
Algorithms for Learning Sparse Additive Models with Interactions in
High Dimensions∗

Hemant Tyagi†

htyagi@turing.ac.uk
Anastasios Kyrillidis‡

anastasios@utexas.edu
Bernd Gärtner§

gaertner@inf.ethz.ch

Andreas Krause¶

krausea@ethz.ch

May 9, 2017

Abstract

A function f : Rd → R is a Sparse Additive Model (SPAM), if it is of the form f(x) =
∑

l∈S φl(xl) where S ⊂ [d],
|S| � d. Assuming φ’s, S to be unknown, there exists extensive work for estimating f from its samples. In this work, we
consider a generalized version of SPAMs, that also allows for the presence of a sparse number of second order interaction terms.
For some S1 ⊂ [d],S2 ⊂

(
[d]
2

)
, with |S1| � d, |S2| � d2, the function f is now assumed to be of the form:

∑
p∈S1 φp(xp) +∑

(l,l′)∈S2 φ(l,l′)(xl, xl′). Assuming we have the freedom to query f anywhere in its domain, we derive efficient algorithms
that provably recover S1,S2 with finite sample bounds. Our analysis covers the noiseless setting where exact samples of f are
obtained, and also extends to the noisy setting where the queries are corrupted with noise. For the noisy setting in particular, we
consider two noise models namely: i.i.d Gaussian noise and arbitrary but bounded noise. Our main methods for identification of
S2 essentially rely on estimation of sparse Hessian matrices, for which we provide two novel compressed sensing based schemes.
Once S1,S2 are known, we show how the individual components φp, φ(l,l′) can be estimated via additional queries of f , with
uniform error bounds. Lastly, we provide simulation results on synthetic data that validate our theoretical findings.

1 Introduction
Many scientific problems involve estimating an unknown function f , defined over a compact subset of Rd, with d large. Such
problems arise for instance, in modeling complex physical processes [35, 32, 58]. Information about f is typically available in
the form of point values (xi, f(xi))

n
i=1, which are then used for learning f . It is well known that the problem suffers from the

curse of dimensionality, if only smoothness assumptions are placed on f . For example, if f is Cs smooth (s times continuously
differentiable), then for uniformly approximating f within error δ ∈ (0, 1), one needs n = Ω(δ−d/s) samples [51].

A popular line of work in recent times, considers the setting where f possesses an intrinsic low dimensional structure,
i.e., depends on only a small subset of d variables. There exist algorithms for estimating such f – tailored to the underlying
structural assumption – along with attractive theoretical guarantees, that do not suffer from the curse of dimensionality (cf.,
[15, 9, 53, 18]). One such assumption leads to the class of sparse additive models (SPAMs) wherein f =

∑
l∈S φl for some

unknown S ⊂ {1, . . . , d} with |S| = k � d. There exist several algorithms for learning these models (cf. [45, 33, 23, 43, 54]).
Here we focus on a generalized SPAM model, where f can also contain a small number of second order interaction terms, i.e.,

f(x1, x2, . . . , xd) =
∑
p∈S1

φp(xp) +
∑

(l,l′)∈S2

φ(l,l′)(xl, xl′); S1 ⊂ [d],S2 ⊂
(

[d]

2

)
, (1.1)

with |S1| � d, |S2| � d2. Here, φ(l,l′)(xl, xl′) 6≡ gl(xl) + hl′(xl′) for some univariates gl, hl′ meaning that ∂2

∂l∂l′
φ(l,l′) 6≡ 0. As

opposed to SPAMs, the problem is significantly harder now – allowing interactions leads to an additional d(d− 1)/2 unknowns
out of which of only a few terms (i.e., those in S2) are relevant. In the sequel, we will denote S to be the support of f consisting
of variables that are part of S1 or S2, and k to be the size of S. Moreover, we will denote ρm to be the maximum number of
occurrences of a variable in S2 – this parameter captures the underlying complexity of the interactions.

There exist relatively few results for learning models of the form (1.1), with the existing work being mostly in the regression
framework in statistics (cf., [31, 42, 49]). Here, (xi, f(xi))

n
i=1 are typically samples from an unknown probability measure P,

∗A preliminary version of this paper appeared in the proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS)
2016 [55]. The present draft is an expanded version containing additional results.
†School of Mathematics, University of Edinburgh, Edinburgh, United Kingdom; The Alan Turing Institute, London, United Kingdom
‡Department of Electrical and Computer Engineering, The University of Texas at Austin
§Department of Computer Science, Institute of Theoretical Computer Science, ETH Zürich, CH-8092 Zürich
¶Department of Computer Science, ETH Zürich, CH-8092 Zürich

1

ar
X

iv
:1

60
5.

00
60

9v
3

 [
cs

.L
G

]
 8

 M
ay

 2
01

7

with the samples moreover assumed to be corrupted with (i.i.d) stochastic noise. In this paper, we consider the approximation
theoretic setting where we have the freedom to query f at any desired set of points (cf. [15, 18, 54]). We propose strategies
for querying f , along with efficient recovery algorithms, which leads to much stronger guarantees than known in the regression
setting. In particular, we provide the first finite sample bounds for exactly recovering S1 and S2. This is shown for (i) the
noiseless setting where exact samples are observed, as well as (ii) the noisy setting, where the samples are corrupted with noise
(either i.i.d Gaussian or arbitrary but bounded noise models).

Once S1, S2 are identified, we show in Section 6 how the individual components: φp, φ(l,l′) of the model can be estimated,
with uniform error bounds. This is shown for both the noiseless and noisy query settings. It is accomplished by additionally
sampling f along the identified one/two dimensional subspaces corresponding to S1,S2 respectively, and by employing standard
estimators from approximation theory and statistics.

1.1 Our contributions
We make the following contributions for learning models of the form (1.1).

1. Firstly, we provide an efficient algorithm, namely Algorithm 3, which provably recovers S1,S2 exactly with high proba-
bility1 (w.h.p), with O(kρm(log d)3) noiseless queries. When the point queries are corrupted with (i.i.d) Gaussian noise,
we show that Algorithm 3 identifies S1, S2 w.h.p, with O(ρ5

mk
2(log d)4) noisy queries of f . We also analyze the setting

of arbitrary but bounded noise, and derive sufficient conditions on the noise magnitude that enable recovery of S1,S2.

2. Secondly, we provide another efficient algorithm namely Algorithm 4, which provably recovers S1,S2 exactly w.h.p, with
(i) O(kρm(log d)2) noiseless queries and, (ii) O(ρ5

mk
5(log d)3) noisy queries (i.i.d Gaussian noise). We also analyze the

setting of arbitrary but bounded noise.

3. We provide an algorithm tailored to the special case where the underlying interaction graph corresponding to S2 is known
to be a perfect matching, i.e., each variable interacts with at most one variable (so ρm = 1). We show that the algorithm
identifies S1,S2 w.h.p, with (i) O(k(log d)2) noiseless queries and, (ii) O(k2(log d)3) noisy queries (i.i.d Gaussian noise).
We also analyze the setting of arbitrary but bounded noise.

4. An important part of Algorithms 3, 4 are two novel compressive sensing based methods, for estimating sparse, d × d
Hessian matrices. These might be of independent interest.

We also provide simulation results on synthetic data, that validate our theoretical findings concerning the identification of S1,S2.
Algorithm 3 appeared in AISTATS 2016 [55], in a preliminary version of this paper. The results in Section 6 (estimating
individual components of f) were part of the supplementary material in [55].

1.2 Related work
We now provide a brief overview of related work, followed by an outline of our main contributions and an overview of the
methods. A more detailed comparison with related work is provided in Section 8.

Learning SPAMs. This model was introduced in the nonparametric regression setting by Lin et al. [31] who proposed the
COSSO (Component selection and smoothing) method – an extension of the lasso to the reproducing kernel Hilbert space
(RKHS) setting. It essentially performs least squares minimization with a sparsity inducing penalty term involving the sum
of norms of the function components. In fact, this method is designed to handle the more general smoothing spline analysis
of variance (SS-ANOVA) model [56, 21]. It has since been studied extensively in the regression framework with a multitude
of results involving: estimation of f (cf.,[25, 33, 45, 43, 26, 23]) and/or variable selection, i.e., identifying the support S (cf.,
[23, 45, 57]).

A common theme behind (nearly all of) these approaches is to first (approximately) represent each φj ; 1 ≤ j ≤ d, in a
suitable basis of finite size. This is done for example via: B-splines (cf. [23, 33]), finite combination of kernel functions (cf.
[43, 26]) etc. Thereafter, the problem reduces to a finite dimensional one, that involves finding the values of the coefficients in
the corresponding basis representation. This is accomplished by performing least squares minimization subject to sparsity and
smoothness inducing penalty terms – the optimization problem is convex on account of the choice of the penalty terms, and hence
can be solved efficiently.

With regards to the problem of estimating f , Koltchinskii et al. [26], Raskutti et al. [43] proposed a convex program for
estimating f in the RKHS setting along with L2 error rates. These error rates were shown to be minimax optimal by Raskutti
et al. [43]. For example, f lying in a Sobolev space with smoothness parameter α > 1/2, are estimated at the optimal L2 rate:
k log d
n + kn−

2α
2α+1 where n denotes the number of samples. There also exist results for the variable selection problem, i.e., for

estimating the support S. In contrast to the setting of sparse linear models, for which non-asymptotic sample complexity bounds
are known [59, 58], the corresponding results in the nonparametric setting are usually asymptotic, i.e., derived in the limit of
large n. This property is referred to as sparsistency in the statistics literature; an estimator is called sparsistent if Ŝ = S with

1With probability 1−O(d−c) for some constant c > 0.

2

probability approaching one as n → ∞. Variable selection results for SPAMs in the nonparametric regression setting can be
found for instance in [45, 23, 57]. Recently, Tyagi et al. [54] considered this problem in the approximation theoretic setting;
they proposed a method that identifies S w.h.p with sample complexities O(k log d), O(k3(log d)2) in the absence/presence of
Gaussian noise, respectively.

While there exists a significant amount of work in the literature for SPAMs, the aforementioned methods are designed for
specifically learning SPAMs, and cannot handle generalized SPAMs of the form (1.1) containing interaction terms.

Learning generalized SPAMs. There exist fewer results for generalized SPAMs of the form (1.1), in the regression setting.
The COSSO algorithm [31] can handle (1.1), however its convergence rates are shown only for the case of no interactions.
Radchenko et al. [42] proposed the VANISH algorithm – a least squares method with sparsity constraints and show that their
method is sparsistent. Storlie et al. [49] proposed ACOSSO – an adaptive version of the COSSO algorithm – which can also
handle (1.1). They derived convergence rates and sparsistency results for their method, albeit for the case of no interactions.
Recently, Dalalayan et al. [13], Yang et al. [61] studied a generalization of (1.1) that allows for the presence of a sparse number
of m-wise interaction terms for some additional sparsity parameter m. While they derive non-asymptotic L2 error rates for
estimating f in such generic setting, they do not guarantee unique identification of the interaction terms for any value of m.

A special case of (1.1) – where φp’s are linear and each φ(l,l′) is of the form xlxl′ – has been studied considerably. Within this
setting, there exist algorithms that recover S1,S2, along with convergence rates for estimating f in the limit of large n [8, 42, 3].
There also exist non-asymptotic sampling bounds for identifying the interaction terms in the noiseless setting (cf., [37, 24]).
However finite sample bounds for the non-linear model (1.1) are not known in general.

Other low-dimensional function models. There exist results for other, more general classes of intrinsically low dimensional
functions, that we now mention starting with the approximation theoretic setting. Devore et al. [15] consider functions depending
on an unknown subset S of the variables with |S| = k � d. The functions do not necessarily possess an additive structure, so
the function class is more general than (1.1). They provide algorithms that recover S exactly w.h.p, with O(ckk log d) noiseless
queries of f , for some constant c > 0. Schnass et al. [46] derived a simpler algorithm for this problem in the noiseless setting.
This function class was also studied by Comminges et al. [12, 11] in the nonparametric regression setting wherein they analyzed
an estimator that identifies S w.h.p, with O(ckk log d) samples of f . Fornasier et al. [18], Tyagi et al. [53] considered a
generalization of the above function class where f is now of the form f(x) = g(Ax), for unknown A ∈ Rk×d. They derived
algorithms that approximately recover the row-span of A, with sample complexities typically polynomial in k, d. While the
above methods could possibly recover the underlying support S for the SPAM model (1.1), their sample complexities are either
exponential in k [15, 12, 11] or polynomial in d [18, 53]. As explained in Section 8, the algorithm of Schnass et al. [46] would
recover S w.h.p, with O(ρ4

mk(log d)2) noiseless queries, with potentially large constants (depending on smoothness of f) within
the O(·) term. Moreover, we note that the aforementioned methods are not designed for identifying interactions among the
variables.

1.3 Overview of methods used
We now describe the main underlying ideas behind the algorithms described in this paper, for identifying S1,S2. On a top level,
our methods are based on two simple observations for the model (1.1), namely that for any x ∈ Rd:

• The gradient ∇f(x) ∈ Rd is k sparse.

• The Hessian∇2f(x) ∈ Rd×d is at most k(ρm+ 1) sparse. In particular, it has k non zero rows, with each such row having
at most ρm + 1 non zero entries.

For the special case of no overlap, i.e., ρm = 1, we proceed in two phases. In the first phase – outlined as Algorithm 1 –
we identify all variables in S by estimating ∇f(x) via `1 minimization2, for each x lying within a carefully constructed finite
set χ ∈ Rd. The set χ in particular is constructed3 so that it provides a uniform discretization of all possible two dimensional
canonical subspaces in Rd. In the second phase – outlined as Algorithm 2 – we identify the sets S1,S2 via a simple (deterministic)
binary search based procedure, over the rows of the corresponding k × k sub-matrix of the Hessian of f .

For the general case however where ρm ≥ 1, the above scheme does not guarantee identification of S; see discussion at
beginning of Section 4.1. Therefore now, we consider a different “two phase” approach where in the first phase, we query f
with the goal of identifying the set of interactions S2. This in fact entails estimating the sparse Hessian ∇2f(x), at each x lying
within χ. We propose two different methods for estimating∇2f(x), utilizing tools from compressive sensing (CS).

• The first method is a part of Algorithm 3 where we estimate each row of∇2f(x) separately, via a “difference of gradients”
approach. This is motivated by the following identity, based on the Taylor expansion of ∇f at x, for suitable v′ ∈ Rd,
µ1 > 0:

∇f(x + µ1v
′)−∇f(x)

µ1
= ∇2f(x)v′ +O(µ1). (1.2)

2We note that the idea of estimating a sparse gradient via `1 minimization is motivated from Fornasier et al. [18]; their algorithm however is for a more
general function class than ours.

3see Definition 1 and ensuing discussion.

3

We can see from (1.2), that a difference of gradient vectors corresponds to obtaining a perturbed linear measurement of
each ρm + 1 sparse row of ∇2f(x). CS theory tells us that by collecting O(ρm log d) such “gradient differences” – each
difference term corresponding to a random choice of v′ from a suitable distribution – we can estimate each row of∇2f(x)
via `1 minimization. Since∇f is k sparse, it can also be estimated via O(k log d) queries of f – this leads to obtaining an
estimate of∇2f(x) with O(kρm(log d)2) queries of f in total.

• The second method is a part of Algorithm 4 where we estimate all entries of∇2f(x) in “one go”. This is motivated by the
following identity, based on the Taylor expansion of f at x, for suitable v ∈ Rd, µ > 0:

f(x + 2µv) + f(x− 2µv)− 2f(x)

4µ2
= 〈vvT ,∇2f(x)〉+O(µ). (1.3)

We see from (1.3) that the L.H.S corresponds to a perturbed linear measurement of the Hessian, with a rank one matrix.
By leveraging recent results in CS – most notably the work of Chen et al. [7] – we recover an estimate of∇2f(x) through
`1 minimization, by choosing v’s randomly from a suitable distribution. As described in detail in Section 5, this requires
us to make O(kρm log d) queries of f .

Once S2 is estimated, we estimate S1 by invoking (a slightly improved version of) the method of Tyagi et al. [54] for learning
SPAMs, on the reduced variables set.

Outline of the paper. The rest of the paper is organized as follows. Section 2 contains a formal description of the problem
along with notation used. We begin by analyzing the special case of no overlap between the elements of S2 (i.e., ρm = 1),
in Section 3. Section 4 then considers the general setting where ρm ≥ 1. In particular, it describes Algorithm 3 wherein the
underlying sparse Hessian of f is estimated via a difference of sparse gradients mechanism. Section 5 also handles the general
overlap setting, albeit with a different method for estimating the sparse Hessian of f . Once S1,S2 are estimated, we describe
how the individual components of f can be estimated via standard tools from approximation theory and statistics, in Section 6.
Section 7 contains simulation results on synthetic examples. We provide a detailed discussion of related work in Section 8, and
conclude with directions for future work in Section 9. All proofs are deferred to the appendix.

