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Fixed-rank Rayleigh Quotient Maximization
by an MPSK Sequence
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Abstract—Certain optimization problems in communication
systems, such as limited-feedback constant-envelope beamform-
ing or noncoherent )/ -ary phase-shift keying (1/PSK) sequence
detection, result in the maximization of a fixed-rank positive
semidefinite quadratic form over the //PSK alphabet. This form
is a special case of the Rayleigh quotient of a matrix and, in
general, its maximization by an MPSK sequence is N P-hard.
However, if the rank of the matrix is not a function of its size, then
the optimal solution can be computed with polynomial complexity
in the matrix size. In this work, we develop a new technique to
efficiently solve this problem by utilizing auxiliary continuous-
valued angles and partitioning the resulting continuous space of
solutions into a polynomial-size set of regions, each of which
corresponds to a distinct M/PSK sequence. The sequence that
maximizes the Rayleigh quotient is shown to belong to this
polynomial-size set of sequences, thus efficiently reducing the size
of the feasible set from exponential to polynomial. Based on this
analysis, we also develop an algorithm that constructs this set in
polynomial time and show that it is fully parallelizable, memory
efficient, and rank scalable. The proposed algorithm compares
favorably with other solvers for this problem that have appeared
recently in the literature.

Index Terms—Algorithms, maximum likelihood detection,
MIMO systems, noncoherent communication, optimization meth-
ods, phase shift keying, Rayleigh quotient, sequences.

I. PROBLEM STATEMENT, PRIOR WORK,
AND CONTRIBUTION

A. Problem statement

We consider the optimization problem

P Sopt 2 arg max || V7s|| (D

se Al

where A, 2 {eﬂ# ’m:O,l,...,M—l} is the M-ary

phase-shift keying (MPSK) alphabet, V. € CVN*P is a full-
rank matrix, -** denotes Hermitian transpose operation, and ||-||
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is the Euclidean ¢5-norm. Problem P in (1) can be recast as
the special case of the maximization of the Rayleigh quotient
of VV* over the MPSK alphabet, i.e.,

sHVvvHs
sts

; 2

Sopt = argmax

se AN,
and solved by an exponential-complexity exhaustive search
among MY~ length-N sequences.! However, such a solver
would be impractical even for moderate values of the problem
size N.

Of particular interest is the case where V in P is full-
column-rank (i.e., it is a “tall” matrix) and its rank D is
independent of its row dimension N, which appears in cer-
tain optimization problems in communication systems, such
as limited-feedback multiple-input multiple-output (MIMO)
beamforming [1]-[8] and noncoherent sequence detection [9]-
[15]. For this particular fixed-D case, P is no longer N"P-hard
if s belongs to the 2PSK or 4PSK alphabet [12], [16], [17]
or general MPSK alphabet [7], [9]; i.e., if D is independent
of N, then solving P requires only polynomial complexity
in N. The underlying principle of all the above works is
the construction of a feasible set (i.e., a set of candidate
sequences that contains the solution of P) S(V) < AY;
which has polynomial cardinality |S(V)| and can be built with
polynomial complexity. After S(V) is constructed, the optimal
sequence Sop can be identified by a polynomial-complexity
exhaustive search among the elements of S(V).

In this work, we present a new algorithm to solve P for
any even’ M and arbitrary D and prove that it has lower
complexity than the current state of the art [7], [9], [12], is
fully parallelizable and rank-scalable, and requires minimum
memory resources.

B. Prior work

Case (i): M = 2. A lot of effort has been made to solve P
when M = 2, ie., s1is a binary3 sequence, and V is a real-
valued matrix. We note that, for the special case D = 1, V
becomes a NV x 1 vector and the solution of P is simply sep =
sgn(V).* Equivalently, we can say that S(V) = {sgn(V)}

IThe first element of s can be arbitrarily set to 1 without losing optimality
in (1) or (2).

2 Although our algorithm can treat any (odd or even) M > 1, to simplify
the presentation we consider M to be even.

3In this work, a sequence is called binary if and only if each element of
it equals +1 or —1. In contrast, if each element of it equals O or 1, then the
sequence is said to belong to the 0/1 alphabet.

4For any vector v € RY, we denote by sgn(v) the vector x € {£1}V
such that ¢, = 1if s, >0and z,, = -1 if s, <0, n=1,2,...,N.
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which has cardinality 1 and is constructed with complexity
O(N). This simple case provides evidence that P may be
polynomially solvable when the rank of V is independent of
its row dimension.

The (more interesting) case of D > 1 was considered
in [12], [17] where it was shown that P is equivalent to
the maximization of a rank-D quadratic form over the 0/1
alphabet. This case has been proven [18] to be polynomially
solvable through a variety of computational-geometry algo-
rithms, such as the incremental algorithm for cell enumeration
in arrangements [19], [20] and the reverse search [21], [22].
Although the incremental algorithm in [19], [20] is time-
efficient with overall complexity O (N b *1) to build the
feasible set S (V) of size |S (V)| = O (NP~1), it becomes
impractical even for moderate values of D, since it follows an
“incremental” strategy to construct the feasible set S(V): it
solves the problem inductively and, thus, is too complicated
to be implemented. Furthermore, the critical disadvantage of
the incremental algorithm is its memory inefficiency, since
it needs to store all the extreme points, all faces, and their
incidences. On the other hand, the highly parallelizable re-
verse search [21], [22] is memory efficient and constructs
a set of [S(V)] = 205" (V7!) candidate sequences in
O(NPLP(N, D)) time-complexity where LP(N, D) denotes
the time to solve a linear programming problem with N
inequalities in D variables. The work in [23] showed that
LP(N,D) = O(N) in fixed dimensions, implying that the
overall complexity of the reverse search to build S (V) is
O (N D “). We note, however, that, until today, the reverse
search has not been extended to general MPSK alphabets.

From a different perspective, based on the auxiliary-angle
approach that was originally introduced in [24] to solve P with
complexity O(Nlog N) when D = 1 and M > 2, efficient
solutions of P for the binary-s (M = 2), real-V case are
presented in [25] for D = 2, in [26] for D = 3, and in [16]
for D > 3 with complexity O(Nlog N), O(N?log N), and
O(NP), respectively. The methodology utilizes D — 1 auxil-
iary angles and partitions the (D — 1)-dimensional hypercube
into a polynomial-size set of distinct regions so that each
region is associated with a distinct binary sequence. The set of
binary sequences that are obtained has the same size |S(V)| as
the one produced by the reverse search [21], [22]. However,
the auxiliary-angle method is fully parallelizable and rank-
scalable, requires minimum memory resources, and constructs
the candidate solution set S(V) with lower complexity than
the reverse search for any D > 2.

Case (ii): M = 4. The reverse-search [21], [22] and auxiliary-
angle [16], [25], [26] methods were originally considered as
potential solvers of P for M = 2 and real V. If s is binary
but V is complex, then P can be rewritten with V substituted
by a real matrix of size N x 2D. Hence, the above methods
can still solve P with complexity that is polynomial in /N and
determined by 2D (instead of D). Finally, if s is quaternary
(i.e., M = 4), then P can be rewritten with s and V substituted
by a binary sequence of length 2N and a real matrix of size
2N x 2D, respectively, and solved by the reverse-search or
auxiliary-angle methods with complexity that is still polyno-
mial and determined by 2V and 2D (instead of /N and D). Due

to their ease of implementation, both techniques have been
used for maximum-likelihood (ML) noncoherent detection of
uncoded [12] or space-time coded sequences of 2PSK or 4PSK
signals [15] and near-ML multiuser detection [17].

