
GIST: Distributed Training for Large-Scale

Graph Convolutional Networks

Cameron R. Wolfe1†, Jingkang Yang3†, Fangshuo
Liao1†, Arindam Chowdhury2, Chen Dun1, Artun

Bayer2, Santiago Segarra2 and Anastasios Kyrillidis1

1Department of Computer Science, Rice University, 6100 Main
Street, Houston, 77005, Texas, USA.

2Department of Electrical and Computer Engineering, Rice
University, 6100 Main Street, Houston, 77005, Texas, USA.
3School of Computer Science and Engineering, Nanyang

Technology University, 50 Nanyang Avenue, Singapore, 639798.

Contributing authors: crw13@rice.edu;
†These authors contributed equally to this work.

Abstract

The graph convolutional network (GCN) is a go-to solution for machine
learning on graphs, but its training is notoriously difficult to scale both in
terms of graph size and the number of model parameters. Although some
work has explored training on large-scale graphs, we pioneer efficient train-
ing of large-scale GCN models with the proposal of a novel, distributed
training framework, called GIST. GIST disjointly partitions the parameters
of a GCN model into several, smaller sub-GCNs that are trained indepen-
dently and in parallel. Compatible with all GCN architectures and existing
sampling techniques, GIST i) improves model performance, ii) scales to
training on arbitrarily large graphs, iii) decreases wall-clock training
time, and iv) enables the training of markedly overparameterized GCN
models. Remarkably, with GIST, we train an astonishgly-wide 32 768-
dimensional GraphSAGE model, which exceeds the capacity of a single
GPU by a factor of 8×, to SOTA performance on the Amazon2M dataset.

Keywords: Graph Neural Networks, Distributed Training, Efficient Training,
Overparameterization

1

2 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

1 Introduction

Since not all data can be represented in Euclidean space [1], many applications
rely on graph-structured data. For example, social networks can be modeled as
graphs by regarding each user as a node and friendship relations as edges [2, 3].
Alternatively, in chemistry, molecules can be modeled as graphs, with nodes
representing atoms and edges encoding chemical bonds [4, 5].

To better understand graph-structured data, several (deep) learning tech-
niques have been extended to the graph domain [6–8]. Currently, the most
popular one is the graph convolutional network (GCN) [9], a multi-layer archi-
tecture that implements a generalization of the convolution operation to graphs.
Although the GCN handles node- and graph-level classification, it is notori-
ously inefficient and unable to support large graphs [10–15], making practical,
large-scale applications difficult to handle.

To deal with these issues, node partitioning methodologies have been
developed. These schemes can be roughly categorized into neighborhood sam-
pling [11, 16, 17] and graph partitioning [15, 18] approaches. The goal is to
partition a large graph into multiple smaller graphs that can be used as mini-
batches for training the GCN. In this way, GCNs can handle larger graphs
during training, expanding their potential into the realm of big data. However,
the size of the underlying model is still limited by available memory capacity,
thus placing further constraints on the scale of GCN experimentation.

Although some papers perform large-scale experiments [15, 18], the models
(and data) used in GCN research remain small in the context of deep learning [9,
19], where the current trend is towards incredibly large models and datasets
[20, 21]. Despite the widespread moral questioning of this trend [22–24], the deep
learning community continues to push the limits of scale. Overparameterized
models yield improvements in tasks like zero/few-shot learning [25, 26], are
capable of discovering generalizable solutions [27], and even have desirable
theoretical properties [28].

Although deeper GCNs may perform poorly due to oversmoothing [9,
29], GCNs should similarly benefit from overparameterization, meaning that
larger hidden layers may be beneficial. Furthermore, recent work indicates
that overparameterization is most impactful on larger datasets [30], making
overparameterized models essential as GCNs are applied to practical problems
at scale. Moving in this direction, our work provides an efficient training
framework for wide, overparameterized GCN models—beyond the memory
capacity of a single GPU—of any architecture that is compatible with existing
training techniques.

This paper. Inspired by independent subnetwork training (IST) [31], our
methodology randomly partitions the hidden feature space in each layer, decom-
posing the global GCN model into multiple, narrow sub-GCNs of equal depth.
Sub-GCNs are trained independently for several iterations in parallel prior to
having their updates synchronized; see Figure 1. This process of randomly parti-
tioning, independently training, and synchronizing sub-GCNs is repeated until

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 3

Cluster

Batch #2

Global
GCN

Model

subGCNs

subAgg

subTrain #1

Batch #1
subTrain #2

Fig. 1: GIST pipeline: subGCNs divides the global GCN into sub-GCNs. Every
sub-GCN is trained by subTrain using mini-batches (smaller sub-graphs)
generated by Cluster. Sub-GCN parameters are intermittently aggregated

through subAgg.

convergence. We call this method Graph Independent Subnetwork Training
(GIST), as it extends the IST framework to the training of GCNs.

Though IST was previously unexplored in this domain, we find that GIST
pairs well with any GCN architecture, is compatible with node sampling
techniques, can scale to arbitrarily large graphs, and significantly reduces wall-
clock training time, allowing larger models and datasets to be explored. In
particular, we focus on training “ultra-wide” GCNs (i.e., GCN models with
very large hidden layers), as deeper GCNs are prone to oversmoothing [29]
and GISTs model partitioning strategy can mitigate the memory overhead of
training these wider GCNs.

The contributions of this work are as follows:
• We develop a novel extension of IST for training GCNs, show that it works well

for training GCNs with a variety of architectures, and demonstrate its com-
patibility with commonly-used GCN training techniques like neighborhood
sampling and graph partitioning.

• We show that GIST can be used to reach state-of-the-art performance with
reduced training time relative to standard training methodologies. GIST is a
compatible addition to GCN training that improves efficiency.

• We propose a novel Graph Independent Subnetwork Training Kernel (GIST-K)
that allows a convergence rate to be derived for two-layer GCNs trained with
GIST in the infinite width regime. Based on GIST-K, we provide theory that
GIST converges linearly –up to an error neighborhood– using distributed
gradient descent with local iterations. We show that the radius of the error
neighborhood is controlled by the overparameterization parameter, as well
as the number of workers in the distributed setting. Such findings reflect
practical observations that are made in the experimental section.

• We use GIST to enable the training of markedly overparameterized GCN
models. In particular, GIST is used to train a two-layer GraphSAGE model
with a hidden dimension of 32 768 on the Amazon2M dataset. Such a model
exceeds the capacity of a single GPU by 8×.

4 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

GIST Partitioning

Standard
3-layer
GCN !!

(a) 3-layer GIST
w/ input partition

d0

n d0 d1

d1 d2

d2

d3

d0

n d0 d1

d1 d2

d2

d3

mask mask mask

(b) 3-layer GIST
w/o input partition

d0

n d0 d1

d1 d2

d2

d3

mask mask

n

n

n

n

n

n

!!n

n

n

n

n

n

!!n

n

n

n

n

n

Fig. 2: GCN partition into m = 2 sub-GCNs. Orange and blue colors depict
different feature partitions. Both hidden dimensions (d1 and d2) are

partitioned. The output dimension (d3) is not partitioned. Partitioning the
input dimension (d0) is optional, but we do not partition d0 in GIST.

2 What is the GIST of this work?

Algorithm 1 GIST Algorithm

1: Parameters: T synchronization iterations, m sub-GCNs,
2: ζ local iterations, c clusters, G training graph.
3:

4: ΨG(· ; Θ) ← randomly initialize GCN
5: {G(j)}cj=1 ← Cluster(G, c)
6: for t = 0, . . . , T − 1 do
7:

{
ΨG(· ; Θ(i))

}m
i=1
← subGCNs(ΨG(· ; Θ),m)

8: Distribute each ΨG(· ; Θ(i)) to a different worker
9: for i = 1, . . . ,m do

10: for z = 1, . . . , ζ do
11: ΨG(· ; Θ(i))← subTrain(Θ(i), {G(j)}cj=1)
12: end for
13: end for
14: ΨG(· ; Θ)← subAgg({Θ(i)}mi=1)
15: end for

GCN Architecture. The GCN [9] is arguably the most widely-used neural
network architecture on graphs. Consider a graph G comprised of n nodes
with d-dimensional features X ∈ Rn×d. The output Y ∈ Rn×d′

of a GCN
can be expressed as Y = ΨG(X; Θ), where ΨG is an L-layered architecture
with trainable parameters Θ. If we define H0 = X, we then have that Y =
ΨG(X; Θ) = HL, where an intermediate ℓ-th layer of the GCN is given by

Hℓ+1 = σ(ĀHℓ Θℓ). (1)

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 5

In (1), σ(·) is an elementwise activation function (e.g., ReLU), Ā is the
degree-normalized adjacency matrix of G with added self-loops, and the train-
able parameters Θ = {Θℓ}L−1

ℓ=0 have dimensions Θℓ ∈ Rdℓ×dℓ+1 with d0 = d
and dL = d′. In Figure 2 (top), we illustrate nested GCN layers for L = 3,
but our methodology extends to arbitrary L. The activation function of the
last layer is typically the identity or softmax transformation – we omit this in
Figure 2 for simplicity.

GIST overview. We overview GIST in Algorithm 1 and present a schematic
depiction in Figure 1. We partition our (randomly initialized) global GCN into
m smaller, disjoint sub-GCNs with the subGCNs function (m = 2 in Figures 1
and 2) by sampling the feature space at each layer of the GCN; see Section 2.1.
Each sub-GCN is assigned to a different worker (i.e., a different GPU) for ζ
rounds of distributed, independent training through subTrain. Then, newly-
learned sub-GCN parameters are aggregated (subAgg) into the global GCN
model. This process repeats for T iterations. Our graph domain is partitioned
into c sub-graphs through the Cluster function (c = 2 in Figure 1). This
operation is only relevant for large graphs (n > 50 000), and we omit it (c = 1)
for smaller graphs that don’t require partitioning.1

2.1 subGCNs: Constructing Sub-GCNs

GIST partitions a global GCN model into several narrower sub-GCNs of equal
depth. Formally, consider an arbitrary layer ℓ and a random, disjoint partition

of the feature set [dℓ] = {1, 2, . . . , dℓ} into m equally-sized blocks {D(i)
ℓ }mi=1.

2

Accordingly, we denote by Θ
(i)
ℓ = [Θℓ]D(i)

ℓ ×D(i)
ℓ+1

the matrix obtained by select-

ing from Θℓ the rows and columns given by the ith blocks in the partitions
of [dℓ] and [dℓ+1], respectively. With this notation in place, we can define m

different sub-GCNs Y(i) = ΨG(X
(i); Θ(i)) = H

(i)
L where H

(i)
0 = X

[n]×D(i)
0

and

each layer is given by:

H
(i)
ℓ+1 = σ(ĀH

(i)
ℓ Θ

(i)
ℓ). (2)

Notably, not all parameters within the global GCN model are partitioned
to a sub-GCN. However, by randomly re-constructing new groups of sub-
GCNs according to a uniform distribution throughout the training process, all
parameters have a high likelihood of being updated. In section 4, we provide
theoretical guarantees that the partitioning of model parameters to sub-GCNs
does not harm training performance.

Sub-GCN partitioning is illustrated in Figure 2-(a), where m = 2. Parti-
tioning the input features is optional (i.e., (a) vs. (b) in Figure 2). We do

1Though any clustering method can be used, we advocate the use of METIS [32, 33] due to its
proven efficiency in large-scale graphs.

2For example, if dℓ = 4 and m = 2, one valid partition would be given by D(1)
ℓ = {1, 4} and

D(2)
ℓ = {2, 3}.

6 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

not partition the input features within GIST so that sub-GCNs have identical
input information (i.e., X(i) = X for all i); see Section 5.1. Similarly, we do
not partition the output feature space to ensure that the sub-GCN output
dimension coincides with that of the global model, thus avoiding any need to
modify the loss function. This decomposition procedure (subGCNs function in
Algorithm 1) extends to arbitrary L.

2.2 subTrain: Independently Training Sub-GCNs

Assume c = 1 so that the Cluster operation in Algorithm 1 is moot and
{G(j)}cj=1 = G. Because Y(i) and Y share the same dimension, sub-GCNs
can be trained to minimize the same global loss function. One application of
subTrain in Algorithm 1 corresponds to a single step of stochastic gradient
descent (SGD). Inspired by local SGD [34], multiple, independent applications
of subTrain are performed in parallel (i.e., on separate GPUs) for each sub-
GCN prior to aggregating weight updates. The number of independent training
iterations between synchronization rounds, referred to as local iterations, is
denoted by ζ, and the total amount of training is split across sub-GCNs.3

Ideally, the number sub-GCNs and local iterations should be increased as much
as possible to minimize communication and training costs. In practice, however,
such benefits may come at the cost of statistical inefficiency; see Section 5.1.

If c > 1, subTrain first selects one of the c subgraphs in {G(j)}cj=1 to use as a
mini-batch for SGD. Alternatively, the union of several sub-graphs in {G(j)}cj=1

can be used as a mini-batch for training. Aside from using mini-batches for each
SGD update instead of the full graph, the use of graph partitioning does not
modify the training approach outlined above. Some form of node sampling must
be adopted to make training tractable when the full graph is too large to fit into
memory. However, both graph partitioning and layer sampling are compatible
with GIST (see Sections 5.2 and 5.4). We adopt graph partitioning in the main
experiments due to the ease of implementation. The novelty of our work lies in
the feature partitioning strategy of GIST for distributed training, which is an
orthogonal technique to node sampling; see Figure 3 and Section 2.4.

2.3 subAgg: Aggregating Sub-GCN Parameters

After each sub-GCN completes ζ training iterations, their updates are aggre-
gated into the global model (subAgg function in Algorithm 1). Within
subAgg, each worker replaces global parameter entries within Θ with its own,
independently-trained sub-GCN parameters Θ(i), where no collisions occur
due to the disjointness of sub-GCN partitions. Thus, subAgg is a basic copy
operation that transfers sub-GCN parameters into the global model.

Not every parameter in the global GCN model is updated by subAgg because,
as previously mentioned, parameters exist that are not partitioned to any sub-
GCN by the subGCNs operation. For example, focusing on Θ1 in Figure 2-(a),

3For example, if a global model is trained on a single GPU for 10 epochs, a comparable experiment
for GIST with two sub-GCNs would train each sub-GCN for only 5 epochs.

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 7

Fig. 3: Illustrates the difference between GIST and node sampling techniques
within the forward pass of a single GCN layer (excluding non-linear

activation). While graph partitioning and layer sampling remove nodes from
the forward pass (i.e., either completely or on a per-layer basis), GIST

partitions node feature representations (and, in turn, model parameters)
instead of the nodes themselves.

one worker will be assigned Θ
(1)
1 (i.e., overlapping orange blocks), while the

other worker will be assigned Θ
(2)
1 (i.e., overlapping blue blocks). The rest of

Θ1 is not considered within subAgg. Nonetheless, since sub-GCN partitions are
randomly drawn in each cycle t, one expects all of Θ to be updated multiple
times if T is sufficiently large.

2.4 What is the value of GIST?

Architecture-Agnostic Distributed Training. GIST is a generic, distributed
training methodology that can be used for any GCN architecture. We implement
GIST for vanilla GCN, GraphSAGE, and GAT architectures, but GIST is not
limited to these models; see Section 5.

Compatibility with Sampling Methods. GIST is NOT a replacement for
graph or layer sampling. Rather, it is an efficient, distributed training technique
that can be used in tandem with node partitioning. As depicted in Figure 3,
GIST partitions node feature representations and model parameters between
sub-GCNs, while graph partitioning and layer sampling sub-sample nodes
within the graph.

