(k)
i

> ✓

!
.

4: If c < k, set c = k.
Output: S 2 Rn⇥c s.t. AS has the top c columns of A.

Algorithm 1 requires O(min{m,n}mn) arithmetic oper-
ations. In the full version of this paper [28], we discuss
modifications that improve the running time.

3. APPROXIMATION GUARANTEES
Our main technical innovation is a bound on the approx-

imation error of Algorithm 1 in regard to the CSSP; the
proof of the following theorem can be found in Section 6.

Theorem 2. Let ✓ = k�", for some " 2 (0, 1), and let S
be the n ⇥ c output sampling matrix of Algorithm 1. Then,
for C = AS and ⇠ = {2,F}, we have kA � CC†Ak2

⇠

<

(1� ")�1 · kA�A
k

k2
⇠

.

Choosing " 2 (0, 1/2) implies (1� ")�1 1+2" and, hence,
we have a relative-error approximation:

kA�CC†Ak2
⇠

< (1 + 2") · kA�A
k

k2
⇠

.

3.1 Bounding the number of sampled columns
Algorithm 1 extracts at least c � k columns of A. How-

ever, an upper bound on the number of output columns c is
not immediate. We study such upper bounds below.

From Theorem 2, it is clear that the stopping parameter
✓ = k � " directly controls the number of output columns
c. This number, extracted for a specific error requirement ",
depends on the decay of the leverage scores. For example,
if the leverage scores decay fast, then we intuitively expectP

c

i=1 `
(k)
i

= k � " to be achieved for a “small” c.

Let us for example consider a case where the leverage
scores follow an extremely fast decay:

`
(k)
1 = k � 2k · ",

`
(k)
2 = . . . = `

(k)
2k = ",

`
(k)
2k+1 = . . . = `(k)

n

=
"

n� 2k
.

Then, in this case
P2k

i=1 `
(k)
i

= k � ", and Algorithm 1 out-
puts the c = 2k columns of A that correspond to the 2k
largest leverage scores. Due to Theorem 2, this subset of
columns C 2 Rn⇥2k comes with the following guarantee:

kA�CC†Ak2
⇠

<
1

1� "
· kA�A

k

k2
⇠

.

Hence, from the above example, we expect that, when the
leverage scores decay fast, a small number of columns of A
will o↵er a good approximation of the form CC†A.

However, in the worst case Algorithm 1 can output a num-
ber of columns c that can be as large as ⌦(n). To highlight
this subtle point, consider the case where the leverage scores
are uniform `

(k)
i

= k

n

. Then, one can easily observe that if
we want to achieve an error of " according to Theorem 2, we
have to set ✓ = k � ". This directly implies that we need to
sample c > (n/k)✓ columns. Hence, if " = o(1), then,

c � (n/k)✓ = (1� "/k)n = ⌦(n).

Hence, for " ! 0 we have c ! n, which makes the result of
Theorem 2 trivial.

We argued above that when the leverage scores decay is
“fast” then a good approximation is to be expected with a
”small” c. We make this intuition precise below 2. The next
theorem considers the case where the leverage scores follow
a power-law decay; the proof can be found in Section 6.

Theorem 3. Let the leverage scores follow a power-law
decay with exponent ↵

k

= 1 + ⌘, for ⌘ > 0:

`
(k)
i

=
`
(k)
1

i↵k
.

Then, if we set the stopping parameter to ✓ = k � ", for
some " with 0 < " < 1, the number of sampled columns in
C = AS that Algorithm 1 outputs is

c = max

(✓
2k
"

◆ 1
1+⌘

� 1,

✓
2k
⌘ · "

◆ 1
⌘

� 1, k

)
,

and C achieves the following approximation error

kA�CC†Ak2
⇠

<
1

1� "
· kA�A

k

k2
⇠

, for ⇠ = {2,F}.

3.2 Theoretical comparison to state of the art
We compare the number of chosen columns c in Algorithm

1 to the number of columns chosen in the randomized lever-
age scores sampling case [13]. The algorithm of [13] requires

c = O(k log k/"2)

2We chose to analyze in detail the case where the leverage
scores follow a power law decay; other models for the lever-
age scores, example, exponential decay, are also interesting,
and will be the subject of the full version of this work.

columns for a relative-error bound with respect to the Frobe-
nius error in the CSSP:

kA�CC†Ak2F (1 + ")kA�A
k

k2F.

Assuming leverage scores follow a power-law decay, Algo-
rithm 1 requires fewer columns for the same " when:

max

(✓
2k
"

◆ 1
1+⌘

,

✓
2k
⌘ · "

◆ 1
⌘

)
< C · k log k

"2
,

where C is an absolute constant. Hence, under the power law
decay, Algorithm 1 o↵ers provably a matrix approximation
similar or better than [13].

Let us now compare the performance of Algorithm 1 with [4],
which are the current state of the art for the CSSP. Theorem
1.5 in [4] provides a randomized algorithm which selects

c =
2k
"
(1 + o(1))

columns in C such that

kA�CC†Ak2F < (1 + ") · kA�A
k

k2F

holds in expectation. This result is in fact optimal, up to a
constant 2, since there is a lower bound indicating that such
a relative error approximation is not possible unless c = k/"
(see Section 9.2 in [4]). The approximation bound of Algo-
rithm 1 is indeed better than the upper/lower bounds in [4]
for any ⌘ > 1. We should note here that the lower bound
in [4] is for general matrices; however, the upper bound of
Theorem 3 is applied to a specific class of matrices whose
leverage scores follow a power law decay.