2 Notation and problem setup
Notation. Scalars are mostly denoted by plain letters (e.g. k1, k2, d), vectors by lowercase boldface letters (e.g., x) or by
lowercase Greek letters (e.g., ζ), matrices by uppercase boldface letters (e.g. A) and sets by uppercase calligraphic letters (e.g. S),
with the exception of [d] which denotes the index set {1, . . . , d}. Given a set S ⊆ [d], we denote its complement by Sc := [d]\S
and for vector x = (x1, . . . , xd) ∈ Rd, (x)S denotes the restriction of x onto S, i.e., ((x)S)l = xl if l ∈ S and 0 otherwise.

We use |S| to denote the cardinality of a set S. The `p norm of a vector x ∈ Rd is defined as ‖ x ‖p:=
(∑d

l=1 |xi|p
)1/p

. Let g
be a function of n variables, g(x1, . . . , xn). Ep[g], E(l,l′)[g] denote expectation w.r.t uniform distributions over xp and (xl, xl′)
respectively. E[g] denotes expectation w.r.t. uniform distribution over (x1, . . . , xn). For any compact Ω ⊂ Rn, we denote by
‖ g ‖L∞(Ω), the L∞ norm of g in Ω. The partial derivative operator ∂

∂xi
is denoted by ∂i, for i = 1, . . . , n. So for instance,

∂3g
∂x2

1∂x2
will be denoted by ∂2

1∂2g.

We are interested in the problem of approximating functions f : Rd → R from point queries. For some unknown sets
S1 ⊂ [d],S2 ⊂

(
[d]
2

)
, the function f is assumed to have the following form.

f(x1, . . . , xd) =
∑
p∈S1

φp(xp) +
∑

(l,l′)∈S2

φ(l,l′)(xl, xl′). (2.1)

Hence f is considered to be a sum of a sparse number of univariate and bivariate functions, denoted by φp and φ(l,l′) respectively.
Here, φ(l,l′) is considered to be “truly bivariate” meaning that ∂l∂l′φ(l,l′) 6≡ 0. The set of coordinate variables that are in S2, is
denoted by

Svar
2 := {l ∈ [d] : ∃l′ ∈ [d] s.t (l, l′) ∈ S2 or (l′, l) ∈ S2} . (2.2)

For each l ∈ Svar
2 , we refer to the number of occurrences of l in S2, as the degree of l, formally denoted as follows.

ρ(l) := |{l′ ∈ Svar
2 : (l, l′) ∈ S2 or (l′, l) ∈ S2}|; l ∈ Svar

2 . (2.3)

Model Uniqueness. We first note that representation (2.1) is not unique. Firstly, we could add constants to each φl, φ(l,l′),
which sum up to zero. Furthermore, for each l ∈ Svar

2 with ρ(l) > 1 we could add univariates that sum to zero. We can do
the same for l ∈ S1 ∩ Svar

2 : ρ(l) = 1. These ambiguities are thankfully avoided by re-writing (2.1) uniquely in the following
ANOVA form.

f(x1, . . . , xd) = c+
∑
p∈S1

φp(xp) +
∑

(l,l′)∈S2

φ(l,l′)(xl, xl′) +
∑

q∈Svar
2 :ρ(q)>1

φq(xq); S1 ∩ Svar
2 = ∅. (2.4)

4

Here, c = E[f] and Ep[φp] = E(l,l′)[φ(l,l′)] = 0; ∀p ∈ S1, (l, l
′) ∈ S2, with expectations being over uniform distributions

w.r.t. variable range [−1, 1]. In addition, certain bivariate components have zero marginal mean with respect to either l or l′. In
particular, El[φ(l,l′)] = 0 if ρ(l′) > 1 and El′ [φ(l,l′)] = 0 if ρ(l) > 1. The univariate φq corresponding to q ∈ Svar

2 with ρ(q) > 1,
represents the net marginal effect of the variable and has Eq[φq] = 0. We note that S1,Svar

2 are disjoint in (2.4). This is due to
the fact that each p ∈ S1 ∩ Svar

2 with ρ(p) = 1 can be merged with its bivariate form, while each p ∈ S1 ∩ Svar
2 with ρ(p) > 1

can be merged with its net marginal univariate form. The uniqueness of (2.4) is shown formally in the appendix.
We assume the setting |S1| = k1 � d, |S2| = k2 � d. Clearly, |Svar

2 | ≤ 2k2 with equality iff elements in S2 are pairwise
disjoint. The set of all active variables, i.e., S1 ∪Svar

2 will be denoted by S . We then define k := |S| = k1 + |Svar
2 | to be the total

sparsity of the problem. The largest degree of a variable in Svar
2 , is defined to be ρm := maxl∈Svar

2
ρ(l). Clearly, 1 ≤ ρm ≤ k2.

Goals. Assuming that we have the freedom to query f within its domain, our goal is now two fold.

• Firstly, we would like to exactly recover the unknown sets S1,S2.

• Secondly, we would like to estimate c as well as each: (i) φp; p ∈ S1, (ii) φ(l,l′); (l, l′) ∈ S2 and (iii) φq; q ∈ Svar
2 , ρ(q) > 1,

in (2.4). In particular, we would like to estimate the univariate and bivariate components within compact domains [−1, 1],
[−1, 1]2 respectively.

If S1,S2 were known beforehand, then one can estimate f via standard results from approximation theory or nonparametric
regression 4. Hence our primary focus in the paper is to recover S1,S2. Our main assumptions for this problem are listed below.

Assumption 1. We assume that f can be queried from the slight enlargement: [−(1 + r), (1 + r)]d of [−1, 1]d for some small
r > 0. As will be seen later, the enlargement r can be made arbitrarily close to 0.

Assumption 2. We assume each φ(l,l′), φp to be three times continuously differentiable, within [−(1 + r), (1 + r)]2 and [−(1 +
r), (1 + r)] respectively. Since these domains are compact, there then exist constants Bm ≥ 0; m = 0, 1, 2, 3, so that

‖ ∂m1

l ∂m2

l′ φ(l,l′) ‖L∞[−(1+r),(1+r)]2≤ Bm; (l, l′) ∈ S2, m1 +m2 = m, (2.5)
‖ ∂mp φp ‖L∞[−(1+r),(1+r)]≤ Bm; p ∈ S1 or, p ∈ Svar

2 & ρ(p) > 1. (2.6)

Our next assumption is for the purpose of identification of active variables, i.e., the elements of S1 ∪ Svar
2 .

Assumption 3. For some constantsD1, λ1 > 0, we assume that for each (l, l′) ∈ S2, ∃ connected Il,1, Il′,1, Il,2, Il′,2 ⊂ [−1, 1],
each of Lebesgue measure at least λ1 > 0, so that

|∂lφ(l,l′)(xl, xl′)| > D1, ∀(xl, xl′) ∈ Il,1 × Il′,1, (2.7)
|∂l′φ(l,l′)(xl, xl′)| > D1, ∀(xl, xl′) ∈ Il,2 × Il′,2. (2.8)

Similarly, we assume that for each p ∈ S1, ∃ connected Ip ⊂ [−1, 1], of Lebesgue measure at least λ1 > 0, such that
|∂pφp(xp)| > D1, ∀xp ∈ Ip. These assumptions essentially serve to distinguish an active variable from a non-active one,
and are also in a sense necessary. For instance, if say ∂lφ(l,l′) was zero throughout [−1, 1]2, then it equivalently means that
∂lφ(l,l′) is only a function of xl′ . If ∂lφ(l,l′) = ∂l′φ(l,l′) = 0 in [−1, 1]2, then φ(l,l′) ≡ 0 in [−1, 1]2. The same reasoning applies
for φp’s.

Our last assumption concerns the identification of S2.

Assumption 4. For some constantsD2, λ2 > 0, we assume that for each (l, l′) ∈ S2, ∃ connected Il, Il′ ⊂ [−1, 1], each interval
of Lebesgue measure at least λ2 > 0, such that |∂l∂l′φ(l,l′)(xl, xl′)| > D2, ∀(xl, xl′) ∈ Il × Il′ .

Our problem specific parameters are: (i) Bi; i = 0, . . . , 3, (ii) Dj , λj ; j = 1, 2 and, (iii) k, ρm. We do not assume k1, k2

to be known but instead assume that k is known. Furthermore it suffices to use estimates for the problem parameters instead of
exact values. In particular, we can use upper bounds for: k, ρm, Bi; i = 0, . . . , 3 and lower bounds for: Dj , λj ; j = 1, 2.

Underlying interaction graph. One might intuitively guess that the underlying “structure” of interactions between the el-
ements in Svar

2 , shapes the difficulty of the problem. More formally, consider the graph G = (V,E) where V = [d] and
E = S2 ⊂

(
V
2

)
denote the set of vertices and edges, respectively. We refer to the induced subgraph IG = (Svar

2 ,S2) of G, as the
interaction graph. We consider not only the general setting – where no assumption is made on IG – but also a special case where
IG is a perfect matching. This is illustrated in Figure 1. In Fig. 1a, IG is a perfect matching meaning that each vertex is of degree
one. In other words, there is no overlap between the elements of S2. In terms of the difficulty of interactions, this corresponds
to the easiest setting. Fig. 1b corresponds to the general setting where no structural assumption is placed on IG. Therefore, we
can now potentially have overlaps between the elements of S2, since each element in Svar

2 can be paired with up to ρm other
elements. This corresponds to the hardest setting as far as the difficulty of interactions is concerned.

4This is discussed later.

5

(a) IG is a perfect matching (b) IG has arbitrary structure

Figure 1: Blue (resp. red) disks denote elements of Svar
2 (resp. S1). Circles denote elements of [d] \ {S1 ∪ Svar

2 }. On the left, we have the
special setting where IG is a perfect matching. On the right, we have the most general setting where no assumption is made on IG.

3 Sampling scheme for the non-overlap case
In this section we consider the special case where all elements in S2 are pair-wise disjoint. In other words, ρ(i) = 1, for each
i ∈ Svar

2 . We first treat the noiseless setting in Section 3.1, wherein the exact function values are obtained at each query. We then
handle the noisy setting in Section 3.2, where the function values are corrupted with external noise.

3.1 Analysis for noiseless setting
Our approach essentially consists of two phases. In the first phase, we sample the function f appropriately, and recover the
complete set of active variables S. In the second phase, we focus on the reduced k dimensional subspace corresponding to S.
We sample f at appropriate points in this subspace, and consequently identify S1 as well as S2. Let us now elaborate on these
two phases in more detail.

3.1.1 First Phase: Recovering all active variables

The crux of this phase is based on the following observation. On account of the structure of f , we see that at any x ∈ Rd, the
gradient ∇f(x) ∈ Rd has the following form:

(∇f(x))q =

∂qφq(xq) ; q ∈ S1

∂qφ(q,q′)(xq, xq′) ; (q, q′) ∈ S2

∂qφ(q′,q)(xq′ , xq) ; (q′, q) ∈ S2

0 ; otherwise

; q = 1, . . . , d.

Hence ∇f(x) is at most k-sparse, i.e., has at most k non zero entries, for any x. Note that the qth component of ∇f(x) is zero
if q /∈ S1 ∪ Svar

2 . Say we somehow recover ∇f(x) at sufficiently many x’s within [−1, 1]d. Then, we would also have suitably
many samples of the functions: ∂qφq, ∂lφ(l,l′), ∂l′φ(l,l′), ∀ p ∈ S1, (l, l

′) ∈ S2. Specifically, if the number of samples is large
enough, then we would have sampled each of ∂qφq, ∂lφ(l,l′), ∂l′φ(l,l′), within their respective “critical intervals”, as defined in
Assumption 3. Provided that the estimation noise is sufficiently small enough, this suggests that we should then, via a threshold
operation, be able to detect all variables in S1∪Svar

2 . We now proceed to formalize our above discussion, in a systematic manner.

Compressive sensing formulation. We begin by discussing how a sparse gradient ∇f can be estimated at any point x, via
compressive sensing (CS). As f is C3 smooth, therefore the Taylor’s expansion of f at x, along v,−v ∈ Rd, with step size
µ > 0, and ζ = x + θv, ζ ′ = x− θ′v; θ, θ′ ∈ (0, µ) gives us:

f(x + µv) = f(x) + µ〈v,∇f(x)〉+
1

2
µ2vT∇2f(x)v +R3(ζ), (3.1)

f(x− µv) = f(x) + µ〈−v,∇f(x)〉+
1

2
µ2vT∇2f(x)v +R3(ζ ′). (3.2)

Subtracting the above, and dividing by 2µ leads to the standard “central difference” estimate of 〈v,∇f(x)〉.
f(x + µv)− f(x− µv)

2µ
= 〈v,∇f(x)〉+

R3(ζ)−R3(ζ ′)

2µ︸ ︷︷ ︸
O(µ2)

. (3.3)

6

Notice that in (3.3), the expression on the left hand side corresponds to a noisy-linear measurement of ∇f(x), with v. The
“noise” here arises on account of the third order terms R3(ζ), R3(ζ ′) = O(µ3), in the Taylor expansion. Now let the v’s be
chosen from the set:

V :=

{
vj ∈ Rd : vj,q = ± 1√

mv
w.p. 1/2 each; j = 1, . . . ,mv and q = 1, . . . , d

}
. (3.4)

Then, employing (3.3) at each vj ∈ V gives us the linear system:

f(x + µvj)− f(x− µvj)
2µ︸ ︷︷ ︸
yj

= 〈vj ,∇f(x)〉+
R3(ζj)−R3(ζ ′j)

2µ︸ ︷︷ ︸
nj

; j = 1, . . . ,mv. (3.5)

Denoting y = [y1 . . . ymv], n = [n1 . . . nmv] and V = [v1 . . .vmv]T ∈ Rmv×d, we can re-write (3.5) succinctly as:

y = V∇f(x) + n. (3.6)

As we know y,V, therefore we can estimate the unknown k-sparse vector ∇f(x) via standard `1 minimization [6, 16]:

∇̂f(x) := argmin
y=Vz

‖ z ‖1 . (3.7)

Remark 1. Estimating sparse gradients via compressive sensing was – to the best of our knowledge – first considered by
Fornasier et al. [18] for learning functions of the form: f(x) = g(Ax). It was then also employed by Tyagi et al. [54] for
learning SPAMs (without interaction terms). However, [18, 54] consider a “forward difference” estimate of 〈v,∇f(x)〉, via
(f(x + µv)− f(x))/µ, resulting in O(µ) perturbation error in (3.3).

Remark 2. The above sampling mechanism is related to the “simultaneous perturbation” gradient approximation method of
[48]. Specifically in [48], for a random v = (v1, . . . , vd)

T ∈ Rd, ∇̂f(x) is defined to be:(
f(x + µv)− f(x− µv)

2µv1
, . . . ,

f(x + µv)− f(x− µv)

2µvd

)T
(3.8)

The bias of the above estimate can be shown to be O(µ2) for C3 smooth f .

The following theorem from [18] provides guarantees for stable recovery via `1 minimization: 4(y) := argmin
y=Vz

‖ z ‖1.

While the first part is by now standard (see for example [2]), the second result was stated in [18] as a specialization of Theorem
1.2 from [60] to the case of Bernoulli measurement matrices.

Theorem 1 ([60, 18]). Let V be a mv × d random matrix with all entries being Bernoulli i.i.d random variables scaled with
1/
√
mv . Then the following results hold.

1. Let 0 < κ < 1. Then there are two positive constants c1, c2 > 0, such that the matrix V has the Restricted Isometry
Property

(1− κ) ‖ w ‖22≤‖ Vw ‖22≤ (1 + κ) ‖ w ‖22 (3.9)

for all w ∈ Rd such that |supp(w)| ≤ c2mv/ log(d/mv) with probability at least 1− e−c1mv .

2. Let us suppose d > (log 6)2mv . Then there are positive constants C, c′1, c
′
2 > 0 such that with probability at least

1 − e−c′1mv − e−
√
mvd the matrix V has the following property. For every w ∈ Rd, n ∈ Rmv and every natural number

K ≤ c′2mv/ log(d/mv), we have

‖ 4(Vw + n)−w ‖2≤ C
(
K−1/2σK(w)1 + max

{
‖ n ‖2,

√
log d ‖ n ‖∞

})
, (3.10)

where
σK(w)1 := inf {‖ w − z ‖1: |supp(z)| ≤ K}

is the best K-term approximation of w.

Remark 3. The proof of the second part of Theorem 1 requires (3.9) to hold, which is the case in our setting with high probability.

Remark 4. Since mv ≥ K is necessary, note that K ≤ c′2mv/ log(d/mv) is satisfied if mv > (1/c′2)K log(d/K). Also note
that K log(d/K) > log d in the regime5 K � d. As pointed out by a reviewer, a slight improvement over Theorem 1 is given by
[19, Theorem 11.10] where the log d term in (3.10) is replaced with log(d/mv).

5More precisely, if d > K
K
K−1 .