Interestingly, we find that GIST’s feature and parameter partitioning strategy
is compatible with node partitioning—the two approaches can be combined
to yield further efficiency benefits. For example, GIST is combined with graph
partitioning strategies in Section 5.2 and with layer sampling methodologies in
Section 5.4. As such, we argue that GIST offers an easy add-on to GCN training
that makes larger scale experiments more feasible.

Enabling Ultra-Wide GCN Training. GIST indirectly updates the global
GCN through the training of smaller sub-GCNs, enabling models with hidden
dimensions that exceed the capacity of a single GPU to be trained; in our
experiments, we show results where GIST allows training of models beyond the
capacity of a single GPU by a factor of 8×. In this way, GIST allows markedly

8 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

overparametrized (“ultra-wide”) GCN models to be trained on existing hard-
ware. In Section 5.2, we leverage this capability to train a two-layer GCN model
with a hidden dimension of 32 768 on Amazon2M.

Overparameterization through width is especially relevant to GCNs because
deeper models suffer from oversmoothing [29]. Additionally, the theoretical
results provided within Section 4 reveal that the performance of GIST is best
as the number of neurons within each hidden layer is increased, which further
reveals the benefit of wide, overparameterized layers. We do not explore depth-
wise partitions of different GCN layers to each worker, but rather focus solely
upon partitioning the hidden neurons within each layer.

Improved Model Complexity. Consider a single GCN layer, trained over
M machines with input and output dimension of di−1 and di, respectively.
For one synchronization round, the communication complexity of GIST and
standard distributed training is O(1

M didi−1) and O(Mdidi−1), respectively.
GIST reduces communication by only communicating sub-GCN parameters.
Existing node partitioning techniques cannot similarly reduce communication
complexity because model parameters are never partitioned. Furthermore,
the computational complexity of the forward pass for a GCN model trained
with GIST and using standard methodology is O(1

MN2di +
1

M2Ndidi−1) and
O(N2di + Ndidi−1), respectively, where N is the number of nodes in the
partition being processed.4 Node partitioning can reduce N by a constant
factor but is compatible with GIST.

Relation to IST. Our work extends the IST distributed training framework—
originally proposed for fully-connected network architectures [31]—to GCNs.
Due to the unique aspects of GCN training (e.g., non-euclidean data and
aggregation of node features), it was previously unclear whether IST would
work well in this domain. Though IST is applicable to a variety of architectures,
we find that it is especially useful for efficiently training GCNs to high accuracy.
GIST i) provides speedups and performance benefits, ii) is compatible with other
efficient GCN training methods, and iii) enables training of uncharacteristically-
wide GCN models, allowing overparameterized GCNs to be explored via greater
width. The practical utility of GIST and interplay of the approach with unique
aspects of GCN training differentiate our work from the original IST proposal.

3 Related Work

GCN training. In spite of their widespread success in several graph related
tasks, GCNs often suffer from training inefficiencies [12, 13]. Consequently, the
research community has focused on developing efficient and scalable algorithms
for training GCNs [10, 11, 15–18]. The resulting approaches can be divided
roughly into two areas: neighborhood sampling and graph partitioning. However,
it is important to note that these two broad classes of solutions are not mutually
exclusive, and reasonable combinations of the two approaches may be beneficial.

4We omit the complexity of applying the element-wise activation function for simplicity.

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 9

Neighborhood sampling methodologies aim to sub-select neighboring nodes
at each layer of the GCN, thus limiting the number of node representations in the
forward pass and mitigating the exponential expansion of the GCNs receptive
field. VRGCN [10] implements a variance reduction technique to reduce the
sample size in each layer, which achieves good performance with smaller
graphs. However, it requires to store all the intermediate node embeddings
during training, leading to a memory complexity close to full-batch training.
GraphSAGE [16] learns a set of aggregator functions to gather information
from a node’s local neighborhood. It then concatenates the outputs of these
aggregation functions with each node’s own representation at each step of
the forward pass. FastGCN [11] adopts a Monte Carlo approach to evaluate
the GCN’s forward pass in practice, which computes each node’s hidden
representation using a fixed-size, randomly-sampled set of nodes. LADIES [17]
introduces a layer-conditional approach for node sampling, which encourages
node connectivity between layers in contrast to FastGCN [11].

Graph partitioning schemes aim to select densely-connected sub-graphs
within the training graph, which can be used to form mini-batches during
GCN training. Such sub-graph sampling reduces the memory footprint of GCN
training, thus allowing larger models to be trained over graphs with many nodes.
ClusterGCN [18] produces a very large number of clusters from the global graph,
then randomly samples a subset of these clusters and computes their union
to form each sub-graph or mini-batch. Similarly, GraphSAINT [15] randomly
samples a sub-graph during each GCN forward pass. However, GraphSAINT
also considers the bias created by unequal node sampling probabilities during
sub-graph construction, and proposes normalization techniques to eliminate
this bias.

As explained in Section 2, GIST also relies on graph partitioning techniques
(Cluster) to handle large graphs. However, the feature sampling scheme at
each layer (subGCNs) that leads to parallel and narrower sub-GCNs is a hitherto
unexplored framework for efficient GCN training.

Distributed training. Distributed training is a heavily studied topic [35, 36].
Our work focuses on synchronous and distributed training techniques [37–39].
Some examples of synchronous, distributed training approaches include data
parallel training, parallel SGD [40, 41], and local SGD [34, 42]. Our methodology
holds similarities to model parallel training techniques, which have been heavily
explored [43–49]. More closely, our approach is inspired by IST, explored for
feed-forward networks in [31]. Later work analyzed IST theoretically [50] and
extended its use to more complex ResNet architectures [51]. We explore the
extension of IST to the GCN architecture both theoretically and empirically,
finding that IST-based methods are suited well for GCN training. However,
the IST framework is applicable to network architectures beyond the GCN.

10 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

4 Theoretical Results

We draw upon analysis related to neural tangent kernels (NTK) [52] to derive
a convergence rate for two-layer GCNs using gradient descent—as formulated
in (1) and further outlined in Appendix C.1—trained with GIST. Given the
scaled Gram matrix of an infinite-dimensional NTK H∞, we define the Graph
Independent Subnetwork Training Kernel (GIST-K) as follows:

G∞ = ĀH∞Ā.

Given the GIST-K, we adopt the following set of assumptions related to the
underlying graph; see Appendix C.3 for more details.

Notations. Let n denote the number of nodes (training samples) in graph
of interest, d = d0 be dimension of the feature vector of each node, and m be the
number of sub-GCNs in procedure 4. Let λ0 = λmin (G

∞) and λ∗ = λmax (G
∞)

be the minimum and maximum eigenvalue of G∞, respectively. Lastly, we
denote E[Mt][·] = EM0,...,Mt [·] to denote the total expectation with respect to
M0, . . . ,Mt.

Assumption 1. Assume λmin(Ā) ̸= 0 and there exists ϵ ∈ (0, 1) and p ∈ Z+

such that (1− ϵ)2p ≤ Dii ≤ (1 + ϵ)2p for all i ∈ [n] = {1, 2, . . . , n}, where D is
the degree matrix. Additionally, assume that i) input node representations are
bounded in norm and not parallel to any other node representation, ii) output
node representations are upper bounded, iii) sub-GCN feature partitions are
generated at each iteration from a categorical distribution with uniform mean
1
m .

Given this set of assumptions, we can guarantee that λ0 > 0 (a detailed
discussion is deferred to Section C.5). Under such conditions, we derive the
following result for GCN models trained with GIST.

Theorem 1. Suppose assumptions 2-4 hold. Moreover, suppose in each global
iteration the masks are generated from a categorical distribution with uni-
form mean 1/m. Fix the number of global iterations to T and local iterations
to ζ. Consider a two-layer GCN with parameters Θ. If each entry of Θ is
initialized I.I.D. from N (0, κ2I), and the number of hidden neurons satisfies

d1 ≥ Ω
(

T 2ζ2n
λ4
0(1−γ)2

max
{

n3

δ2κ2 ,
n2d
δ2

∥∥Ā2
∥∥
1,1

, T 2λ∗2d
})

, then procedure (4) with

constant step size η = O
(

λ0

n∥Ā2∥
1,1

)
converges according to

E[Mt−1]

[
∥y − ŷ(t)∥22

]
≤

(
γ + (1− γ)

(
1− ηλ0

2

)ζ
)t

∥y − ŷ(0)∥22 +

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 11

O
(

γ2dκ2λ∗2

m2(1− γ)λ2
0

∥∥Ā2
∥∥
1,1

)

with probability at least 1− δ, where γ =
(
1−m−1

) 1
3 .

A full proof of this result is deferred to Appendix C, but a sketch of the
techniques used is as follows:
1. We define the GIST-K and show that it remains positive definite throughout

training given our assumptions and sufficient overparameterization.
2. We show that local sub-GCN training converges linearly, given a positive

definite GIST-K.
3. We analyze the change in training error when sub-GCNs are sampled

(subGCNs), locally trained (subTrain), and aggregated (subAgg).
4. We establish a connection between local and aggregated weight pertur-

bation, showing that network parameters are bounded by a small region
centered around the initialization given sufficient overparameterization.

Discussion. Stated intuitively, the result in Theorem 1 shows that, given
sufficient width, two-layer GCNs trained using GIST converge to approximately
zero training error. The convergence rate is linear and on par with training the
full, two-layer GCN model (i.e., without the feature partition utilized in GIST),
up to an error neighborhood. Notice choosing a smaller initialization scale κ
will result in a smaller size of the error neighborhood but at the same time a
larger overparameterization requirement. Such theory shows that the feature
partitioning strategy of GIST does not cause the model to diverge in training.
Additionally, the theory suggests that wider GCN models should be used to
maximize the convergence rate of GIST and minimize the impact of the additive
term within Theorem 1. Such findings reflect practical observations that are
made within Section 5 and reveal that GIST is particularly-suited towards
training extremely wide models that cannot be trained using a traditional,
centralized approach on a single GPU due to limited memory capacity.

5 Experiments

We use GIST to train different GCN architectures on six public, multi-node
classification datasets; see Appendix A for details. In most cases, we compare
the performance of models trained with GIST to that of models trained with
standard methods (i.e., single GPU with node partitioning). Comparisons
to models trained with other distributed methodologies are also provided in
Appendix B. Experiments are divided into small and large scale regimes based
upon graph size. The goal of GIST is to i) train GCN models to state-of-the-art
performance, ii) minimize wall-clock training time, and iii) enable training of
very wide GCN models.

12 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

m d0 d1 d2 Cora Citeseer Pubmed OGBN-Arxiv

Baseline 81.52 ± 0.005 75.02 ± 0.018 75.90 ± 0.003 70.85 ± 0.089

2 ✓ ✓ ✓ 80.00 ± 0.010 75.95 ± 0.007 76.68 ± 0.011 65.65 ± 0.700
✓ ✓ 78.30 ± 0.011 69.34 ± 0.018 75.78 ± 0.015 65.33 ± 0.347

✓ ✓ 80.82 ± 0.010 75.82 ± 0.008 78.02 ± 0.007 70.10 ± 0.224

4 ✓ ✓ ✓ 76.78 ± 0.017 70.66 ± 0.011 65.67 ± 0.044 54.21 ± 1.360
✓ ✓ 66.56 ± 0.061 68.38 ± 0.018 68.44 ± 0.014 52.64 ± 1.988

✓ ✓ 81.18 ± 0.007 76.21 ± 0.017 76.99 ± 0.006 68.69 ± 0.579

8 ✓ ✓ ✓ 48.32 ± 0.087 45.42 ± 0.092 54.29 ± 0.029 40.26 ± 1.960
✓ ✓ 53.60 ± 0.020 54.68 ± 0.030 51.44 ± 0.002 26.84 ± 7.226

✓ ✓ 79.58 ± 0.006 75.39 ± 0.016 76.99 ± 0.006 65.81 ± 0.378

Table 1: Test accuracy of GCN models trained on small-scale datasets with
GIST. We selectively partition each feature dimension within the GCN model,
indicated by a check mark. Partitioning on all hidden layers except the input

layer leads to optimal performance.

5.1 Small-Scale Experiments

In this section, we perform experiments over Cora, Citeseer, Pubmed, and
OGBN-Arxiv datasets [53, 54]. For these small-scale datasets, we train a three-
layer, 256-dimensional GCN model [9] with GIST; see Appendix A.3 for further
experimental settings. All reported metrics are averaged across five separate
trials. Because these experiments run quickly, we use them to analyze the
impact of different design and hyperparameter choices rather than attempting
to improve runtime (i.e., speeding up such short experiments is futile).

Which layers should be partitioned? We investigate whether models
trained with GIST are sensitive to the partitioning of features within certain
layers. Although the output dimension d3 is never partitioned, we selectively
partition dimensions d0, d1, and d2 to observe the impact on model perfor-
mance; see Table 1. Partitioning input features (d0) significantly degrades test
accuracy because sub-GCNs observe only a portion of each node’s input fea-
tures (i.e., this becomes more noticeable with larger m). However, other feature
dimensions cause no performance deterioration when partitioned between sub-
GCNs, leading us to partition all feature dimensions other than d0
and dL within the final GIST methodology; see Figure 2-(b).

How many Sub-GCNs to use? Using more sub-GCNs during GIST training
typically improves runtime because sub-GCNs i) become smaller, ii) are each
trained for fewer epochs, and iii) are trained in parallel. We find that all
models trained with GIST perform similarly for practical settings of
m; see Table 1. One may continue increasing the number sub-GCNs used within
GIST until all GPUs are occupied or model performance begins to decrease.

GIST Performance. Models trained with GIST often exceed the performance of
models trained with standard, single-GPU methodology; see Table 1. Intuitively,
we hypothesize that the random feature partitioning within GIST, which loosely

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 13

L m
Reddit Dataset

GraphSAGE GAT

F1 Time Speedup F1 Time Speedup

2 - 96.09 105.78s 1.00× 89.57 1.19hr 1.00×
2 96.40 70.29s 1.50× 90.28 0.58hr 2.05×
4 96.16 68.88s 1.54× 90.02 0.31hr 3.86×
8 95.46 76.68s 1.38× 89.01 0.18hr 6.70×

3 - 96.32 118.37s 1.00× 89.25 2.01hr 1.00×
2 96.36 80.46s 1.47× 89.63 0.95hr 2.11×
4 95.76 78.74s 1.50× 88.82 0.48hr 4.19×
8 94.39 88.54s (1.34×) 70.38 0.26hr (7.67×)

4 - 96.32 120.74s 1.00× 88.36 2.77hr 1.00×
2 96.01 91.75s 1.32× 87.97 1.31hr 2.11×
4 95.21 78.74s (1.53×) 78.42 0.66hr (4.21×)
8 92.75 88.71s (1.36×) 66.30 0.35hr (7.90×)

L m
Amazon2M Dataset

GraphSAGE (di = 400) GraphSAGE (di = 4 096)

F1 Time Speedup F1 Time Speedup

2 - 89.90 1.81hr 1.00× 91.25 5.17hr 1.00×
2 88.36 1.25hr (1.45×) 90.70 1.70hr 3.05×
4 86.33 1.11hr (1.63×) 89.49 1.13hr (4.57×)
8 84.73 1.13hr (1.61×) 88.86 1.11hr (4.65×)

3 - 90.36 2.32hr 1.00× 91.51 9.52hr 1.00×
2 88.59 1.56hr (1.49×) 91.12 2.12hr 4.49×
4 86.46 1.37hr (1.70×) 89.21 1.42hr (6.72×)
8 84.76 1.37hr (1.69×) 86.97 1.34hr (7.12×)

4 - 90.40 3.00hr 1.00× 91.61 14.20hr 1.00×
2 88.56 1.79hr (1.68×) 91.02 2.77hr 5.13×
4 87.53 1.58hr (1.90×) 89.07 1.65hr (8.58×)
8 85.32 1.56hr (1.93×) 87.53 1.55hr (9.13×)

Table 2: Performance of models trained with GIST on Reddit and Amazon2M.
Parenthesis are placed around speedups achieved at a cost of >1 deterioration
in F1 and m =“-” refers to the baseline. Models trained with GIST train more

quickly and achieve comparable F1 score to those trained with standard
methodology. The performance benefits of GIST become more pronounced for

wider models.

resembles dropout [55], provides regularization benefits during training, but
some insight into the favorable performance of GIST is also provided by the
theoretical guarantees outlined in Section 4.