Case (iii): Arbitrary M. If M > 4, then P is still polynomi-
ally solvable, as shown in [24] for D = 1 and [7], [9] for
any D > 1. Specifically, in the context of ML noncoherent
detection of MPSK in single-antenna systems, [24] presented
a method (which reappeared later in [27]) that solves P when
D = 1 by constructing a candidate solution set of size
|S(V)| = N with complexity O(Nlog N). In [9], it was
proven that P is solvable in polynomial time for any M > 1
and D > 1 by constructing a candidate sequence set of size
|S(V)| = O (N?P) with complexity and storage requirement
O (N 2D ), based on the incremental algorithm in [19], [20].
However, as mentioned above, the incremental algorithm is
of purely theoretical value. Therefore, although [9] was the
first work that identified the potential of polynomial solvability
of P for this configuration, it did not offer a practical algo-
rithm to solve it. In [10], the authors built on the auxiliary-
angle methodology of [16], [24]-[27] to develop a practical
algorithm that constructs S (V) with complexity O (N2P).
Although it is proven that |S (V)| = O (N?P~1), the algo-
rithm in [10] is not optimal with respect to the actual size
of §(V), since, by construction, it produces multiple phase-
rotated candidate sequences that are equivalent with respect to
the optimization metric in P. Finally, in the context of limited-
feedback MIMO beamforming, [7] presented a Voronoi-cell
based algorithm that, for any M > 1 and D > 1, builds a
candidate sequence set of size [S(V)| = O (N?P~1) with
complexity O (N2P).

C. Contribution

In the present work, we follow the principles of the work
in [16] to treat the complex-domain problem P for any
even M > 2 and any D > 1. Specifically, we introduce
2D —1 auxiliary continuous angles and partition the (2D — 1)-
dimensional hypercube into a polynomial-size set of distinct
regions, each of which is associated with a distinct MPSK
sequence of length N. The proposed algorithm is based on the
framework presented in [10] but confronts the problem in a
more solid and optimized manner. In particular, we manage to
remove equivalent M -plicate candidates from S(V) that attain
the same metric value in the objective function in P and are
present in the solution proposed in [10], thus decreasing the
size of S(V). This way, we succeed to prove that the size of
the candidate set for given M > 2, D > 1 and N is exactly
given by

ISV 3)
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We emphasize that the proposed algorithm constructs the
candidate set S(V) with complexity O (N?”) and claim that
the size of the produced candidate set provided in (3) is the
smallest size that can be obtained, as of today, as compared
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to the present state of the art [7], [9], [12]. In addition, we
show that the proposed algorithm is fully parallelizable and
rank-scalable and requires minimum memory resources.

In comparison with the prior work that we presented in
the previous subsection, a few conclusions can be drawn
from Table I. We note that the method in [12] (which uses
the reverse search [21], [22]) is limited to M = 2 and
M = 4 only. For M = 2, it computes Y520 (V1)
candidates (that is, as many as the proposed algorithm), while,
for M = 4, it computes 22 ~1 (2]\;1) candidates (that is,
twice as many as the proposed algorithm). In both cases, the
complexity is O (N b “) , 1.e., one order of magnitude higher
than the complexity of the proposed algorithm. The work
in [9] only calculates the order of the size of the candidate
set as |S(V)| = O (N?P) and the corresponding complexity
to build S(V) as O (N?P), but does not identify the exact
number of candidates in S(V). Similarly, in [7], the authors
do not mention the exact size of the constructed candidate
sequence set, but only prove that its order is O (N2P~1)
and it is constructed with complexity O (N?P). From the
presented algorithm in [7], it can be seen that at least (;g N 1)
subsets of indices are examined and each subset may or may
not produce candidate sequence(s). Hence, at least (;gi)
“potential” candidate sequences are examined, implying that
(,) is a lower bound on the complexity that [7] requires
to build S(V).

A comparison between the complexity of the current state
of the art and the proposed algorithm is provided in Figs. 1
and 2. Since the complexity in Big-Oh notation of the works
in [7], [9], and [10] has the same order with the proposed
algorithm and is lower than the complexity of the work in [12],
the interest in comparing these algorithms is moving toward
the exact size of the generated candidate sequence set. The set
that is generated by the method in [9] is one order of magni-
tude larger than the one produced by the proposed algorithm,
hence [9] can be ignored in our comparison. Regarding [10],
as mentioned before, it produces a set that is larger than the
proposed one by a factor of M, hence it can also be ignored.

As a result, in Fig. 1, for M = 4 and a fixed rank D = 2
or D = 3, we examine the size of the generated candidate
sequence set S(V) as a function of the sequence length N
only for the Voronoi-cell based approach [7], the reverse

search [12], and the proposed algorithm. For [7], we plot the
lower bound on |S(V)| from Table I. For [12], we plot the
exact size of S(V) for the case M = 4, as shown in Table I.
For the proposed algorithm, we use the exact size of S(V) as
provided in (3). We observe that the proposed algorithm and
the reverse search [12] generate a set that is at least two orders
of magnitude smaller than the lower-bound of the Voronoi-cell
based approach [7]. In fact, as can be seen in Fig. 1, the reverse
search generates a set that is twice as large as the one generated
by the proposed algorithm. In addition, as mentioned before,
in comparison with the proposed algorithm, the reverse search
requires one order of magnitude higher complexity to generate
its candidate set.

Similar plots are presented in Fig. 2 for M = 8 and a fixed
rank D = 2 or D = 3. We omit the reverse search, since it is
not defined for M > 4. Once more, we plot the lower bound on
|S(V)| from Table I for the Voronoi-cell based approach [7]
and observe that our proposed algorithm generates at least
two-three orders of magnitude less candidates.

Finally, it is interesting to examine the two limiting cases
D =1 and D = N. First, we observe that, if we set D = 1
in (3), then we obtain |[S(V)| = N which equals the size
of the candidate sequence set of the algorithm in [24] (that,
however, works only for D = 1). Therefore, in terms of the
number of generated candidate sequences, our algorithm can
also be seen as a generalization of [24] for any D > 1. In
the other limiting case, if we set D = N in (3), then, after
a few calculations, we can show that |S(V)| = M~ That
is, if V is N x N and full-rank, then our algorithm generates
all possible M-ary sequences of length /V that are not rotated
versions of each other. Of course, in such a case, one should
directly operate a full-size exhaustive search without the need
to build the candidate sequence set and our algorithm (as well
as the state-of-the-art) would become meaningless. Yet, the
fact that for D = N our algorithm constructively builds the
MN =1 sequences indicates that for lower ranks it may provide
the minimum possible number of candidates that could be
built with polynomial complexity; for the moment, the latter
statement is only claimed as a conjecture.

The rest of the paper is organized as follows. Section II
is devoted to the theoretical developments of the proposed
algorithm for solving P when D is fixed. The implementation
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Fig. 1. Cardinality of candidate sequence set S(V') for alphabet size M = 4

and rank D = 2 or D = 3. Actual values for the exhaustive search, the reverse
search [12], and the proposed method and lower bound for the Voronoi-cell
based approach [7].

of the proposed algorithm is discussed in more details in
Section III. Concluding remarks are drawn in Section IV.

Notation: To simplify the presentation of our developments
and proofs, we use a MATLAB-like notation. Specifically,
for any 7,7 € N with ¢« < j, we denote by 7 : d : j the
vector [i i+d i+2d ... j|T; then, i : j is a simplified
notation for ¢ : 1 : j. For any N x 1 vector x and any
n € {1,2,...,N}X, we denote by x,, the K x 1 vector
[%n, Ty ... Tn,] . Similarly, for any N x M matrix X and
any n € {1,2,...,N}¥, m e {1,2,..., M}*, we denote by
Xpn,m the K x L matrix whose (k,[)-th element is X, ;3
then, X. , and X, . are simplified notations for X;.ny m and
X 1:0, respectively. Finally, R {X} and S {X} denote the
real and imaginary parts of matrix X.

II. EFFICIENT FIXED-RANK RAYLEIGH QUOTIENT
MAXIMIZATION BY AN MPSK SEQUENCE

A. Problem Reformulation

Without loss of generality (w.l.o.g.), we assume that each
row of V in P has at least one nonzero element, i.e., V,, . # 0,
n = 1,2,...,N. If not, then the value of the variable s,
related with the all-zero row of 'V would have no effect on
the maximization procedure and could be simply ignored,
reducing the dimension of our problem by 1.