7

Estimating sufficiently many gradients. Given the discussion above, the next natural question is - how should one choose
the points x, where the gradient ∇f(x) should be estimated? Note that f is composed of the sum of univariate and bivariate
functions, residing on mutually orthogonal 1 or 2 dimensional canonical subspaces of Rd. Therefore, this suggests that it is
sufficient if our set of points – let us call it χ – has the property that it provides a 2-dimensional discretization of any canonical
2 dimensional subspace of Rd. In order to construct χ we will make use of hash functions or more specifically - a family of hash
functions, defined as follows.

Definition 1. For some t ∈ N and j = 1, 2, . . . , let hj : [d]→ {1, 2, . . . , t}. We then call the setHdt = {h1, h2, . . .} a (d, t)-hash
family if for any distinct i1, i2, . . . , it ∈ [d], ∃ h ∈ Hdt such that h is an injection when restricted to i1, i2, . . . , it.

Hash functions are common in theoretical computer science, and are widely used such as in finding juntas [34]. There exists
a fairly simple probabilistic method using which one can construct Hdt of size O(tet log d) with high probability. The reader
is for instance, referred to Section 5 in [15] where for any constant C1 > 1, the probabilistic construction yields Hdt of size
|Hdt | ≤ (C1 + 1)tet log d with probability at least 1 − d−C1t, in time linear in the output size. We note that the size of Hdt is
nearly optimal - it is known that the size of any such family is Ω(et log d/

√
t) [20, 27, 40]. There also exist efficient deterministic

constructions for such families of partitions, with the size of the family being O(tO(log t)et log d) and which take time linear in
the output size [36]. For our purposes, we consider the probabilistic construction of the family due to its smaller resulting size.
Specifically, we consider the family Hd2 so that for any distinct i, j, there exists h ∈ Hd2 s.t h(i) 6= h(j). Let us first define for
any h ∈ Hd2 , the vectors e1(h), e2(h) ∈ Rd where:

(ei(h))q :=

{
1 ; h(q) = i,
0 ; otherwise for i = 1, 2 and q = 1, . . . , d. (3.11)

Given at hand Hd2 , we construct our set χ using the procedure6 in [15]. Specifically, for some integer mx > 0, we construct for
each h ∈ Hd2 the set χ(h) as:

χ(h) :=

{
x(h) ∈ [−1, 1]d : x(h) =

2∑
i=1

ciei(h); c1, c2 ∈
{
−1,−mx − 1

mx
, . . . ,

mx − 1

mx
, 1

}}
. (3.12)

Note that χ(h) consists of (2mx + 1)2 points that discretize: span(e1(h), e2(h)), within [−1, 1]d, with a spacing of 1/mx along
each ei. Given this, we obtain the complete set as χ = ∪h∈Hd2χ(h) so that |χ| ≤ (2mx + 1)2|Hd2|. Clearly, χ discretizes any
2-dimensional canonical subspace, within [−1, 1]d.

Recovering set of active variables. Our scheme for recovering the set of active variables is outlined formally in the form of
Algorithm 1. At each x ∈ χ, we obtain the estimate ∇̂f(x) via `1 minimization. We then perform a thresholding operation, i.e.,
set to zero those components of ∇̂f(x), whose magnitude is below a certain threshold. All indices then corresponding to non
zero components are identified as active variables.

Algorithm 1 Sub-routine for estimating S
1: Construct (d, 2)-hash familyHd2 and the set V for suitable mv ∈ Z+. Choose suitable µ ∈ Z+ and initialize Ŝ = ∅.
2: Choose suitable mx ∈ Z+. For each h ∈ Hd2 do:

1. Create the set χ(h). For xi ∈ χ(h); i = 1, . . . , (2mx + 1)2 do:

(a) Construct yi where (yi)j =
f(xi+µvj)−f(xi−µvj)

2µ ; j = 1, . . . ,mv .

(b) Set ∇̂f(xi) := argmin
yi=Vz

‖ z ‖1. For suitable τ > 0, update:

Ŝ = Ŝ ∪
{
q ∈ {1, . . . , d} : |(∇̂f(xi))q| > τ

}
.

The following Lemma provides sufficient conditions on the sampling parameters: mx,mv, µ and the threshold τ , which
guarantee that Ŝ = S holds.

Lemma 1. Let Hd2 be of size |Hd2| ≤ 2(C1 + 1)e2 log d for some constant C1 > 1. Then there exist constants c′3 ≥ 1 and
C, c′1 > 0 such that for any mx,mv, µ satisfying

c′3k log(d/k) < mv < d/(log 6)2, mx ≥ λ−1
1 and µ <

(
3D1mv

4CB3k

)1/2

, (3.13)

the choice τ = 2Cµ2B3k
3mv

implies that Ŝ = S holds with probability at least 1−e−c′1mv−e−
√
mvd−d−2C1 . Here λ1, D1, B3 > 0

are problem specific constants defined in Section 2.
6Such sets were used in [15] for a more general problem involving functions that are intrinsically k variate, and do not necessarily have an additive structure.

8

Query complexity. We estimate ∇f at (2mx + 1)2|Hd2| many points. For each such estimate, we query f at 2mv points,
leading to a total of 2mv(2mx + 1)2|Hd2| queries. From Lemma 1, we then obtain a query complexity of O(k(log d)2λ−2

1) for
exact recovery of the set of active variables, i.e., S1 ∪ Svar

2 .

Computational complexity. The family Hd2 can be constructed7 in time polynomial in d. Step 1b involves solving a linear
program in O(d) variables, which can be done efficiently up to arbitrary accuracy, in time polynomial in (mv, d) (using for
instance, interior point methods (cf., [39]). Since we solve O(λ−2

1 log d) such linear programs, hence the overall computation
time is polynomial in the number of queries and dimension d.

Remark 5. It is worth noting that in practice, it might be preferable to replace the `1 minimization step with a non-convex
algorithm such as “Iterative hard thresholding” (IHT) (cf., [4, 5, 28, 29, 30]). Such methods consider solving the non-convex
optimization problem:

min
z
‖ Vz− y ‖2 s.t. ‖ z ‖0≤ K

for finding a K-sparse solution to an under-determined linear system of equations, and generally have a lower computational
complexity than their convex analogues. Moreover, provided V also satisfies the Restricted Isometry Property (as stated in 3.9),
they then also enjoy strong theoretical guarantees, similar to that for convex approaches.

Remark 6. Algorithm 1 essentially estimates ∇f at O(log d) points. The method of Fornasier et al. [18] is designed for a
more general function class than ours and hence involves estimating ∇f on points sampled uniformly at random from the unit
sphere Sd−1 – the size of such a set is typically polynomial in d. The method of Tyagi et al. [54] is tailored towards SPAMs
without interactions; it essentially estimates∇f along a uniform one-dimensional grid (hence at constantly many points). Hence
conceptually, Algorithm 1 is a simple generalization of the scheme of Tyagi et al. [54].

3.1.2 Second Phase: Recovering individual sets

Given that we have recovered S = S1 ∪ Svar
2 , we now proceed to see how we can recover the individual sets: S1 and S2. Let us

denote w.l.o.g, S to be {1, 2, . . . , k} and also denote g : Rk → R to be

g(x1, x2, . . . , xk) = c+
∑
p∈S1

φp(xp) +
∑

(l,l′)∈S2

φ(l,l′)(xl, xl′). (3.14)

Here S2 ⊂
(

[k]
2

)
with Svar

2 ∩S1 = ∅. We have reduced our problem to that of querying some unknown function k-variate function
g, of the form (3.14), with queries x ∈ Rk. Indeed, this is equivalent to querying f at (x)S , i.e., the restriction of x onto S.

In order to identify S1 and S2, let us recall the discussion in Assumption 4 : for any (l, l′) ∈ S2, we will have that ∃(xl, xl′) ∈
[−1, 1]2 such that ∂l∂l′g(x) = ∂l∂l′φ(l,l′)(xl, xl′) 6= 0. Furthermore for p ∈ S1 and any p′ 6= p, we know that ∂p∂p′g(x) ≡ 0,
∀x ∈ Rk. In light of this, our goal will be now to query g in order to estimate the off-diagonal entries of its Hessian ∇2g. This
is a natural approach as these entries contain information about the mixed second order partial derivatives of g. We now proceed
towards motivating our sampling scheme.

Motivation behind sampling scheme. At any x ∈ Rk the Hessian ∇2g(x) is a k × k symmetric matrix with the following
structure.

(∇2g(x))i,j =

∂2
i φi(xi) ; i ∈ S1, i = j

∂2
i φ(i,i′)(xi, xi′) ; (i, i′) ∈ S2, j = i
∂2
i φ(i′,i)(xi′ , xi) ; (i′, i) ∈ S2, j = i

∂i∂jφ(i,j)(xi, xj) ; (i, j) ∈ S2

∂i∂jφ(j,i)(xj , xi) ; (j, i) ∈ S2

0 ; otherwise

.

Note that each row of ∇2g has at most 2 non zero entries. If i ∈ S1, then the non zero entry can only be the (i, i)th entry of
∇2g. If i ∈ Svar

2 , then the ith row can have two non zero entries. In this case, the non zero entries will be the (i, i)th and (i, j)th

entries of∇2g, if (i, j) ∈ S2 or (j, i) ∈ S2.
Now, for x,v ∈ Rk, µ1 > 0, consider the Taylor expansion of ∇g at x along v, with step size µ1. For ζi = x + θiv, for

some θi ∈ (0, µ1); i = 1, . . . , k, we have:

∇g(x + µ1v)−∇g(x)

µ1
= ∇2g(x)v +

µ1

2

vT∇2∂1g(ζ1)v
...

vT∇2∂kg(ζk)v

 . (3.15)

Alternately, we have the following identity for each individual ∂ig.

∂ig(x + µ1v)− ∂ig(x)

µ1
= 〈∇∂ig(x),v〉+

µ1

2
vT∇2∂ig(ζi)v; i = 1, . . . , k. (3.16)

7Recall discussion following Definition 1.

9

Say we estimate ∂ig(x), ∂ig(x + µ1v) with ∂̂ig(x), ∂̂ig(x + µ1v) respectively, using finite differences with step size parameter
β > 0. Then we can write

∂̂ig(x) = ∂ig(x) + ηi(x, β), ∂̂ig(x + µ1v) = ∂ig(x + µ1v) + ηi(x + µ1v, β) (3.17)

with ηi(x, β), ηi(x+ µ1v, β) = O(β2) being the corresponding estimation errors. Plugging these estimates in (3.16), we finally
obtain the following.

∂̂ig(x + µ1v)− ∂̂ig(x)

µ1
= 〈∇∂ig(x),v〉+

µ1

2
vT∇2∂ig(ζi)v +

ηi(x + µ1v, β)− ηi(x, β)

µ1︸ ︷︷ ︸
Error term

. (3.18)

We see in (3.18) that the L.H.S can be viewed as taking a noisy linear measurement of the ith row of∇2g(x) with measurement
vector v. Hence for any i ∈ S we can via (3.18) hope to recover the 2 sparse vector: ∇∂ig(x) ∈ Rk. In fact, we are only
interested in estimating the off-diagonal entries of ∇2g. Therefore while testing for i ∈ S, we can fix the ith component of v to
be zero. This means that ∇∂ig can in fact be considered as a 1 sparse vector, and our task is to find the location of the non zero
entry. We now describe our sampling scheme that accomplishes this, by performing a binary search over∇∂ig.

Sampling scheme. Say that we are currently testing for variable i ∈ S , i.e., we would like to determine whether it is in S1 or
Svar

2 . Denote T as the set of variables that have been classified so far. We will first create our set of points χi at which∇∂ig will
be estimated, as follows. Consider e1(i), e2(i) ∈ Rk where for j = 1, . . . , k:

(e1(i))j :=

{
1 ; j = i,
0 ; otherwise , (e2(i))j :=

{
0 ; j = i or j ∈ T ,
1 ; otherwise . (3.19)

We then form the following set of points which corresponds to a discretization of the 2-dimensional space spanned by e1(i), e2(i),
within [−1, 1]k.

χi :=

{
x ∈ [−1, 1]k : x = c1e1(i) + c2e2(i); c1, c2 ∈

{
−1,−m

′
x − 1

m′x
, . . . ,

m′x − 1

m′x
, 1

}}
. (3.20)

Now for each x ∈ χi and suitable step size parameter β > 0, we will obtain the samples g(x+βe1(i)), g(x−βe1(i)). Then, we
obtain via central differences, the estimate: ∂̂ig(x) = (g(x+βe1(i))−g(x−βe1(i)))/(2β). For our choice of v and parameter
µ1 > 0, we can similarly obtain ∂̂ig(x + µ1v). We now describe how the measurement vectors v can be chosen in an adaptive
fashion, in order to identify S1,S2.

Firstly, we create a vector v0(i) that enables us to test, whether there exists a variable j 6= i such that (i, j) ∈ S2 (if
i > j) or (j, i) ∈ S2 (if j > i). To this end, we set v0(i) = e2(i). Clearly, i ∈ Svar

2 iff there exists x ∈ [−1, 1]k such that
〈∇∂ig(x),v0(i)〉 6= 0. This suggests the following strategy. For each x ∈ χi, we compute (∂̂ig(x + µ1v0(i)) − ∂̂ig(x))/(µ1)
– this will be a noisy estimate of 〈∇∂ig(x),v0(i)〉. Provided that the number of points is large enough and the noise is made
suitably small, we see that via a threshold based procedure as in the previous phase, one would be able to correctly classify the
other variable as either belonging to S1 or S2. In case the above procedure classifies i as being a part of Svar

2 , then we would
still need to identify the other variable j ∈ Svar

2 , forming the pair. This can be handled via a binary search based procedure, as
follows.

The measurement vectors v1(i),v2(i), . . . are chosen adaptively, meaning that the choice of vj(i) depends on the past
choices: v1(i), . . . ,vj−1(i). v1(i) is constructed as follows. We construct an equipartition P1(i),P2(i) ⊂ S \ {T ∪ {i}} such
that: P1(i)∪P2(i) = S \ {T ∪ {i}}, P1(i)∩P2(i) = ∅, |P1(i)| = bk−1−|T |

2 c and |P2(i)| = k− 1− |T |− |P1(i)|. Then v1(i)
is chosen to be such that:

(v1(i))l :=

{
1 ; l ∈ P1(i),
0 ; otherwise ; l = 1, . . . , k. (3.21)

Let x∗ ∈ χi be the point, at which v0(i) detects i. We now find: (∂̂ig(x∗+µ1v1(i))− ∂̂ig(x∗))/µ1, and test whether it is larger
then a certain threshold. This tells us whether the other active variable j belongs to P1(i) or to P2(i). Then, we create v2(i)
by partitioning the identified subset, in the same manner as v1(i) and perform the same tests again. It is clear that we would
need at most dlog(k − |T |)e many v(i)’s in this process. Hence, if i ∈ Svar

2 then we would need at most dlog(k − |T |)e + 1
measurement vectors in order to find the other member of the pair in Svar

2 . In case i ∈ S1, then v0(i) by itself suffices. The above
procedure is outlined formally in Algorithm 2.

We now provide sufficient conditions on the parameters m′x > 0, β and µ1 > 0, along with a corresponding threshold, that
together guarantee recovery of S1 and S2. This is stated in the following lemma.

Lemma 2. Let m′x > 0, β and µ1 > 0 be chosen to satisfy:

m′x ≥ λ−1
2 , β <

√
3D2

4
√

2B3

, µ1 ∈
(
D2 −

√
D2

2 − (32/3)β2B2
3

8B3
,
D2 +

√
D2

2 − (32/3)β2B2
3

8B3

)
. (3.22)

Then for the choice τ ′ = β2B3

3µ1
+ 2µ1B3, we have for Algorithm 2 that Ŝ1 = S1 and Ŝ2 = S2. Here, B3, D2, λ2 > 0 are problem

specific constants, defined in Section 2.

10

Algorithm 2 Sub-routine for estimating S1,S2

1: Initialize Ŝ1, Ŝ2 = ∅.
2: while S \

{
Ŝ1 ∪ Ŝvar

2

}
6= ∅ do

3: Choose i ∈ S \
{
Ŝ1 ∪ Ŝvar

2

}
. For suitable m′x ∈ Z+, construct χi as in (3.20). Set v0(i) = e2(i).

4: Choose x ∈ χi that has not yet been chosen.

1. Obtain estimates: ∂̂ig(x), ∂̂ig(x + µ1v0(i)) via central differences, for suitable µ1, β > 0.

2. If |∂̂ig(x+µ1v0(i))−∂̂ig(x)|
µ1

> τ ′, then denote x∗ ← x and go to 6. Else goto 4.

5: Update Ŝ1 = Ŝ1 ∪ {i} and go to 2.
6: SetR = S \

{
{i} ∪ Ŝ1 ∪ Ŝvar

2

}
.

7: while |R| > 1 do
8: Initialize P1(i),P2(i) as equipartition ofR. Construct v(i) w.r.t. P1(i),P2(i) as defined in (3.21).