Next, we compare the spectral norm bound of Theorem 3
to the spectral norm bound of Theorem 1.1 in [4], which in-
dicates that there exists a deterministic algorithm selecting
c > k columns with error

kA�CC†Ak22 < O (n/c) · kA�A
k

k22.

This upper bound is also tight, up to constants, since [4] pro-
vides a matching lower bound. Notice that a relative error
upper bound requires c = ⌦ (n/(1 + ")) in the general case.
However, under the power law assumption in Theorem 3,
we provide such a relative error bound with asymptotically
fewer columns. To our best knowledge, fixing ⌘ to a con-
stant, this is the first relative-error bound for the spectral
norm version of the CSSP with c = poly(k, 1/") columns.

4. EXPERIMENTS
In this section, we first provide evidence that power law

decays are prevalent in real-world data sets. Then, we in-
vestigate the empirical performance of Algorithm 1 on real
and synthetic data sets.

Our experiments are not meant to be exhaustive; however,
they provide clear evidence that: (i) the leverage scores of
real world matrices indeed follow “sharp” power law decays;
and (ii) deterministic leverage score sampling in such ma-
trices is particularly e↵ective.

4.1 Power-law decays in real data sets
We demonstrate the leverage score decay behavior of many

real-world data sets. These range from social networks and
product co-purchasing matrices to document-term bag-of-
words data sets, citation networks, and medical imaging

Dataset m ⇥ n Description Dataset m ⇥ n Description

Amazon 262111 ⇥ 262111 Purchase netw. [25] Citeseer 723131 ⇥ 723131 Citation netw. [24]

4square 106218 ⇥ 106218 Social netw. [36] Github 56519 ⇥ 120867 Soft. netw. [24]

Gnutella 62586 ⇥ 62586 P2P netw. [25] Google 875713 ⇥ 875713 Web conn. [24]

Gowalla 875713 ⇥ 875713 Social netw. [24] LJournal 4847571 ⇥ 4847571 Social netw. [25]

Slashdot 82168 ⇥ 82168 Social netw. [25] NIPS 12419 ⇥ 1500 Word/Docs [2]

Skitter 1696415 ⇥ 1696415 System netw. [24] CT slices 386 ⇥ 53500 CT images [2]

Cora 23166 ⇥ 23166 Citation netw. [24] Writer 81067 ⇥ 42714 Writers/Works [24]

Youtube 1134890 ⇥ 1134890 Video netw. [25] YT groups 94238 ⇥ 30087 Users/Groups [24]

Table 1: Summary of datasets used in the experiments of Subsection 4.1

1 200 400 600 800 1000
10

−5

10
0

α 1 0 = 1 .45

amazon

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 1 .5

citeseer

1 200 400 600 800 1000
10

−10

10
−5

10
0

α 1 0 = 1 .7

foursquare

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 1 .13

github

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 2

gnutella

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 1 .6

google

1 200 400 600 800 1000
10

−4

10
−2

10
0

α 1 0 = 0 .9

gowalla

1 200 400 600 800 1000
10

−3

10
−2

10
−1

α 1 0 = 0 .2

livejournal

1 200 400 600 800 1000
10

−4

10
−2

10
0

α 1 0 = 0 .9

slashdot

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 1 .6

nips

1 200 400 600 800 1000
10

−4

10
−3

10
−2

α 1 0 = 0 .2

skitter

1 200 400 600 800 1000

10
−3.6

10
−3.3

α 1 0 = 0 .12

slice

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 1 .58

cora

1 200 400 600 800 1000
10

−10

10
0

10
10

α 1 0 = 4

writers

1 200 400 600 800 1000
10

−5

10
0

10
5

α 1 0 = 1 .75

youtube groups

1 200 400 600 800 1000
10

−4

10
−2

10
0

α 1 0 = 0 .5

youtube

Figure 1: We plot the top 1, 000 leverage scores for 16 di↵erent data sets, obtained through V
k

for k = 10. The
plots are in logarithmic scale. For each data-set, we plot a fitting power-law curve � · x�↵k . The exponent is
listed on each figure as ↵10. The leverage scores are plotted with a red ⇥ marker, and the fitted curves are
denoted with a solid blue line. We observe that the power law fit o↵ers a good approximation of the true
leverage scores. We further observe that many data sets exhibit sharp decays (↵

k

> 1), while only a few have
leverage scores that decay slowly (↵

k

< 1).

samples. Their dimensions vary from thousands to millions
of variables. The data-set description is given in Table 1.

In Figure 1, we plot the top 1, 000 leverage scores ex-
tracted from the matrix of the right top-k singular vectors
V

k

. In all cases we set k = 10.3 For each dataset, we plot

3We performed various experiments for larger k, e.g., k = 30
or k = 100 (not shown due to space limitations). We found
that as we move towards higher k, we observe a “smoothing”

a fitting power-law curve of the form � · x�↵k , where ↵
k

is
the exponent of interest.

We can see from the plots that a power law indeed seems
to closely match the behavior of the top leverage scores.
What is more interesting is that for many of our data sets
we observe a decay exponent of ↵

k

> 1: this is the regime
where deterministic sampling is expected to perform well. It

of the speed of decay. This is to be expected, since for the
case of k = rank(A) all leverage scores are equal.