To develop an efficient method for the solution of P in (1),
we introduce the (2D — 1) x 1 auxiliary-angle vector ¢ €

(—=%,5]*P~2? x (=, 7] and define the unit-norm 2D x 1 real
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Fig. 2. Cardinality of candidate sequence set S(V) for alphabet size M = 8
and rank D = 2 or D = 3. Actual values for the exhaustive search and the
proposed method and lower bound for the Voronoi-cell based approach [7].

vector
sin ¢
COS @1 Sin @2
COS (p1 COS P2 SiN P3

c(p) = : (4)
H?fl_z COS @; | Sin ¢2p 1
H?fl_Q COS @; | COs Pap_1
and the unit-norm D x 1 complex vector’
A -
c(¢) = Ca:2.2p(@) + jCr:22p-1(P) &)

COS ¢1 Sin o + j sin ¢
COS (b1 COS (3 COS (3 Sin P4 + J COS p1 COS P2 SiN P3

2D—1 2D—2 .
[[iZ,  cos @} +J [H —1 Cos ¢i:| sin ¢ap-—1
For notation simplicity, we set

(6)

A T T
®= ( 2’ 2}

We observe that, as ¢ varies in ®2P~2 x (—x, 7], the real
vector ¢(¢) scans the entire unit-norm 2D-dimensional real
hypersphere. At the same time, the complex vector c(¢) scans
the entire unit-norm D-dimensional complex hypersphere. As
we will see in the rest of this subsection, for any value
of c(¢) (that is, for any point of the hypersphere), our

>The definition of &(¢) and c(¢) differentiates the developments of this
present work from the work in [10] where the treatment of (1) led to an algo-
rithm of higher complexity by building on the auxiliary-angle methodology
of [16], [24]-[27]. In fact, the algorithm in [10] is not optimal with respect to
the actual size of the generated feasible set, since, by construction, it produces
multiple phase-rotated candidate sequences that are equivalent with respect to
the optimization metric in P. In this present work, the new definition of €(¢)
and c¢(¢) helps us minimize the number of candidate sequences and overall
complexity.
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initial optimization problem is solved with linear complexity.
Therefore, one would need to compare against each other
all solutions that are collected while the entire hypersphere
is scanned. Surprisingly, the number of solutions that are
collected is polynomial in N. This obervation is the motivation
behind the definition and use of c(¢) and will lead to the
development of a polynomial-time algorithm in the following
subsections.

From Cauchy-Schwarz Inequality, we observe that, for any
acCP,

R{a*c(e)} < |a™c(9)| < lall|lc()] = llall. D
=1
Equality is achieved in both inequalities in (7), if and only if
¢ consists of the spherical coordinates of vector a, i.e., if and
only if

a
C(d)) =T (8)
a]
since %Laﬂlil} = ||la]|. Using the above, our original
problem P in (1) is rewritten as
max ||[V*s|| = max max R {s"Vec .
o [[V7s = max _Lanax  R{s"Ve(@)}. ©)

Before we proceed, to reduce the overall complexity of our
following developments, we further restrict the range of the
last auxiliary angle ¢2p_1 from (—m, 7] to (— 7%, 7| without
losing optimality in (9). The reason is that the phase-rotated
sequences s and e’’s result in the same value ||VHS|| =
||VH (ejes)H in (9), for any el? € Aps. Then, our problem
in (9) is rewritten as

R {s"Ve(o)}.

(10)
A detailed proof of (10) is provided in the Appendix. By inter-
changing the maximizations in (10), we obtain the equivalent
problem

max HVHSH = max max

s€ AN, SEAL] pe@2P—2x (- £, =]

N
s€EAN

Y

B. Candidate Sequence Set S(V)

By the inner maximization rule in (11), for any D x 1
complex vector v, we define the MPSK decision function
d(vT; @) that maps ¢ to Ajs according to

d(vT; ¢) = argmax R {s*v'c(¢)}
sEAM

12)

and, for any NV x D complex matrix V, we define, using (12),
the MPSK sequence decision function d (V; ¢) that maps ¢
to ALY, according to

d<V1,:;¢)
d(Va.;
d(V; o) éargmax?)?{SHVC(QS)} = ( 2 ?) . (13)
seEAN .
d(VN,:;¢)

N
H _ *
max [|[VHs|| = ¢€¢.2D7H21>23,)((77 o E_l max R{s;Vn.c(d)}.

Computing d(V;¢) for any ¢ € ®2P72 x (-5, ], we
collect all MPSK candidate sequences into set

S(V) = U {d(Vip)y cAY, (9
ped2P—2x(— 7, 7|
and our problem P in (11) becomes
max ||VHsH = max ||VHS||, (15)
se AN, seS(V)

i.e., the MPSK candidate sequence s.p that maximizes the
metric of interest in (1) belongs to S(V).

C. Decision Boundaries

In (11), we observe that, for any vector ¢, the original
maximization problem in (1) is decomposed into N symbol-
by-symbol maximization rules, according to (13), and the nth
maximization argument (i.e., symbol s,) of the sum equals
d(V,..; @) = sp, that is, it depends only on the nth row of
V,n=1,2,...,N. As ¢ varies, the decision in favor of s,
is maintained as long as a decision boundary is not crossed.
Due to the structure of A, the % decision boundaries for
the determination of s,, from V,, .c(¢) are lines that pass
through the origin of the complex plane and separate it into
disjoint sets and are given by

o2 ot (5 ]

Vi.c(¢) = AT A€R),  (16)
M
k=010 ~1 n=12.. N,
or, equivalently,
S {e IV, e(9) ) =0,
17)
M (
k=0,1, 5 1, n=1,2,...,N.
We define .
e ITr
_jﬂ-%
A~ A e
eij“%

o Nand k=0,1,..., 2 — 1, we can

Then, forn = 1,2, .. 5

write (17) in matrix form
3 {Ve(g)} =0
&R {V}ei2a01() + S {V}eaan(@) =0 (19
& Ve(g) =0

where

V- a5} 3o} 19} o fo)
o ®{Von} ${V.p}] s

From the construction of V in (18) and (20), we observe that

the nth row of V is rotated by each of the % exponential

i 2k+1 .. .
terms e /7~ that represent the decision boundaries B,(C"),

(20)



THIS PAPER IS TO APPEAR IN IEEE TRANSACTIONS ON COMMUNICATIONS

T2

T4

" ¢ (Vixai

¢2 -2 T8

%

Fig. 3. 232 88
originate from the same row of observation matrix Vx2.

k= 0,1,...,% —1,n=1,2,...,N. Hence, the system of
MN equations VE(¢p) = 0 defines 22Y decision boundaries,
such that, as long as a boundary is not crossed by varying ¢,

the decision d(V; ¢) remains the same.

D. Hypersurfaces H(V;.) and Cardinality of S(V)

According to (19), we can derive @ different decision
rules that separate ®2P—2 x (fﬁ, ﬁ} into distinct regions,
each of which is associated with a different candidate M/PSK
sequence s. More specifically, the rows of V determine
MN hypersurfaces H(V1,.), H(Va,.), ..., ’H(\Nf@,:), that
is, (2D — 2)-manifolds in the (2D — 1)-dimensional space,
that partition the (2D — 1)-dimensional hypercube ®2P~2 x
(—ﬁ, ﬁ] into K nonoverlapping cells C1, Cs, ..., Ck; the
union of all cells is equal to ®*P~2 x (—+%, =] and the
intersection of any two distinct cells is empty. Each cell Cj,
corresponds to a distinct candidate sequence s € AL, in the
sense that d(V;¢@) = s; for any ¢ € Cj and s, # s; if
k#4,kje{l,2,... K}

Before we present some further results on the behavior
of such hypersurfaces, it is illustrative to present some
partitions of ®*P~2 x (—T. ] for various values of D,
M, and N. As a first example, we set D = 2, N = 4,
and M = 8 and draw an arbitrary 4 X 2 complex matrix

V with V,,. # 0, n = 1,2,3,4. Since D = 2 and

M = 8, we are interested only in cells that belong to
the region ¢ € ®? x (f%, %] According to the decision

boundary rule in (19), in Fig. 3(a), we plot sgrface 7—[(\71)
-1 <_ V1,2;§5(¢2:3)> —
i i - Via
—1(_ V1,2 sin ¢2+V1 3 cos ¢2~Sin $3+V1,4 cos ¢2 cos p3

described by the expression ¢; = tan

tan i that
originates from the first row of V (depicted as surface
n = 1). In the same figure, we add two more surfaces,
’H(VZ;) and 7-{,(\737:), that originate from the second and
third rows of V and are denoted as n = 2 and n = 3,
respectively. We observe that the surfaces intersect at a single
point ¢(V;{1,2,3}) and the three-dimensional space is