9: Obtain: ∂̂ig(x∗ + µ1v(i)). If |∂̂ig(x
∗+µ1v(i))−∂̂ig(x∗)|

µ1
> τ ′, thenR ← P1(i) elseR ← P2(i).

10: end while
11: DenoteR = {j}. If i < j then Ŝ2 = Ŝ2 ∪ {(i, j)}, else Ŝ2 = Ŝ2 ∪ {(j, i)}.
12: end while

Query complexity. Note that for each i ∈ S1 we make at most 4m′x
2 queries. This is clear from Step 4: four queries are made

for estimating the two partial derivatives and this is done at most m′x
2 times. If i ∈ Svar

2 , then we notice that in Step 9, we make
two queries for each v(i) leading to at most 2dlog ke queries during Steps 8–9. In addition, we still make at most 4m′x

2 queries
during Step 4, as discussed earlier. Hence the total number of queries made is at most:

k1 · 4m′x
2

+ k2 ·
(

4m′x
2

+ 2dlog ke
)
< k(4m′x

2
+ 2dlog ke). (3.23)

Since m′x ≥ λ−1
2 , the query complexity for this phase is O(k(λ−2

2 + log k)).

Computational complexity. It is clear that the overall computation time is linear in the the number of queries and hence at
most polynomial in k.

3.2 Analysis for noisy setting
We now analyse the noisy setting where at each query x, we observe: f(x) + z′, where z′ ∈ R denotes external noise. In order
to see how this affects Algorithm 1, (3.6) now changes to y = V∇f(x) + n + z, where zj = (z′j,1 − z′j,2)/(2µ). Therefore
while the Taylor’s remainder term |nj | = O(µ2), the external noise term |zj | scales as µ−1. Hence in contrast to Lemma 1 the
step-size µ needs to be chosen carefully now – a value which is too small would blow up the external noise component while a
large value would increase perturbation due to higher order Taylor’s terms.

A similar problem would occur in the next phase when we try to identify S1,S2. Indeed, due to the introduction of noise,
we now observe g(x + βe1(i)) + z′i,1, g(x − βe1(i)) + z′i,2. This changes the expression for ∂̂ig(x) in (3.17) to: ∂̂ig(x) =

∂ig(x) + ηi(x, β) + zi(x, β) where zi(x, β) = (z′i,1 − z′i,2)/(2β). Recall that ηi(x, β) = O(β2) corresponds to the Taylor’s
remainder term. Hence we again see that in contrast to Lemma 2, the step β cannot be chosen too small now, as it would blow
up the external noise component.

Arbitrary bounded noise. In this scenario, we assume the external noise to be arbitrary and bounded, meaning that |z′| < ε,
for some finite ε ≥ 0. Clearly, if ε is too large, then we would expect recovery of S = S1 ∪Svar

2 to be impossible, as the structure

of f would be destroyed. However we show that if ε = O(
D

3/2
1√
B3k

), then Algorithm 1 recovers the total support S, with appropriate

choice of sampling parameters. Furthermore, assuming S is recovered exactly, and provided ε additionally satisfies ε = O(
D3

2

B2
3

),
then with proper choice of sampling parameters, Algorithm 2 identifies S1,S2. This is stated formally in the following Theorem.

Theorem 2. Let the constants c′3, C, c
′
1, C1 and Hd2,mx,mv be as defined in Lemma 1. Say ε < ε1 =

D
3/2
1

3C
√

4B3kC
. Then for

θ1 = cos−1(−ε/ε1), let µ be chosen to satisfy:

µ ∈
(

2

√
D1mv

4B3k
cos(θ1/3− 2π/3), 2

√
D1mv

4B3k
cos(θ1/3)

)
(3.24)

11

We then have in Algorithm 1 for the choice: τ = C
(

2µ2B3k
3mv

+
ε
√
mv
µ

)
that Ŝ = S holds with probability at least 1− e−c′1mv −

e−
√
mvd − d−2C1 . Given that Ŝ = S, let m′x be as defined in Lemma 2. Assuming ε <

D3
2

384
√

2B2
3

= ε2 holds, then for

θ2 = cos−1(−ε/ε2) let β, µ1 be chosen to satisfy:

µ1 ∈

D2 −
√
D2

2 − 32
3βB3(β3B3 + 6ε)

8B3
,
D2 +

√
D2

2 − 32
3βB3(β3B3 + 6ε)

8B3

 , (3.25)

β ∈
(

D2

2
√

2B3

cos(θ2/3− 2π/3),
D2

2
√

2B3

cos(θ2/3)

)
. (3.26)

Then the choice τ ′ = β2B3

3µ1
+ 2µ1B3 + 2ε

βµ1
implies in Algorithm 2 that Ŝ1 = S1 and Ŝ2 = S2.

Stochastic noise. We now assume that the point queries are corrupted with i.i.d Gaussian noise, so that z′ ∼ N (0, σ2) for
σ2 <∞. In order to reduce σ, we consider resampling each point query a sufficient number of times, and averaging the values.
In Algorithm 1, i.e., during the estimation of S , we resample each query N1 times so that z′ ∼ N (0, σ2/N1). For any ε > 0, if
N1 is chosen large enough, then we can obtain a uniform bound |z′| < ε – via standard tail bounds for Gaussian’s – over all noise
samples, with high probability. Consequently, the noise model transforms to a bounded noise one which means that by choosing
ε < ε1, we can use the result of Theorem 2 for estimating S. Similarly in Algorithm 2, we resample each query N2 times so that
now z′ ∼ N (0, σ2/N2). For any ε′ > 0, and N2 large enough, we can again uniformly bound |z′| < ε′ with high probability.
By now choosing ε′ < ε2, we can then use the result of Theorem 2 for estimating S1,S2. These conditions are stated formally in
the following Theorem.

Theorem 3. Let the constants c′3, C, c
′
1, C1 andHd2,mx,mv be as defined in Lemma 1. For any ε < ε1 =

D
3/2
1

3C
√

4B3kC
, 0 < p1 <

1, θ1 = cos−1(−ε/ε1), say we resample each query in Algorithm 1, N1 >
σ2

ε2 log(2
p1
mv(2mx + 1)2|Hd2|) times, and average

the values. Then by choosing µ and τ as in Theorem 2, we have that Ŝ = S holds with probability at least 1 − p1 − e−c
′
1mv −

e−
√
mvd − d−2C1 .
Given that Ŝ = S, let m′x be as defined in Lemma 2. For any ε′ < D3

2

384
√

2B2
3

= ε2, 0 < p2 < 1, θ2 = cos−1(−ε′/ε2), say we

resample each query in Algorithm 2, N2 >
σ2

ε′2
log
(

2
p2

(k(2m′x
2

+ dlog ke))
)

times. Then by choosing β, µ1, τ
′ as in Theorem

2, we have that Ŝ1 = S1 and Ŝ2 = S2, with probability at least 1− p2.

We now analyze the query complexity for the i.i.d Gaussian noise case. One can verify that ε1 = O(k−1/2). Since
mv = O(k log d), |Hd2| = O(log d),mx = O(λ−1

1), then by choosing p1 = O(d−δ) for any constant δ > 0, we arrive at
N1 = O(k log((dδ)(k log d)(λ−2

1 log d))) = O(k log d). This leads to a total sample complexity of O(N1k(log d)2λ−2
1) =

O(k2(log d)3λ−2
1) for guaranteeing Ŝ = S, with high probability. Next, we see that ε′ = O(1) and thus N2 = O(log(k(λ−2

2 +
log k)/p2)). Therefore with an additional O(N2k(λ−2

2 + log k)) = O(k(λ−2
2 + log k) log(k/p2)) samples, we are guaranteed

with probability at least 1− p2 that Ŝ1 = S1 and Ŝ2 = S2.

4 Sampling scheme for the general overlap case
We now analyze the general scenario where overlaps can occur amongst the elements of S2. Therefore the degrees of the variables
occurring in Svar

2 , can be greater than one. Contrary to the non-overlap case, we now sample f in order to directly estimate its
d × d Hessian ∇2f , at suitably chosen points. In particular, this enables us to subsequently identify S2. Once S2 is identified,
we are left with a SPAM – with no variable interactions – on the set [d] \ S2. We then identify S1 by employing the sampling
scheme from [54] on this reduced space.

4.1 Analysis for noiseless setting
In this section, we consider the noiseless scenario, i.e., we assume the exact sample f(x) is obtained for any query x. To begin
with, we explain why the sampling scheme for the non overlap case does not directly apply here. To this end, note that the
gradient of f has the following structure for each q ∈ [d].

(∇f(x))q =

∂qφq(xq) ; q ∈ S1

∂qφ(q,q′)(xq, xq′) ; (q, q′) ∈ S2 & ρ(q) = 1,
∂qφ(q′,q)(xq′ , xq) ; (q′, q) ∈ S2 & ρ(q) = 1,

∂qφq(xq) +
∑

(q,q′)∈S2
∂qφ(q,q′)(xq, xq′)

+
∑

(q′,q)∈S2
∂qφ(q′,q)(xq′ , xq) ; q ∈ Svar

2 & ρ(q) > 1,

0 ; otherwise.

12

∇f (x)

∇f (x + µ1v
′
1)

∇f (x + µ1v
′
2)∇f (x + µ1v

′
mv′)

(a)

x1

x2

x3
x1 = x3

(b)

Figure 2: (a)∇2f(x) estimated using: ∇̂f(x) (at red disk) and neighborhood gradient estimates (at blue disks) (b) Geometric picture: d = 3,
h ∈ H3

2 with h(1) = h(3) 6= h(2). Red disks are points in χ(h).

Therefore, for any q ∈ Svar
2 with ρ(q) > 1, we notice that (∇f(x))q is by itself the sum of ρ(q) many bivariate functions, and

∂qφq . This causes an issue as far as identifying q – via estimating ∇f followed by thresholding – is concerned, as was done for
the non-overlap case. While we assume the magnitudes of ∂qφ(q,q′) to be sufficiently large within respective subsets of [−1, 1]2,
it is not clear what that implies for |(∇f(x))q|. Note that (∇f(x))q 6≡ 0 since q is an active variable. However a lower bound
on: |(∇f(x))q|, and also on the measure of the interval where it is attained, appears to be non-trivial to obtain.

Estimating sparse Hessian matrices In light of the above discussion, we consider an alternative approach, wherein we directly
estimate the Hessian ∇2f(x) ∈ Rd×d, at suitably chosen x ∈ [−1, 1]d. Observe that ∇2f(x) has the following structure for
i ∈ Svar

2 and j = 1, . . . , d:

(∇2f(x))i,j =

∂2
i φ(i,i′)(xi, xi′) ; ρ(i) = 1, (i, i′) ∈ S2, i = j,
∂2
i φ(i′,i)(xi′ , xi) ; ρ(i) = 1, (i′, i) ∈ S2, i = j,

∂2
i φi(xi) +

∑
(i,i′)∈S2

∂2
i φ(i,i′)(xi, xi′)

+
∑

(i′,i)∈S2
∂2
i φ(i′,i)(xi′ , xi) ; ρ(i) > 1, i = j,

∂i∂jφ(i,j)(xi, xj) ; (i, j) ∈ S2,
∂i∂jφ(j,i)(xj , xi) ; (j, i) ∈ S2,

0 ; otherwise

,

while if i ∈ S1, we have for j = 1, . . . , d:

(∇2f(x))i,j =

{
∂2
i φi(xi) ; i = j,

0 ; otherwise .

The lth row of ∇2f(x) can be denoted by ∇∂lf(x)T ∈ Rd. If l ∈ S1, then ∇∂lf(x)T has at most one non-zero entry, namely
the lth entry, and has all other entries equal to zero. In other words, ∇∂lf(x)T is 1-sparse for l ∈ S1. If l ∈ Svar

2 , then we see
that∇∂lf(x)T will have at most (ρ(l) + 1) non-zero entries, implying that it is (ρ(l) + 1) ≤ (ρm + 1)-sparse.

At suitably chosen x’s, our aim specifically is to detect the non-zero off diagonal entries of ∇2f(x) since they correspond
precisely to S2. To this end, we consider the “difference of gradients” based approach used in Section 3.1.2. Contrary to the
setting in Section 3.1.2 however, we now have a d×d Hessian and have no knowledge about the set of active variables: S1∪Svar

2 .
Therefore, the Hessian estimation problem is harder now, and requires a different sampling scheme.

Sampling scheme for estimating S2. For x,v′ ∈ Rd, µ1 > 0, consider the Taylor expansion of ∇f at x along v′, with step
size µ1. For ζi = x + θiv

′, for some θi ∈ (0, µ1); i = 1, . . . , d, we obtain the following identity.

∇f(x + µ1v
′)−∇f(x)

µ1
= ∇2f(x)v′ +

µ1

2

v′
T∇2∂1f(ζ1)v′

...
v′
T∇2∂df(ζd)v

′

 =

〈∇∂1f(x),v′〉
...

〈∇∂df(x),v′〉

+
µ1

2

v′
T∇2∂1f(ζ1)v′

...
v′
T∇2∂df(ζd)v

′

 . (4.1)

We see from (4.1) that the lth entry of (∇f(x + µ1v
′) − ∇f(x))/µ1, corresponds to a linear measurement of the lth row of

∇2f(x) with v′. From the preceding discussion, we also know that each row of ∇2f(x) is at most (ρm + 1)-sparse. This
suggests the following idea: for any x, if we obtain sufficiently many linear measurements of each row of ∇2f(x), then we can
estimate each row separately via `1 minimization. To this end, we first need an efficient way for estimating ∇f(x) ∈ Rd, at any
point x. Note that ∇f(x) is k-sparse, therefore we can estimate it via the randomized scheme, explained in Section 3.1.1, with

13

O(k log d) queries of f . This gives us: ∇̂f(x) = ∇f(x) +w(x), where w(x) ∈ Rd denotes the estimation noise. Plugging this
in (4.1) results in the following identity.

∇̂f(x + µ1v
′)− ∇̂f(x)

µ1
=

〈∇∂1f(x),v′〉
...

〈∇∂df(x),v′〉

+
µ1

2

v′
T∇2∂1f(ζ1)v′

...
v′
T∇2∂df(ζd)v

′

+
w(x + µ1v

′)−w(x)

µ1︸ ︷︷ ︸
“Noise”

. (4.2)

Now let v′ be chosen from the set:

V ′ :=

{
v′j ∈ Rd : v′j,q = ± 1√

mv′
w.p. 1/2 each; j = 1, . . . ,mv′ and q = 1, . . . , d

}
. (4.3)

Then, employing (4.2) at each v′j ∈ V ′, and denoting V′ = [v′1 . . .v
′
mv′

]T ∈ Rmv′×d, we obtain d linear systems for q =
1, . . . , d:

1

µ1

 (∇̂f(x + µ1v
′
1)− ∇̂f(x))q
...

(∇̂f(x + µ1v
′
mv′

)− ∇̂f(x))q

︸ ︷︷ ︸

yq

= V′∇∂qf(x) +
µ1

2

 v′1
T∇2∂qf(ζ1)v′1

...
v′mv′

T∇2∂qf(ζmv′)v
′
mv′

︸ ︷︷ ︸

ηq,1

+
1

µ1

 wq(x + µ1v
′
1)− wq(x)

...
wq(x + µ1v

′
mv′

)− wq(x)

︸ ︷︷ ︸

ηq,2

.

(4.4)

Given the measurement vector yq , we can obtain the estimate ∇̂∂qf(x) individually for each q, via `1 minimization:

∇̂∂qf(x) := argmin
yq=V′z

‖ z ‖1; q = 1, . . . , d. (4.5)

Hence, we have obtained an estimate ∇̂2f(x) := [∇̂∂1f(x) · · · ∇̂∂df(x)]T of the Hessian ∇2f(x), at the point x. Next, we
would like to have a suitable set of points x, in the sense that it provides a sufficiently fine discretization, of any canonical
2-dimensional subspace of Rd. To this end, we can simply consider the set χ as defined in (3.12), for the same reasons as before.