5 500 1000
0

0.5

1

1.5

‖A
−
C
C

† A
‖2 2

‖A
−
A

k
‖2 2

c

c =473

k = 5

10 500 1000
0

0.5

1

1.5

c

c =404

k = 10

50 500 1000
0

0.5

1

1.5

2

c

c =629

k = 50

100 500 1000
0

2

4

6

c

c =630

k = 100

Figure 2: Nearly-uniform leverage scores case: Here, we plot as a blue curve the relative error ratio
kA�CC†Ak22/kA�A

k

k22 achieved by Algorithm 1 as a function of the output columns c. The leftmost vertical
cyan line corresponds to the point where k = c. When c < k the output error can be large; this justifies why
we enforce the algorithm to output c � k columns. The rightmost vertical magenta line indicates the point
where the c sampled columns o↵er as good an approximation as that of the best rank-k matrix A

k

.

seems that these sharp decays are naturally present in many
real-world data sets.

We would like to note that as we move to smaller scores
(i.e., after the 10, 000-th score), we empirically observe that
the leverage scores tail usually decays much faster than a
power law. This only helps the bound of Theorem 2.

4.2 Synthetic Experiments
In this subsection, we are interested in understanding the

performance of Algorithm 1 on matrices with (i) uniform
and (ii) power-law decaying leverage scores.
To generate matrices with a prescribed leverage score de-

cay, we use the implementation of [20]. Let V
k

2 Rn⇥k

denote the matrix we want to construct, for some k < n.
Then, [20] provides algorithms to generate tall-and-skinny
orthonormal matrices with specified row norms (i.e., lever-
age scores). Given the V

k

that is the output of the matrix
generation algorithm in [20], we run a basis completion al-
gorithm to find the perpendicular matrix V?

k

2 Rn⇥(n�k)

such that VT

k

V?
k

= 0
k⇥(n�k). Then, we create an n⇥n ma-

trix V = [V
k

V?
k

] where the first k columns of V are the
columns of V

k

and the rest n� k columns are the columns
of V?

k

; hence, V is a full orthonormal basis. Finally we gen-
erate A 2 Rm⇥n as A = U⌃VT; where U 2 Rm⇥m is any
orthonormal matrix, and ⌃ 2 Rm⇥n any diagonal matrix
with min{m,n} positive entries along the main diagonal.
Therefore, A = U⌃VT is the full SVD of A with leverage
scores equal to the squared `2-norm of the rows of V

k

. In
our experiments, we pick U as an orthonormal basis for an
m ⇥ m matrix where each entry is chosen i.i.d. from the
Gaussian distribution. Also, ⌃ contains min{m,n} positive
entries (sorted) along its main diagonal, where each entry
was chosen i.i.d. from the Gaussian distribution.

4.2.1 Nearly-uniform scores

We set the number of rows to m = 200 and the number
of columns to n = 1000 and construct A = U⌃VT 2 Rm⇥n

as described above. The row norms of V
k

are chosen as
follows: First, all row norms are chosen equal to k/n, for
some fixed k. Then, we introduce a small perturbation to
avoid singularities: for every other pair of rows we add � 2
N (0, 1/100) to a row norm and subtract the same � from

the other row norm – hence the sum of `(k)
i

equals to k.
We set k to take the values {5, 10, 50, 100} and for each

k we choose: c = {1, 2, . . . , 1000}. We present our find-

ings in Figure 2, where we plot the relative error achieved
kA�CC

†
Ak22

kA�Akk22
, where the n ⇥ c matrix C contains the first c

columns ofA that correspond to the k largest leverage scores
of V

k

, as sampled by Algorithm 1. Then, the leftmost verti-
cal cyan line corresponds to the point where k = c, and the
rightmost vertical magenta line indicates the point where the
c sampled columns achieve an error of kA�A

k

k22, where Ak

is the best rank-k approximation.
In the plots of Figure 2, we see that as we move to larger

values of k, if we wish to achieve an error of kA�CC†Ak22 ⇡
kA�A

k

k22, then we need to keep inC, approximately almost
half the columns of A. This agrees with the uniform scores
example that we showed earlier in Subsection 3.1. However,
we observe that Algorithm 1 can obtain a moderately small
relative error, with significantly smaller c. See for example
the case where k = 100; then, c ⇡ 200 sampled columns
su�ce for a relative error approximately equal to 2, i.e.,
kA � CC†Ak22 ⇡ 2 · kA � A

k

k22. This indicates that our
analysis could be loose in the general case.

4.2.2 Power-law decay

In this case, our synthetic eigenvector matrices V
k

have
leverage scores that follow a power law decay. We choose
two power-law exponents: ↵

k

= 0.5 and ↵
k

= 1.5. Observe
that the latter complies with Theorem 3, that predicts the
near optimality of leverage score sampling under such decay.

In the first row of Figure 3, we plot the relative error
vs. the number of output columns c of Algorithm 1 for
↵
k

= 0.5. Then, in the second row of Figure 3, we plot
the relative error vs. the number of output columns c of
Algorithm 1 for ↵

k

= 1.5. The blue line represents the
relative error in terms of spectral norm. We can see that
the performance of Algorithm 1 in the case of the fast decay
is surprising: c ⇡ 1.5·k su�ces for an approximation as good
as of that of the best rank-k approximation. This confirms
the approximation performance in Theorem 3.

4.3 Comparison with other techniques
We will now compare the proposed algorithm to state of

the art approaches for the CSSP, both for ⇠ = 2 and ⇠ =
F. We report results for the errors kA � CC†Ak2

⇠

/kA �
A

k

k2
⇠

. A comparison of the running time complexity of those
algorithms is out of the scope of our experiments.