4 {5

-T2
T2

(a) Partition of (—Z, Z]2 x (—Z, ] using 3 different surfaces H(V1,1;4), H(V2,1;4), and H(V3,1:4)- (b) Intersection of % = 4 surfaces that

partitioned into regions (cells) each of which corresponds to
a distinct candidate MPSK sequence s € S(V).6
Two basic properties of such intersections are presented in
the following proposition. The proof is given in the Appendix.
Proposition 1: Let \7@“ p be a real matrix con-
structed from a N x D complex matrix V with
V,. # 0, n = 1,2,...,N. Then, each subset of
{H(VL;)7H(\~,2’;), e ,7—[(\7%’:)} that consists of 2D — 1
hypersurfaces has
(i) either a single or uncountably many intersections in
B x (5,
(ii) a unique intersection point that constitutes a vertex of
a cell if and only if no more than two hypersurfaces
originate from the same row of V. O

Let T 2 {iy,in,...,iap_1} C {1,2,..., 4N denote the
subset of 2D — 1 indices that correspond to hypersurfaces
H(Viy), HViy)s o, H(Viyp_ 1., respectively. We iden-
tify the following cases.

(a) Intersections of 2D — 1 hypersurfaces where at most two

surfaces originate from the same row of V.
(b) Intersections of 2D —1 hypersurfaces where at least three
surfaces originate from the same row of V.
According to Proposition 1, Part (ii), combinations in case
(b) do not have a unique intersection point but infinitely
many intersection points; thus no cell is created and these
combinations can be ignored. A very important observation
for our subsequent developments is presented in the following
corollary.

Corollary 1: All % hypersurfaces that originate from the
same row of V intersect at a common axis. (]

Extending the previous example with the 4 x 2 matrix V,
we present in Fig. 3(b) the intersection of the % = 4 surfaces
that originate from the first row of V and are related with the
decision in favor of s;. In general, such an ensemble of %
hypersurfaces that originate from the nth row of the N x D

SFor visualization purposes, we do not plot the complete partition.
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matrix V partitions the hypercube ®>P—2 x (—ﬁ, -] into
M regions, each of which is mapped to a unique element
Sn € Anr. According to Corollary 1, all % hypersurfaces have
uncountably many intersection points that form a common
axis, that is, a common (2D — 3)-manifold in the (2D — 1)-
dimensional space. Thus, hypersurfaces that come from the
same row of V intersect at a common 1-manifold in the 3-
dimensional space for D = 2, at a common 3-manifold in the
5-dimensional space for D = 3, etc.’

On the other hand, combinations in case (a) have a

unique intersection point ¢(V;Z) € ®2P~2 x (- ] that

leads Q(Z) cells, say C1(V;Z),C2(V;I),...,Cor)(V;I)
0 1 D—1

where Q(7) € {(4 - 1)° (% -1, (& 1)},

and each cell is associated with a distinct candidate MPSK
sequence s,(V;Z), in the sense that s,(V;¢) = s,(V;I)
for all ¢ € Cu(V;I) and ¢(V;I) is a single point of
Cy(V;I) where ¢pop_1 is minimized, ¢ = 1,2,...,Q(Z). We
underline that there are combinations of hypersurfaces that do
not intersect into the region of interest ®*2~2 x (— M, M] but
intersect at a single point ¢(V;Z) with ¢op_1 ¢ (— 17, 17)-
As described later, any such case can be ignored since there
always exists a combination of hypersurfaces with ¢(V;Z) €
®2D=2 5 (— -, ] which “leads” cells associated with equiv-
alent candidate sequences. The number of cells Q(Z) “led” by
an intersection point depends on the number p of participating
pairs of hypersurfaces that originate from the same row of
matrix V and is explicitly given by (— - 1)

To better understand the above statements, we illustrate
an example with one pair of hypersurfaces originating from
the same row of the observation matrix. For this purpose,
we consider the 4 x 2 matrix 'V of the previous example
where D = 2, N = 4, and M = 8 and present the
configuration depicted in Fig. 4(a). Specifically, we present
the intersection ¢(V;{9,13,14}) of two surfaces H(Vy..)
and H(Vlg’;) that originate from the first row of V and one
surface 7—[(\7147) that originates from the second row of V.
These surfaces are dictated in Fig. 4 as n = 9, n = 13, and
n = 14, respectively. But, according to Corollary 1, all &
hypersurfaces that originate from a specific row of V have
a common intersection; thus, in our example, we observe
that all & = 4 surfaces H(V1.),H(Vs.), H(Vo.),H(V13.)
that orlgmate from the first row of V pass through the
intersection point ¢(V;{9,13,14}) = ¢(V;{1,5,9,13,14});
these additional surfaces are dictated as n = 1 and n = 5,
respectively, in Fig. 4(b). Moving away from the intersection
point ¢(V;{1,5,9,13,14}) by increasing ¢3, the % =4
surfaces continue to intersect but surface n = 14 curves away,
thus creating 22 — 1 new cells.®

A better visualization of the above statements is depicted in
Figs. 4(c)-(d). For this purpose, we consider the same config-
uration presented above and present the intersection depicted
in Fig. 4(a) setting ¢3 = arg,_{¢(V;{9,13,14})}. Thus, in
Fig. 4(c), we present as functions of (¢1, ¢2) the surfaces that

7For D > 3, we cannot visualize the resulting partitions and the common
intersection (2D — 3)-manifold.

8In the sequel, we consider the most computationally demanding case of
distinct intersections.

pass through the intersection point ¢(V;{9,13,14}) where
n = 9 n = 13, and n = 14 are the surfaces under
consideration that initially created the intersection point with
surfaces n = 9 and n = 13 originating from V;. and
n =1 and n = 5 denote the remaining surfaces that originate
from V.. According to Corollary 1, we observe that all
surfaces pass through the intersection point ¢(V;{9,13,14}),
confirming that ¢(V;{9,13,14}) = ¢(V;{1,5,9,13,14}).
In Fig. 4(d), we sketch the same surfaces for ¢35 =
arg, {#(V;{9,13,14})} + dp where d¢ is a small arbitrary
positive quantity. We observe that, as ¢s3 increases, surface
n = 14 moves s away from intersection ¢(V;{1,5,9,13,14}),
thus creatlng —1 cells [see the highlighted cells in Fig. 4(d)]
that correspond to distinct sequences sy € AL

Since each cell is associated with a distinct candidate
MPSK sequence, we can collect all these sequences into
TV) 2 | {81V D),82(V3 D), ... 50 (Vi T)} C A
zc{1.2,.., MY} |T|=2D—1

(2D

Several properties of the decision function d(V;¢) are pre-
sented in the following proposition. The proof is provided in
the Appendix.

Proposition 2: For any ¢ € ®2P~2 x (- 7], the fol-
lowing hold true.

(i) d(V; (/\¢1:2D72a —31)) = ejzﬁﬂ‘ﬂv
some ¢.op_o € 2072,

i (P1.2D—25 ﬁ))» for

(ii) d(V;(¢1.2p_3, §’¢2D 1)) =d(V.1.p-1;¢1.0p_3)-
(iii) d(V;(@1.2p—3, — 592D 1)) =

—d(V; (=¢1.0p- 3727¢2D ).V dap_1 € (— % 3> 1)
(iv) d(V (¢’12D 3,5, ¢2p-1)) =

d(V;(b1.20p—3, £5: P20-1)), YV dop_1 € (— a0 3-8

Taking into consideration only cells into the region of
interest ®2P~2 x (— we observe that there are

J(V) (22)
D N —i

& (ZD (2(D —i)— 1) (24)2@_“_2 (1\24 ) 1),-

candidate sequences s in ®2P~2 x (-, ] that are associ-
ated with cells, each of which minimizes ¢op_1 at a single
point that constitutes the intersection of the corresponding
2D — 1 hypersurfaces. We also note that there exist cells
that are not associated with such a vertex and contain un-
countably many points of the form (¢1,...,¢2p 2, —77).
However, according to Proposition 2, Part (i), every such a
cell can be ignored since there exists another cell that contains
points of the form (gbl, cee d)gD 2, 77 )» is associated with an
equivalent rotated candidate sequence and is “led” by a vertex-
intersection that lies in ®*P~2 x (— 7=, -] (thus, it belongs to
J(V)) unless the initial cell contains a point with ¢op_o =
+7Z, as Proposition 2, Part (iv) mentions. For example, in

JVI’M}

[

2 b
Fig. 3(a), such cells are identified for ¢35 = —7; = —%. These
candidate M PSK sequences are equivalent rotated versions of
the sequences determined for ¢3 = Z, hence they can be

ignored.
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(a) Partition of (—Z,Z 2 % (—Z, Z] using surfaces H(V9,1;4), H(V13’1;4), and 7—[(\71471:4). (b) % = 4 surfaces, that originate from the

first row of V2, participate in the creation of M _ 1 new cells. (c)-(d) Intersection of surfaces H(V1,1:4), 7-[(\75,1:4),7-[(\79,1;4), H(V137114), and

2

H(V1a,1:4) for 3 = argy, {d(Vax2;{9,13,14})} and ¢3 = arg,, {p(Vaxe; {9,13,14})} + d¢, respectively.