Sampling scheme for estimating S1. While the above sampling scheme enables us to recover S2, we can recover S1 as
follows. Let Ŝvar

2 denote the set of variables in the estimated set Ŝ2, and let P := [d] \ Ŝvar
2 . Assuming Ŝ2 = S2, we have

S1 ⊂ P . Therefore the model we are left with now is a SPAM with no variable interactions on the reduced variable set P . For
identification of S1, we employ the sampling scheme of [54], wherein the gradient of f is estimated along a discrete set of points
on the line:

{
(x, . . . , x) ∈ Rd : x ∈ [−1, 1]

}
. For some m′x ∈ Z+, we denote this discrete set by:

χdiag :=

{
x = (x x · · · x) ∈ Rd : x ∈

{
−1,−m

′
x − 1

m′x
, . . . ,

m′x − 1

m′x
, 1

}}
. (4.6)

Note that |χdiag| = 2m′x + 1. The motivation for estimating ∇f at x ∈ χdiag is that we obtain estimates of ∂pφp at equispaced
points within [−1, 1], for p ∈ S1. With a sufficiently fine discretization, we would “hit” the critical regions associated with each
∂pφp, as defined in Assumption 3. By applying a thresholding operation, we would then be able to identify each p ∈ S1. Let us
denote V ′′ to be the set of sampling directions in Rd – analogous to V,V ′ defined in (3.4), (4.3) respectively – with |V ′′| = mv′′ :

V ′′ :=

{
v′′j ∈ Rd : v′′j,q = ± 1√

mv′′
w.p. 1/2 each; j = 1, . . . ,mv′′ and q = 1, . . . , d

}
. (4.7)

For each x ∈ χdiag, we will query f at points (x + µ′v′′j)P , (x− µ′v′′j)P ; v′′j ∈ V ′′, restricted to P . Then by obtaining the mea-
surements: yj = (f((x + µ′v′′j)P)− f((x− µ′v′′j)P))/(2µ′); j = 1, . . . ,mv′′ , and denoting (V′′)P = [(v′′1)P · · · (v′′mv′′)P]T ,
we obtain the estimate (∇̂f((x)P))P := argmin

y=(V′′)P(z)P

‖ (z)P ‖1. This notation simply means that we search over z ∈ RP , to

form the estimate (∇̂f((x)P))P .
The complete procedure for estimating S1,S2, is described formally in Algorithm 3. Next, we provide sufficient conditions

on our sampling parameters that guarantee exact recovery of S1,S2 by the algorithm. This is stated in the following Theorem.

Theorem 4. Let Hd2 be of size |Hd2| ≤ 2(C + 1)e2 log d for some constant C > 1. Then ∃ constants c′1, c
′
2 ≥ 1 and

C1, C2, c
′
4, c
′
5 > 0, such that the following is true. Let mx,mv,mv′ satisfy

mx ≥ λ−1
2 , c′1k log

(
d

k

)
< mv <

d

(log 6)2
, c′2ρm log

(
d

ρm

)
< mv′ <

d

(log 6)2
.

14

Algorithm 3 Algorithm for estimating S1,S2

1: Input: mv,mv′ ,mx,m
′
x ∈ Z+; µ, µ1, µ

′ > 0; τ ′ > 0, τ ′′ > 0.
2: Initialization: Ŝ1, Ŝ2 = ∅.
3: Output: Estimates Ŝ2, Ŝ1.
4:
5: Construct (d, 2)-hash familyHd2 and sets V,V ′.
6: for h ∈ Hd2 do
7: Construct the set χ(h).
8: for i = 1, . . . , (2mx + 1)2 and xi ∈ χ(h) do
9: (yi)j =

f(xi+µvj)−f(xi−µvj)
2µ ; j = 1, . . . ,mv; vj ∈ V .

10: ∇̂f(xi) := argmin
yi=Vz

‖ z ‖1.

11: for p = 1, . . . ,mv′ do
12: (yi,p)j =

f(xi+µ1v
′
p+µvj)−f(xi+µ1v

′
p−µvj)

2µ ; j = 1, . . . ,mv; v′p ∈ V ′. // ESTIMATION OF S2

13: ∇̂f(xi + µ1v
′
p) := argmin

yi,p=Vz
‖ z ‖1.

14: end for
15: for q = 1, . . . , d do
16: (yq)j =

(∇̂f(xi+µ1v
′
j)−∇̂f(xi))q
µ1

; j = 1, . . . ,mv′ .

17: ∇̂∂qf(xi) := argmin
yq=V′z

‖ z ‖1.

18: Ŝ2 = Ŝ2 ∪
{

(q, q′) : q′ ∈ {q + 1, . . . , d} & |(∇̂∂qf(xi))q′ | > τ ′
}

.
19: end for
20: end for
21: end for
22:
23: Construct the sets χdiag,V ′′ and initialize P := [d] \ Ŝvar

2 .
24: for i = 1, . . . , (2m′x + 1) and xi ∈ χdiag do
25: (yi)j =

f((xi+µ
′v′′j)P)−f((xi−µ′v′′j)P)

2µ′ ; j = 1, . . . ,mv′′ ; vj ∈ V ′′.
26: (∇̂f((xi)P))P := argmin

yi=(V′′)P(z)P

‖ (z)P ‖1. // ESTIMATION OF S1

27: Ŝ1 = Ŝ1 ∪
{
q ∈ P : |((∇̂f((xi)P)q| > τ ′′

}
.

28: end for

Denoting a = (4ρm+1)B3

2
√
mv′

, b =
C1
√
mv′ ((4ρm+1)k)B3

3mv
, let µ, µ1 satisfy

µ2 <
D2

2

16abC2
2

, µ1 ∈
(

(D2/(4aC2))−
√

(D2/(4aC2))2 − (bµ2/a), (D2/(4aC2)) +
√

(D2/(4aC2))2 − (bµ2/a)
)
.

We then have that the choice

τ ′ = C2

(
µ1(4ρm + 1)B3

2
√
mv′

+
C1
√
mv′µ

2((4ρm + 1)k)B3

3µ1mv

)
,

implies Ŝ2 = S2 with probability at least 1− e−c′4mv − e−
√
mvd − e−c′5mv′ − e−

√
mv′d − d−2C .

Given that Ŝ2 = S2, then ∃ constants c′3 ≥ 1 and C3, c
′
6 > 0, such that for m′x,mv′′ , µ

′ satisfying

m′x ≥ λ−1
1 , c′3(k − |Ŝvar

2 |) log

(
|P|

k − |Ŝvar
2 |

)
< mv′′ <

|P|
(log 6)2

, µ′
2
<

3mv′′D1

C3(k − |Ŝvar
2 |)B3

,

the choice: τ ′′ =
C3(k−|Ŝvar

2 |)µ
′2B3

6mv′′
, implies Ŝ1 = S1 with probability at least 1− e−c′6mv′′ − e−

√
mv′′ |P|.

Query complexity. Estimating ∇f(x) at some fixed x requires 2mv = O(k log d) queries. Estimating ∇2f(x) involves
the estimation of ∇f(x) – along with an additional mv′ gradient vectors in a neighborhood of x – implying O(mvmv′) =
O(kρm(log d)2) point queries of f . Since ∇2f is estimated at all points in χ in the worst case, this consequently implies a
total query complexity of O(kρm(log d)2|χ|) = O(λ−2

2 kρm(log d)3), for estimating S2. We make an additional O(λ−1
1 (k −

|Ŝvar
2 |) log(d − |Ŝvar

2 |)) queries of f , in order to estimate S1. Therefore, the overall query complexity for estimating S1,S2 is
O(λ−2

2 kρm(log d)3).

15

Computational complexity. The family Hd2 can be constructed8 in time polynomial in d. For each x ∈ χ, we first solve
mv′ + 1 linear programs in O(d) variables (Steps 10, 13), each solvable in time polynomial in (mv, d). We then solve d linear
programs in O(d) variables (Step 17), each of which takes time polynomial in (mv′ , d). Since this is done at |χ| = O(λ−2

2 log d)
many points, hence the overall computation time for estimation of S2 (and subsequently S1) is polynomial in the number of
queries, and in d.

Remark 7. In Algorithm 4, we could have optimized the procedure for identifying S1 as follows. Observe that for each h ∈ Hd2 ,
we always have a subset of points (i.e., ⊂ χ(h)) that discretize

{
(x, . . . , x) ∈ Rd : x ∈ [−1, 1]

}
. Therefore for each x lying in

this subset, we could go through ∇̂f(x), and check via a thresholding operation, whether there exists a variables(s) in S1. If
mx is large enough (≥ λ−1

1), then it would also enable us to recover S1 completely. A downside of this approach is that we
would require additional, stronger conditions on the step size parameter µ to guarantee identification of S1. Since the estimation
procedure for S1 in Algorithm 3 comes at the same order-wise sampling cost, therefore we choose to query f again, in order to
identify S1.

Remark 8. We also note that the condition on µ′ is less strict than in [54] for identifying S1. This is because in [54], the gradient
is estimated via a forward difference procedure, while we perform a central difference procedure in (3.3).

4.2 Analysis for noisy setting
We now consider the case where at each query x, we observe f(x)+z′, with z′ ∈ R denoting external noise. In order to estimate
∇f(x), we obtain the samples : f(x + µvj) + z′j,1 and f(x − µvj) + z′j,2; j = 1, . . . ,mv . This changes (3.6) to the linear
system y = V∇f(x) + n + z, where zj = (z′j,1 − z′j,2)/(2µ).

Arbitrary bounded noise. In this scenario, we assume the external noise to be arbitrary and bounded, meaning that |z′| < ε,
for some finite ε ≥ 0. Theorem 5 shows that Algorithm 3 recovers S1,S2 with appropriate choice of sampling parameters,
provided ε is not too large.

Theorem 5. Assuming the notation in Theorem 4, let a, b,mx,mv,mv′ ,Hd2 be as defined in Theorem 4. Say ε < ε1 =
D3

2

192
√

3C1C3
2

√
a3bmv′mv

. Then for θ1 = cos−1(−ε/ε1), let µ, µ1 satisfy:

µ ∈
(√

D2
2

12abC2
2

cos(θ1/3− 2π/3),

√
D2

2

12abC2
2

cos(θ1/3)

)
, (4.8)

µ1 ∈

 D2

4aC2
−
√(

D2

4aC2

)2

−
(
bµ2 + 2C1

√
mvmv′ε

a

)
,
D2

4aC2
+

√(
D2

4aC2

)2

−
(
bµ2 + 2C1

√
mvmv′ε

a

) . (4.9)

We then have in Algorithm 3 for the choice

τ ′ = C2

(
µ1(4ρm + 1)B3

2
√
mv′

+
C1
√
mv′µ

2((4ρm + 1)k)B3

3µ1mv
+

2C1ε
√
mv′mv

µµ1

)
, (4.10)

that Ŝ2 = S2 with probability at least 1− e−c′4mv − e−
√
mvd − e−c′5mv′ − e−

√
mv′d − d−2C . Given that Ŝ2 = S2, let m′x,mv′′

be chosen as in Theorem 4. Let a1 =
(k−|Ŝvar

2 |)B3

6mv′′
, b1 =

√
mv′′ and assume ε < ε2 =

D
3/2
1

3
√

6a1C3
3b

2
1

. For θ2 = cos−1(−ε/ε2),

let µ′ ∈ (2
√
D1/(6a1C3) cos(θ2/3 − 2π/3), 2

√
D1/(6a1C3) cos(θ2/3)). We then have in Algorithm 3 for the choice τ ′′ =

C3

(
(k−|Ŝvar

2 |)µ
′2B3

6mv′′
+ b1ε

µ

)
that Ŝ1 = S1 with probability at least 1− e−c′6mv′′ − e−

√
mv′′ |P|.

We see that in contrast to Theorem 4, the step sizes: µ, µ′ cannot be chosen too small now, on account of external noise.
Also note that the parameters π/2 ≤ θ1, θ2 ≤ π arising due to ε, affect the size of the intervals from which µ, µ′ can be chosen
respectively. One can verify that plugging ε = 0 in Theorem 5 (implying θ1, θ2 = π/2), gives us the sampling conditions of
Theorem 4.

Stochastic noise. We now consider i.i.d Gaussian noise, so that z′ ∼ N (0, σ2) for variance σ2 < ∞. As in Section 3.2, we
resample each point query a sufficient number of times and average, in order to reduce σ. Doing this N1 times in Steps 9,12, and
N2 times in Step 25, for N1, N2 large enough, we can recover S1,S2 as shown formally in the following theorem.

Theorem 6. Assuming the notation in Theorem 4, let a, b,mx,mv,mv′ ,Hd2 be as defined in Theorem 4. For any ε < ε1 =
D3

2

192
√

3C1C3
2

√
a3bmv′mv

, 0 < p1 < 1 and θ1 = cos−1(−ε/ε1), say we resample each query in Steps 9-12 of Algorithm 3, N1 >

8Recall discussion following Definition 1.

16

σ2

ε2 log(2
p1
mv(mv′ + 1)(2mx + 1)2|Hd2|) times, and average the values. Let µ, µ1, τ

′ be chosen to satisfy (4.8), (4.9) and (4.10)

respectively. We then have in Algorithm 3, that Ŝ2 = S2 with probability 1−p1−e−c
′
4mv−e−

√
mvd−e−c′5mv′−e−

√
mv′d−d−2C .

Given that Ŝ2 = S2, let m′x,mv′′ , a1, b1 be as stated in Theorem 5. For any ε′ < ε2 =
D

3/2
1√

6a1C3
3b

2
1

, 0 < p2 < 1, and

θ2 = cos−1(−ε′/ε2), say we resample each query in Step 25 of Algorithm 3, N2 >
σ2

ε′2
log(

2(2m′x+1)mv′′
p2

) times. Furthermore,

let µ′, τ ′′ be chosen as stated in Theorem 5. We then have in Algorithm 3 that Ŝ1 = S1 with probability at least 1 − p2 −
e−c

′
6mv′′ − e−

√
mv′′ |P|.

Query complexity. Let us analyze the query complexity when the noise is i.i.d Gaussian. For estimating S2, we have ε =
O(ρ−2

m k−1/2). Furthermore: (2mx + 1)2 = λ−2
2 , |Hd2| = O(log d), mv = O(k log d) and mv′ = O(ρm log d). Choosing

p1 = d−δ for any constant δ > 0 gives us

N1 = O(ρ4
mk log((dδ)kρm(log d)3)) = O(ρ4

mk log d)

. This means that our total sample complexity for estimating S2 is:

O(N1kρm(log d)2|χ|) = O(ρ5
mk

2(log d)4λ−2
2).

This ensures Ŝ2 = S2 with high probability. Next, for estimating S1, we have ε′ = O((k − |Svar
2 |)−1/2). Choosing p2 =

((d − |Svar
2 |)−δ) for any constant δ > 0, we get N2 = O((k − |Svar

2 |) log(d − |Svar
2 |)). This means the total sample complexity

for estimating S1 is O(N2λ
−1
1 (k− |Ŝvar

2 |) log(d− |Ŝvar
2 |)) = O(λ−1

1 (k− |Ŝvar
2 |)2(log(d− |Ŝvar

2 |))2). Putting it together, we have
that in case of i.i.d Gaussian noise, the sampling complexity of Algorithm 3 for estimating S1,S2 is O(ρ5

mk
2(log d)4).

Remark 9. We saw above that O(k2(log d)2) samples are sufficient for estimating S1 in presence of i.i.d Gaussian noise. This
improves the corresponding bound in [54] by a O(k) factor, and is due to the less strict condition on µ′ (cf., Remark 8).

5 Alternate sampling scheme for the general overlap case
We now derive an alternate algorithm for estimating the sets S1,S2, for the general overlap case. This algorithm differs from
Algorithm 3 with respect to the scheme for estimating S2 – the procedure for estimating S1 is the same as Algorithm 3. In
order to estimate S2, we now make use of recent results from CS, for recovering sparse symmetric matrices from few linear
measurements. More precisely, we leverage these results for estimating the sparse Hessian ∇2f(x) at any fixed x ∈ Rd. This is
in stark contrast to the approaches we proposed so far, wherein, each row of the Hessian ∇2f(x) was approximated separately.
As we will show, this results in slightly improved sampling bounds for estimating S2 in the noiseless setting as opposed to those
stated in Theorem 4.

5.1 Analysis for noiseless setting
We begin with the setting of noiseless point queries, and show how the problem of estimating ∇2f(x) at any x ∈ Rd can be
formulated as one of recovering an unknown sparse, symmetric matrix from linear measurements. To this end, first note that for
x,v ∈ Rd, step size µ > 0, and ζ = x + θv, ζ ′ = x− θ′v; θ, θ′ ∈ (0, 2µ), one obtains via Taylor expansion of the C3 smooth
f, the following identity:

f(x + 2µv) + f(x− 2µv)− 2f(x)

4µ2
= vT∇2f(x)v +

R3(ζ) +R3(ζ ′)

4µ2︸ ︷︷ ︸
O(µ)

. (5.1)

Here R3(ζ), R3(ζ ′) = O(µ3) denote the third order Taylor terms. Importantly, (5.1) corresponds to a “noisy” linear mea-
surement of ∇2f(x) i.e., vT∇f(x)v = 〈vvT ,∇2f(x)〉, via the measurement matrix vvT . The noise arises on account of
the Taylor remainder terms. We now present a recent result for recovering sparse symmetric matrices [7], that we leverage for
estimating∇2f(x).