Table 2 contains a brief description of the datasets used in
our experiments. We employ the datasets used in [15], which

5 500
0

0.5

1

1.5

‖A
−
C
C

† A
‖2 2

‖A
−
A

k
‖2 2

c

c =10

k = 5

10 500
0

0.5

1

1.5

c

c =38

k = 10

50 500
0

1

2

c

c =97

k = 50

100 500
0

2

4

6

c

c =152

k = 100

5 500
0

0.5

1

1.5

‖A
−
C
C

† A
‖2 2

‖A
−
A

k
‖2 2

c

c =7

10 500
0

0.5

1

1.5

c

c =11

50 500
0

1

2

c

c =88

100 500
0

2

4

6

c

c =129

�
k

=
0.

5
�

k
=

1.
5

Figure 3: Power-law decaying leverage scores case: We choose two power-law exponents: ↵
k

= 0.5 and ↵
k

= 1.5.
In the first row we plot the relative error of Algorithm 1 vs. c for the first decay profile, and the second
row is the error performance of Algorithm 1 for the second, sharpest decay profile. The vertical cyan line
corresponds to the point where k = c, and the vertical magenta line indicates the point where the c sampled
columns o↵er a better approximation compared to the best rank-k matrix A

k

.

Dataset m n rank(A) Description

Protein 357 6621 356 Saccharomyces cerevisiae dataset

SNPS 46 5523 46 Single Nucleotide - polymorphism dataset

Enron 3000 3000 2569 A subgraph of the Enron email graph

Table 2: Summary of datasets used in the experiments of Subsection 4.3 [15]

presents exhaustive experiments for matrix approximations
obtained through randomized leverage scores sampling.

4.3.1 List of comparison algorithms

We compare Algorithm 1 against three methods for the
CSSP. First, the authors in [4] present a near-optimal de-
terministic algorithm, as described in Theorem 1.2 in [4].
Given A, k < rank(A) and c > k, the proposed algorithm
selects c̃ c columns of A in C 2 Rm⇥c̃ with

kA�CC†AkF
✓
1 +

⇣
1�

p
k/c
⌘�1

◆
kA�A

k

kF.

Second, in [16], the authors present a deterministic piv-
oted QR algorithm such that:

kA�CC†Ak2
⇣
1 +

p
n� k · 2k

⌘
kA�A

k

k2.

This bound was proved in [17]. In our tests, we use the
qr(·) built-in Matlab function, where one can select c = k
columns of A as:

[Q, R,⇡] = qr(A, 0); C = A:,⇡1:c ,

where A = QR, Q 2 Rm⇥n contains orthonormal columns,
R 2 Rn⇥n is upper triangular, and ⇡ is a permutation in-
formation vector such that A:,⇡ = QR.

Third, we also consider the randomized leverage-scores
sampling method with replacement, presented in [13]. Ac-
cording to this work and given A, k < rank(A), and c =
⌦(k log k), the bound provided by the algorithm is

kA�CC†AkF
⇣
1 +O

⇣p
k log k/c

⌘⌘
kA�A

k

kF,

which holds only with constant probability. In our exper-
iments, we use the software tool developed in [20] for the
randomized sampling step.

We use our own Matlab implementation for each of these
approaches. For [13], we execute 10 repetitions and report
the one that minimizes the approximation error.

4.3.2 Performance Results

Table 3 contains a subset of our results; a complete set
is reserved for an extended version of this work. We ob-
serve that the performance of Algorithm 1 is particularly ap-
pealing: It is almost as good as randomized leverage scores
sampling in almost all cases - when randomized sampling is
better, the di↵erence is on the first or second decimal digit.

Figure 4 shows the leverage scores for the three matri-
ces used in our experiments. Although the decay for the
first data sets does not fit a “sharp” power law as it is re-
quired in Theorem 3, the performance of the algorithm is
still competitive in practice. Interestingly, we do observe
good performance for the third data set (Enron). For this
case, the power law decay fits the decay profile needed to
establish the near optimality of Algorithm 1.

5. RELATED WORK
One of the first deterministic results regarding the CSSP

goes back to the seminal work of Gene Golub on pivoted
QR factorizations [16]. Similar algorithms have been devel-
oped in [16, 19, 10, 11, 17, 35, 32, 3, 27]; see also [6] for a
recent survey. The best of these algorithms is the so-called
Strong Rank-revealing QR (Strong RRQR) algorithm in [17]:

Model

kA�CC†Ak2
kA�Akk2

kA�CC†AkF
kA�AkkF

k c [13] [16] This work [4] [13] [16] This work

Protein

50

51 1.7334 2.2621 2.6809 1.1068 1.0888 1.1017 1.1000

118 1.3228 1.4274 2.2536 0.9344 0.9233 0.9258 0.9259

186 1.0846 1.0755 1.7357 0.7939 0.7377 0.7423 0.7346

253 0.9274 0.9281 1.3858 0.6938 0.5461 0.5326 0.5264

320 0.7899 0.7528 0.8176 0.5943 0.2831 0.2303 0.2231

100

101 1.8568 1.8220 2.5666 1.1789 1.1506 1.1558 1.1606

156 1.3741 1.3987 2.4227 0.9928 0.9783 0.9835 0.9820

211 1.3041 1.1926 2.3122 0.8182 0.8100 0.7958 0.7886

265 1.0270 1.0459 2.0509 0.6241 0.6004 0.5820 0.5768

320 0.9174 0.8704 1.8562 0.3752 0.3648 0.2742 0.2874

SNPS

5

6 1.4765 1.5030 1.5613 1.1831 1.0915 1.1030 1.1056

12 1.2601 1.2402 1.2799 1.0524 0.9649 0.9519 0.9469

18 1.0537 1.0236 1.1252 1.0183 0.8283 0.8187 0.8281

24 0.8679 0.9063 0.9302 0.9537 0.6943 0.6898 0.6975

30 0.7441 0.7549 0.8742 0.9558 0.5827 0.5413 0.5789

10

11 1.6459 1.5206 1.6329 1.2324 1.1708 1.1500 1.1413

16 1.3020 1.4265 1.5939 1.1272 1.0386 1.0199 1.0420

21 1.2789 1.1511 1.1676 1.0225 0.9170 0.8842 0.9011

25 1.1022 1.0729 1.0935 0.9838 0.8091 0.7876 0.8057

30 0.9968 0.9256 1.0020 0.8088 0.6636 0.6375 0.6707

Enron

10

11 2.2337 1.8320 1.7217 1.1096 1.0992 1.0768 1.0704

83 1.0717 1.0821 1.1464 1.0123 0.9381 0.9094 0.9196

156 0.8419 0.8172 0.8412 1.0044 0.8692 0.8091 0.8247

228 0.6739 0.6882 0.6993 0.9984 0.8096 0.7311 0.7519

300 0.6061 0.6041 0.6057 1.0000 0.7628 0.6640 0.6837

20

21 2.1726 1.9741 2.1669 1.1344 1.1094 1.0889 1.0931

91 1.3502 1.3305 1.3344 1.0194 0.9814 0.9414 0.9421

161 1.0242 1.0504 1.0239 0.9999 0.9004 0.8434 0.8484

230 0.9099 0.9025 0.9006 0.9730 0.8505 0.7655 0.7740

300 0.8211 0.7941 0.7936 0.9671 0.8037 0.6971 0.7087

50

51 2.6520 2.2788 2.2520 1.1547 1.1436 1.1053 1.1076

113 1.7454 1.6850 1.8122 1.0350 1.0425 0.9902 0.9929

176 1.3524 1.4199 1.4673 0.9835 0.9718 0.8999 0.9011

238 1.2588 1.2303 1.2450 0.9607 0.9187 0.8251 0.8282

300 1.2209 1.1014 1.1239 0.9384 0.8806 0.7593 0.7651

100

101 2.2502 2.2145 2.2721 1.1938 1.1805 1.1223 1.1238

151 2.2399 1.8677 1.8979 1.0891 1.1122 1.0357 1.0393

201 1.7945 1.6350 1.6332 1.0236 1.0631 0.9646 0.9664

250 1.6721 1.5001 1.5017 0.9885 1.0026 0.9025 0.9037

300 1.3946 1.3711 1.3847 0.9485 0.9672 0.8444 0.8467

Table 3: We present the performance of Algorithm 1 as compared to the state of the art in CSSP. We run
experiments on 3 data sets described in the above table, for various values of k and c. The performance of
Algorithm 1, especially in terms of the Frobenius norm error, is very close to optimal, while at the same time
similar, if not better, to the performance of the more sophisticated algorithms of the comparison.

Given A, c = k, and constant f � 1, Strong RRQR requires
O(mnk log

f

n) arithmetic operations to find k columns of A

in C 2 Rm⇥k that satisfy

kA�CC†Ak2
⇣
1 + f2

p
k(n� k) + 1

⌘
· kA�A

k

k2.

As discussed in Section 1, [21] suggests column sampling
with the largest corresponding leverage scores. A related
result in [35] suggests column sampling through selection
over VT

k

with Strong RRQR. Notice that the leverage scores

sampling approach is similar, but the column selection is
based on the largest Euclidean norms of the columns of VT

k

.
From a probabilistic point of view, much work has fol-

lowed the seminal work of [14] for the CSSP. [14] introduced
the idea of randomly sampling columns based on specific
probability distributions. [14] use a simple probability dis-
tribution where each column of A is sampled with probabil-
ity proportional to its Euclidean norm. The approximation
bound achieved, which holds only in expectation, is

kA�CC†Ak2F kA�A
k

k2F + (k/c)kAk2F.

1 200 400 600 800 1000
10

−3

10
−2

10
−1

α = 0 .35

Protein

1 200 400 600 800 1000
10

−3

10
−2

10
−1

α = 0 .4

SNPS

1 200 400 600 800 1000
10

−5

10
0

10
5

α = 1 .2

Enron

Figure 4: The plots are for k = 10 and are in loga-
rithmic scale. The exponent is listed on each figure
as ↵. The leverage scores are plotted with a red ⇥
marker, and the fitted curves are denoted with a
solid blue line.

[13] improved upon the accuracy of this result by using a
distribution over the columns of A where each column is
sampled with probability proportional to its leverage score.
From a di↵erent perspective, [12, 18] presented some opti-
mal algorithms using volume sampling. [4] obtained faster
optimal algorithms while [7] proposed optimal algorithms
that run in input sparsity time.

Another line of research includes row-sampling algorithms
for tall-and-skinny orthonormal matrices, which is relevant
to our results: we essentially apply this kind of sampling to
the rows of the matrix V

k

from the SVD of A. See Lemma 5
in the Section 6 for a precise statement of our result. Similar
results exist in [1]. We should also mention the work in [37],
which corresponds to a derandomization of the randomized
sampling algorithm in [13].