In addition, as Proposition 2, Part (iv) mentions, if ¢op_o =
+%5 for a particular cell, then this cell “exists” for any
¢2p-1 € (=17, 17)- implying that we can ignore ¢2p_1 (or
set it to an arbitrary value 52[)-1), set ¢gop_2 to £7, and
consider cells defined in P73 x {+%} x {$2D—1h}- Finally,
due to Proposition 2, Part (iii), the cells that are defined when

¢2p—2 = —7% and the cells that are defined when ¢a2p_2 = 5
are associated with opposite sequences. Therefore, we can
ignore the case ¢ap_2 = — 73, set ¢pap_2 = 75, ignore ¢2p_1,

and, according to Proposition 2, Part (ii), identify the cells
that are determined by the reduced-size N x (D — 1) matrix

V. 1.p—1 in the hypercube ®2P~* x (— 7= ], For example,
in Fig. 3(a), we set ¢3 = T and ¢ = 7 and examine the

cells that appear on the leftmost vertical edge of the cube for
b€ (-5,1)
Hence, S(V) = J(V)US(V.1.p_1) and, by induction,

S(V.1:4) =T (V. 1.4)US(V.1:a-1), d=2,3,...,D, (23)

which implies that

S(V)

D-1
U J(V.rp-a)- (24)
d=0

As a result, the cardinality of S(V) is

SV =TV 1) +|1TV.1p=1)| + ...+ T (V.1:2)|

+ |j<V,1)|
D d-1 — 2(d—i)—2 i
2l ) G G
=0 (N*PT (25)

We observe that, if V is full-rank, i.e., D = N, then (25)
returns as many elements as the cardinality of the set Aﬁfl,

J(V:,lzD) U j(V:,lszl) u...u j(V:,I:Z) U j(V:,l)
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ie., [S(V)| = ‘Aﬁ\v/fl , as the following proposition states.’
The proof is provided in the Appendix.

Proposition 3: If D = N, then sy, can be computed
through exhaustive search among all elements of A}, ™', since
IS(V)| = |AY ] = M-, O

To summarize the results, we have utilized 2D — 1 auxiliary
angles, partitioned the hypercube ®?P~2 x (-7 ] into
a finite number of cells that are associated with distinct
MPSK sequences which constitute the polynomial-size set
S(V) C A}, and proved that soy € S(V). Therefore,
the initial problem in (1) has been converted into numerical
maximization of ||V*s|| among all sequences s € S(V).

III. ALGORITHMIC DEVELOPMENTS
A. The Proposed Algorithm

In this section, we present the steps of the pro-
posed algorithm for the construction of S(V) for arbi-
trary N;,D € N with D < N and even M. Let C4
be the set of all combinations of 2d — 1 hypersurfaces
that originate from V. 1., and intersect at a single point
in ®24-2 x (—ﬁ,%], ie, I = {il,ig,...,igd_l} S
Cy if and only if the intersection of hypersurfaces
constitutes a

H(Viy1:24), HVig1:24)s - s H(Vigy 1,1:24)

vertex of one or more cells in ®2¢7% x (—Z, I, for
d=1,2,...,D. Furthermore, we define N7 C {1,2,...,N}
as the set of indices of rows from V related with the
2d — 1 hypersurfaces that participate in the intersection point
¢(V.1.4;Z). From (24), we observe that the initial problem of
the determination of S(V') can be divided into smaller parallel
construction problems of J (V. 1.q), for d=1,...,D. More-
over, the construction of J (V. 1.4) can be fully parallelized,
since the candidate sequence(s) S(V;,l;d;I) can be computed
independently for each Z € Cy4. For the following statements,
we may assume a certain value for d € {1,2,...,D} and a
certain set of indices Z = {i1,142,...,i24—1} € Cq. In fact,
to simplify notation, we assume that d = D and clarify that
similar properties hold also for any d < D.

According to the discussion in the previous section,
the combination of hypersurfaces H(\N/'ih;), 7-[(\71'2,:), e
H(Vi,,_,..) intersects at a single point ¢(V;Z) that “leads”
the Q(Z) cells C1(V;I), Co(V;I), ..., Cory(V;I) as-
sociated with Q(Z) different candidate MPSK sequences
sq¢(V3I), ¢ =1,2,...,Q(Z). As already stated, the number
of cells Q(Z) depends on the number p of pairs of participating
hypersurfaces that pass through ¢(V;Z) and originate from
the same row of V and equals (& —1)°.

To obtain the auxiliary-angle vector ¢(V;Z) efficiently, we
just need to compute the zero right singular vector of \N/'L;
and calculate its spherical coordinates. Specifically, according
to the proof of Proposition 1, Part (i), for a full-rank (2D —
1) x 2D real matrix, the system that represents the intersection

of H(Vi,.)s H(Viy.)s oo H(Vigp 1), e,

Vi1,.&(¢) =0, (26)
91In the construction of S (V), we have, by design, avoided rotated candidate
sequences and, thus, the cardinality of the original candidate set drops from

A% | o AN

has a unique solution ¢(V;Z) € ®*P~2 x (—7%, 7] which
consists of the spherical coordinates of the zero right singular
vector of VI;. Therefore, to obtain ¢(V;Z), we just need to
compute the zero right singular vector of VI,: and calculate
its spherical coordinates.

To identify s,(V;Z), ¢ = 1,2,...,Q(Z), we detect one-
by-one its N elements separately, according to the following
rules.!?

(i) For any n € {1,2,...,N} — Nz, the corresponding
element of the candidate sequence s,(V;Z) maintains
its value at ¢(V;Z), hence it is determined by

Sq,n(V;I) = d(Vn,:; d(V;1)), ¢=1,2,...,Q(T).
27)

(ii) For any n € N7 such that there is only one hypersurface,
say ’H(Vi,c,;), that is related with the nth row of V
and participates in the intersection, the corresponding
element of s,(V;Z) cannot be determined at ¢(V;Z).
However, it maintains its value at the intersection of the
remaining 2D — 2 hypersurfaces 7—4(\71-1,;), H(Viy)s o
H( Vi) HVipsr:)s oo H(Vigp_,,:) with the hy-
perplane ¢op_1 = 7;. Note that, by setting p2p 1 = ;.