Recovering sparse symmetric matrices via `1 minimization. Let v be composed of i.i.d sub-Gaussian entries with vi =
ai/
√
mv , and the ai’s drawn in an i.i.d manner from a distribution satisfying:

E[ai] = 0, E[a2
i] = 1 and E[a4

i] > 1. (5.2)

For concreteness, we will consider the following set whose elements clearly meet these moment conditions:

17

V :=

{
vj ∈ Rd : vj,q =

{
±
√

3
mv

; w.p 1/6 each,
0; w.p 2/3

}
; j = 1, . . . ,mv and q = 1, . . . , d

}
. (5.3)

Note that a symmetric Bernoulli distribution does not meet the aforementioned fourth order moment condition. Furthermore,
letM : Rd×d → Rmv denote a linear operator acting on square matrices, with

M(H) := [〈v1v
T
1 ,H〉 · · · 〈vmvvTmv ,H〉]T ; H ∈ Rd×d. (5.4)

For an unknown symmetric matrix H0 ∈ Rd×d, say we have at hand mv linear measurements

y =M(H0) + n; y,n ∈ Rmv ; ‖ n ‖1≤ η. (5.5)

Then as shown in [7, Section C], we can recover an estimate Ĥ0 to H0 via `1 minimization, by solving:

Ĥ0 = argmin
H

‖ H ‖1 s.t HT = H, ‖ y −M(H) ‖1≤ η. (5.6)

Remark 10. (5.6) was proposed in [7, Section C] for recovering sparse covariance matrices (which are positive semidefinite
(PSD)) with the symmetry constraint replaced by a PSD constraint. However as noted in the discussion in [7, Section E], one
can replace the PSD constraint by a symmetry constraint, in order to recover more general symmetric matrices (which are not
necessarily PSD).

Remark 11. Note that (5.6) can be reformulated as a linear program in O(d2) variables, and hence can be solved efficiently up
to arbitrary accuracy (using for instance, interior point methods (cf., [39])).

The estimation property of (5.6) is captured in the following Theorem.

Theorem 7. [7, Theorem 3] Consider the sampling model in (5.5) with vi’s satisfying (5.2), and let (H0)Ω denote the best K
term approximation of H0. Then there exist constants c1, c′1, c2, C1, C2 > 0 such that with probability exceeding 1− c1e−c2mv ,
the solution Ĥ0 to (5.6) satisfies

‖ Ĥ0 −H0 ‖F≤ C2
‖ H0 − (H0)Ω ‖1√

K
+ C1η, (5.7)

simultaneously for all (symmetric) H0 ∈ Rd×d, provided mv > c′1K log(d2/K).

The proof of Theorem 7 relies on the `2/`1 Restricted Isometry Property (RIP) for sparse symmetric matrices, introduced by
Chen et al. [7]:

Definition 2. [7] For the set of symmetric K sparse matrices, the operator B is said to satisfy the `2/`1 Restricted Isometry
Property (RIP) with constants γ1, γ2 > 0, if for all such matrices X:

(1− γ1) ‖ X ‖F≤‖ B(X) ‖1≤ (1 + γ2) ‖ X ‖F .

While the operatorM defined in (5.4) does not satisfy `2/`1 RIP (since each viv
T
i has non-zero mean), one could consider

instead a set of debiased measurement matrices Bi := v2i−1v
T
2i−1 − v2iv

T
2i, with Bi(X) := 〈Bi,X〉 for i = 1, . . . ,m. Chen

et al. [7, Corollary 2] then show that the linear map B : Rd×d → Rm satisfies `2/`1 RIP, for vi’s satisfying (5.2), provided
m > K log(d2/K).

Remark 12. Observe that the `1 norm constraint in (5.6) arises due to the `2/`1 RIP in Definition 2. It is unclear whether the
linear map B also satisfies the conventional `2/`2 RIP9. However assuming it were do so, the `1 norm constraint in (5.6) could
then be replaced by ‖ y −M(H) ‖2≤ η. In particular, it might then be possible to use faster non-convex IHT based methods
(cf., Remark 5).

Estimating S2,S1. Given the linear program defined in (5.6), we can estimate∇2f(x) in a straightforward manner, at any fixed
x ∈ Rd. Indeed, for some suitable step size µ > 0, we first collect the samples: f(x), {f(x− 2µvj)}mvj=1 , {f(x + 2µvj)}mvj=1,
with vj ∈ V . Then, we form the linear system y =M(∇2f(x)) + n, where

yj =
f(x + 2µvj) + f(x− 2µvj)− 2f(x)

4µ2
, nj =

R3(ζj) +R3(ζ ′j)

4µ2
; j = 1, . . . ,mv. (5.8)

Since ∇2f(x) is at most k(ρm + 1) sparse, therefore we obtain an estimate ∇̂2f(x) to ∇2f(x) with 2mv + 1 queries of f with
mv > c′1kρm log(d2

kρm
). Thereafter, we proceed as in Section 4, i.e., we estimate ∇2f at each x ∈ χ = ∪h∈Hd2χ(h), with χ(h)

as defined in (3.12).
9We are not aware of a formal proof of this fact in the literature.

18

Remark 13. Note that∇2f(x) actually has at most k+2|S2| non-zero entries. Therefore, if we had assumed |S2| to be known as
part of our problem setup (in Section 2), then the choice mv > c′1(k + 2|S2|) log(d2

k+2|S2|) would suffice for estimating∇2f(x).
We can bound 2|S2| ≤ kρm – this is also tight in the worst case – however in certain settings this would be pessimistic10

Once S2 is identified, we can simply reuse the procedure in Algorithm 3, for estimating S1. The above discussion for
identifying S1,S2 is formally outlined in Algorithm 4. The following Theorem provides sufficient conditions on the sampling

Algorithm 4 Algorithm for estimating S1,S2

1: Input: mv,mx ∈ Z+; µ > 0; η, τ > 0.
2: Initialization: Ŝ1, Ŝ2 = ∅.
3: Output: Estimates Ŝ2, Ŝ1.
4:
5: // ESTIMATION OF S2

6: Construct (d, 2)-hash familyHd2 and sets V .
7: for h ∈ Hd2 do
8: Construct the set χ(h).
9: for i = 1, . . . , (2mx + 1)2 and xi ∈ χ(h) do

10: (yi)j =
f(xi+2µvj)+f(xi−2µvj)−2f(xi)

4µ2 ; j = 1, . . . ,mv; vj ∈ V .

11: ∇̂2f(xi) := argmin
H

‖ H ‖1 s.t. HT = H, ‖ yi −M(H) ‖1≤ η.

12: Ŝ2 = Ŝ2 ∪
{

(q, q′) ∈
(

[d]
2

)
: |(∇̂2f(xi))q,q′ | > τ

}
.

13: end for
14: end for
15:
16: // ESTIMATION OF S1

17: Estimate S1 as in Algorithm 3.

parameters in Algorithm 4, that guarantee Ŝ2 = S2, Ŝ1 = S1 with high probability.

Theorem 8. LetHd2 be of size |Hd2| ≤ 2(C + 1)e2 log d for some constant C > 1. Then ∃ constants c1, c′1, c2, C1 > 0, such that
the following is true. Let mx,mv, µ satisfy

mx ≥ λ−1
2 , mv > c′1kρm log

(
d2

kρm

)
, µ <

√
mvD2

2
√

6C1B3(4ρm + 1)k
. (5.9)

We then have for the choices η = 2
√

3µB3(4ρm+1)k√
mv

, τ = C1η that Ŝ2 = S2 with probability at least 1 − c1e−c2mv − d−2C .

Given that Ŝ2 = S2, the sampling conditions for estimating Ŝ1 are identical to Theorem 4.

Query complexity. Estimating ∇2f(x) at some fixed x requires 2mv + 1 = O(kρm log(d2

kρm
)) queries. Since ∇2f is es-

timated at all points in χ in the worst case, this consequently implies a total query complexity of O(kρm log(d2

kρm
)|χ|) =

O(λ−2
2 kρm(log d)2), for estimating S2. As seen in Theorem 4, we make an additionalO(λ−1

1 (k−|Ŝvar
2 |) log(d−|Ŝvar

2 |)) queries
of f , in order to estimate S1. Therefore, the overall query complexity for estimating S1,S2 is O(λ−2

2 kρm(log d)2). Observe that
this is better by a log d factor as compared to the sampling bound for Algorithm 3 (in the noiseless setting).

Computational complexity. The family Hd2 can be constructed11 in time polynomial in d. At each x ∈ χ, we solve a linear
program (Step 11) in O(d2) variables, which can be done up to arbitrary accuracy in time polynomial in (mv, d). Since this
is done at |χ| = O(λ−2

2 log d) many points, hence the overall computation time for estimation of S2 (and subsequently S1) is
polynomial in the number of queries, and in d.

5.2 Analysis for noisy setting
We now consider the case where at each query x, we observe f(x)+z′, with z′ ∈ R denoting external noise. In order to estimate
∇2f(x), we obtain the samples : f(x + 2µvj) + z′j,1, f(x− 2µvj) + z′j,2 and f(x) + z′3; j = 1, . . . ,mv . This changes (5.8) to
the linear system y =M(∇2f(x)) + n + z, where zj = (z′j,1 + z′j,2 − 2z′3)/(4µ2).

10For example when O(1) variables have degree ρm, and the remaining variables have degree 1 leading to |S2| = O(k + ρm).
11Recall discussion following Definition 1.

19

Arbitrary bounded noise. Assuming the external noise to be arbitrary and bounded, meaning that |z′| < ε, Theorem 9 shows
that Algorithm 4 recovers S1,S2 with appropriate choice of sampling parameters provided ε is not too large.

Theorem 9. Assuming the notation in Theorem 8, let mx,mv andHd2 be as defined in Theorem 8. Denoting a =
√

6B3(4ρm+1)k√
mv

,

say ε satisfies ε < ε1 =
√

2D3
2

54a2C3
1mv

and θ1 = cos−1
(

1− 2ε
ε1

)
. Let

µ ∈
(
− D2

3aC1
cos

(
θ1

3
+
π

3

)
+

D2

6aC1
,
D2

3aC1
cos

(
θ1

3

)
+

D2

6aC1

)
. (5.10)

We then have in Algorithm 4 for the choices η =
(

2
√

3µB3(4ρm+1)k√
mv

+ εmv
µ2

)
, τ = C1η, that Ŝ2 = S2 with probability at least

1− c1e−c2mv − d−2C . Given that Ŝ2 = S2, the sampling conditions for estimating Ŝ1 are identical to Theorem 5.

Stochastic noise. We now consider i.i.d Gaussian noise, so that z′ ∼ N (0, σ2) for variance σ2 < ∞. As in Sections 3.2, 4.2,
we reduce σ via resampling and averaging. Doing this N1 times in Step 10, and N2 times during estimation of S1, for N1, N2

large enough, we can recover S1,S2 as shown formally in the following Theorem.

Theorem 10. Assuming the notation in Theorem 8, letmx,mv andHd2 be as defined in Theorem 8. For any ε < ε1 =
√

2D3
2

54a2C3
1mv

,

0 < p1 < 1, say we resample each query in Step 10 of Algorithm 4, N1 >
3σ2

4ε2 log(2
p1
mv(2mx + 1)2|Hd2|) times, and average

the values. We then have in Algorithm 4 for the choices of η, τ , µ as in Theorem 9, that Ŝ2 = S2 with probability at least
1− c1e−c2mv − d−2C − p1. Given that Ŝ2 = S2, the sampling conditions for estimating Ŝ1 are identical to Theorem 6.

Query complexity. We now analyze the query complexity for Algorithm 4, when the noise is i.i.d Gaussian. For estimating
S2, we have ε = O(ρ−2

m k−2). Furthermore: (2mx + 1)2 = λ−2
2 , |Hd2| = O(log d), mv = O(kρm log d). Choosing p1 = d−δ

for any constant δ > 0 gives us

N1 = O(ρ4
mk

4 log(dδ(kρm log d)λ−2
2 log d)) = O(ρ4

mk
4 log d).

This means that our total sample complexity for ensuring Ŝ2 = S2 with high probability is:

O(N1kρm log d|χ|) = O(ρ5
mk

5(log d)3λ−2
2).

Lastly, by noting the sample complexity for estimating S1 from Theorem 6, we conclude that the overall sample complexity
for ensuring Ŝ1 = S1 and Ŝ2 = S2, in the presence of i.i.d Gaussian noise, is O(ρ5

mk
5(log d)3λ−2

2). Observe that this bound has
a relatively worse scaling w.r.t ρm compared to that for Algorithm 3 (derived after Theorem 6); specifically, by a factor of k3. On
the other hand, the scaling w.r.t d is better by a logarithmic factor, compared to that for Algorithm 3.

6 Learning individual components of model
Recall from (2.4) the unique representation of the model:

f(x1, . . . , xd) = c+
∑
p∈S1

φp(xp) +
∑

(l,l′)∈S2

φ(l,l′)(xl, xl′) +
∑

q∈Svar
2 :ρ(q)>1

φq(xq), (6.1)

where S1 ∩Svar
2 = ∅. Having estimated the sets S1 and S2, we now show how the individual univariate and bivariate functions in

the model can be estimated. We will see this for the settings of noiseless, as well as noisy (arbitrary, bounded noise and stochastic
noise) point queries.

6.1 Noiseless queries
In this scenario, we obtain the exact value f(x) at each query x ∈ Rd. Let us first see how each φp; p ∈ S1 can be estimated.
For some −1 = t1 < t2 < · · · < tn = −1, consider the set

χp :=

{
xi ∈ Rd : (xi)j =

{
ti; j = p,
0; j 6= p

}
; 1 ≤ i ≤ n; 1 ≤ j ≤ d

}
; p ∈ S1. (6.2)

We obtain the samples {f(xi)}ni=1; xi ∈ χp. Here f(xi) = φp(ti) + C with C being a constant that depends on the other
components in the model. Given the samples, one can then employ spline based “quasi interpolant operators” [14], to obtain an
estimate φ̃p : [−1, 1] → R, to φp + C. Construction of such operators can be found for instance in [14] (see also [22]). One

20

can suitably choose the ti’s and construct quasi interpolants that approximate any Cm smooth univariate function with optimal
L∞[−1, 1] error rate O(n−m) [14, 22]. Having obtained φ̃p, we then define

φ̂p := φ̃p − Ep[φ̃p]; p ∈ S1, (6.3)

to be the estimate of φp. The bivariate components corresponding to each (l, l′) ∈ S2 can be estimated in a similar manner as
above. To this end, for some strictly increasing sequences: (−1 = t′1, t

′
2, . . . , t

′
n1

= 1), (−1 = t1, t2, . . . , tn1
= 1), consider the

set

χ(l,l′) :=

xi,j ∈ Rd : (xi,j)q =

 t′i; q = l,
tj ; q = l′,
0; q 6= l, l′

 ; 1 ≤ i, j ≤ n1; 1 ≤ q ≤ d

 ; (l, l′) ∈ S2. (6.4)

We then obtain the samples {f(xi,j)}n1

i,j=1; xi,j ∈ χ(l,l′) where

f(xi,j) = φ(l,l′)(t
′
i, tj) +

∑
l1:(l,l1)∈S2

l1 6=l′

φ(l,l1)(t
′
i, 0) +

∑
l1:(l1,l)∈S2

l1 6=l′

φ(l1,l)(0, t
′
i)

+
∑

l′1:(l′,l′1)∈S2
l′1 6=l

φ(l′,l′1)(tj , 0) +
∑

l′1:(l′1,l
′)∈S2

l′1 6=l

φ(l′1,l
′)(0, tj) + φl(t

′
i) + φl′(tj) + C, (6.5)

= g(l,l′)(t
′
i, tj) + C, (6.6)

with C being a constant. (6.5) is a general expression – if for example ρ(l) = 1, then the terms φl, φ(l,l1), φ(l1,l) will be zero.
Given this, we can again obtain estimates φ̃(l,l′) : [−1, 1]2 → R to g(l,l′) + C, via spline based quasi interpolants. Let us
denote n = n2

1 to be the total number of samples of f . For an appropriate choice of (t′i, tj)’s, one can construct bivariate
quasi interpolants that approximate any Cm smooth bivariate function, with optimal L∞[−1, 1]2 error rate O(n−m/2) [14, 22].
Subsequently, we define the final estimates φ̂(l,l′) to φ(l,l′) as follows.

φ̂(l,l′) :=

φ̃(l,l′) − E(l,l′)[φ̃(l,l′)]; ρ(l), ρ(l′) = 1,

φ̃(l,l′) − El[φ̃(l,l′)]; ρ(l) = 1, ρ(l′) > 1,

φ̃(l,l′) − El′ [φ̃(l,l′)]; ρ(l) > 1, ρ(l′) = 1,

φ̃(l,l′) − El[φ̃(l,l′)]− El′ [φ̃(l,l′)] + E(l,l′)[φ̃(l,l′)]; ρ(l) > 1, ρ(l′) > 1.