6. PROOFS
Before we proceed, we setup some notation and defini-

tions. For any two matrices A and B with appropriate
dimensions, kAk2 kAkF

p
rank(A)kAk2, kABkF

kAkFkBk2, and kABkF kAk2kBkF. kAk
⇠

indicates that
an expression holds for both ⇠ = 2,F. The thin (compact)
Singular Value Decomposition (SVD) of a matrixA 2 Rm⇥n

with rank(A) = ⇢ is:

A =
�
U

k

U
⇢�k

�
| {z }

UA2Rm⇥⇢

✓
⌃

k

0
0 ⌃

⇢�k

◆

| {z }
⌃A2R⇢⇥⇢

✓
VT

k

VT

⇢�k

◆

| {z }
V

T

A2R⇢⇥n

,

with singular values �1 (A) � . . .�
k

(A) � �
k+1 (A) � . . . �

�
⇢

(A) > 0. The matrices U
A

and V
A

contain the left and
right singular vectors, respectively. It is well-known that
A

k

= U
k

⌃
k

VT

k

= U
k

UT

k

A = AV
k

VT

k

2 Rm⇥n minimizes
kA � Xk

⇠

over all matrices X 2 Rm⇥n of rank at most
k rank(A). The best rank-k approximation to A satisfies
kA � A

k

k2 = �
k+1(A) and kA � A

k

k2F =
P

⇢

i=k+1 �
2
i

(A).

A† denotes the Moore-Penrose pseudo-inverse of A. Let
B 2 Rm⇥n (m n) and A = BBT 2 Rm⇥m; then, for all
i = 1, ...,m, �

i

(A) = �2
i

(B) is the i-th eigenvalue of A.

6.1 Proof of Theorem 2
To prove Theorem 2, we will use the following result.

Lemma 4. [Eqn. 3.2, Lemma 3.1 in [4]] Consider A =
AZZT + E 2 Rm⇥n as a low-rank matrix factorization of
A, with Z 2 Rn⇥k, and ZTZ = I

k

. Let S 2 Rn⇥c (c � k) be
any matrix such that

rank(ZTS) = k.

Let C = AS 2 Rm⇥c. Then, for ⇠ = 2,F :

kA�CC†Ak2
⇠

 kEk2
⇠

· kS(ZTS)†k22.
We will also use the following novel lower bound on the
smallest singular value of the matrix V

k

, after deterministic
selection of its rows based on the largest leverage scores.

Lemma 5. Repeat the conditions of Theorem 2. Then,

�2
k

(VT

k

S) > 1� ".

Proof. We use the following perturbation result on the
sum of eigenvalues of symmetric matrices.

Lemma 6. [Theorem 2.8.1; part (i) in [9]] Let X and Y
be symmetric matrices of order k and, let 1 i, j n with
i+ j k + 1. Then,

�
i

(X) � �
i+j�1(X+Y)� �

j

(Y).

Let S 2 Rn⇥c sample c columns from A with c � k.
Similarly, let Ŝ 2 Rn⇥(n�c) sample the rest n � c columns
from A. Hence,

I
k

= VT

k

V
k

= VT

k

SSTV
k

+VT

k

ŜŜ
T

V
k

.

Let

X = VT

k

SSTV
k

,Y = VT

k

ŜŜ
T

V
k

, i = k, and j = 1,

in Lemma 6. Notice that i+ j k+1, and �
k

(X+Y) = 1;
hence:

�
k

(VT

k

SSTV
k

) � 1� �1(V
T

k

ŜŜ
T

V
k

)

= 1� kVT

k

Ŝk22
� 1� kVT

k

Ŝk2F
> 1� (k � ✓)

Replacing ✓ = k � " and �
k

(VT

k

SSTV
k

) = �2
k

(VT

k

S) con-
cludes the proof.

The proof of Theorem 2 is a straightforward combina-
tion of the Lemmas 4 and 5. First, by picking Z = V

k

in
Lemma 4 we obtain:

kA�CC†Ak2
⇠

 kA�A
k

k2
⇠

· kS(VT

k

S)†k22
 kA�A

k

k2
⇠

· kSk22 · k(VT

k

S)†k22
= kA�A

k

k2
⇠

· k(VT

k

S)†k22
= kA�A

k

k2
⇠

/�2
k

(VT

k

S)

In the above, we used the facts that

E = A�AV
k

VT

k

= A�A
k

,

and the spectral norm of the sampling matrix S equals one.
Also, we used that rank(VT

k

S) = k, which is implied from
Lemma 5. Next, via the bound in Lemma 5:

kA�CC†Ak2
⇠

< kA�A
k

k2
⇠

/(1� ").

6.2 Proof of Theorem 3
Let ↵

k

= 1 + ⌘ for some ⌘ > 0. We assume that the
leverage scores follow a power law decay such that: `

(k)
i

=

`
(k)
1 /i1+⌘. According to the proposed algorithm, we select c

columns such that
P

c

i=1 `
(k)
i

> ✓. Here, we bound the num-
ber of columns c required to achieve an " := k � ✓ approxi-
mation in Theorem 2. To this end, we use the extreme caseP

c

i=1 `
(k)
i

= ✓ which guarantees an (1 + ")-approximation.
For our analysis, we use the following well-known result.

Proposition 7. [Integral test for convergence] Let f(·) �
0 be a function defined over the set of positive reals. Fur-
thermore, assume that f(·) is monotone decreasing. Then,

Z
J+1

j

f(i)dx
JX

i=j

f(i) f(j) +

Z
J

j

f(x)dx,

over the interval [j, . . . , J] for j, J positive integers.

In our case, consider f(i) = 1
i

1+⌘ . By definition of the
leverage scores, we have:

k =
nX

i=1

`
(k)
i

= `
(k)
1

nX

i=1

1
i1+⌘

=) `
(k)
1 =

kP
n

i=1
1

i

1+⌘

.

By construction, we collect c leverage scores such that k �
✓ = ". This leads to:

k � " = `
(k)
1 ·

cX

i=1

1
i1+⌘

=
kP

n

i=1
1

i

1+⌘

·
cX

i=1

1
i1+⌘

= k

 P
n

i=1
1

i

1+⌘ �
P

n

i=c+1
1

i

1+⌘P
n

i=1
1

i

1+⌘

!