5.2 Large-Scale Experiments

For large-scale experiments on Reddit and Amazon2M, the baseline model is
trained on a single GPU and compared to models trained with GIST in terms
of F1 score and training time. All large-scale graphs are partitioned into 15 000

14 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

sub-graphs during training.5 Graph partitioning is mandatory because the
training graphs are too large to fit into memory. One could instead use layer
sampling to make training tractable (see Section 5.4), but we adopt graph
partitioning in most experiments because the implementation is simple and
performs well.

Reddit Dataset. We perform tests with 256-dimensional GraphSAGE [16]
and GAT [19] models with two to four layers on Reddit; see Appendix A.4 for
more details. As shown in Table 2, utilizing GIST significantly accelerates GCN
training (i.e., a 1.32× to 7.90× speedup). GIST performs best in terms of F1
score with m = 2 sub-GCNs (i.e., m = 4 yields further speedups but F1 score
decreases). Interestingly, the speedup provided by GIST is more significant for
models and datasets with larger compute requirements. For example, experiments
with the GAT architecture, which is more computationally expensive than
GraphSAGE, achieve a near-linear speedup with respect to m.

Amazon2M Dataset. Experiments are performed with two, three, and four-
layer GraphSAGE models [16] with hidden dimensions of 400 and 4 096 (we
refer to these models as “narrow” and “wide”, respectively). We compare
the performance (i.e., F1 score and wall-clock training time) of GCN models
trained with standard, single-GPU methodology to that of models trained with
GIST; see Table 2. Narrow models trained with GIST have a lower F1 score
in comparison to the baseline, but training time is significantly reduced. For
wider models, GIST provides a more significant speedup (i.e., up to 7.12×) and
tends to achieve comparable F1 score in comparison to the baseline, revealing
that GIST works best with wider models.

Within Table 2, models trained with GIST tend to achieve a wall-clock
speedup at the cost of a lower F1 score (i.e., observe the speedups marked
with parenthesis in Table 2). When training time is analyzed with respect to a
fixed F1 score, we observe that the baseline takes significantly longer than GIST

to achieve a fixed F1 score. For example, when L = 2, a wide GCN trained
with GIST (m = 8) reaches an F1 score of 88.86 in ∼ 4 000 seconds, while
models trained with standard methodology take ∼ 10 000 seconds to achieve a
comparable F1 score. As such, GIST significantly accelerates training relative to
model performance.

5.3 Training Ultra-Wide GCNs

We use GIST to train GraphSAGE models with widths as high as 32 000 (i.e.,
8× beyond the capacity of a single GPU); see Table 3 for results and Appendix
A.5 for more details. Considering L = 2, the best-performing, single-GPU
GraphSAGE model (di = 4 096) achieves an F1 score of 90.58 in 5.2 hours.
With GIST (m = 2), we achieve a higher F1 score of 90.87 in 2.8 hours (i.e., a
1.86× speedup) using di = 8 192, which is beyond single GPU capacity. Similar

5Single-GPU training with graph partitioning via METIS is the same approach adopted by
ClusterGCN [18], making our single-GPU baseline a ClusterGCN model. We adopt the same
number of sub-graphs as proposed in this work.

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 15

L m
F1 Score (Time in hours)

di = 400 di = 4 096 di = 8 192 di = 16 384 di = 32 768

2 - 89.38 (1.81) 90.58 (5.17) OOM OOM OOM
2 87.48 (1.25) 90.09 (1.70) 90.87 (2.76) 90.94 (9.31) 90.91 (32.31)
4 84.82 (1.11) 88.79 (1.13) 89.76 (1.49) 90.10 (2.24) 90.17 (5.16)
8 82.56 (1.13) 87.16 (1.11) 88.31 (1.20) 88.89 (1.39) 89.46 (1.76)

3 - 89.73 (2.32) 90.99 (9.52) OOM OOM OOM
2 87.79 (1.56) 90.40 (2.12) 90.91 (4.87) 91.05 (17.7) OOM
4 85.30 (1.37) 88.51 (1.42) 89.75 (2.07) 90.15 (3.44) OOM
8 82.84 (1.37) 86.12 (1.34) 88.38 (1.37) 88.67 (1.88) 88.66 (2.56)

4 - 89.77 (3.00) 91.02 (14.20) OOM OOM OOM
2 87.75 (1.79) 90.36 (2.77) 91.08 (6.92) 91.09 (26.44) OOM
4 85.32 (1.58) 88.50 (1.65) 89.76 (2.36) 90.05 (4.93) OOM
8 83.45 (1.56) 86.60 (1.55) 88.13 (1.61) 88.44 (2.30) OOM

Table 3: Performance of GraphSAGE models of different widths trained with
GIST on Amazon2M. m =“-” refers to the baseline and “OOM” marks
experiments that cause out-of-memory errors. GIST enables training of

higher-performing, ultra-wide models.

patterns are observed for deeper models. Furthermore, we find that utilizing
larger hidden dimensions yields further performance improvements, revealing
the utility of wide, overparameterized GCN models. GIST, due to its feature
partitioning strategy, is unique in its ability to train models of such scale to
state-of-the-art performance.

5.4 GIST with Layer Sampling

As previously mentioned, some node partitioning approach must be adopted to
avoid memory overflow when the underlying training graph is large. Although
graph partitioning is used within most experiments (see Section 5.2), GIST
is also compatible with other node partitioning strategies. To demonstrate
this, we perform training on Reddit using GIST combined with a recent layer
sampling approach [17] (i.e., instead of graph partitioning); see Appendix A.6
for more details.

As shown in Table 4, combining GIST with layer sampling enables training
on large-scale graphs, and the observed speedup actually exceeds that of GIST
with graph partitioning. For example, GIST with layer sampling yields a 1.83×
speedup when L = 2 and m = 2, in comparison to a 1.50× speedup when graph
partitioning is used within GIST (see Table 2). As the number of sub-GCNs
is increased beyond m = 2, GIST with layer sampling continues to achieve
improvements in wall-clock training time (e.g., speedup increases from 1.83×
to 2.90× from m = 2 to m = 4 for L = 2) without significant deterioration
to model performance. Thus, although node partitioning is needed to enable
training on large-scale graphs, the feature partitioning strategy of GIST is
compatible with numerous sampling strategies (i.e., not just graph sampling).

16 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

L # Sub-GCNs
GIST + LADIES

F1 Score Time Speedup

2 Baseline 89.73 3 359.91s 1.00×
2 89.29 1 834.59s 1.83×
4 88.42 1 158.51s 2.90×

3 Baseline 89.57 4 803.88s 1.00×
2 86.52 2 635.18s 1.82×
4 86.72 1 605.32s 3.00×

Table 4: Performance of GCN models trained with a combination of GIST
and LADIES [17] on Reddit. Here, the baseline represents models trained with

LADIES in a standard, single-GPU manner. Combining GIST with layer
sampling leads to further improvements in wall-clock training time without

deteriorating the F1 score.

6 Future Work

There are a few notable extensions of GIST that may be especially useful to
the research community. We leave these extensions as future work, as they go
beyond the core focus of our proposal: formulating an easy-to-use, efficient
training framework for large-scale experiments with GCNs.

GCNs with Edge Features. Recent work has explored using edge features
within the GCN architecture [56–58]. Given that GIST can be applied to
any GCN architecture, we argue that i) GIST is similarly compatible with
architectural variants that exploit edge features and ii) using edge features
within the graph could yield further performance benefits.

To understand why such techniques would be compatible, we emphasize
that—similar to node partitioning—edge features operate orthogonally to the
model partitioning performed by GIST. For example, the EGNN model [56]
injects edge information into the GCN model via the adjacency matrix at each
layer, which modifies node representations and their relationships within the
graph. As shown in Figure 3, GIST simply partitions the feature space of each
individual node within the hidden layers of the GCN, which has no impact or
dependence on node or edge information within the underlying graph.

Deeper GCNs. Our analysis focuses upon the exploration of wide, but not
deep, GCNs due to presence of oversmoothing in deep GCNs [29]. However,
GIST is applicable to GCN architectures of any depth—the feature partitioning
strategy is just applied separately to each layer. To further reduce the mem-
ory overhead of deeper GCN models, one could explore extensions of GIST

that combine layer and feature partitioning strategies. Such a variant would
independently train narrow sub-GCNs that contain only a small fraction of
the global model’s total layers. Layer partitioning strategies—without feature
partitioning—have already been shown to be effective for IST-based training
of convolutional neural networks with residual connections [51].

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 17

More Settings. The analysis of GIST could be extended to alternative tasks
(e.g., link prediction) and larger-scale datasets. However, performing exper-
iments over datasets larger than Amazon2M is difficult due to the lack of
moderately-large-scale graphs that are available publicly. For example, the only
graph larger than Amazon2M provided via the Open Graph Benchmark [54] is
Papers100M, which requires 256 Gb of CPU RAM to load.

7 Conclusions

We present GIST, a distributed training approach for GCNs that enables the
exploration of larger models and datasets. GIST is compatible with existing
sampling approaches and leverages a feature-wise partition of model parameters
to construct smaller sub-GCNs that are trained independently and in parallel.
We have shown that GIST achieves remarkable speed-ups over large graph
datasets and even enables the training of GCN models of unprecedented size.
We hope GIST can empower the exploration of larger, more powerful GCN
architectures within the graph community.

A Experimental Details

A.1 Datasets

The details of the datasets utilized within GIST experiments in Section 5 are
provided in Table 5. Cora, Citeseer, PubMed and OGBN-Arxiv are considered
“small-scale” datasets and are utilized within experiments in Section 5.1. Reddit
and Amazon2M are considered “large-scale” datasets and are utilized within
experiments in Section 5.2.

Dataset n # Edges # Labels d

Cora 2 708 5 429 7 1,433
CiteSeer 3 312 4 723 6 3,703
Pubmed 19 717 44 338 3 500
OGBN-Arxiv 169 343 1.2M 40 128
Reddit 232 965 11.6 M 41 602
Amazon2M 2.5 M 61.8 M 47 100

Table 5: Details of relevant datasets.

A.2 Implementation Details

We provide an implementation of GIST in PyTorch [59] using the NCCL
distributed communication package for training GCN [9], GraphSAGE [16]
and GAT [19] architectures. Our implementation is centralized, meaning that
a single process serves as a central parameter server. From this central process,
the weights of the global model are maintained and partitioned to different
worker processes (including itself) for independent training. Experiments are

18 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

conducted with 8 NVIDIA Tesla V100-PCIE-32G GPUs, a 56-core Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz, and 256 GB of RAM.

A.3 Small-Scale Experiments

Small-scale experiments in Section 5.1 are performed using Cora, Citeseer,
Pubmed, and OGBN-Arxiv datasets [53, 54]. GIST experiments are performed
with two, four, and eight sub-GCNs in all cases. We find that the performance
of models trained with GIST is relatively robust to the number of local iterations
ζ, but test accuracy decreases slightly as ζ increases; see Figure 5. Based on
the results in Figure 5, we adopt ζ = 20 for Cora, Citeseer, and Pubmed, as
well as ζ = 100 for OGBN-Arxiv.

16 64 128 256 512 1024
78

79

80

81

82

83

16 64 128 256 512 1024

72

74

76

78

16 64 128 256 512 1024

74

75

76

77

78

128 256 512

70.5

71.0

71.5

Hidden Layer Size

Ac
cu

ra
cy

CORA CITESEER PUBMED OGBN-ARXIV

2 Layers 3 Layers 4 Layers

Fig. 4: Test accuracy for different sizes (i.e., varying depth and width) of GCN
models trained with standard, single-GPU methodology on small-scale datasets.
We adopt three-layer, 256-dimensional GCN models as our baseline architecture.

1 5 10 20 35 50
78

79

80

81

82

83

1 5 10 20 35 50

72

74

76

78

1 5 10 20 35 50

74

76

78

80

1 5 10 20 35 50 100 150

50

60

70

Local Iterations

Ac
cu

ra
cy

CORA CITESEER PUBMED OGBN-ARXIV

Baseline 2 Sub-GCN 4 Sub-GCN 8 Sub-GCN

Fig. 5: Test accuracy of GCN models trained on small-scale datasets with
GIST using different numbers of local iterations and sub-GCNs. Models trained
with GIST are surprisingly robust to the number of local iterations used during

training, no matter the number of sub-GCNs.

Experiments are run for 400 epochs with a step learning rate schedule (i.e.,
10× decay at 50% and 75% of total epochs). A vanilla GCN model, as described
in [9], is used. The model is trained in a full-batch manner using the Adam
optimizer [60]. No node sampling techniques are employed because the graph is
small enough to fit into memory. All reported results are averaged across five

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 19

trials with different random seeds. For all models, d0 and dL are respectively
given by the number of features and output classes in the dataset. The size of
all hidden layers is the same, but may vary across experiments.

We first train baseline GCN models of different depths and hidden dimen-
sions using a single GPU to determine the best model depth and hidden
dimension to be used in small-scale experiments. The results are shown in
Figure 4. Deeper models do not yield performance improvements for small-scale
datasets, but test accuracy improves as the model becomes wider. Based upon
the results in Figure 4, we adopt a three-layer GCN with a hidden dimension of
d1=d2=256 as the underlying model used in small-scale experiments. Though
two-layer models seem to perform best, we use a three-layer model within
Section 5.1 to enable more flexibility in examining the partitioning strategy of
GIST.

A.4 Large-Scale Experiments

Reddit Dataset. For experiments on Reddit, we train 256-dimensional
GraphSAGE and GAT models using both GIST and standard, single-GPU
methodology. During training, the graph is partitioned into 15 000 sub-graphs.
Training would be impossible without such partitioning because the graph is
too large to fit into memory. The setting for the number of sub-graphs is the
optimal setting proposed in previous work [18]. Models trained using GIST and
standard, single-GPU methodologies are compared in terms of F1 score and
training time.

All tests are run for 80 epochs with no weight decay, using the Adam
optimizer [60]. We find that ζ = 500 achieves consistently high performance
for models trained with GIST on Reddit. We adopt a batch size of 10 sub-
graphs throughout the training process, which is the optimal setting proposed
in previous work [18].

Amazon2M Dataset. For experiments on Amazon2M, we train two to four
layer GraphSAGE models with hidden dimensions of 400 and 4 096 using
both GIST and standard, single-GPU methodology. We follow the experimental
settings of [18]. The training graph is partitioned into 15 000 sub-graphs and
a batch size of 10 sub-graphs is used. We find that using ζ = 5 000 performs
consistently well. Models are trained for 400 total epochs with the Adam
optimizer [60] and no weight decay.