(6.7)

Lastly, we require to estimate the univariate’s : φl for each l ∈ Svar
2 such that ρ(l) > 1. As above, for some strictly increasing

sequences: (−1 = t′1, t
′
2, . . . , t

′
n1

= 1), (−1 = t1, t2, . . . , tn1 = 1), consider the set

χl :=

{
xi,j ∈ Rd : (xi,j)q =

 t′i; q = l,
tj ; q 6= l & q ∈ Svar

2 ,
0; q /∈ Svar

2 ,

 ; 1 ≤ i, j ≤ n1; 1 ≤ q ≤ d
}

; l ∈ Svar
2 : ρ(l) > 1. (6.8)

We obtain {f(xi,j)}n1

i,j=1; xi,j ∈ χl where this time

f(xi,j) = φl(t
′
i) +

∑
ρ(l′)>1,l′ 6=l

φl′(tj) +
∑

l′:(l,l′)∈S2

φ(l,l′)(t
′
i, tj) (6.9)

+
∑

l′:(l′,l)∈S2

φ(l′,l)(tj , t
′
i) +

∑
(q,q′)∈S2:q,q′ 6=l

φ(q,q′)(tj , tj) + C (6.10)

= gl(t
′
i, tj) + C (6.11)

for a constant, C. Denoting n = n2
1 to be the total number of samples of f , we can again obtain an estimate φ̃l(xl, x) to

gl(xl, x) + C, with L∞[−1, 1]2 error rate O(n−3/2). Then with φ̃l at hand, we define the estimate φ̂l : [−1, 1]→ R as

φ̂l := Ex[φ̃l]− E(l,x)[φ̃l]; l ∈ Svar
2 : ρ(l) > 1. (6.12)

The following proposition formally describes the error rates for the aforementioned estimates.

Proposition 1. For C3 smooth components φp, φ(l,l′), φl, let φ̂p, φ̂(l,l′), φ̂l be the respective estimates as defined in (6.3), (6.7)
and (6.12) respectively. Also, let n denote the number of queries (of f) made per component. We then have that:

1. ‖ φ̂p − φp ‖L∞[−1,1]= O(n−3);∀p ∈ S1,

2. ‖ φ̂(l,l′) − φ(l,l′) ‖L∞[−1,1]2= O(n−3/2);∀(l, l′) ∈ S2, and

3. ‖ φ̂l − φl ‖L∞[−1,1]= O(n−3/2);∀l ∈ Svar
2 : ρ(l) > 1.

21

6.2 Noisy queries
We now look at the case where for each query x ∈ Rd, we obtain a noisy value f(x) + z′.

Arbitrary bounded noise. We begin with the scenario where z′i is arbitrary and bounded with |z′i| < ε; ∀i. Since the noise
is arbitrary in nature, therefore we simply proceed as in the noiseless case, i.e., by approximating each component via a quasi-
interpolant. As the magnitude of the noise is bounded by ε, it results in an additional O(ε) term in the approximation error rates
of Proposition 1.

To see this for the univariate case, let us denote Q : C(R) → H to be a quasi-interpolant operator. This a linear operator,
with C(R) denoting the space of continuous functions defined over R and H denoting a univariate spline space. Consider
u ∈ Cm[−1, 1] for some positive integer m, and let g : [−1, 1]→ R be an arbitrary continuous function with ‖ g ‖L∞[−1,1]< ε.
Denote û = u + g to be the “corrupted” version of u, and let n be the number of samples of û used by Q. We then have by
linearity of Q that:

‖ Q(û)− u ‖L∞[−1,1]=‖ Q(u) +Q(g)− u ‖L∞[−1,1]≤ ‖ Q(u)− u ‖L∞[−1,1]︸ ︷︷ ︸
=O(n−m)

+ ‖ Q ‖ ‖ g ‖L∞[−1,1]︸ ︷︷ ︸
≤‖Q‖ε

, (6.13)

with ‖ Q ‖ being the operator norm of Q. One can construct Q with ‖ Q ‖ bounded12 from above by a constant de-
pending only on m. The above argument can be extended easily to the multivariate case. We state this for the bivariate case
for completeness. Denote Q1 : C(R2) → H to be a quasi-interpolant operator, with H denoting a bivariate spline space.
Consider u1 ∈ Cm[−1, 1]2 for some positive integer m, and let g1 : [−1, 1] → R be an arbitrary continuous function with
‖ g1 ‖L∞[−1,1]2< ε. Let û1 = u1 + g1 and let n be the number of samples of û1 used by Q1. We then have by linearity of Q1

that:

‖ Q1(û1)− u1 ‖L∞[−1,1]2=‖ Q1(u1) +Q1(g1)− u1 ‖L∞[−1,1]2≤ ‖ Q1(u1)− u1 ‖L∞[−1,1]2︸ ︷︷ ︸
=O(n−m/2)

+ ‖ Q1 ‖ ‖ g1 ‖L∞[−1,1]2︸ ︷︷ ︸
≤‖Q1‖ε

,

(6.14)
with ‖ Q1 ‖ being the operator norm of Q1. As for the univariate case, one can construct Q1 with ‖ Q1 ‖ bounded12 from

above by a constant depending only on m.
Let us define our final estimates φ̂p, φ̂(l,l′) and φ̂l as in (6.3), (6.7) and (6.12), respectively. The following proposition

formally states the error bounds, for this particular noise model.

Proposition 2 (Arbitrary bounded noise). For C3 smooth components φp, φ(l,l′), φl, let φ̂p, φ̂(l,l′), φ̂l be the respective estimates
as defined in (6.3), (6.7) and (6.12) respectively. Also, let n denote the number of noisy queries (of f) made per component with
the external noise magnitude being bounded by ε. We then have that

1. ‖ φ̂p − φp ‖L∞[−1,1]= O(n−3) +O(ε);∀p ∈ S1,

2. ‖ φ̂(l,l′) − φ(l,l′) ‖L∞[−1,1]2= O(n−3/2) +O(ε);∀(l, l′) ∈ S2, and

3. ‖ φ̂l − φl ‖L∞[−1,1]= O(n−3/2) +O(ε);∀l ∈ Svar
2 : ρ(l) > 1.

The proof is similar to that of Proposition 1 and hence skipped.

Stochastic noise. We now consider the setting where z′i ∼ N (0, σ2) are i.i.d Gaussian random variables. Similar to the
noiseless case, estimating the individual components again involves sampling f along the subspaces corresponding to S1, S2.
Due to the presence of stochastic noise however, we now make use of nonparametric regression techniques to compute the
estimates. While there exist a number of methods that could be used for this purpose (cf. [52]), we only discuss a specific one
for clarity of exposition.

To elaborate, we again construct the sets defined in (6.2),(6.4) and(6.8). In particular, we uniformly discretize the domains
[−1, 1] and [−1, 1]2, by choosing the respective ti’s and (t′i, tj)’s accordingly. This is the so called “fixed design” setting in
nonparametric statistics. Upon collecting the samples {f(xi) + z′i}ni=1 one can then derive estimates φ̃p, φ̃(l,l′), φ̃l, to φp + C,
g(l,l′)+C and gl+C respectively, by using local polynomial estimators (cf. [52, 17] and references within). It is known that these
estimators achieve the (minimax optimal) L∞ error rate: Ω((n−1 log n)

m
2m+d), for estimating d-variate, Cm smooth functions

over compact domains13. Translated to our setting, we then have that the functions: φp +C, g(l,l′) +C and gl +C are estimated
at the rates: O((n−1 log n)

3
7) and O((n−1 log n)

3
8) respectively.

Denoting the above intermediate estimates by φ̃p, φ̃(l,l′), φ̃l, we define our final estimates φ̂p, φ̂(l,l′) and φ̂l as in (6.3), (6.7)
and (6.12), respectively. The following Proposition describes the error rates of these estimates.

12For instance, see Theorems 14.4, 15.2 in [22]
13See [52] for d = 1, and [38] for d ≥ 1

22

Proposition 3 (i.i.d Gaussian noise). For C3 smooth components φp, φ(l,l′), φl, let φ̂p, φ̂(l,l′), φ̂l be the respective estimates as
defined in (6.3), (6.7) and (6.12) respectively. Let n denote the number of noisy queries (of f) made per component, with noise
samples z′1, z

′
2, . . . , z

′
n being i.i.d Gaussian. Furthermore, let Ez[·] denote expectation w.r.t the joint distribution of z′1, z

′
2, . . . , z

′
n.

We then have that

1. Ez[‖ φ̂p − φp ‖L∞[−1,1]] = O((n−1 log n)
3
7);∀p ∈ S1,

2. Ez[‖ φ̂(l,l′) − φ(l,l′) ‖L∞[−1,1]2] = O((n−1 log n)
3
8);∀(l, l′) ∈ S2, and

3. Ez[‖ φ̂l − φl ‖L∞[−1,1]] = O((n−1 log n)
3
8);∀l ∈ Svar

2 : ρ(l) > 1.

7 Simulation results
We now provide some simulation results for our methods on synthetic examples. The main goal of our experiments is to provide
a proof of concept, validating some of the theoretical results that were derived earlier. We consider both non-overlapping (Section
7.1) and overlapping settings (Section 7.2). In our experiments, we use the ALPS algorithm [28] as our CS solver – an efficient
first-order method.

Starting with the non-overlapping case, we present phase transition results and also show the dependence of d on the number
of samples, for recovery of S1, S2. We then empirically demonstrate the dependence of the number of samples on k. In both
cases, our findings support our theory for sample complexities. We conduct similar experiments for the overlapping case, and
also additionally demonstrate empirically the dependence of the number of samples on the parameter ρm.

7.1 Non-overlapping setting
We consider the following experimental setup: S1 = {1, 2} and S2 = {(3, 4), (5, 6)}, which implies k1 = 2, k2 = 2 and k = 6.
Moreover, we consider three different types of f namely:

(i) f1(x) = 2x1 − 3x22 + 4x3x4 − 5x5x6,

(ii) f2(x) = 10 sin(π · x1) + 5e−2x2 + 10 sin(π · x3x4) + 5e−2x5x6 ,

(iii) f3(x) =
10
3
cos(π · x1) + 8x21 + 5(x42 − x22 + 4

5
x4) +

10
3
cos(π · x3x4) + 8(x3x4)

2 + 5((x5x6)
4 − (x5x6)

2 + 4
5
x5x6).

For all cases, we use Algorithms 1 and 2. For f1, the problem parameters are set to λ1 = 0.3, λ2 = 1, D1 = 2, D2 = 3, B3 = 6,
while for f2, f3: λ1 = λ2 = 0.3, D1 = 8, D2 = 4, B3 = 35. Given these constants, we obtain mx = 1, m′x = 4 for f1 and
mx = m′x = 4 for f2, f3. We use constant C̃ (to be defined next) when we set mv := C̃k log (d/k). For the construction of the
hash functions, we set the size to |Hd2| = C ′ log d with C ′ = 1.7, leading to |Hd2| ∈ [8, 12] for 102 ≤ d ≤ 103. For the noiseless
setting, we choose step sizes: µ, µ1, β and thresholds: τ ′, τ as in Lemma 1 and Lemma 2.

For the noisy setting, we consider the function values to be corrupted with i.i.d. Gaussian noise. We reduce the noise
variance by repeating each query N1 and N2 times respectively, and averaging. The noise variance values considered are σ2 ∈{

10−4, 10−3, 10−2
}

for which we choose:

(N1, N2) ∈ {(40, 15), (75, 31), (80, 35)} for f1,

(N1, N2) ∈ {(60, 30), (85, 36), (90, 40)} for f2,

and (N1, N2) ∈ {(59, 30), (85, 35), (90, 40)} for f3.

Moreover, we now choose parameters µ, µ1, β, τ
′, τ as in Theorem 2.

Dependence on d. We see in Fig. 3, that for C̃ ≈ 3.8 the probability of successful identification (noiseless case) undergoes a
phase transition and becomes close to 1, for different values of d. This validates the statements of Lemmas 1-2. Fixing C̃ = 3.8,
we then see that with the total number of queries growing slowly with d, we have successful identification. For the noisy case,
the total number of queries is roughly 102 times that in the noiseless setting, however the scaling with d is similar to that for
noiseless case. Focusing on the function models f2 and f3, observe that the number of queries is seen to be slightly larger than
that for f1 in the noisy settings; this fact becomes more obvious in the overlapping case later on.

Dependence on k. We now demonstrate the scaling of the total number of queries versus the sparsity k for identification of
S1,S2. Consider the model

f(x) =

T∑
i=1

(
α1x(i−1)5+1 − α2x

2
(i−1)5+2 + α3x(i−1)5+3x(i−1)5+4 − α4x(i−1)5+5x(i−1)5+6

)
(7.1)

23

eC2 3 4 5

P
ro

b
a
b
il
it
y

o
f
S 1

;S
2

es
ti
m

a
ti
o
n

0

0.2

0.4

0.6

0.8

1

d = 100
d = 500
d = 1000

eC2 3 4 5

P
ro

b
a
b
il
it
y

o
f
S 1

;S
2

es
ti
m

a
ti
o
n

0

0.2

0.4

0.6

0.8

1

d = 100
d = 500
d = 1000

eC2 3 4 5

P
ro

b
a
b
il
it
y

o
f
S 1

;S
2

es
ti
m

a
ti
o
n

0

0.2

0.4

0.6

0.8

1

d = 100
d = 500
d = 1000

Dimension d
102 103

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

104

105

106

107

Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

Dimension d
102 103

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

104

105

106

107

Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

Dimension d
102 103

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

104

105

106

107

Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

Figure 3: First (resp. second and third) column is for f1 (resp. f2 and f3). Top row depicts the success probability of identifying exactly
S1,S2, in the noiseless case. x-axis represent the constant C̃. The bottom panel depicts total queries vs. d for exact recovery, with C̃ = 3.8
and various noise settings. All results are over 5 independent Monte Carlo trials.

where x ∈ Rd for d = 500. Here, αi ∈ [2, 5],∀i; i.e., we randomly selected αi’s within range and kept the values fixed for all 5
Monte Carlo iterations. Note that sparsity k = 6T ; we consider T ∈ {1, 2, . . . , 10}. We set λ1 = 0.3, λ2 = 1, D1 = 2, D2 = 3,
B3 = 6 and C̃ = 3.8, i.e., the same setting with model f1 above. For the noisy cases, we consider σ2 as before, and choose the
same values for (N1, N2) as for f1. In Figure 4, we see that the number of queries scales as ∼ k log(d/k), and is roughly 102

more in the noisy case as compared to the noiseless setting.

Total sparsity k
10 20 30 40 50 60

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

#106

0

2

4

6

8

10

12
Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

k
20 40 60

Q
u
er

ie
s

#104

4

6

8

10

12

Noiseless

Figure 4: Total number of queries versus different sparsity values k, for (7.1). This is for both noiseless and noisy cases (i.i.d Gaussian) with
variances σ2 ∈

{
10−4, 10−3, 10−2

}
.

7.2 Overlapping setting
For the overlapping case, we set S1 = {1, 2} and S2 = {(3, 4), (4, 5)}, which implies k1 = 2, k2 = 2, ρm = 2 and k = 5. Due
to the presence of overlap between the elements of S2, we now employ Algorithm 3 for identifying S1,S2.

24

Remark 14. We deliberately avoid using Algorithm 4 on account of Remark 12 – it is unclear to us whether IHT based methods
could be employed for solving (5.6), with provable recovery guarantees. While we could instead use standard interior point
solvers, they will be slow, especially for the range of values of dimension d that we will be considering.

For an easier comparison with the non-overlapping case, we consider similar models as the previous subsection; observe that
there are now common variables across the components of f .

(i) f1(x) = 2x1 − 3x22 + 4x3x4 − 5x4x5,

(ii) f2(x) = 10 sin(π · x1) + 5e−2x2 + 10 sin(π · x3x4) + 5e−2x4x5 ,

(iii) f3(x) =
10
3
cos(π · x1) + 8x21 + 5(x42 − x22 + 4

5
x4) +

10
3
cos(π · x3x4) + 8(x3x4)

2 + 5((x4x5)
4 − (x4x5)

2 + 4
5
x4x5).

Parameters λ1, λ2, D1, D2, B3 are set as in the previous subsection. For a constant C̃ (chosen later), we set mv :=

C̃k log (d/k), mv′ := C̃ρm log(d/ρm), and mv′′ := C̃(k − |Ŝvar
2 |) log(|P|

k−|Ŝvar
2 |

). The size of the hash family |Hd2| for dif-

ferent values of d is set as before for the non-overlapping setting. For the noiseless setting, we choose step sizes: µ, µ1, µ
′ and

thresholds: τ ′, τ ′′ as in Theorem 4.
For the noisy setting, we consider the function values to be corrupted with i.i.d. Gaussian noise. We reduce the noise

variance by repeating each query N1 and N2 times respectively, and averaging. The noise variance values considered are:
σ2 ∈

{
10−4, 10−3, 10−2

}
for which we choose:

(N1, N2) ∈ {(50, 20), (85, 36), (90, 40)} for f1,

(N1, N2) ∈ {(60, 30), (90, 40), (95, 43)} for f2,

and (N1, N2) ∈ {(59, 30), (89, 40), (93, 43)} for f3.

Moreover, we now choose the parameters: µ, µ1, µ
′, τ ′, τ ′′ as in Theorem 5.