= k

1�

P
n

i=c+1
1

i

1+⌘P
n

i=1
1

i

1+⌘

!
=)

" = k ·
P

n

i=c+1
1

i

1+⌘P
n

i=1
1

i

1+⌘

.

To bound the quantity on the right hand side, we observe

P
n

i=c+1
1

i

1+⌘P
n

i=1
1

i

1+⌘

1

(c+1)1+⌘ +
R

n

i=c+1
1

x

1+⌘ dx
P

n

i=1
1

i

1+⌘

=

1
(c+1)1+⌘ +

⇥
� 1

x

1+⌘

⇤
n

i=c+1P
n

i=1
1

i

1+⌘

=

1
(c+1)1+⌘ + 1

⌘

⇣
1

(c+1)⌘ � 1
n

⌘

⌘

P
n

i=1
1

i

1+⌘

1

(c+1)1+⌘ + 1
⌘(c+1)⌘P

n

i=1
1

i

1+⌘

=

1
(c+1)1+⌘ + 1

⌘(c+1)⌘

1 +
P

n

i=2
1

i

1+⌘

<
1

(c+ 1) · (c+ 1)⌘
+

1
⌘(c+ 1)⌘

 max

⇢
2

(c+ 1)1+⌘

,
2

⌘ · (c+ 1)⌘

�

where the first inequality is due to the right hand side of
the integral test and the third inequality is due to 1 +P

n

i=2
1

i

1+⌘ > 1. Hence, we may conclude:

" < k ·max

⇢
2

(c+ 1)1+⌘

,
2

⌘ · (c+ 1)⌘

�
.

The above lead to the following two cases: if

" <
2k

(c+ 1)1+⌘

,

we have:

c <

✓
2 · k
"

◆ 1
1+⌘

� 1,

whereas in the case where

" <
2 · k

⌘ · (c+ 1)⌘
,

we get

c <

✓
2 · k
⌘ · "

◆ 1
⌘

� 1.

7. THE KEY ROLE OF ✓

In the proof of Theorem 2, we require that

�2
k

(VT

k

S) > 1� (k � ✓) := 1� ".

For this condition to hold, the sampling matrix S should
preserve the rank of VT

k

in VT

k

S, i.e., choose ✓ such that
rank(VT

k

S) = k.
Failing to preserve the rank of VT

k

has immediate impli-
cations for the CSSP. To highlight this, let A 2 Rm⇥n of
rank k < min{m,n} with SVD A = U

k

⌃
k

VT

k

. Further, as-
sume that the kth singular value of A is arbitrary large, i.e.,
�
k

(A) ! 1. Also, let rank(VTS) = � < k and C = AS.
Then,

kA�CC†Ak
⇠

= kU
k

⌃
k

VT

k

�U
k

⌃
k

VT

k

S(U
k

⌃
k

VT

k

S)†U
k

⌃
k

VT

k

k
⇠

= k⌃
k

�⌃
k

VT

k

S(U
k

⌃
k

VT

k

S)†U
k

⌃
k

k
⇠

= k⌃
k

�⌃
k

VT

k

S(⌃
k

VT

k

S)†(U
k

)†U
k

⌃
k

k
⇠

= k⌃
k

�⌃
k

VT

k

S(⌃
k

VT

k

S)†⌃
k

k
⇠

= k⌃
k

�U
X

UT

X

⌃
k

k
⇠

� �
k

(A)

The second equality is due to the fact that both spectral
and Frobenius norms are invariant to unitary transforma-
tions. In the third equality, we used the fact that (WZ)† =
Z†W† if WTW is the identity matrix. Then, set X =
⌃

k

VT

k

S 2 Rk⇥c where rank(X) = �. Using this notation,
let U

X

2 Rm⇥� be any orthonormal basis for span(X). Ob-
serve U

X

UT

X

= XX†. The last inequality is due to U
X

UT

X

being an m⇥m diagonal matrix with � ones along its main
diagonal and the rest zeros. Thus, we may conclude that for
this A:

kA�CC†Ak
⇠

� �
k

(A) ! 1.

8. CONCLUDING REMARKS
We provided a rigorous theoretical analysis of an old and

popular deterministic feature selection algorithm from the
statistics literature [21]. Although randomized algorithms
are often easier to analyze, we believe that deterministic al-
gorithms are simpler to implement and explain, hence more
attractive to practitioners and data analysts.

One interesting path for future research is understand-
ing the connection of this work with the so-called “spectral
graph sparsification problem” [31]. In that case, edge se-
lection in a graph is implemented via randomized leverage
scores sampling from an appropriate matrix (see Theorem
1 in [31]). Note that in the context of graph sparsification,
leverage scores correspond to the so-called “e↵ective resis-
tances” of the graph. Can deterministic e↵ective resistances
sampling be rigorously analyzed? What graphs have e↵ec-
tive resistances following a power law distribution?

References
[1] H. Avron and C. Boutsidis. Faster subset selection for

matrices and applications. SIAM Journal on Matrix
Analysis and Applications (SIMAX), 2013.

[2] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[3] C. H. Bischof and G. Quintana-Ort́ı. Computing
rank-revealing QR factorizations of dense matrices.
ACM Trans. Math. Softw, 24(2):226–253, 1998.

[4] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near
optimal column based matrix reconstruction. SIAM
Journal on Computing (SICOMP), 2013.