A.5 Training Ultra-Wide GCNs

All settings for ultra-wide GCN experiments in Section 5.3 are adopted from
the experimental settings of Section 5.2; see Appendix A.4 for further details.
For di > 4 096 evaluation must be performed on graph partitions (not the
full graph) to avoid memory overflow. As such, the graph is partitioned into
5 000 sub-graphs during testing and F1 score is measured over each partition
and averaged. All experiments are performed using a GraphSAGE model, and

20 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Machines Method F1 Score Training Time

2 Local SGD 96.37 137.17s
GIST 96.40 108.67s

4 Local SGD 95.00 127.63s
GIST 96.16 116.56s

8 Local SGD 93.40 129.58s
GIST 95.46 123.83s

Table 6: Performance of GraphSAGE models trained using local SGD and
GIST on Reddit. We adopt settings described in Section 5.2, but use 100 local
iterations for both GIST and local SGD. Models trained with GIST outperform
those trained with local SGD in terms of test F1 score and wall-clock training

time in all cases.

the hidden dimension of the underlying model is changed between different
experiments.

A.6 GIST with Layer Sampling

Experiments in Section 5.4 adopt the same experimental settings as Section
5.2 for the Reddit dataset; see Appendix A.4 for further details. Within these
experiments, we combine GIST with LADIES [17], a recent layer sampling
approach for efficient GCN training. LADIES is used instead of graph partition-
ing. Any node sampling approach can be adopted—some sampling approach is
just needed to avoid memory overflow.

We train 256-dimensional GCN models with either two or three layers. We
utilize a vanilla GCN model within this section (as opposed to GraphSAGE
or GAT) to simplify the implementation of GIST with LADIES, which creates
a disparity in F1 score between the results in Section 5.4 and Section 5.2.
Experiments in Section 5.4 compare the performance of the same models trained
either with GIST or using standard, single-GPU methodology. In this case, the
single-GPU model is just a GCN trained with LADIES.

B GIST vs. Other Distributed Training Methods

Although GIST has been shown to provide benefits in terms of GCN performance
and training efficiency in comparison to standard, single-GPU training, other
choices for the distributed training of GCNs exist. Within this section, we
compare GIST to other natural choices for distributed training, revealing that
GCN models trained with GIST achieve favorable performance in comparison
to those trained with other common distributed training techniques.

B.1 Local SGD

A simple version of local SGD [34] can be implemented for distributed training
of GCNs by training the full model on each separate worker for a certain number

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 21

of local iterations and intermittently averaging local updates. In comparison
to such a methodology, GIST has better computational and communication
efficiency because i) it communicates only a small fraction of model parameters
to each machine and ii) locally training narrow sub-GCNs is faster than locally
training the full model. We perform a direct comparison between local SGD and
GIST on the Reddit dataset using a two-layer, 256-dimensional GraphSAGE
model; see Table 6. As can be seen, GCN models trained with GIST have lower
wall-clock training time and achieve better performance than those trained
with local SGD in all cases.

Machines Method F1 Score Inference Time

2 Ensemble 96.31 3.59s
GIST 96.40 1.81s

4 Ensemble 96.10 6.38s
GIST 96.16 1.81s

8 Ensemble 95.28 11.95s
GIST 95.46 1.81s

Table 7: Performance of GraphSAGE models trained both with GIST and as
ensembles of shallow sub-GCNs on Reddit. Models trained with GIST perform

better and do not suffer from increased inference time as the number of
sub-GCNs is increased.

B.2 Sub-GCN Ensembles

As previously mentioned, increasing the number of local iterations (i.e., ζ
in Algorithm 1) decreases communication requirements given a fixed amount
of training. When taken to the extreme (i.e., ζ → ∞), one could minimize
communication requirements by never aggregating sub-GCN parameters, thus
forming an ensemble of independently-trained sub-GCNs. We compare GIST to
such a methodology6 in Table 7 using a two-layer, 256-dimensional GraphSAGE
model on the Reddit dataset. Though training ensembles of sub-GCNs minimizes
communication, Table 7 reveals that i) models trained with GIST achieve
better performance and ii) inference time for sub-GCN ensembles becomes
burdensome as the number of sub-GCNs is increased.

C Theoretical Results

C.1 Formulation of GIST for One-Hidden-Layer GCNs

In our analysis, we consider a GCN with one hidden-layer and a ReLU activation.
Given training data {(xi, yi)}ni=1 with input features xi ∈ Rd and labels yi ∈ R,

6For each sub-GCN, we measure validation accuracy throughout training and add the highest-
performing model into the ensemble.

22 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

we assume that the GCN outputs a scalar value ỹi for each node in the graph.
Denoting ỹ = [ỹ1, . . . , ỹn], we can write the output of the GCN as

ỹ =
1√
d1

Āσ
(
ĀXΘ

)
a

where Θ = [θ1, . . . ,θd1
] ∈ Rn×d1 is the weights within the GCN’s first layer

and a = [a1, . . . , ad1
] ∈ Rd1 is the weights within the GCN’s second layer.

To simplify the analysis, we denote X̂ = ĀX = [x̂1, . . . x̂n]. Then, we have
x̂i =

∑n
i′=1 Āii′xi′ and the output of each node within the graph can be written

as

ỹi =
1√
d1

n∑
i′=1

d1∑
r=1

Āii′arσ (⟨x̂i′ ,θr⟩)

As in previous convergence analysis for training neural networks, we assume
that second-layer weights a are fixed and only the first layer weights Θ are
trainable. Following the GIST feature partitioning strategy, we only partition
the hidden layer. Specifically, in global iteration t, sub-GCNs are constructed
by sampling a set of masksMt ∈ Rm×d1 . We denote the jth column ofMt as

M(j)
t ∈ Rm, the rth row ofMt asMt,r ∈ Rd1 , and the entry in the rth row

and jth column asM(j)
t,r . EachM

(j)
t,r is a binary values:M(j)

t,r = 1 if neuron r

is active in sub-GCN j, andM(j)
t,r = 0 otherwise. Using this mask notation, the

output for node i within sub-GCN j can be written as

ŷ
(j)
i (t, k) = fM(j)

t

(
Θ

(j)
t,k,x

)
i
=

1√
d1

n∑
i′=1

d1∑
r=1

Āii′M(j)
t,rarσ

(〈
x̂i′ ,θ

(j)
t,k,r

〉)
(3)

t and k denote the current global and local iterations, respectively. We assume
that eachMt,r is sampled from a one-hot categorical distribution. We formally

define the random variablesM(j)
t,r as follows: for each t, let {m̂t,r}d1

r=1 be a set of
I.I.D. uniform random variables taking values on the index set [m] = {1, . . . ,m},
i.e., P (m̂t,r = j) = 1

m for j ∈ [m]. Then, we define each mask entry as

M(j)
t,r = I {m̂k,r = j}. Masks sampled in such a fashion have the following

properties

• P
(
M(j)

t,r = 1
)
= 1

m

• P
(
M(j)

t,r = 0
)
= 1− 1

m

•
∑m

j=1M
(j)
t,r = 1

• M(j)
t,rM

(j′)
t,r = 0 if j′ ̸= j.

Here, the first and second properties guarantee that the expected number of
neurons active in each sub-GCN is equal. The third and fourth properties
guarantee that each neuron is active in one and only one sub-GCN. Within

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 23

this setup, we consider the GIST training procedure, described as

θ
(j)
t,0,r = θt,r

θ
(j)
t,k+1,r = θ

(j)
t,k,r − η

∂L
(
Θ

(j)
t,k

)
∂θr

θt+1,r = θt,r +

m∑
j=1

(
θ
(j)
t,ζ,r − θ

(j)
t,0,r

) (4)

Within this formulation, ζ represents the total number of local iterations

performed for each sub-GCN, while L
(
Θ

(j)
t,k

)
is the loss on the jth sub-GCN

during the t-th global and kth local iteration. We can express L
(
Θ

(j)
t,k

)
as

L
(
Θ

(j)
t,k

)
=
∥∥∥y − ŷ(j)(t, k)

∥∥∥2
2
=
∥∥∥y − fM(j)

t

(
Θ

(j)
t,k,x

)∥∥∥2
2

and the gradient has the form

∂L
(
Θ

(j)
t,k

)
∂θr

=
1√
d1

n∑
i=1

n∑
i′=1

(
ŷ
(j)
i (t, k)− yi

)
Āii′M(j)

t,rarx̂i′I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0
}

C.2 Preliminary and Notations

We use bold lower-case letters (e.g. a) to denote vectors, bold upper-case letters
(e.g. A) to denote matrices, and standard letters (e.g. a) for scalars. For a vector
a, ∥a∥1 and ∥a∥1 denote its ℓ1 and ℓ2 norm, respectively. We also use abs(a) =
[a 1, . . . , a n] to denote the vector with entry-wise absolute value of a. For a
matrix A, we use ∥A∥2 , ∥A∥F , ∥A∥1,1 to denote its operator norm, Frobenius
norm, and L1,1 norm, respectively. We denote E[Mt][·] = EM0,...,Mt

[·] to denote
the total expectation with respect toM0, . . . ,Mt. For a full description of the
symbols used in the proof, please refer to Table 8.

In the proof, we will also utilize the following probability tools

Property 1. (Markov’s Inequality) For a non-negative random variable X,
we have

P (X ≥ a) ≤ 1

a
E[X]

Property 2. (Jensen’s Inequality for Expectation) For a non-negative random
variable X, we have

E[X
1
2] ≤ E[X]

1
2

24 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Symbol Description Mathematical Definition

T Number of global iterations T ∈ N+

t Index of global iterations t ∈ {0} ∪ [T]
ζ Number of local iterations ζ ∈ N+

k Index of global iterations k ∈ {0} ∪ [ζ]
m Number of sub-GCNs m ∈ N+

n Number of training samples n ∈ N+

d Dimension of input feature d ∈ N+

d1 Dimension of hidden layer d1 ∈ N+

{xi}n
i=1 Input training data xi ∈ Rd

{yi}n
i=1 Training labels yi ∈ R, |yi| ≤ C

Mt Binary Mask in iteration t Mt ∈ {0, 1}m×d1

M(j)
t,r The (r, j)th entry of Mt Mt,r ∈ {0, 1}
η Constant step size η = O

(
λ0/n

∥∥∥Ā2
∥∥∥
1,1

)
ŷ
(j)
i Output of node i within sub-GCN j See Equation (3)

ŷ(j) Output for all nodes within sub-GCN j [ŷ
(j)
1 , . . . , ŷ(j)

n]
ŷi Output of node i of the whole GCN See Equation (15)
ŷ Output for all nodes of the whole GCN [ŷ1, . . . , ŷn]

Ā Aggregation matrix of the GCN Ā = I + D− 1
2 AD− 1

2

G∞ Infinite-width GIST-K of the GCN See Equation (7)
λ0 Mimimum eigenvalue of G∞ λ0 = λmin (G∞)
λ∗ Maximum eigenvalue of G∞ λ∗ = λmax (G∞)

Table 8: Table of Notations

C.3 Properties of the Transformed Input

The GCN [9] uses a first-degree Chebyshev polynomial to approximate a spectral
convolution on the graph, which results in an aggregation matrix of the form

Ā = I+D− 1
2AD− 1

2 (5)

where A is the adjacency matrix and D is the degree matrix with Dii =∑n
j=1 Aij . This is the same form of the aggregation matrix in Equation (7) of

[9]. In practice, the re-normalization trick is applied to control the magnitude of
the largest eigenvalue of Ā (see Equation (8) of [9]). Here, however, we keep the
original formulation of (5) to facilitate our analysis, and our assumption on the
depth of the GCN does not lead to numerical instability even if λmax(Ā) > 1.
Moreover, the definition of Ā connects with the degree-normalized Laplacian
L in the sense that Ā = 2I− L. It is a well-known result that 2 = λmax(Ā) ≥
λmin(Ā) ≥ 0. In particular, the lower bound on the minimum eigenvalue is
obtained by considering

v⊤Āv =

n∑
i=1

v2i +
∑

(i,j)∈E

vivj√
DiiDjj

=
∑

(i,j)∈E

(
vi√
Dii

+
vj√
Djj

)2

In our analysis, we require the aggregation matrix Ā to be positive definite.
Thus, the following assumption can be made about λmin(Ā).

Assumption 2. λmin(Ā) ̸= 0.

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 25

Going further, we must make a few more assumptions about the aggregation
matrix and the graph itself to satisfy certain properties relevant to the analysis.

Assumption 3. There exists ϵ ∈ (0, 1) and p ∈ Z+ such that for all i ∈ [n]

(1− ϵ)2p ≤ Dii ≤ (1 + ϵ)2p

Assumption 3 implies the following property

Property 3. For all i ∈ [n], we have ∥x̂i∥2 ≤ 1.

Proof of Property 3 Under assumption 3, we have that for all i, i′ ∈ [n](
1− ϵ

1 + ϵ

)2

≤ Dii

Di′i′
≤

(
1 + ϵ

1− ϵ

)2

Therefore, we can write

∥x̂i∥2 =

∥∥∥∥∥
n∑

i′=1

Āii′xi

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i′=1

(
I+D− 1

2AD− 1
2

)
ii′

xi

∥∥∥∥∥
2

=

∥∥∥∥∥∥xi +D
− 1

2
ii

∑
i′ ̸=i

Aii′D
− 1

2

i′i′ xi

∥∥∥∥∥∥
2

≤ 1− ϵ

2
+D

− 1
2

ii

∑
i′ ̸=i

Aii′D
− 1

2

i′i′

(
1− ϵ

2

)

≤ 1− ϵ

2
+D

− 1
2

ii

∑
i′ ̸=i

Aii′D
− 1

2
ii

(
1 + ϵ

1− ϵ

)(
1− ϵ

2

)
= 1

where the first inequality follows from Assumption 4 and the triangle inequality. □

Additionally, we make the following assumption regarding the graph itself

Assumption 4. For all i ∈ [n], we have ∥xi∥2 ≤
1−ϵ
2 , and |yi| ≤ C for some

constant C. Moreover, for all j ∈ [n] and j ̸= i, we have [ĀX]i ̸∥ [ĀX]j .

C.4 Full Statement Theorem 1

We now state the full version of Theorem 1 from Section 4, which characterizes
the convergence properties of one-hidden-layer GCN models trained with GIST.

26 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Theorem 2. Suppose assumptions 2-4 hold. Moreover, suppose in each global
iteration the masks are generated from a categorical distribution with uni-
form mean 1/m. Fix the number of global iterations to T and local iterations
to ζ. Consider a two-layer GCN with parameters Θ. If each entry of Θ is
initialized I.I.D. from N (0, κ2I), and the number of hidden neurons satisfies

d1 ≥ Ω
(

T 2ζ2n
λ4
0(1−γ)2

max
{

n3

δ2κ2 ,
n2d
δ2

∥∥Ā2
∥∥
1,1

, T 2λ∗2d
})

, then procedure (4) with

constant step size η = O
(

λ0

n∥Ā2∥
1,1

)
converges according to

E[Mt−1]

[
∥y − ŷ(t)∥22

]
≤

(
γ + (1− γ)

(
1− ηλ0

2

)ζ
)t

∥y − ŷ(0)∥22 +

O
(

γ2dκ2λ∗2

m2(1− γ)λ2
0

∥∥Ā2
∥∥
1,1

)

with probability at least 1− δ, where γ =
(
1−m−1

) 1
3 .