[ sin qﬁl 1
COS ¢1 Sin ¢o
COS (b1 COS (g SiN 3

COS 1 ...COSPap_3SinPap_o
COS 1 . ..COS P2p_3 COS Pap_28in 77
COS 1 . ..COS P2p—3 COS Pap_2COS 71 |

[ op_o 0
=| 0 sinfy |&(drap_a)- (28)
| 0 cos 17

Then, for any 2D-column matrix \7,

~ | Iap—2 0
Ve (o) =V 0 sin 77
0 Cos 17

c (¢1:2D—2) ) (29)

therefore, s, , (V;Z) is determined at the point ¢ whose
last coordinate ¢2p—1 equals 77 and first 2D — 2 coordi-

nates ¢1, ¢s,...,P2p_o are the spherical coordinates of
the zero right singular vector of
~ Iop_2 0
VI_finy,: 0 sin 17 (30)
0 oS 17

(iii) For any n € N7 such that there is a pair of hypersurfaces
that both originate from the nth row of V and (artici-

pate in the intersection, all % hypersurfaces H \N/'n,:),

H (VHN,:), H (VWN,:), L H (VM(%%)N’:)
that originate from the nth row of V also pass through
¢ (V;I). As a result, & — 1 cells are generated at
¢ (V;Z) due to those hypersurfaces. For each such
cell, the nth element s, ,, of its corresponding candidate

0Tn the following rules, we denote the nth element of sq as sqn. If
Q(Z) = 1, then we denote the nth element of the unique candidate s as sy,.
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sequence s, cannot be determined at ¢ (V;Z) but can
be uniquely determined for ¢o4—1 = ﬁ, as follows.
Consider the intersection of the remaining 2d — 3 hy-

persurfaces with H (Vn,:) and hyperplane ¢24-1 = 7;.
This intersection can be evaluated as in case (ii) above.
At this intersection, we have ambiguity between two

specific values of s,, € Ap which maximize the
detection metric. If we repeat with H (Vn+ N,:) instead

of H (Vn) then we again have ambiguity between
two values, exactly one of which is equal to one of
the previous two ambiguity values. The common value
is the actual value of s, that corresponds to the cell

between H (\N/'n}:) and H (Vn+ N,: ). We work similarly
with H (vn-&-N,:) and H (vn-&-2N,: 5 H (vn—Q—QN,:) and

H { Vyptan,: ), etc. This way, we resolve the ambiguity
with respect to the nth element of the candidate sequences
that correspond to the % — 1 cells that are generated due
to the nth row of V.

The above statements suggest the following construction
of s4(V3;Z), ¢ =1,2,...,Q(Z). Assuming distinct intersec-
tions of hypersurfaces, the 2D — 1 participating hypersurfaces
H(Vi, ), H(Viy)s -y H(Viy,_,..) pass through the “lead-
ing” vertex ¢(V;Z) of cell Cy(V;I). If n € {1,2,...,N} —
N7z, i.e., none of the 2D — 1 hypersurfaces originates from the
nth row of V, then none of the hypersurfaces that originate
from V, . passes through ¢(V;Z). As a result, the value of the
corresponding MPSK element s,,,(V;Z) is well determined
at the “leading” vertex, as (27) states. For example, considering
the previous 4 x 2 matrix V, in Fig. 3(a), s4(V;{1,2,3}) is
well determined at ¢(V; {1, 2, 3}) through (27) and maintains
its value in the associated cell C'(V;{1,2,3}).

On the other hand, if n € N7 such that there is only one
hypersurface, say H(\N/ik,:), related to the nth row of V, then
H(V;, .) passes through ¢(V;Z) leading to an ambiguous
decision about s(V,.;¢(V;Z)) between two neighboring
MPSK elements of Ay, separated by the decision boundary
B,En), i €4{0,1,..., 2 1}, related to #(V, .). For example,
in Fig. 3(a), the hypersurfaces 7-[(\71,:), 7—[(\72,:), and H(Vg,;)
originate from the first, second, and third, respectively, row
of the 4 x 2 matrix V and pass through ¢(V;{1,2,3})
leading to ambiguous decisions for d(V1.;¢(V;{1,2,3})),
d(Va.;d(V;{1,2,3})), and d(V3,.; ¢(V;{1,2,3})), respec-
tively. In such a case, ambiguity is resolved if we exclude
H(V;, .) and consider the intersection of the remaining 2D —2
hypersurfaces at ¢op_1 = ]Vl[ where the value of s, ,, is well
determined and equals the value of s, , at any point of the
cell of interest Cy(V;Z). For example, in Fig. 3(a), the am-
biguity with respect to s1(V;{1,2,3}), s2(V;{1,2,3}), and
s3(V;{1,2,3}) at intersection ¢(V;{1,2,3}) is resolved at
C = ¢(V:{2,3}). A = $(V:{1,3}). and B = ¢(V:{1,2}),
respectively.

Finally, if n € N7 such that there is a pair of hypersurfaces,
say H(Vi,.), H(V,,, .), originating from the nth row of V,
then, according to Corollary 1, all hypersurfaces that originate
from V,, . pass through ¢(V;Z). Thus, point ¢(V;Z) belongs

to the common intersection of the £

5~ hypersurfaces that
originate from V,, . and, therefore, we have ambiguity for
5¢,n among all elements of the MPSK alphabet (there is no
preference between two specific MPSK symbols as in case
(ii)). The ambiguity is resolved if we exclude hypersurfaces
H(Vi,.), H(Vi, .) and compute the intersection point of
the remaining 2D — 3 hypersurfaces with each one of the
hypersurfaces originating from V,, . that “construct” the cells
Co(ViI),q=1,2,...,Q(T) at p2p_1 = 7. Since each cell
Cy(V;Z) is “constructed” by hypersurfaces that correspond
to decision boundaries B,i"), k=0,1,..., % — 1, and are
obtained be consecutive rotations of V,, . according to (17),
these intersection points lead to ambiguous decision sets about
54,n between neighboring elements of the MPSK alphabet.
The intersection of these sets determines the value of the
corresponding MPSK element s, ,(V;Z) for each cell.

For example, in Fig. 4(a), surfaces H(Vg’;) and ’H(Vlg,:)
(n = 9 and n = 13, respectively) originate from the first
row of V while 7—[(\714,:) (n = 14) comes from the second
row of V. Adding the rest hypersurfaces that originate
from the first row of V, we obtain Fig. 4(b) where we
observe that ¢(V;{1,5,9,13,14}) “leads” % — 1 cells
described by vpoints {A,B,E,¢(V;{1,5,9,13,14})},
{B,C,E,»(V;{1,5,9,13,14})}, and
{C,D,E,¢(V;{1,5,9,13,14})}. Each one of the
aforementioned cells is related with a different candidate
MPSK sequence s,(V;Z). Taking as example the cell
that contains point {4, B, E,®(V;{1,5,9,13,14})}, the
ambiguity of s11(V;{1,5,9,13,14}) in this cell is resolved
by computing the ambiguity decision sets at points A and B
with respect to s; and finding the common MPSK element
of these sets. The same procedure is repeated for the other
two cells.

A MATLAB code that implements the proposed algorithm
following the construction described above is available at
http://www.telecom.tuc.gr/~karystinos.

B. Properties of the Proposed Algorithm

The proposed algorithm visits independently |S(V)| =
O ((MX)2D=1) intersections and computes the candidate
MPSK sequence(s) associated with each intersection. For
each Zoy 1 € C4, the cost of the algorithm is O (@),
d = 1,2,...,D. Therefore, the overall complexity of
the algorithm for the computation of S(V) becomes
O ((MX)2P-1) 0 (MN) = O ((#4X)2P). That is, the pro-
posed algorithm has lower complexity than the method in [12]
(which treats only the cases M = 2 and M = 4) and the
same order of complexity with the algorithms in [7] and [9].
Moreover, it is superior to the algorithms in [7] and [9]
in terms of exact computational cost, parallelizability, and
memory efficiency, as explained below.

Regarding computational cost comparisons, the work in [7]
does not mention the exact size of the constructed candidate
sequence set, but only proves that it is constructed with
complexity O (N?P). As explained in Subsection I-C, the
algorithm in [7] examines at least (,2",) “potential” can-
didate sequences, implying that (,}2") is a lower bound on
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the computational cost that [7] requires to build S(V). This
lower bound is clearly higher than the computational cost of
the proposed approach, as also indicated in Figs. 1 and 2. We
also recall that the work in [9] identifies neither the exact size
of §(V) (or any bounds on it) nor the computational cost (or
any bounds on it) to build S(V).

Regarding parallelizability and memory efficiency, we ob-
serve that the computation of the candidate sequences of S(V)
by the proposed algorithm is performed independently from
cell to cell, which implies that there is no need to store the
data that have been used for each candidate and we only have
to store the “best” sequence that has been met. The memory
utilization of the proposed method is, therefore, minimized,
in contrast to the algorithm in [9] which has large memory
requirement because it utilizes the incremental algorithm for
cell enumeration in arrangements [19], [20] which is memory
inefficient, since it needs to store all the extreme points, all
faces, and their incidences. The fact that the |S (V)| cells
are examined independently of each other (hence, the corre-
sponding candidate sequences are computed independently of
each other) implies that the proposed algorithm is also fully
parallelizable, in sharp contrast to the algorithm in [9].