[5] C. Boutsidis, M. W. Mahoney, and P. Drineas.
Unsupervised feature selection for principal
components analysis. In KDD, pages 61–69, 2008.

[6] C. Boutsidis, M. W. Mahoney, and P. Drineas. An
improved approximation algorithm for the column
subset selection problem. In SODA, pages 968–977,
2009.

[7] C. Boutsidis and D. Woodru↵. Optimal cur matrix
decompositions. In STOC, 2014.

[8] M. E. Broadbent, M. Brown, K. Penner, I. Ipsen, and
R. Rehman. Subset selection algorithms: Randomized
vs. deterministic. SIAM Undergraduate Research
Online, 3:50–71, 2010.

[9] A. A. E. Brouwer and W. H. Haemers. Spectra of
graphs. Springer, 2012.

[10] T. F. Chan and P. C. Hansen. Low-rank revealing
QR factorizations. Numerical Linear Algebra with
Applications, 1:33–44, 1994.

[11] S. Chandrasekaran and I. C. F. Ipsen. On
rank-revealing factorizations. SIAM J. Matrix Anal.
Appl., 15:592–622, 1994.

[12] A. Deshpande and L. Rademacher. E�cient volume
sampling for row/column subset selection. In
Proceedings of the 42th Annual ACM Symposium on
Theory of Computing (STOC), 2010.

[13] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.
Relative-error cur matrix decompositions. SIAM
Journal Matrix Analysis and Applications,
30(2):844–881, 2008.

[14] A. Frieze, R. Kannan, and S. Vempala. Fast
Monte-Carlo algorithms for finding low-rank
approximations. Journal of the ACM,
51(6):1025–1041, 2004.

[15] A. Gittens and M. W. Mahoney. Revisiting the
nystrom method for improved large-scale machine
learning. In ICML (3), pages 567–575, 2013.

[16] G. H. Golub. Numerical methods for solving linear
least squares problems. Numer. Math., 7:206–216,
1965.

[17] M. Gu and S. Eisenstat. E�cient algorithms for
computing a strong rank-revealing QR factorization.
SIAM Journal on Scientific Computing, 17:848–869,
1996.

[18] V. Guruswami and A. K. Sinop. Optimal
column-based low-rank matrix reconstruction. In
SODA. SIAM, 2012.

[19] Y. P. Hong and C. T. Pan. Rank-revealing
QR factorizations and the singular value
decomposition. Mathematics of Computation,
58:213–232, 1992.

[20] I. C. Ipsen and T. Wentworth. The e↵ect of coherence
on sampling from matrices with orthonormal columns,
and preconditioned least squares problems. arXiv
preprint arXiv:1203.4809, 2012.

[21] I. Jolli↵e. Discarding variables in a principal
component analysis. i: Artificial data. Applied
Statistics, 21(2):160–173, 1972.

[22] I. Jolli↵e. Discarding variables in a principal
component analysis. ii: Real data. Applied Statistics,
22(1):21–31, 1973.

[23] I. Jolli↵e. Principal Component Analysis. Springer;
2nd edition, 2002.

[24] J. Kunegis. Konect: the koblenz network collection. In
WWW. International World Wide Web Conferences
Steering Committee, 2013.

[25] J. Leskovec. Snap stanford network analysis project.
2009.

[26] M. W. Mahoney and P. Drineas. Cur matrix
decompositions for improved data analysis.
Proceedings of the National Academy of Sciences,
106(3):697–702, 2009.

[27] C. T. Pan. On the existence and computation of
rank-revealing LU factorizations. Linear Algebra and
its Applications, 316:199–222, 2000.

[28] D. Papapailiopoulos, A. Kyrillidis, and C. Boutsidis.
Provable Deterministic Leverage Score Sampling.
arXiv preprint arXiv:1404.1530, 2014

[29] P. Paschou, E. Ziv, E. G. Burchard, S. Choudhry,
W. Rodriguez-Cintron, M. W. Mahoney, and
P. Drineas. Pca-correlated snps for structure
identification in worldwide human populations. PLoS
genetics, 3(9):e160, 2007.

[30] M. Rudelson and R. Vershynin. Sampling from large
matrices: An approach through geometric functional
analysis. JACM: Journal of the ACM, 54, 2007.

[31] N. Srivastava and D. Spielman. Graph sparsifications
by e↵ective resistances. In STOC, 2008.

[32] G. Stewart. Four algorithms for the e�cient
computation of truncated QR approximations to a
sparse matrix. Numerische Mathematik, 83:313–323,
1999.

[33] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is
more: Compact matrix decomposition for large sparse
graphs. In SDM. SIAM, 2007.

[34] H. Tong, S. Papadimitriou, J. Sun, P. S. Yu, and
C. Faloutsos. Colibri: fast mining of large static and
dynamic graphs. In KDD. ACM, 2008.

[35] E. Tyrtyshnikov. Mosaic-skeleton approximations.
Calcolo, 33(1):47–57, 1996.

[36] R. Zafarani and H. Liu. Social computing data
repository at ASU, 2009.

[37] A. Zouzias. A matrix hyperbolic cosine algorithm and
applications. In ICALP. Springer, 2012.

	Introduction
	Contributions
	Notation

	Deterministic Column Sampling
	Approximation guarantees
	Bounding the number of sampled columns
	Theoretical comparison to state of the art

	Experiments
	Power-law decays in real data sets
	Synthetic Experiments
	 Nearly-uniform scores
	Power-law decay

	Comparison with other techniques
	List of comparison algorithms
	Performance Results

	Related work
	Proofs
	Proof of Theorem 2
	Proof of Theorem 3

	The key role of
	Concluding Remarks