In the following subsections, we will provide a proof for Theorem 2 In
section C.5, we first show that the local training of each sub-GCN enjoys linear
convergence (Theorem 3). In section C.6, we use this result to show Theorem
2. In section C.7, we provide proof for the auxiliary lemmas.

C.5 GIST and Local Training Progress

In this section, our goal is to show the following theorem

Theorem 3. Suppose the number of hidden nodes satisfies d1 =
Ω
(
λ−1
0 n2 log Tmn/δ

)
. If for all r ∈ [d1] it holds that

∥θt,r − θ0,r∥2 +
4Tηζ

δα

√
n

d1
E[Mt−1],W0,A

[
∥y − ŷ(t)∥22

] 1
2

+ (T − t)B ≤ R (6)

with

B = 4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥Ā2
∥∥ 1

2

1,1
+

20Tζγκλ∗

mδα

√
η3nd

λ0d1

∥∥Ā2
∥∥ 1

2

1,1
; R ≤ λ0

192n

then we have∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2
2
≤
(
1− ηλ0

2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 27

and for all r ∈ [d1], j ∈ [m] it holds that

∥∥∥θ(j)
t,ζ,r − θ

(j)
0,r

∥∥∥
2
≤ 2Tηζ

δ

√
n

d1
E[Mt−1],W0,A

[
∥y − ŷ(t)∥22

] 1
2

+

4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥Ā2
∥∥ 1

2

1,1

with probability at least 1− δ
T

For a one-hidden-layer MLP, the analysis often depends on the (scaled)
Gram Matrix of the infinite-dimensional NTK

H∞
ij =

1

d1m
⟨x̂i, x̂j⟩Eθ∼N (0,I) [I{⟨x̂i,θ⟩ ≥ 0, ⟨x̂j ,θ⟩ ≥ 0}] (7)

We can extend this definition of the Gram Matrix to an infinite-width, one-
hidden-layer GCN as follows

G∞ = ĀH∞Ā

With Assumption 4, prior work [61] shows that λmin(H) > 0. Since Ā is
also positive definite, we must have that G∞ is at least positive semidefinite.
Moreover, for any v ∈ Rn such that v ̸= 0, we must have that Āv ̸= 0, and
thus H∞Āv ̸= 0, which implies that ĀH∞Āv ̸= 0. Thus, for any v ̸= 0,
G∞v ̸= 0. Therefore, we must have that λmin (G

∞) > 0. In our analysis, we
define the Graph Independent Subnetwork Tangent Kernel (GIST-K)

G(j)(t, t′, k) = ĀH(t, t′, k)Ā

where H(t, t′, k) is defined as

H(t, t′, k) =
1

d1
⟨x̂i, x̂j⟩

d1∑
r=1

M(j)
t,r I

{〈
x̂i,θ

(j)
t′,k,r

〉
≥ 0,

〈
x̂j ,θ

(j)
t′,k,r

〉
≥ 0
}

for masksMt and weights Θ
(j)
t′,k. Following previous work [50] on subnetwork

theory, we obtained Lemma 3, which shows that, if d1 = Ω
(
λ−1
0 n2 log Tmn/δ

)
,

and for all t, k it holds that ∥θt,k,r − θ0,r∥2 ≤ R := κλ0

192n , then with probability
at least 1− δ, for all t, t′ ∈ [T] we have:

λmin(G
(j)(t, t′, k)) ≥ λ0

2

The lemma above shows that every GIST-K is positive definite. To proceed, the
proof for the linear convergence relies on the following quadratic expansion of

28 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

the loss∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2
2
=
∥∥∥y − ŷ(j)(t, k)

∥∥∥2
2
+
∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)

∥∥∥2
2

− 2
〈
y − ŷ(j)(t, k), ŷ(j)(t, k + 1)− ŷ(t, k)

〉 (8)

Thus, it is natural to focus on the change of the output of the sub-GCN in

each local iterations ŷ
(j)
i (t, k + 1)− ŷ

(j)
i (t, k). The following lemma shows that

this term is bounded
Analyzing the inner-product term on the right-hand side of Equation (8)

involves a detailed study of the change of activation pattern I {⟨θ, x̂i⟩ ≥ 0}
Then, following [62], we first fix R = κλ0

192n , and denote

Air = ∃θ : ∥θ − θ0,r∥2 ≤ R, I{⟨θ, x̂i⟩ ≥ 0} ≠ I{⟨θ0,r, x̂i⟩ ≥ 0}
Si = {r ∈ [m] : ¬Air}; S⊥

i = [m] \ Si

Based on the definition of ŷ(t, ·), we can write

ŷ
(j)
i (t, k + 1)− ŷ

(j)
i (t, k)

=
1√
d1

n∑
i′=1

d1∑
r=1

Āii′M(j)
t,rar

(
σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i′

〉))

Thus, we can decompose ŷ
(j)
i (t, k + 1)− ŷ

(j)
i (t, k) = I

(j)
i,1 (t, k) + I

(j)
i,2 (t, k) with

I
(j)
i,1 (t, k) =

1√
d1

n∑
i′=1

∑
r∈Si′

Āii′M(j)
t,rar·(

σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i′

〉))
I
(j)
i,2 (t, k) =

1√
d1

n∑
i′=1

∑
r∈S⊥

i′

Āii′M(j)
t,rar·

(
σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i′

〉))
Let I

(j)
1 (t, k) =

[
I
(j)
1,1(t, k), . . . , I

(j)
n,1(t, k)

]
and similarly I

(j)
2 (t, k) =[

I
(j)
1,2(t, k), . . . , I

(j)
n,2(t, k)

]
be the vectorized notation. For I

(j)
1 (t, k), we need a

more detailed analysis. To start, we define

H⊥(t, t′, k) =
1

d
⟨x̂i, x̂i′⟩

∑
r∈S⊥

i

M(j)
t,r I{

〈
θ
(j)
t′,k,r, x̂i

〉
≥ 0;

〈
θ
(j)
t′,k,r, x̂i′

〉
≥ 0}

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 29

and let G⊥(t, t′, k) = ĀH⊥(t, t′, k)Ā. Notice that

I
(j)
i,1 (t, k) =

1√
d1

n∑
i′=1

∑
r∈Si′

Āii′M(j)
t,rar

〈
θ
(j)
t,k+1,r − θ

(j)
t,k,r, x̂i′

〉
·

I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0
}

= − η√
d1

n∑
i′=1

∑
r∈Si′

Āii′M(j)
t,rar

〈
∂L
(
Θ

(j)
t,k

)
∂θr

, x̂i′

〉
·

I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0
}

=
η

d1

n∑
i′=1

n∑
i1=1

n∑
i′1=1

∑
r∈Si

Āii′Āi1i′1
M(j)

t,r

(
yi1 − ŷ

(j)
i1

(t, k)
)
·

〈
x̂i′1

, x̂i′
〉
I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0;

〈
θ
(j)
t,k,r, x̂i′1

〉
≥ 0
}

= η

n∑
i′=1

n∑
i1=1

n∑
i′1=1

Āii′Āi1i′1

(
yi1 − ŷ

(j)
i1

(t, k)
)
·

(
H(j)(t, t, k)i′i′1 −H(j)⊥(t, t, k)i′i′1

)
Thus for I

(j)
i,1 (t, k) = [I

(j)
1,1(t, k), . . . , I

(j)
n,1(t, k)] we have

I
(j)
i,1 (t, k) = ηĀ

(
H(j)(t, t, k)−H(j)⊥(t, t, k)

)
Ā
(
y − ŷ(j)(t, k)

)
= η

(
G(j)(t, t, k)−G(j)⊥(t, t, k)

)(
y − ŷ(j)(t, k)

) (9)

which implies that〈
ŷ(j)(t, k)− y, I

(j)
1 (t, k)

〉
= η

〈
ŷ(j)(t, k)− y,

(
G(j)(t, t, k)−G(j)⊥(t, t, k)

)(
y − ŷ(j)(t, k)

)〉
≤ −η

(
λmin

(
G(j)(t, t, k)

)
−
∥∥∥G(j)⊥(t, t, k)

∥∥∥
2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

30 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Thus, Equation (8) can be written as∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2
2

≤
(
1− 2η

(
λmin

(
G(j)(t, t, k)

)
−
∥∥∥G(j)⊥(t, t, k)

∥∥∥
2

))
·∥∥∥y − ŷ(j)(t, k)

∥∥∥2
2
+ 2

∣∣∣〈ŷ(j)(t, k)− y, I
(j)
2 (t, k)

〉∣∣∣+∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)
∥∥∥2
2

(10)

Now, we are ready to prove Theorem 3.

Proof of Theorem 3 We use induction on the following three conditions to prove the
theorem. ∥∥∥y − ŷ(j)(t, k + 1)

∥∥∥2
2
≤

(
1− ηλ0

2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

(11)∥∥∥θ(j)t,k,r − θ
(j)
0,r

∥∥∥
2
≤ 2Tηζ

δ

√
n

d1
E[Mt−1],W0,A

[
∥y − ŷ(t)∥22

] 1
2
+

ηζn

√
8(m− 1)T

md1δ

(12)

∥∥∥θ(j)t,k,r − θ
(j)
0,r

∥∥∥
2
≤ R (13)

Part 1. To start, we show that (13) → (11) for all k. As illustrated in Equation (10),
we have∥∥∥y − ŷ(j)(t, k + 1)

∥∥∥2
2
≤

(
1− 2η

(
λmin

(
G(j)(t, t, k)

)
−

∥∥∥G(j)⊥(t, t, k)
∥∥∥
2

))
·∥∥∥y − ŷ(j)(t, k)

∥∥∥2
2
+ 2

∣∣∣〈ŷ(j)(t, k)− y, I
(j)
2 (t, k)

〉∣∣∣+∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)
∥∥∥2
2

Using Lemma 3 and Lemma 6, we have that

λmin

(
G(j)(t, t, k)

)
≥ λ0

2
;

∥∥∥G(j)⊥
∥∥∥
2
≤ λ0

12

which implies that∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2
2
≤

(
1− 5

6
ηλ0

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2
+

2
∣∣∣〈ŷ(j)(t, k)− y, I

(j)
2 (t, k)

〉∣∣∣+∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)
∥∥∥2
2

Choosing η = λ0

24n∥Ā2∥
1,1

, we further use Lemma 5 with v = y − ŷ(j)(t, k), and

Lemma 7 to simplify the second and third term, respective. This gives that∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2
2
≤

(
1− 5

6
ηλ0

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2
+

ηλ0
6

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2
+

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 31

ηλ0
6

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

=

(
1− ηλ0

2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

This shows that (13) → (11).
Part 2. Next, we show that if Equation (11) hold for all k = 0, 1, . . . , k′ − 1, then

Equation (12) holds for k = k′. Thus, for all k = 0, 1, . . . , k′ − 1, we have

∥y − ŷ(t, k)∥22 ≤
(
1− ηλ0

2

)k ∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2

(14)

Lemma 4 gives that∥∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥∥
2

≤
√

n

d1

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

Using Markov’s inequality, we have that with probability at least 1− δ
2T

∥y − ŷ(t)∥22 ≤ 2T

δ
E[Mt−1]

[
∥y − ŷ(t)∥22

]
Thus, with probability at least 1− δ

2T , we have∥∥∥θ(j)t,k,r − θ
(j)
t,0,r

∥∥∥
2
≤

k−1∑
k′=0

∥∥θt,k′+1,r − θt,k′,r

∥∥
2

≤ η

k−1∑
k′=0

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k′

)
∂θr

∥∥∥∥∥∥
2

≤ η

√
n

d1

k−1∑
k′=0

∥∥∥y − ŷ(j)(t, k′)
∥∥∥
2

≤ η

√
n

d1

k−1∑
k′=0

∥∥∥y − ŷ(j)(t, 0)
∥∥∥
2

≤ ηζ

√
n

d1

∥∥∥y − ŷ(j)(t, 0)
∥∥∥
2

≤ ηζ

√
n

d1

(
∥y − ŷ(t)∥2 +

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥
2

)
≤ 2Tηζ

δ

√
n

d1
E[Mt−1]

[
∥y − ŷ(t)∥22

] 1
2
+

4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥∥Ā2
∥∥∥ 1

2

1,1

where in the fourth inequality we use Equation (14), and in the sixth inequality we use
the triangle inequality. This shows that if Equation (11) hold for all k = 0, 1, . . . , k′−1,
then Equation (12) holds for k = k′.

Part 3. Now, we use induction to show that (13) holds for all k. At k = 0, we
have that θt,k,r = θt,r. Thus, Equation (6) implies (13) naturally. Assume (13) holds
for all k = 0, 1, . . . , k′−1. Then we that Equation (11) holds for all k = 0, 1, . . . , k′. As

32 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

we have shown in the previous part, Equation (12) holds for k = k′. Since α < 1 < 2,
we have that

2Tηζ

δ

√
n

d1
≤ 4Tηζ

δα

√
n

d1

Also we have

4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥∥Ā2
∥∥∥ 1

2

1,1
≤ B

Therefore, by Equation (6), and using θt,k,r = θt,r, we have that∥∥∥θ(j)t,k′,r − θ
(j)
0,r

∥∥∥
2
≤

∥∥∥θ(j)t,r − θ
(j)
0,r

∥∥∥
2
+

∥∥∥θ(j)t,k′,r − θ
(j)
t,0,r

∥∥∥
2
≤ R

Now that Equation (13) holds for all k, we have Equation (11) holds and thus Equation
(12) holds for all k. □

C.6 Convergence of GIST

We now prove the convergence result for GIST outlined in Appendix C.4. In
showing the convergence of GIST, we care about the regression loss ∥y − ŷ(t)∥22
with

ŷ(t) = f(Θt,x) =
1

m
√
d1

Āσ
(
ĀxΘt

)
A (15)

As in previous work [50], we add the scaling factor 1
m to make sure that

EMt [ŷ
(j)(t, 0)] = ŷ(t). Moreover, by properties of the masksM(j)

t , we have

f(Θ,x) =

m∑
j=1

f
(j)
M (Θ,x)

Thus, we can invoke lemmas 13 and 14 from [50]. We state the two key lemmas
here in accordance with our own notation.