Finally, we mention that, due to (24), the proposed method
is rank-scalable. If the initial problem is of a high rank that
makes the optimization intractable, then matrix V in (1) can be
approximated by keeping its d strongest principal components.
In such a case, the optimization begins with rank d = 1 and
successive principal components are introduced to increase d
and, hence, expand S(V), until a satisfactory reduced-rank
approximation is reached. Interestingly, according to (23),
S(V.1.4) C S(V.1:441), for any d = 1,2,.... That is, as
we increase the rank of the approximation of V, the new
candidates that are generated are added on the previous ones
and optimality with respect to S(V) is maintained.

IV. SIMULATION STUDIES
A. ML Noncoherent M PSK Sequence Detection

We consider the ML noncoherent sequence receiver for
MPSK signals in a single-input multiple-output (SIMO) sys-
tem with D receive antennas and unknown channel state
information at both transmitter and receiver ends. Let s € AL,
be the transmitted data vector. The N x D observation matrix

Y £ [y1y2 ... yp| contains as columns the N-long data
streams received by the D corresponding antennas, where
Yd = hdernd (31)

is the length-NN signal vector received by the dth antenna,
hg is the corresponding channel coefficient, and ng ~
CN (Onx1,0%Inxn) accounts for additive white complex
Gaussian channel noise, d = 1,2, ..., D. The optimal decision
is given by

A
Sopt = argmax f(Y|s) = argmax f(y1,y2,...,¥pls) (32)

se Al se Al
where f(-|-) represents the pertinent matrix/vector probability
density function of the channel output conditioned on a sym-
bol sequence. Assuming independent and identical Rayleigh
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Fig. 5. 4PSK or 8PSK SER versus SNR of MLSD with sequence length
N = 16 and MRC.

distribution for the D flat-fading channels, the ML sequence
detector (MLSD) decides in favor of [9]-[15]

Sopt = arg mMax HYHS||2 = arg max {SHYYHS} . (33)
N N

SEAY, SEAY,

Therefore, ML noncoherent detection in SIMO systems results
in the fixed-rank quadratic-form maximization problem in (1)
that can be efficiently solved in polynomial time by the
proposed algorithm.

To provide an illustration for the optimal MLSD in SIMO
systems, we consider a 1 x 2 SIMO system with 4PSK (M =
4) and 8PSK (M = 8) transmissions and unknown channel
state information at the receiver. To resolve the phase ambigu-
ity induced by the channel, we utilize differential encoding and
perform ML noncoherent sequence detection implemented by
the proposed algorithm with polynomial complexity of order
o (N 4). The results that we present are averages over 1,000
randomly generated channel realizations. In Fig. 5, we plot the
symbol error rate (SER) of the MLSD receiver for a sequence
length N = 16 as a function of the signal-to-noise ratio (SNR).
As a reference, we include the SER of the maximal ratio
combining (MRC) receiver which assumes known channel
state information at the receiver. We emphasize that the MLSD
receiver cannot be implemented in reasonably small time
through exponential-complexity exhaustive search while the
proposed algorithm offers ML performance with polynomial
computational complexity. For example, for the case M = 8§
and N = 16 in Fig. 5, the exhaustive-search MLSD requires a
search among M ~1 ~ 3.5 x 10'® vectors of length 16 while
the proposed implementation of MLSD performs a search
among N + (%) (%)2 + N(N —1) (& —1) ~ 10* vectors
of length 16.
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ing. ing. forming.

B. Limited-feedback Constant-envelope Transmit Beamform-
ing in MIMO Systems

We consider transmit beamforming on a flat-fading N x D
MIMO communication channel with maximum-SNR filtering
at the receiver end. The number of transmit and receive
antennas is IV and D, respectively. The D x N channel matrix
is denoted by H and assumed to remain stable over some
transmission period, such that it is estimated by the receiver.
The received vector is

y = Hwz +n (34

where w is the NV x 1 beamforming vector, x is the transmitted
symbol, and n represents additive zero-mean disturbance with
covariance matrix R. The receiver utilizes the maximum-SNR
filter R~'Hw to process y and the filter-output SNR is

E{|z?} wHH"R 'Hw. (35)

The objective is to design w to maximize the above expression.

If the receiver has only limited-feedback capabilities, then
the beamforming vector is selected from a predefined MPSK
codebook (which is due to the fact that usually a per-antenna-
element power constraint is enforced at the transmitter, result-
ing in constant-envelope beamforming). In particular, the re-
ceiver computes the beamforming vector w, that maximizes
the filter-output SNR in (35), according to [1]-[8]

Wopt = arg max {WHHHRAHW} .
we Al

In (36), the N x N matrix H®*R~'H has rank D. Therefore,
maximum-SNR limited-feedback transmit beamforming over
the MPSK alphabet results in the quadratic-form maximiza-
tion problem in (1). When the number of transmit antennas
N is large (as in massive MIMO systems) and the number
of receive antennas D is small (if, for example, the receiver
is a mobile terminal), the above optimization problem can
be efficiently solved in polynomial time by the proposed
algorithm.

As an illustration, we consider three MPSK beamforming
codebooks, for M = 4, 8, and 16, and D = 2 receive antennas.
The transmitted symbol x is binary, the channel coefficients
are modeled as i.i.d. zero-mean complex Gaussian and, for
simplicity, the additive disturbance is considered white. The

(36)

results that we present are averages over 1,000 randomly
generated channel realizations. In Fig. 6, we plot the bit
error rate (BER) of 4PSK transmit beamforming and coherent
detection after maximum-SNR filtering at the receiver, for
different values of the number N of transmit antennas. In
Figs. 7 and 8, we repeat for 8PSK and 16PSK beamforming
codebooks. As expected, the BER decreases monotonically
with IV, due to increased space diversity. We note that the op-
timal beamformer w,,; cannot be implemented in reasonably
small time through exponential-complexity exhaustive search
while the proposed algorithm computes wop, With complexity
O (N*). For example, for the case M = 8 and N = 20 in
Fig. 7, the exhaustive-search computation of wop requires a
search among M ~1 ~ 1.4 x 10'7 vectors of length 20 while
the proposed computation of wg, performs a search among
N+ (]g) (M)2+N(Nf 1) (& —1) ~ 1.9 x 10* vectors of

2
length 20.

V. CONCLUSIONS

In this work, we presented a new algorithm for the com-
putation of the MPSK sequence that maximizes a fixed-
rank positive semidefinite quadratic form. Such a form is a
special case of the Rayleigh quotient of a complex matrix.
Our algorithm utilizes auxiliary continuous-valued angles and
partitions the resulting continuous space of solutions into a
set of regions, each of which corresponds to a distinct M/PSK
sequence. The sequence that maximizes the quadratic form is
shown to belong to this set of sequences which defines the new
feasible set for the initial optimization problem. Interestingly,
the feasible set of candidates sequences that is identified
by the proposed algorithm has cardinality polynomial in the
matrix size and is constructed by the proposed algorithm with
complexity polynomial in the matrix size, if the matrix rank
is fixed. Therefore, our algorithm stands as another proof-
by-construction of the polynomial solvability of the fixed-
rank Rayleigh quotient maximization by an MPSK sequence.
Moreover, the analysis of our proposed algorithm clarified its
superiority to the current state of the art in terms of complexity,
computational cost, memory requirement, and parallelizability.
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APPENDIX A
PROOF OF EQ. (10)

To prove that (9) 1is equivalent to (10), that
IS, MaXge AN MAXpeq2D-2x (— 7 7] R {SHVC(¢)} =
MaXge Al MAXyep2p-2 (] R {SHVc(qb)} , it suffices
to show that, for any s € A}, and ¢ € ®?P~2 x (—m, 7],
there exist § € A}, and ¢ € ®2P=2 x (=, &1, such that
s"Ve(p) =sM"Ve(g).