Lemma 1. The t-th global step produces squared error satisfying

∥y − ŷ(t+ 1)∥22

=
1

m

m∑
j=1

∥∥∥y − ŷ(j)(t, ζ)
∥∥∥2
2
− 1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2
2

Lemma 2. In the t-th global iteration, the sampled subnetwork’s deviation
from the whole network is given by

m∑
j=1

∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)
∥∥∥2
2
=

1

m

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2
2

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 33

Moreover, Lemma 22 from [50] show that with probability at least 1 −
2n exp(−m

32), for all R ≤
κ
2 , it holds that

∥Θ0∥F ≤ κ
√

2d1d−
√

d1R

For convenience, we assume that such an initialization property holds. Given
that for all r ∈ [d1], we have ∥θt,r − θ0,r∥2 ≤ R, we must have that
∥Θt −Θ0∥F ≤ κ

√
d1R. Thus, ∥Θt∥F ≤ κ

√
2d1d for all t. We point out that,

within the proof, we use R = κλ0

192n , which satisfies the condition above. Using
Lemma 1 to expand the loss at the (t+ 1)th iteration and invoking Theorem 3
gives

∥y − ŷ(t+ 1)∥22 =
1

m

m∑
j=1

∥∥∥y − ŷ(j)(t, ζ)
∥∥∥2
2
−

1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2
2

≤ 1

m

m∑
j=1

(
1− ηλ0

2

)ζ ∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2
−

1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2
2

=
1

m

m∑
j=1

∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2
−

ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k ∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2

− 1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2
2

Using the fact that EMt
[ŷ(j)(t, 0)] = ŷ(t) we have

EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2

]
= ∥y − ŷ(t)∥22 + EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2

]
Then, using Lemma 2 to rewrite the last term in the equation above and
plugging in gives

EMt

[
∥y − ŷ(t+ 1)∥22

]

34 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

≤ ∥y − ŷ(t)∥22 −
ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k

EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2

]

+
1

m2

m∑
j=1

j−1∑
j′=1

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2
−
∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)

∥∥∥2
2

]

We denote the last term within the equation above as ιt

ιt =
1

m2

m∑
j=1

j−1∑
j′=1

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2
−
∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)

∥∥∥2
2

]

Lemma 8 shows the bound on ιt

ιt ≤
ηγλ0

2m

m∑
j=1

ζ−1∑
k=0

EMt

[
∥y − ŷ(t, k)∥22

]
+

18ηγ2dλ∗2

m2λ0

∥∥Ā2
∥∥
1,1

for γ =
(
1−m−1

) 1
3 Therefore, we can derive the following

EMt

[
∥y − ŷ(t+ 1)∥22

]
≤ ∥y − ŷ(t)∥22 −

ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k

EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2

]

+
ηγλ0

2m

n∑
j=1

ζ−1∑
k=0

EMt

[∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

]
+

18ηγ2dλ∗2

m2λ0

∥∥Ā2
∥∥
1,1

≤ ∥y − ŷ(t)∥22−

(1− γ)ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k

EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2
2

]

+
18ηγ2dλ∗2

m2λ0

∥∥Ā2
∥∥
1,1

≤ ∥y − ŷ(t)∥22 −
(1− γ)ηλ0

2

ζ−1∑
k=0

(
1− ηλ0

2

)k

∥y − ŷ(t)∥22

+
18ηγ2dλ∗2

m2λ0

∥∥Ā2
∥∥
1,1

=

(
γ + (1− γ)

(
1− ηλ0

2

)ζ
)
∥y − ŷ(t)∥22 +

18ηγ2dλ∗2

m2λ0

∥∥Ā2
∥∥
1,1

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 35

Starting from here, we use α to denote the global convergence rate

α = (1− γ)

(
1−

(
1− ηλ0

2

)ζ
)

Since ζ ≥ 1, we have that α ≥ ηλ0

2 (1− γ). Then, the convergence rate above
yields the following

E[Mt−1]

[
∥y − ŷ(t)∥22

]
≤ (1− α)t ∥y − ŷ(0)∥22 + (16)

O
(

γ2dλ∗2

m2(1− γ)λ2
0

∥∥Ā2
∥∥
1,1

)
(17)

Lastly, we provide a bound on weight perturbation using overparameterization.
In particular, we can show that Equation (6) holds for iteration t+ 1

∥θt+1,r − θ0,r∥2 +
4Tηζ

δα

√
n

d1
E[Mt],Θ0,A

[
∥y − ŷ(t+ 1)∥22

] 1
2

+

(T − t− 1)B ≤ R

under the assumption that it holds in iteration t

∥θt,r − θ0,r∥2 +
4Tηζ

δα

√
n

d1
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2

+ (T − t)B ≤ R

and given the global convergence result

EMt

[
∥y − ŷ(t+ 1)∥22

]
≤ (1− α) ∥y − ŷ(t)∥22 +

18ηγ2dλ∗2

m2λ0

∥∥Ā2
∥∥
1,1

Thus, it suffices to show that

∥θt+1,r − θ0,r∥2 − ∥θt,r − θ0,r∥2

≤
(
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2 − E[Mt],Θ0,A

[
∥y − ŷ(t+ 1)∥22

] 1
2

)
· 4Tηζ

δα

√
n

d1
+B

Using the sub-additivity of the square root function, we derive the following

E[Mt],Θ0,A

[
∥y − ŷ(t+ 1)∥22

] 1
2

≤
(
(1− α)E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

]
+

18ηγ2dκ2λ∗2

m2λ0

∥∥Ā2
∥∥
1,1

) 1
2

36 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

≤
(
1− α

2

)
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2

+
5γκλ∗

m

√
ηd

λ0

∥∥Ā2
∥∥ 1

2

1,1

It then suffices to show that

∥θt+1,r − θ0,r∥2 − ∥θt,r − θ0,r∥2 ≤
2Tηζ

δ

√
n

d1
E[Mt],Θ0,A

[
∥y − ŷ(t+ 1)∥22

] 1
2

+B − 20Tζγκλ∗

mδα

√
η3nd

λ0d1

∥∥Ā2
∥∥ 1

2

1,1

=
2Tηζ

δ

√
n

d1
E[Mt],Θ0,A

[
∥y − ŷ(t+ 1)∥22

] 1
2

+ 4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥Ā2
∥∥ 1

2

1,1

By Lemma 4, we have∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥
2

≤
√

n

d1

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

≤ 2

√
n

d1

∥∥∥y − ŷ(j)(t, 0)
∥∥∥
2

≤ 2

√
n

d1

(
∥y − ŷ(t)∥2 +

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥)

Lemma 10 gives that

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2

]
≤ 2dκ2(m− 1)

m2

∥∥Ā2
∥∥
1,1

Apply Markov’s inequality gives that with probability at least 1− δ
2T , it holds

that

∥y − ŷ(t)∥2 ≤
2T

δ
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥
2
≤ 2κ

√
Td(m− 1)

mδ

∥∥Ā2
∥∥ 1

2

1,1

Thus, with probability at least 1− δ
2T , it holds for all k and j that∥∥∥∥∥∂L(Θ

(j)
t,k)

∂θr

∥∥∥∥∥
2

≤ 2T

δ

√
n

d1
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2

+

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 37

4κ

√
Tdn(m− 1)

d1mδ

∥∥Ā2
∥∥ 1

2

1,1

Fix r ∈ [d1] and let ĵ be the index of the sub-GCN in which r is active. Then
with probability at least 1− δ

2T , we have that

∥∥∥θ(ĵ)
t,ζ,r − θt,r

∥∥∥
2
=

∥∥∥∥∥
ζ−1∑
k=0

(θt,k+1,r − θt,k,r)

∥∥∥∥∥
2

≤
ζ−1∑
k=0

∥θt,k+1,r − θt,k,r∥2

= η

ζ−1∑
k=0

∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥
2

≤ 2Tηζ

δ

√
n

d1
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2

+

4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥Ā2
∥∥ 1

2

1,1

Then, it is easy to see that we indeed have

∥θt+1,r − θ0,r∥2 ≤ ∥θt,r − θ0,r∥2 + ∥θt+1,r − θ0,r∥2
= ∥θt,r − θ0,r∥2 +

∥∥∥θ(ĵ)
t,ζ,r − θt,r

∥∥∥
2

≤ ∥θt,r − θ0,r∥2 +
2Tηζ

δ

√
n

d1
E[Mt−1],Θ0,A

[
∥y − ŷ(t)∥22

] 1
2

+ 4ηζκ

√
Tdn(m− 1)

d1mδ

∥∥Ā2
∥∥ 1

2

1,1

What remains is to prove Equation (6) in Theorem 3 for t = 0. In that case,
we need

R ≥ 4Tηζ

δα

√
n

d1
EΘ0,A

[
∥y − ŷ(0)∥22

] 1
2

+

4Tκ
∥∥Ā2

∥∥ 1
2

1,1

ηζ

√
Tdn(m− 1)

d1mδ
+

5Tζγλ∗

mδα

√
η3nd

λ0d1

 (18)

Using Lemma 11 and using α ≥ ηλ0

2 (1− γ) to solve for d1 gives

d1 ≥ Ω

(
T 2ζ2n

λ4
0(1− γ)2

max

{
n3

δ2κ2
,
n2d

δ2
∥∥Ā2

∥∥
1,1

, T 2λ∗2d

})

38 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

A detailed computation of the form of d1 is provided in Section C.8.

C.7 Auxiliary Lemmas

We now provide all proofs for the major properties and lemmas utilized in
deriving the convergence results for GIST.

Lemma 3. Suppose the number of hidden nodes satisfies d1 =
Ω
(
λ−1
0 n2 log Tmn/δ

)
. If for all t, k it holds that ∥θt,k,r − θ0,r∥2 ≤ R := κλ0

192n ,
then with probability at least 1− δ, for all t, t′ ∈ [T] we have:

λmin

(
G(j)(t, t′, k)

)
≥ λ0

2

Proof of Lemma 3 Fix some R > 0. Following Theorem 2 by [50], we have that with

probability at least 1− 2n2e−2d1t
2

it holds that∥∥∥H(j)(t, 0, 0)−H∞
∥∥∥
2
≤ nt

and with probability at least 1− n2e−
d1R
10m it holds that∥∥∥H(j)(t, t′, k)−H(j)(k, 0, 0)

∥∥∥
2
≤ 3nR

m

Choosing t = λ0
16n and R = κλ0

192n gives∥∥∥G(j)(t, t′, k)−G∞
∥∥∥
2
≤

∥∥Ā∥∥2
2

∥∥∥H(j)(t, t′, k)−H∞
∥∥∥
2
≤

∥∥Ā∥∥2 · λ0
8

≤ λ0
2

with probability at least 1 − n2
(
2 exp

(
− d1λ

2
0

128n2

)
+ exp

(
− d1λ0

480mn

))
. Taking a

union bound over all values of t′ and j, then plugging in the requirement d1 =

Ω
(
λ−1
0 n2 log Tmn/δ

)
gives the desired result. □

Lemma 4. For all j ∈ [m], r ∈ [d1], and t, k, the norm of the sub-GCN gradient
is bounded by ∥∥∥∥∥∥

∂L
(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

≤
√

n

d1

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

Proof Recall that

∂L(Θ
(j)
t,k)

∂θr
=

1√
d1

n∑
i=1

n∑
i′=1

(
ŷ
(j)
i (t, k)− yi

)
Āii′M

(j)
t,rarx̂i′I

{〈
θ
(j)
t,k,r, x̂i′

〉
≥ 0

}
Since

∣∣∣M(j)
t,r

∣∣∣ ≤ 1, |ar| ≤ 1, ∥x̂i′∥ ≤ 1, and I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0

}
≤ 1, we must have

that ∥∥∥M(j)
t,rarx̂i′I

{〈
θ
(j)
t,k,r, x̂i′

〉
≥ 0

}∥∥∥
2
≤ 1

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 39

Thus, applying triangle inequality for the double-summation gives∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

≤ 1√
d1

n∑
i=1

n∑
i′=1

Āii′

∣∣∣ŷ(j)
i (t, k)− yi

∣∣∣
=

1√
d1

∥∥∥Āabs
(
ŷ
(j)
i (t, k)− yi

)∥∥∥
1

≤
√

n

d1

∥∥∥Āabs
(
ŷ
(j)
i (t, k)− yi

)∥∥∥
2

≤
√

n

d1

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

where in the last inequality we use ∥abs(v)∥2 = ∥v∥2. □

Lemma 5. Suppose ∥θt,k,r − θ0,r∥ ≤ R := κλ0

192n . Then we have that with
probability at least 1− n exp

(
d1κ

−1R
)
, for all v ∈ Rn

∣∣∣〈v, I(j)2 (t, k)
〉∣∣∣ ≤ ηλ0

12

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2
∥v∥2

Proof of Lemma 5 Using 1-Lipschitzness of σ(·), and that ∥x̂i∥2 = 1, we have that
for all i, t, k, r∣∣∣σ (〈

θ
(j)
t,k+1,r, x̂i

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i

〉)∣∣∣ ≤ ∣∣∣〈θ(j)t,k+1,r − θ
(j)
t,k,r, x̂i

〉∣∣∣
≤

∥∥∥θ(j)t,k+1,r − θ
(j)
t,k,r

∥∥∥
2

= η

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

Lemma 16 from [50] shows that

P
(∣∣∣S⊥

i

∣∣∣ ≤ 4d1R
)
≥ exp(−d1R)

Thus, with probability at least 1− n exp
(
d1κ

−1R
)
, it holds that

max
i∈[n]

∣∣∣S⊥
i

∣∣∣ ≤ 4d1κ
−1R

Thus, for I
(j)
i,2 (t, k), we use Lemma 4 to have∣∣∣I(j)i,2 (t, k)

∣∣∣ ≤ 1√
d1

n∑
i′=1

∑
r∈S⊥

i′

Āii′

∣∣∣σ (〈
θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i′

〉)∣∣∣
≤ η√

d1

n∑
i′=1

∑
r∈S⊥

i′

Āii′

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

≤ 4η
√
nκ−1R

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

n∑
i′=1

Āii′

40 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

which yields the following∣∣∣〈v, I(j)i,2 (t, k)
〉∣∣∣ ≤ n∑

i=1

|vi| ·
∣∣∣I(j)i,2 (t, k)

∣∣∣
≤ 4η

√
nκ−1R

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

n∑
i,i′=1

Āii′ |vi|

= 4η
√
nκ−1R

∥∥Ā∥∥
2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2

∥∥Āabs(v)
∥∥
1

≤ 4ηnκ−1R
∥∥Ā∥∥2

2

∥∥∥y − ŷ(j)(t, k)
∥∥∥
2
∥v∥2

≤ 16ηnκ−1R
∥∥∥y − ŷ(j)(t, k)

∥∥∥
2
∥v∥2

Plugging in R = κλ0
192n gives the desired result. □

Lemma 6. Under the same condition as Lemma 5, with probability at least
1− n exp

(
−d1κ−1R

)
, we have

∥∥G(t, t′, k)⊥
∥∥
2
≤ λ0

12

Proof of Lemma 6 Lemma 16 from [50] shows that

P
(∣∣∣S⊥

i

∣∣∣ ≤ 4d1κ
−1R

)
≥ exp(−d1κ

−1R)

Thus, with probability at least 1− n exp (−d1R), it holds that

max
i∈[n]

∣∣∣S⊥
i

∣∣∣ ≤ 4d1κ
−1R

Recall the definition of H⊥

H⊥(t, t′, k) =
1

d
⟨x̂i, x̂i′⟩

∑
r∈S⊥

i

M(j)
t,r I{

〈
θ
(j)
t′,k,r, x̂i

〉
≥ 0;

〈
θ
(j)
t′,k,r, x̂i′

〉
≥ 0}

Since |⟨x̂i, x̂i′⟩| ≤ ∥x̂i∥2 ∥x̂i′∥2 ≤ 1, we have that∥∥∥H⊥(t, t′, k)
∥∥∥2
2
≤

∥∥∥H⊥(t, t′, k)
∥∥∥2
F

=

n∑
i,i′=1

(
H⊥(t, t′, k)ij

)2

≤ 1

d21

n∑
i,i′=1

∑
r,r′∈S⊥

i

I
{〈

θ
(j)
t′,k,r, x̂i

〉
≥ 0;

〈
θ
(j)
t′,k,r, x̂i′

〉
≥ 0

}
·

I
{〈

θ
(j)
t′,k,r′ , x̂i

〉
≥ 0;

〈
θ
(j)
t′,k,r′ , x̂i′

〉
≥ 0

}
≤ n2

d21

(
max
i∈[n]

∣∣∣S⊥
i

∣∣∣)2

= 16n2κ−2R2

which yields the following∥∥∥G(j)⊥(t, t′, k)
∥∥∥ ≤

∥∥Ā∥∥2
2

∥∥∥H(j)⊥(t, t′, k)
∥∥∥
2
= 16nκ−1R

Plugging in R = κλ0
192n gives the desired result. □

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 41

Lemma 7. Choosing η = λ0

24n∥Ā2∥
1,1

, we have that

∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)
∥∥∥2
2
≤ ηλ0

6

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

Proof of Lemma 7 Using 1-Lipschitzness of σ(·), and that ∥x̂i∥2 = 1, we have that
for all i, t, k, r∣∣∣σ (〈

θ
(j)
t,k+1,r, x̂i

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i

〉)∣∣∣ ≤ ∣∣∣〈θ(j)t,k+1,r − θ
(j)
t,k,r, x̂i

〉∣∣∣
≤

∥∥∥θ(j)t,k+1,r − θ
(j)
t,k,r

∥∥∥
2

= η

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

Using the fact that
∣∣∣M(j)

t,r

∣∣∣ ≤ 1, and |ar| ≤ 1, we have(
ŷ
(j)
i (t, k + 1)− ŷ

(j)
i (t, k)

)2

≤ 1

d1

 n∑
i′=1

d1∑
r=1

Āii′

∣∣∣σ (〈
θ
(j)
t,k+1,r, x̂i

〉)
− σ

(〈
θ
(j)
t,k,r, x̂i

〉)∣∣∣
2

≤ η2

d1

 n∑
i′=1

d1∑
r=1

Āii′

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

2

≤ η2

d1

n∑
i′=1

n∑
i′′=1

d1∑
r=1

d1∑
r′=1

Āii′Āii′′

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

·

∥∥∥∥∥∥
∂L

(
Θ

(j)
t,k

)
∂θr′

∥∥∥∥∥∥
2

Applying Lemma 4 to bound the norm of the gradient gives(
ŷ
(j)
i (t, k + 1)− ŷ

(j)
i (t, k)

)2

≤ η2n

d21

∥∥Ā∥∥2
2

n∑
i′=1

n∑
i′′=1

d1∑
r=1

d1∑
r′=1

Āii′Āii′′

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

≤ η2n
∥∥Ā∥∥2

2

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

n∑
i′=1

n∑
i′′=1

Āii′Āii′′

Therefore∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)
∥∥∥2
2
=

n∑
i=1

(
ŷ
(j)
i (t, k + 1)− ŷ

(j)
i (t, k)

)2

= η2n
∥∥Ā∥∥2

2

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

n∑
i=1

n∑
i′=1

n∑
i′′=1

Āii′Āii′′

= 4η2n
∥∥∥Ā2

∥∥∥
1,1

∥∥∥y − ŷ(j)(t, k)
∥∥∥2
2

Choosing η = λ0

24n∥Ā2∥
1,1

gives the desired result. □

42 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Lemma 8. As long as
∥∥∥θ(j)

t,k,r − θ0,r

∥∥∥
2
≤ R for all t, k, j, and the initialization

satisfies ∥Θ0∥F ≤ κ
√
2d1d−

√
d1R, then we have

ιt ≤
ηγλ0

2m

m∑
j=1

ζ−1∑
k=0

EMt

[
∥y − ŷ(t, k)∥22

]
+

18ηγ2dκ2λ∗2

m2λ0

∥∥Ā2
∥∥
1,1

for γ =
(
1−m−1

) 1
3

Proof of Lemma (8) Recall the definition of ιk

ιt =
1

m

m∑
j=1

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2
−

∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)
∥∥∥2
2

]
Notice that∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)

∥∥∥2
2

=
∥∥∥(ŷ(t)− ŷ(j)(t, 0)

)
+

(
ŷ(t)− ŷ(j)(t, 0)− ŷ(t+ 1) + ŷ(j)(t, ζ)

)∥∥∥2
2

=
∥∥∥ŷ(t)− ŷ(j)(t, 0)

∥∥∥2
2
+

∥∥∥ŷ(t)− ŷ(j)(t, 0)− ŷ(t+ 1) + ŷ(j)(t, ζ)
∥∥∥2
2
−

2
〈
ŷ(t)− ŷ(j)(t, 0)− ŷ(t+ 1) + ŷ(j)(t, ζ), ŷ(j)(t, 0)− ŷ(t)

〉
≥

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2
− 2

〈
ŷ(t)− ŷ(t+ 1), ŷ(j)(t, 0)− ŷ(t)

〉
−

2
〈
ŷ(j)(t, 0)− ŷ(j)(t, ζ), ŷ(t)− ŷ(j)(t, 0)

〉
Thus, ∥∥∥ŷ(t)− ŷ(j)(t, 0)

∥∥∥2
2
−

∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)
∥∥∥2
2

≤ 2
〈
ŷ(t)− ŷ(t+ 1), ŷ(j)(t, 0)− ˆy(t)

〉
+

2
〈
ŷ(j)(t, 0)− ŷ(j)(t, ζ), ŷ(t)− ŷ(j)(t, 0)

〉
Also notice that

m∑
j=1

〈
ŷ(t)− ŷ(t+ 1), ŷ(j)(t, 0)− ˆy(t)

〉
=

〈
ŷ(t)− ŷ(t+ 1),

m∑
j=1

ŷ(j)(t, 0)−m ˆy(t)

〉
= 0

Therefore
m∑
j=1

(∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2
−

∥∥∥ŷ(t+ 1)− ŷ(j)(t, ζ)
∥∥∥2
2

)

≤ 2

m∑
j=1

〈
ŷ(j)(t, 0)− ŷ(j)(t, ζ), ŷ(t)− ŷ(j)(t, 0)

〉

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 43

= 2

m∑
j=1

ζ−1∑
k=0

〈
ŷ(j)(t, k)− ŷ(j)(t, k + 1), ŷ(t)− ŷ(j)(t, 0)

〉

= 2

m∑
j=1

ζ−1∑
k=0

〈
I
(j)
1 (t, k) + I

(j)
2 (t, k), ŷ(t)− ŷ(j)(t, 0)

〉
if we recall the definition of I

(j)
1 (t, k) and I

(j)
2 (t, k). Thus, we can bound ιt as

ιt ≤
2

m

m∑
j=1

ζ−1∑
k=0

EMt

[〈
I
(j)
1 (t, k) + I

(j)
2 (t, k), ŷ(t)− ŷ(j)(t, 0)

〉]

≤ 2

m

m∑
j=1

ζ−1∑
k=0

EMt

[∥∥∥I(j)1 (t, k)
∥∥∥ ·

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥]+

EMt

[∣∣∣〈I(j)2 (t, k), ŷ(t)− ŷ(j)(t, 0)
〉∣∣∣]

Using Lemma (5) with v = ŷ(t)− ŷ(j)(t, 0), we have that for all j ∈ [m]∣∣∣〈I(j)2 (t, k), ŷ(t)− ŷ(j)(t, 0)
〉∣∣∣ ≤ ηλ0

12
∥y − ŷ(t, k)∥2

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥
2

≤ ηλ∗ ∥y − ŷ(t, k)∥2
∥∥∥ŷ(t)− ŷ(j)(t, 0)

∥∥∥
2

Furthermore, Lemma 9 gives a bound on
∥∥∥I(j)1 (t, k)

∥∥∥
2∥∥∥I(j)1 (t, k)

∥∥∥
2
≤ 2ηλ∗ ∥y − ŷ(t, k)∥2

Therefore,

ιt ≤
6ηλ∗

m

m∑
j=1

ζ−1∑
k=0

EMt

[
∥y − ŷ(t, k)∥2 ·

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥
2

]

≤ 3ηλ∗

m

m∑
j=1

ζ−1∑
k=0

EMt

λ0

(
1−m−1

) 1
3

6λ∗
∥y − ŷ(t, k)∥22

+

EMt

[
6λ∗

λ0 (1−m−1)
1
3

∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2

]

=
ηλ0
2m

(
1−m−1

) 1
3

m∑
j=1

ζ−1∑
k=0

EMt

[
∥y − ŷ(t, k)∥22

]
+

18ηλ∗2

mλ0 (1−m−1)
1
3

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2

]

(19)

Substituting Lemma (10) to the last step of Equation (19) gives the desired result

ιt ≤
ηλ0
2m

(
1−m−1

) 1
3

m∑
j=1

ζ−1∑
k=0

EMt

[
∥y − ŷ(t, k)∥22

]
+

18η
(
1−m−1

) 2
3
dκ2λ∗2

m2λ0

∥∥∥Ā2
∥∥∥
1,1

□

44 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Lemma 9. Suppose, then we have∥∥∥I(j)1 (t, k)
∥∥∥ ≤ 2ηλ∗ ∥y − ŷ(t, k)∥2

Proof □

Lemma 10. Suppose ∥Θt∥F ≤ 2κ
√
d1d. Then we have that for all j ∈ [m]

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2

]
≤ 2dκ2(m− 1)

m2

∥∥Ā2
∥∥
1,1

Proof Recall that

ŷ
(j)
i (t, 0) =

1√
d1

n∑
i′=1

d1∑
r=1

Āii′M
(j)
t,rarσ (⟨x̂i′ ,θt,r⟩)

ŷi(t) =
1

m
√
d1

n∑
i′=1

d1∑
r=1

Āii′M
(j)
t,rarσ (⟨x̂i′ ,θt,r⟩)

Thus

ŷ
(j)
i (t, 0)− ŷi(t) =

1√
d1

n∑
i′=1

d1∑
r=1

Āii′

(
M(j)

t,r −m−1
)
arσ (⟨x̂i′ ,θt,r⟩)

Notice that, by independence of M(j)
t,r and M(j)

t,r′ for r ̸= r′, we have

EMt

[(
M(j)

t,r −m−1
)(

M(j)
t,r′ −m−1

)]
=

{
m−1
m2 if r = r′

0 if r ̸= r′

Therefore

EMt

[(
ŷ
(j)
i (t, 0)− ŷi(t)

)2
]
=

m− 1

d1m2

n∑
i′1,i

′
2=1

d1∑
r=1

Āii′1
Āii′2

·

σ
(〈

x̂i′1
,θt,r

〉)
σ
(〈

x̂i′2
,θt,r

〉)
≤ m− 1

d1m2

n∑
i′1,i

′
2=1

d1∑
r=1

Āii′1
Āii′2

∥θt,r∥22

=
m− 1

d1m2
∥Θt∥2F

n∑
i′1,i

′
2=1

Āii′1
Āii′2

≤ 2dκ2(m− 1)

m2

n∑
i′1,i

′
2=1

Āii′1
Āii′2

Thus,

EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2
2

]
=

n∑
i=1

EMt

[(
ŷ
(j)
i (t, 0)− ŷi(t)

)2
]

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 45

≤ 2dκ2(m− 1)

m2

n∑
i=1

n∑
i′1,i

′
2=1

Āii′1
Āii′2

=
2dκ2(m− 1)

m2

∥∥∥Ā2
∥∥∥
1,1

□

Lemma 11. It holds that

E
[
∥y − ŷ(0)∥22

]
≤ C2n+

d

m2

∥∥Ā2
∥∥
1,1

where C is defined in Assumption 4.

Proof of Lemma 11 Note that

EΘ0,A

[
∥y − ŷ(0)∥22

]
=

n∑
i=1

EΘ0,A

[
(yi − ŷi(0))

2
]

= y2i − 2yiEΘ0,A [ŷi(0)] + EΘ0,A

[
ŷi(0)

2
]

≤ C2 + EΘ0,A

[
ŷi(0)

2
]

where the last inequality follows from the bound on |yi| and the fact that
EΘ0,A [ŷi(0)] = 0. Moreover, we have

EΘ0,A

[
ŷi(0)

2
]

=
1

m2d1

n∑
i1=1

n∑
i2=1

d1∑
r1=1

d1∑
r2=1

Āii1Āii2EA[ar1ar2]·

EΘ0

[
σ
(〈
θ0,r1 , x̂i1

〉)
σ
(〈
θ0,r2 , x̂i2

〉)]
=

1

m2d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

Āii1Āii2EΘ0

[
σ
(〈
θ0,r, x̂i1

〉)
σ
(〈
θ0,r, x̂i2

〉)]
≤ 1

m2d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

Āii1Āii2EΘ0

[∥∥θ0,r∥∥22]

=
d

m2

n∑
i1=1

n∑
i2=1

Āii1Āii2

Thus

EΘ0,A

[
∥y − ŷ(0)∥22

]
≤

n∑
i=1

EΘ0,A

[
ŷi(0)

2
]
≤ C2n+

d

m2

∥∥∥Ā2
∥∥∥
1,1

□

46 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

C.8 Computation of Overparameterization

In this section, we provide the computation of the exact overparameterization
requirement such that Theorem 2 holds. Recall from the end of Section C.6,
Equation (18) that we need to satisfy the following requirement

R ≥ 4Tηζ

δα

√
n

d1
EΘ0,A

[
∥y − ŷ(0)∥22

] 1
2

+

4Tκ
∥∥Ā2

∥∥ 1
2

1,1

ηζ

√
Tdn(m− 1)

d1mδ
+

5Tζγλ∗

mδα

√
η3nd

λ0d1


To start, Lemma 11 gives that

EΘ0,A

[
∥y − ŷ(0)∥22

] 1
2 ≤

(
C2n+

d

m2

∥∥Ā2
∥∥
1,1

)
≤ C
√
n+

√
d

m

∥∥Ā2
∥∥ 1

2

1,1

Plugging this into Equation (18) and using O(·) to hide constants, we have

O
(
κλ0

n

)
≥ Tηζ

δα

√
n

d1

(
√
n+

√
d

m

∥∥Ā2
∥∥ 1

2

1,1

)
+ (20)

Tκ
∥∥Ā2

∥∥ 1
2

1,1

ηζ

√
Tdn(m− 1)

d1mδ
+

Tζγλ∗

mδα

√
η3nd

λ0d1

 (21)

Opening the parenthesis and plugging in α ≥ ηλ0

2 (1− γ) gives

O
(
κλ0

n

)
≥ Tζn

δλ0(1− γ)
√
d1

+
Tζ

δλ0(1− γ)m

∥∥Ā2
∥∥ 1

2

1,1

√
nd

d1
+

Tκ
∥∥Ā2

∥∥ 1
2

1,1
ηζ

√
Tdn(m− 1)

d1mδ
+

T 2κ
∥∥Ā2

∥∥ 1
2

1,1

ζγλ∗

m(1− γ)

√
ηd

λ3
0d1

Further plugging in η = λ0

24n∥Ā2∥
1,1

gives

O
(
κλ0

n

)
≥ Tζn

δλ0(1− γ)
√
d1

+
Tζ

δλ0(1− γ)m

∥∥Ā2
∥∥ 1

2

1,1

√
nd

d1
+

Tλ0κ
∥∥Ā2

∥∥− 1
2

1,1
ζ

√
Td(m− 1)

d1nmδ
+ T 2κ

ζγλ∗

λ0m(1− γ)

√
d

nd1

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 47

Equation (20) is satisfied if each term on the left-hand side is bounded by the
right-hand side when hiding constants. Thus, it holds as long as the following
holds

Tζn

δλ0(1− γ)
√
d1
≤ O

(
κλ0

n

)
(22)

Tζ

δλ0(1− γ)m

∥∥Ā2
∥∥ 1

2

1,1

√
nd

d1
≤ O

(
κλ0

n

)
(23)

Tλ0κ
∥∥Ā2

∥∥− 1
2

1,1
ζ

√
Td(m− 1)

d1nmδ
≤ O

(
κλ0

n

)
(24)