Indeed, consider arbitrary s & A%
(—m, 7] and define

and ¢ € P2P~2 x

2
(9_mM7T m=0,1,...,M—1,
such that 37

s 27 m 2m

- -C < -

A T < arg{cp(@)} < T
where cp () is the Dth element of c(¢). Let ¢ € ®2P~2 x
(—m, ] be the angle vector that consists of the spherical

coordinates of c(¢)e~7%, that is,

(@) £ c(p)e 7, (38)

and define

1>

§=se 9, (39)

Then,

(i) due to (37) and (38), arg{cp(d)} € (-7 7]
$2p-1 € (—7%, 7%, since, due to (5), arg{cp(¢)}
¢ap_1, for any ¢ € ®2P~2 x (—7, 7],

(ii) due to (37) and (39), s € A}, and

(iii) V() EZ’:E; (se=°) " Ve(@)e—i0 = sHVe(g). [

=

APPENDIX B
PROOF OF PROPOSITION 1

(i) Consider T = {iy,i2,...,92p_1} and 2D — 1 hyper-
surfaces H(V;, .), 7—[(VZ2 )y H(Viy,_,..) that correspond
to 2D — 1 rows of V. Since each hypersurface H(V;..)
is described by V,,_c((ﬁ) 0, i = 41,42,...,929p_1, the1r
intersection(s) can be determined by solving \N/'L;é((b) =0.
The latter is satisfied if and only if ¢(¢) belongs to the null
space of V., which is denoted by N'(Vz.. .) and has dimension
greater than or equal to one, since rank(VI ) <2D — 1. Let
VZ = UXWT be the singular value decomposition of VI ,
where U € RP-Dx2D=1) and W e R?P*2P are orthonor-
mal matrices containing the left and right, respectively, singu-
lar vectors and ¥ = [diag (01,09,...,09p-1) 0](2D_1)X2D
contains the singular values 03 > 09 > ... > gap_1 > 0. We
consider two cases.

o If 0op_1 > 0, then N(VI’VQI {(5W.72D 0 € R}
which implies that &(¢p) = W 2D or — ity Since
we require ¢ € ®*P=2 x (—Z, =], only one solution

+ Hg o is valid and its spherical coordinates uniquely
determrne .

o If ;op_1 =0, then rank(vz,:) < 2D — 1 which implies
that there are uncountably many solutions for ¢(¢) that

satisfy V7,.&(¢p) = 0 subject to ¢ € H2P~2x (=% %]

(ii) Consider a row of V, say V,, ., and two hypersurfaces
that originate from it (i.e., they are rotated versions of it),
say the ones that correspond to decision boundaries B,(Cn) and
Bl(”) where 0 < k < < % — 1. Note that the latter inequality
implies that M > RS

Then, according to (17), the intersection of the two hy-
persurfaces contains all points ¢ € ®2P~2 x (—ﬁ, ﬁ} that
satisfy

2kl
e IT T
~
) 2l+1
e —jm

Vm:c((;ﬁ)} =0

cos (%(2/{ +1)) —sin (%(2/6 + 1)) S{Vp.c(¢)}
cos ((20+1)) —sin(F(2+1)) | [R{Vn.c(d)}
=0. (40)
The determinant of the leftmost matrix in (40) is
sm( Z(k—1)) <0, since 0 < k < < & — 1. Hence, (40)
is equlvalent to
%{Vn,:c(¢)}:| _ _
[5}% (V@) = 0<V, .c(¢p)=0. 41

Since the above equation is independent of the selection of
k,l, that is, the pair of rotated versions of V,, ., we conclude
that the intersection of any two or more rotated hypersurfaces

is common and consists of all points ¢ € ®?P~2 x (- 7%, 1]

that satisfy (41), hence, it is a (2D — 3)-manifold in the (2D —

1)-dimensional space. O
APPENDIX C

PROOF OF PROPOSITION 2

(i) Consider an angle vector ¢ with ¢2p_1 = —7; and arbi-
trary ¢,.op_o € ®*P~2 and denote by ¢ € ®2P~2 x (—, 7]

the spherical coordinates of €75 ¢(¢b1.op o, —47 ) that is,
p) = I 5 ( ,l), 42
c(p) = e’ c(drap o, Vi (42)

7 _ 7 (4_2) 21
Then, due to (5), ¢2p—1 = arg{cp(®)} = 57 +

arg{cp(Pr.op_o,—35)} = 25 — I = T, that is,
~ ™ P 2m ™
c <¢1:2D—2a M) =é/ic (¢1:2D—2a _M) : (43)
Moreover, d(V;¢y.0p_o,— 1) = T8 MAKee 42y R{s"V
c(Prop_2: —77)} = argmaxR{(se’ ¥ )* Vel c(prap_a,
se AN
2 € eI arg maR{sMVe($rap o, &)} = e IH
se Al

d (V' €~b1 2D—2 %)

(ii) Consider an angle vector ¢ with ngD 2 = % and
arbitrary ¢.5p_3 € ®2P~3 and ¢op_; € ( S M] Then
T c 2D_
C(¢1:2D737§a¢2D71) = |: (¢15D 3):| (44)

Uif M = 2, ie., sis a binary sequence, then we do not meet these
degenerate cases where the intersection of hypersurfaces is not a point. This
is another point that significantly differentiates the present work from the
work for the binary case in [16].
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and d(V;@1.9p_3, 5, ¢2p—1) = argmaxR{s" Ve (¢ .op_s,

se Al
14 c(¢y.
5:¢2p-1)} 4 arg maxge 4n R {SHV [ (¢1'8D_3)}}

argmaxseAANl%{SHV;,LD—lc(‘ﬁLQD—g)} = d(Vv

¢1:2D—3)'
(iii) Consider an angle vector ¢ with d)gD 9 = —g and
arbitrary ¢, 5 € ®2P73 and ¢op_1 € (—7%, 77 ]. Then,

E,¢2D71> - _ {C (_¢82D3)}

51:D—15

¢ (brap5—5 (45)

(44) T ~

= —cC (*¢1;2D—3»§,¢2D—1)
for any $2D—1 S (—ﬁ,ﬁ] Hence, d(V; 1.9D_3— 5,
¢2p-1) = argmaxeeay R{s"Ve(drop 5,5, 620-1)
(45)

argmaXge AN R{(—8)"Ve(—d1ap_s, 5,02p-1)} =
T argMmaXse 4y R{s*V c(—b1.ap_3:5,P2p-1)} = —d(V;
~@1.9p-3, 5, P2D-1)-

(iv) Consider an angle vector ¢ with ¢op_o = 5
arbitrary ¢.5p_5 € ®2P73 and ¢op_1 € (— 7%, =]. Then,

™
c (¢1:2D737i§>¢2D71) =c (¢1;2D73» 2»¢2D 1)
N (46)
for any ¢op_1 € (=%, 7], since cos(£%) = 0. Hence, d(V

@1.0p_3.E5, P2p-1) arg maxge 4n R{s™ Vc(¢1-2D—37

” (46) -

i2a¢2D 1)y = argmaXSeAN %{S Ve(dyap- 3 T5;

$op- 1)} =d(V; bron_ 3ai2a¢2D 1) O
APPENDIX D

PROOF OF PROPOSITION 3
If D = N, then the cardinality expression in (25) becomes

IS(V)| = 47

2E ()G G-

By interchanging summations and making some variable sub-
stitutions, the above equation is transformed into the equivalent
form'?

w-£ £ (0 E )

d odd
-F) sEOCNE G
2 == ) d 2 2
d odd
B M —1 i\f: N % . i N—1 N —i % d
S\ 2 i 2 d 2
1=0 d=0,
d odd
(48)
‘We consider the binomial formula
(a+d)" =Y (Z) a*onF (49)

k=0

12As in most binomial and multinomial proofs, quantities of the form 0°
are assumed to be equal to 1.

which holds for any a,b € R and n, k € N, and the fact that
the sum of the coefficients of the odd terms of the expansion
of (a+ b)™ is equal to the sum of the coefficients of the even
terms. Then,

SO HECTE) e

d=0, d=0
d odd
Therefore, (48) becomes
IS(VNxn)|
ML N M iN—i N M\
-(5) OE-) D E
2 o\ 2 = d 2
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