T 2κ
ζγλ∗

λ0m(1− γ)

√
d

nd1
≤ O

(
κλ0

n

)
(25)

where in requirement of Equation (22) we use the simplification α ≥ ηλ0

2 (1−γ).
Notice that d1 appears in the denominator on the left-hand side for Equation
(22)-(25). Thus, as long as d1 is large enough, the above requirements can be
satisfied. Next, we solve each of these requirements individually. We move

√
d1

to the right-hand side of Equation (22)-(25) and κλ0

n to the left-hand side to
get that

√
d1 ≥ Ω

(
Tζn2

δλ2
0(1− γ)κ

)
√

d1 ≥ Ω

(
Tζ
√
n3d

δλ2
0(1− γ)mκ

∥∥Ā2
∥∥ 1

2

1,1

)
√

d1 ≥ Ω

(
T
∥∥Ā2

∥∥− 1
2

1,1
ζ

√
Td(m− 1)n

mδ

)
√

d1 ≥ Ω

(
T 2ζγλ∗

λ2
0m(1− γ)

√
nd

)
Squaring both sides gives

d1 ≥ Ω

(
T 2ζ2n4

δ2λ4
0(1− γ)2κ2

)
(26)

d1 ≥ Ω

(
T 2ζn3d

δ2λ4
0(1− γ)2m2κ2

∥∥Ā2
∥∥
1,1

)
(27)

d1 ≥ Ω

(
T 3ζ2nd(m− 1)

mδ

∥∥Ā2
∥∥−1

1,1

)
(28)

d1 ≥ Ω

(
T 4ζ2γ2λ∗2nd

λ4
0m

2(1− γ)2

)
(29)

48 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

First, notice that ∥∥Ā2
∥∥
1,1
≥ n

∥∥Ā2
∥∥
F
≥ n

Substituting this and m−1
m = γ3 into Equation 28 to get

d1 ≥ Ω

(
T 2ζ2n4

δ2λ4
0(1− γ)2κ2

)
(30)

d1 ≥ Ω

(
T 2ζn3d

δ2λ4
0(1− γ)2m2κ2

∥∥Ā2
∥∥
1,1

)
(31)

d1 ≥ Ω

(
T 3ζ2γ3d

δ

)
(32)

d1 ≥ Ω

(
T 4ζ2γ2λ∗2nd

λ4
0m

2(1− γ)2

)
(33)

Notice that γ ≤ 0 and λ0 ≤ 0, and treat δ as some constants. Thus Equation
(33) implies Equation (32). Noticing that m ≥ 1, ζ ≥ 1 and γ ≤ 1. Factoring

out T 2ζ2n
λ4
0(1−γ)2

for Equation (30), (31), and (33), the requirements boils down to

d1 ≥ Ω

(
T 2ζ2n

λ4
0(1− γ)2

· n3

δ2κ2

)
(34)

d1 ≥ Ω

(
T 2ζ2n

λ4
0(1− γ)2

· n
2d

δ2
∥∥Ā2

∥∥
1,1

)
(35)

d1 ≥ Ω

(
T 2ζ2n

λ4
0(1− γ)2

· T 2λ∗2d

)
(36)

Taking a maximum over Equation (34)-(36) gives the final requirement

d1 ≥ Ω

(
T 2ζ2n

λ4
0(1− γ)2

max

{
n3

δ2κ2
,
n2d

δ2
∥∥Ā2

∥∥
1,1

, T 2λ∗2d

})
Supplementary information

All code for this project is publicly-available via github at the following link:
https://github.com/wolfecameron/GIST

Acknowledgments

This work is supported by NSF FET:Small no. 1907936, NSF MLWiNS CNS no.
2003137 (in collaboration with Intel), NSF CMMI no. 2037545, NSF CAREER
award no. 2145629, and Rice InterDisciplinary Excellence Award (IDEA).

https://github.com/wolfecameron/GIST

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 49

Declarations

Funding

Funding for this project is provided by NSF FET:Small no. 1907936, NSF
MLWiNS CNS no. 2003137 (in collaboration with Intel), NSF CMMI no.
2037545, NSF CAREER award no. 2145629, NSF CIF no. 2008555, and Rice
InterDisciplinary Excellence Award (IDEA).

Competing Interests

The authors are not aware of any competing interests directly or indirectly
related to this work.

Availability of Data and Materials

All data used within the publication is openly-available to the public and can
be downloaded for free from the internet.

Code Availability

All code for this project is publicly-available via github at the following link:
https://github.com/wolfecameron/GIST

Authors’ Contributions

All authors made substantial contributions to the work and adhere to the
guidelines outlined for this publication. The primary authors have been marked
on the title page with equal contribution.

References

[1] Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.:
Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal
Processing Magazine (2017)

[2] Lusher, D., Koskinen, J., Robins, G.: Exponential Random Graph Mod-
els for Social Networks: Theory, Methods, and Applications. Cambridge
University Press, ??? (2013)

[3] Newman, M.E., Watts, D.J., Strogatz, S.H.: Random graph models of
social networks. Proceedings of the National Academy of Sciences (2002)

[4] Balaban, A.T.: Applications of Graph Theory in Chemistry. Journal of
Chemical Information and Computer Sciences (1985)

[5] Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry.
Journal of Chemical Information and Computer Sciences (2003)

https://github.com/wolfecameron/GIST

50 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

[6] Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural
networks on graphs with fast localized spectral filtering. arXiv preprint
arXiv:1606.09375 (2016)

[7] Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph
domains. In: Proceedings of the IEEE International Joint Conference on
Neural Networks (IJCNN) (2005)

[8] Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convo-
lutional neural networks on riemannian manifolds. In: Proceedings of the
IEEE International Conference on Computer Vision Workshops (ICCVW)
(2015)

[9] Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph
Convolutional Networks. arXiv preprint arXiv:1609.02907 (2016)

[10] Chen, J., Zhu, J., Song, L.: Stochastic Training of Graph Convolutional
Networks with Variance Reduction. In: Proceedings of the International
Conference on Machine Learning (ICML) (2018)

[11] Chen, J., Ma, T., Xiao, C.: FastGCN: Fast Learning with Graph Con-
volutional Networks via Importance Sampling. In: Proceedings of the
International Conference on Learning Representations (ICLR) (2018)

[12] Gao, H., Wang, Z., Ji, S.: Large-Scale Learnable Graph Convolutional
Networks. arXiv preprint arXiv:1808.03965 (2018)

[13] Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive Sampling Towards
Fast Graph Representation Learning. arXiv preprint arXiv:1809.05343
(2018)

[14] You, Y., Chen, T., Wang, Z., Shen, Y.: L2-gcn: Layer-wise and learned
efficient training of graph convolutional networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2127–2135 (2020)

[15] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graph-
SAINT: Graph Sampling Based Inductive Learning Method. arXiv preprint
arXiv:1907.04931 (2019)

[16] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on
large graphs. In: Proceedings of Advances in Neural Information Processing
Systems (NeurIPS) (2017)

[17] Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., Gu, Q.: Layer-Dependent
Importance Sampling for Training Deep and Large Graph Convolutional
Networks. arXiv preprint arXiv:1911.07323 (2019)

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 51

[18] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.-J.: Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional net-
works. In: Proceedings of International Conference on Knowledge Discovery
& Data Mining (KDD) (2019)

[19] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio,
Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

[20] Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020)

[21] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G.,
Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V.: Unsu-
pervised Cross-lingual Representation Learning at Scale. arXiv preprint
arXiv:1911.02116 (2019)

[22] Hao, K.: Training a single AI model can emit as much carbon as five cars
in their lifetimes (2019)

[23] Peng, T., Sarazen, M.: The Staggering Cost of Training SOTA AI Models
(2019)

[24] Sharir, O., Peleg, B., Shoham, Y.: The cost of training nlp models: A
concise overview. arXiv preprint arXiv:2004.08900 (2020)

[25] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language
models are few-shot learners. Advances in neural information processing
systems 33, 1877–1901 (2020)

[26] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transfer-
able visual models from natural language supervision. In: International
Conference on Machine Learning, pp. 8748–8763 (2021). PMLR

[27] Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.:
Deep Double Descent: Where Bigger Models and More Data Hurt. arXiv
preprint arXiv:1912.02292 (2019)

[28] Oymak, S., Soltanolkotabi, M.: Toward moderate overparameterization:
Global convergence guarantees for training shallow neural networks. IEEE
Journal on Selected Areas in Information Theory 1(1), 84–105 (2020)

[29] Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional net-
works for semi-supervised learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32 (2018)

52 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

[30] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Ruther-
ford, E., Casas, D.d.L., Hendricks, L.A., Welbl, J., Clark, A., et al.: Training
compute-optimal large language models. arXiv preprint arXiv:2203.15556
(2022)

[31] Yuan, B., Kyrillidis, A., Jermaine, C.M.: Distributed Learning of Deep
Neural Networks using Independent Subnet Training. arXiv preprint
arXiv:1810.01392 (2019)

[32] Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing
(1998)

[33] Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed computing (1998)

[34] Lin, T., Stich, S.U., Kshitij Patel, K., Jaggi, M.: Don’t Use Large Mini-
Batches, Use Local SGD. arXiv preprint arXiv:1808.07217 (2018)

[35] Shi, S., Tang, Z., Chu, X., Liu, C., Wang, W., Li, B.: A Quantitative
Survey of Communication Optimizations in Distributed Deep Learning.
arXiv preprint arXiv:2005.13247 (2020)

[36] Zhang, Z., Yin, L., Peng, Y., Li, D.: A quick survey on large scale
distributed deep learning systems. In: 2018 IEEE 24th International
Conference on Parallel and Distributed Systems (ICPADS) (2018)

[37] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., Liu, J.: Can
Decentralized Algorithms Outperform Centralized Algorithms? A Case
Study for Decentralized Parallel Stochastic Gradient Descent. In: Proceed-
ings of Advances in Neural Information Processing Systems (NeurIPS)
(2017)

[38] Yu, K., Flynn, T., Yoo, S., D’Imperio, N.: Layered sgd: A decentralized
and synchronous sgd algorithm for scalable deep neural network training.
arXiv preprint arXiv:1906.05936 (2019)

[39] Zhang, S., Choromanska, A.E., LeCun, Y.: Deep learning with elastic aver-
aging sgd. In: Proceedings of Advances in Neural Information Processing
Systems (NeurIPS) (2015)

[40] Agarwal, A., Duchi, J.C.: Distributed delayed stochastic optimization.
In: Proceedings of Advances in Neural Information Processing Systems
(NeurIPS) (2011)

[41] Zinkevich, M., Weimer, M., Li, L., Smola, A.J.: Parallelized stochastic
gradient descent. In: Proceedings of Advances in Neural Information

GIST: Distributed Training for Large-Scale Graph Convolutional Networks 53

Processing Systems (NeurIPS), pp. 2595–2603 (2010)

[42] Stich, S.U.: Local SGD converges fast and communicates little. In: Proceed-
ings of the International Conference on Learning Representations (ICLR)
(2019)

[43] Ben-Nun, T., Hoefler, T.: Demystifying Parallel and Distributed Deep
Learning: An In-Depth Concurrency Analysis. ACM Computing Surveys
(CSUR) (2019)

[44] Gholami, A., Azad, A., Jin, P., Keutzer, K., Buluc, A.: Integrated Model,
Batch and Domain Parallelism in Training Neural Networks. arXiv preprint
arXiv:1712.04432 (2017)

[45] Günther, S., Ruthotto, L., Schroder, J.B., Cyr, E.C., Gauger, N.R.:
Layer-Parallel Training of Deep Residual Neural Networks. arXiv preprint
arXiv:1812.04352 (2018)

[46] Kirby, A.C., Samsi, S., Jones, M., Reuther, A., Kepner, J., Gadepally, V.:
Layer-Parallel Training with GPU Concurrency of Deep Residual Neural
Networks via Nonlinear Multigrid. arXiv preprint arXiv:2007.07336 (2020)

[47] Pauloski, J.G., Zhang, Z., Huang, L., Xu, W., Foster, I.T.: Convolu-
tional Neural Network Training with Distributed K-FAC. arXiv preprint
arXiv:2007.00784 (2020)

[48] Tavarageri, S., Sridharan, S., Kaul, B.: Automatic Model Parallelism
for Deep Neural Networks with Compiler and Hardware Support. arXiv
preprint arXiv:1906.08168 (2019)

[49] Zhu, W., Zhao, C., Li, W., Roth, H., Xu, Z., Xu, D.: LAMP: Large Deep
Nets with Automated Model Parallelism for Image Segmentation. arXiv
preprint arXiv:2006.12575 (2020)

[50] Liao, F., Kyrillidis, A.: On the Convergence of Shallow Neural Network
Training with Randomly Masked Neurons (2021)

[51] Dun, C., Wolfe, C.R., Jermaine, C.M., Kyrillidis, A.: Resist: Layer-wise
decomposition of resnets for distributed training. In: Uncertainty in
Artificial Intelligence, pp. 610–620 (2022). PMLR

[52] Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and
generalization in neural networks. arXiv preprint arXiv:1806.07572 (2018)

[53] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.:
Collective classification in network data. AI magazine 29, 93–93 (2008)

[54] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M.,

54 GIST: Distributed Training for Large-Scale Graph Convolutional Networks

Leskovec, J.: Open Graph Benchmark: Datasets for Machine Learning on
Graphs. arXiv e-prints, 2005–00687 (2020) https://arxiv.org/abs/2005.
00687 [cs.LG]

[55] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research (JMLR) (2014)

[56] Gong, L., Cheng, Q.: Exploiting edge features for graph neural networks.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9211–9219 (2019)

[57] Jiang, X., Zhu, R., Li, S., Ji, P.: Co-embedding of nodes and edges
with graph neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020)

[58] Bergen, L., O’Donnell, T., Bahdanau, D.: Systematic generalization with
edge transformers. Advances in Neural Information Processing Systems
34, 1390–1402 (2021)

[59] Paszke, A., et al.: Pytorch: An imperative style, high-performance deep
learning library. In: Proceedings of Advances in Neural Information
Processing Systems (NeurIPS) (2019)

[60] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980 (2014)

[61] Du, S.S., Zhai, X., Poczos, B., Singh, A.: Gradient Descent Provably
Optimizes Over-parameterized Neural Networks (2019)

[62] Song, Z., Yang, X.: Quadratic Suffices for Over-parametrization via Matrix
Chernoff Bound (2020)

{arXiv:2005.00687}
{arXiv:2005.00687}

	Introduction
	What is the GIST of this work?
	subGCNs: Constructing Sub-GCNs
	subTrain: Independently Training Sub-GCNs
	subAgg: Aggregating Sub-GCN Parameters
	What is the value of GIST?

	Related Work
	Theoretical Results
	Experiments
	Small-Scale Experiments
	Large-Scale Experiments
	Training Ultra-Wide GCNs
	GIST with Layer Sampling

	Future Work
	Conclusions
	Experimental Details
	Datasets
	Implementation Details
	Small-Scale Experiments
	Large-Scale Experiments
	Training Ultra-Wide GCNs
	GIST with Layer Sampling

	GIST vs. Other Distributed Training Methods
	Local SGD
	Sub-GCN Ensembles

	Theoretical Results
	Formulation of GIST for One-Hidden-Layer GCNs
	Preliminary and Notations
	Properties of the Transformed Input
	Full Statement Theorem 1
	GIST and Local Training Progress
	Convergence of GIST
	Auxiliary Lemmas
	Computation of Overparameterization