Dependence on d. We see in Fig. 5, that for C̃ ≈ 5.6 the probability of successful identification (noiseless case) undergoes a
phase transition and becomes close to 1, for different values of d, as in the non-overlapping case. This validates the statement of
Theorem 4. As in the non-overlapping case, in the presence of noise, the total number of queries is roughly 102 times that in the
noiseless setting, however the scaling with d is similar to that for the noiseless setting.

eC3 4 5 6 7

P
ro

b
a
b
il
it
y

o
f
S 1

;S
2

es
ti
m

a
ti
o
n

0

0.2

0.4

0.6

0.8

1

d = 100
d = 500
d = 1000

eC3 4 5 6 7

P
ro

b
a
b
il
it
y

o
f
S 1

;S
2

es
ti
m

a
ti
o
n

0

0.2

0.4

0.6

0.8

1

d = 100
d = 500
d = 1000

eC3.5 4 4.5 5 5.5 6 6.5

P
ro

b
ab

il
it
y

of
su

cc
es

sf
u
l
S 1

;S
2
es

ti
m

at
io

n

0

0.2

0.4

0.6

0.8

1

d = 100
d = 500
d = 1000

Dimension d
102 103

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

105

106

107

108

109

Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

Dimension d
102 103

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

105

106

107

108

109

Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

Dimension d
102 103

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

105

106

107

108

109

Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

Figure 5: First (resp. second and third) column is for f1 (resp. f2 and f3). Top row depicts the success probability of identifying exactly
S1,S2, in the noiseless case. x-axis represent the constant C̃. The bottom panel depicts total queries vs. d for exact recovery, with C̃ = 5.6
and various noise settings. All results are over 5 independent Monte Carlo trials.

25

Dependence on k. We now demonstrate the scaling of the total number of queries versus the sparsity k for identification of
S1,S2. Consider the model

f(x) =

T∑
i=1

(
α1x(i−1)5+1 − α2x

2
(i−1)5+2 + α3x(i−1)5+3x(i−1)5+4 − α4x(i−1)5+4x(i−1)5+5

)
(7.2)

where x ∈ Rd for d = 500. Here, αi ∈ [2, 5],∀i; i.e., we randomly selected αi’s within range and kept the values fixed for all 5
Monte Carlo iterations. Note that ρm = 2 and the sparsity k = 5T ; we consider T ∈ {1, 2, . . . , 10}. We set λ1 = 0.3, λ2 = 1,
D1 = 2, D2 = 3, B3 = 6 and C̃ = 5.6. For the noisy cases, we consider σ2 as before, and choose the same values for (N1, N2)
as for f1. In Figure 6(Left panel), we again see that the number of queries scales as ∼ k log(d/k), and is roughly 102 more in
the noisy case as compared to the noiseless setting.

Total sparsity k
10 20 30 40 50

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

#108

0

1

2

3

4

5

6

7

8
Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

k
10 20 30 40 50

Q
u
er

ie
s

#106

2
3
4
5
6
7

Noiseless

Maximum number of variable occurrences ;m

2 4 6 8 10

T
o
ta

l
n
u
m

b
er

o
f
q
u
er

ie
s

#108

0

2

4

6

8

10

12

14
Noiseless
<2 = 10!4

<2 = 10!3

<2 = 10!2

;m
2 4 6 8 10

Q
u
er

ie
s

#106

4

6

8

10

12

Noiseless

Figure 6: Left panel: Total number of queries versus different sparsity values k, for (7.2). Right panel: Total number of queries versus ρm for
(7.3). This is for both noiseless and noisy cases (i.i.d Gaussian) with variances σ2 ∈

{
10−4, 10−3, 10−2

}
.

Dependence on ρm. We now demonstrate the scaling of the total queries versus the maximum degree ρm for identification of
S1,S2. Consider the model f(x) =

α1x1 − α2x
2
2 +

T∑
i=1

(α3,ix3xi+3) +

5∑
i=1

(α4,ix2+2ix3+2i) . (7.3)

We choose d = 500, C̃ = 6, αi ∈ [2, . . . , 5],∀i (as earlier) and set λ1 = 0.3, λ2 = 1, D1 = 2, D2 = 3, B3 = 6. For T ≥ 2, we
have ρm = T ; we choose T ∈ {2, 3, . . . , 10}. Also note that k = 13 throughout. For the noisy cases, we consider σ2 as before,
and choose (N1, N2) ∈ {(70, 40), (90, 50), (100, 70)}. In Figure 6(Right panel), we see that the number of queries scales as
∼ ρm log(d/ρm), and is roughly 102 more in the noisy case as compared to the noiseless setting.

8 Discussion
We now provide a more detailed discussion with respect to related work, starting with results for learning SPAMs.

Learning SPAMs. Ravikumar et al. [45], Meier et al. [33] proposed methods based on least squares loss regularized with
sparsity and smoothness constraints. While Ravikumar et al. show their method to be sparsistent for second order Sobolev
smooth f , one can obtain a rough estimate of how the number of samples n behaves with respect to k, d. Indeed, from Corollary
1 of Theorem 2 in [45], we see that the probability of incorrect identification of S approximately scales14 as: log d

(logn)2 + k
logn +

log d
√
k

n1/6 . This means that n roughly scales as max{k3(log d)6, ek, e
√

log d}, for a constant probability of error. In contrast, our
O(k2(log d)2) bound (recall Theorem 6) has a clearly better scaling.

Meier et al. [33] derive error rates of O(k(log d/n)2/5) for estimating C2 smooth f in the empirical L2(Pn) norm. They
also show conditions under which their method is guaranteed to recover Ŝ ⊂ S .

Huang et al. [23] proposed a method based on the adaptive group Lasso, and show that it is sparsistent. In contrast to [45],
it is unclear here how exactly n scales with k, d. They also derive L2 error rates for estimating the individual components of the
SPAM.

14Here, we set the term ρ∗n capturing the minimum magnitude of the univariate components (as defined in [45, Theorem 2]) to O(1).

26

Wahl [57] consider the variable selection problem for SPAMs. They propose an estimator that essentially involves looking
at all subsets of {1, . . . , d} of size k, and hence is practically infeasible. They show that for the periodic Sobolev class of
functions (with smoothness parameter α > 1/2), their estimator recovers S w.h.p with O(k

2α+1
2α (log d)4) samples [57, Corollary

3]. Consequently, they are also able to estimate each individual component of the model in the L2(P) norm. We observe that the
dependency of their bound on d is worse than ours by a factor of (log d)2, however the scaling with k is better for all α > 1/2.

Learning generalized SPAMs. Radchenko et al. [42] proposed the VANISH algorithm – a least squares method with sparsity
constraints. Assuming f to be second order Sobolev smooth, they show their method to be sparsistent. They also show a
consistency result for estimating f , similar to [45]. One can obtain a rough estimate of how their sampling bounds scale with
d, |S1|, |S2| for exact identification of S1,S2. Denoting m = |S1| + |S2|, and n to be the number of samples, we see from
Corollary 1 of [42, Theorem 2] that the probability of failure, i.e., incorrect identification of S1,S2, approximately scales15 as√
m

logn + (log d)3

n3/5 . This implies that n roughly scales as max{em, (log d)5} for a constant probability of error. In contrast, as seen
from Theorems 6,10, our bounds are polynomial in m, and have a better scaling with dimension d.

Dalalyan et al. [13] studied a generalization of (1.1) that allows for the presence of a sparse number (m) of s-wise interaction
terms for some additional sparsity parameter s. Specifically, they studied this in the Gaussian white noise model16. Assuming f
to lie in a Sobolev space with smoothness parameters β, L > 0, and some ε ∈ (0, 1)17, they derive a non-asymptotic L2 error rate
(in expectation) of: max{mL s

2β+s ε
4β

2β+s ,msε2 log(d/(sm1/s))}, which is also shown to be minimax optimal. However, they
do not guarantee unique identification of the interaction terms for any value of s. Furthermore, the computational complexity of
their estimator is exponential in d, s,m, although they discuss possible ways to reduce this complexity.

The above model was also recently studied by Yang et al. [61]; they consider a Bayesian estimation of f in the Gaussian
process (GP) setting wherein a GP prior is placed on f , and inference on f is carried out by summarizing the resulting posterior
probability given the data. They derived minimax estimation rates for Hölder smooth f in the L2 norm, along with a method
that nearly achieves the optimal estimation rate (modulo some log factors) in the empirical L2(Pn) norm. However they do
not guarantee unique identification of the interaction terms. Suzuki [50] studied a special case where [d] is pre-divided into m
disjoint subsets, with an additive component18 defined on each subset. Assuming a sparse number of components, they derived
PAC Bayesian bounds for estimation of f in the L2(Pn) norm.

A special case of (1.1) – where φp’s are linear and each φ(l,l′) is of the form xlxl′ – has been studied considerably. Within this
setting, there exist algorithms that recover S1,S2, along with convergence rates for estimating f , in the limit of large n [8, 42, 3].
Kekatos et al. [24] show that exact recovery is possible (w.h.p) via `1 minimization with O((|S1| + |S2|)(log d)4) noiseless
point queries. This is based on the Restricted Isometry Property (RIP) for structured random matrices as developed in [44].
Nazer et al. [37] generalized this to the setting of sparse multilinear systems – albeit in the noiseless setting – and derived non-
asymptotic sampling bounds for identifying the interaction terms, via `1 minimization. Upon translating Theorem 1.1 from their
paper into our setting, with general overlap (so ρm ≥ 1), we obtain a sample complexity19 of O((|S1| + |S2|)2 log(d/(|S1| +
|S2|))) = O(k2ρ2

m log(d/(kρm))). On the other hand, for the case of no overlap, their sample complexity turns out to be
O((|S1| + |S2|) log(d/(|S1| + |S2|))) = O(k log(d/k)) for recovering S1,S2 w.h.p. However finite sample bounds for the
non-linear model (1.1) are not known in general.

We also note that it is common in the statistics literature to impose a heredity constraint on the interactions, wherein an
interaction term is present only if the corresponding main effect terms (i.e. those in S1) are present (cf., [8, 42, 3]). This is
typically done to make the model interpretable, as interaction terms are difficult to interpret compared to main effect terms.

Other low-dimensional function models. We now provide a comparison with existing work related to other low dimensional
models from the literature, starting with the approximation theoretic setting. Devore et al. [15] consider functions depending on
a small subset S of the variables. The functions do not necessarily possess an additive structure, thus the setting is more general
than (1.1). They provide algorithms that recover S exactly w.h.p, with O(ckk log d) noiseless queries of f , for some constant
c > 1. Their methods essentially make use of a (d, k)-hash family: Hdk (cf. Definition 1). for constructing their sampling sets,
and while these methods could be used for identifying S, the sample complexity would be exponential in k.

Schnass et al. [46] consider the same model for f in the noiseless setting, and derive a simple algorithm that recovers S
w.h.p, with O(

C4
1

α4 k(log d)2) noiseless queries. Here, C1 = maxi∈S ‖ ∂if ‖∞ and α = mini∈S ‖ ∂if ‖1 with ‖ · ‖1 denoting
the L1 norm. While the C1 term is a constant depending on the smoothness of f , one can construct examples of f for which
α = c−k, for some constant c > 1. This implies that the sample bounds could be exponential in k for general k variate functions
(as one would expect). This method could be applied to (1.1), to learn the set of active variables. In particular, for the general
overlap case (ρm ≥ 1), their algorithm will identify the support S w.h.p, with O(

C′1
4ρ4m
α4 k(log d)2) noiseless queries where now:

C1 = maxi∈S ‖ ∂if ‖∞≤ C ′1ρm, with C ′1 a constant depending on the smoothness of f . For the general overlap case, we see
that their bounds in the noiseless setting are worse by a ρ3

m factor compared to those for Algorithms 3, 4, however better by a log d
factor compared to Algorithm 3. Moreover, it is not clear how the α term scales with respect to ρm here. For the non-overlap

15Here, we set the term b capturing the minimum magnitude of the univariate and bivariate components (as defined in [42, Section 3.2]) to O(1).
16This is known to be asymptotically equivalent to the nonparametric regression model as the number of samples n→∞.
17ε corresponds to σ2/

√
n in regression, where σ2 denotes variance of noise.

18Thus for m = d, we obtain a Sparse additive model (SPAM).
19This sample complexity implies exact recovery of S1,S2 w.h.p

27

case, the scaling of their sampling bounds with respect to k, d matches ours for the noiseless setting, up to an additional C
4
1

α4 term.
While α does not depend on k now, their sampling bound increases for small values of α or large values of C1. The dependence
of the sampling bound on the parameters C1, α is not necessary in the noiseless setting, as seen from our sampling bounds that
(in the noiseless case) depend on the measure of the region where ∂if (i ∈ S) and/or ∂l∂l′f ((l, l′) ∈ S2) are large.

This model was considered by Comminges et al. [12, 11] in the regression setting. Assuming f to be differentiable, and the
joint density of the covariates to be known, they propose an estimator that identifies the unknown subset S w.h.p, with sample
complexity O(ckk log d). This bound is shown to be tight although the estimator that achieves it is impractical – in the worst
case it looks at all subsets of {1, . . . , d} of size k.

Fornasier et al. [18], Tyagi et al. [53] generalized this model class to functions f of the form f(x) = g(Ax), for unknown
A ∈ Rk×d. They derive algorithms that approximately recover the row-span of A, with sample complexities20 typically poly-
nomial in k, d. Specifically, [18] considers the setting where the rows of A are sparse. They propose a method that essentially
estimates the gradient of f – via `1 minimization – at suitably (typically polynomially in d) many points on the unit sphere
Sd−1. [53] generalized this result to the setting where A is not necessarily sparse, by making use of low rank matrix recovery
techniques.

Estimation of sparse Hessian matrices. There exists related work for estimating sparse Hessian matrices in the optimization
literature. Powell et al. [41] and Coleman et al. [10] consider the setting where the sparsity structure of ∇2f(x) is known,
and aim to estimate ∇2f(x) via gradient differences. Their aim is to minimize the number of gradient evaluations, needed for
this purpose. In particular, Coleman et al. [10] approach the problem from a graph theoretic point of view and provide a graph
coloring interpretation. Bandeira et al. [1] consider derivative free optimization (DFO) problems, wherein they approximate
the underlying objective function f , by a quadratic polynomial interpolation model. Specifically, they build such a model by
assuming ∇2f to be sparse, but do not assume the sparsity pattern to be known. Their approach is to minimize the `1 norm of
the entries of the model Hessian, subject to interpolation conditions. As they do not assume ∇f to be sparse, they arrive at a
sampling bound of O(d(log d)4) [1, Corollary 4.1], for recovering∇f(x),∇2f(x), with high probability. In case∇f were also
sparse, one can verify that their bound changes to O((|S|+ 2|S2|)(log(|S|+ 2|S2|))2(log d)2) = O(kρm(log(kρm))2(log d)2).
They essentially make use of the Restricted Isometry Property (RIP) for structured random matrices as outlined in Theorem 4.4
of [44].

Bounded orthonormal systems. One of the reviewers pointed out another interesting approach that could be used for identify-
ing S1,S2, that we now discuss. Note that this is only a rough sketch and verifying the details is left for future work. Let ψk(x)
be a bounded orthonormal system21 in L2([−1, 1]d), for k = 0, 1, . . . , N , consisting of univariate and bivariate functions. This
could for example be constructed using a subset of the real trigonometric basis functions (see [13, Section 1.2]), with the ψk’s
satisfying the zero (marginal) mean conditions. In our model, there are a total of d univariate and

(
d
2

)
bivariate functions. Say we

take N1 basis functions per coordinate, and N2 basis functions per coordinate-tuple, so that N = dN1 +
(
d
2

)
N2.

Now, f(x) =
∑N
k=0 αkψk(x) + r(x) where r denotes the remainder term. Since f is C3 smooth, we can uniformly

approximate each univariate and bivariate φ with error rates: N−p11 (for some p1 > 0) and N−p22 (for some p2 > 0) respectively.
Using triangle inequality, we then obtain for any x ∈ [−1, 1]d the bound:

|r(x)| . |S1|N−p11 + |S2|N−p22 . (8.1)

So for bounding |r(x)| by a sufficiently small constant, we require N1 ∼ |S1|
1
p1 and N2 ∼ |S2|

1
p1 . By querying f at x1, . . . ,xm

(sampled uniformly at random), we get yl = f(xl) + zl; l = 1, . . . ,m, which in matrix form can be written as y = Aα + e.
Here, el = zl+rl(x) and, α ∈ RN isN1|S1|+N2|S2| sparse. Since the rows of A correspond to a bounded orthonormal system
(BOS), one can recover α via `1 minimization22; using the RIP result for BOS [44, Theorem 4.4], we obtain the bound:

m ≥ C1(|S1|N1 + |S2|N2) log2(|S1|N1 + |S2|N2) log2(dN1 +

(
d

2

)
N2) (8.2)

& (|S1|
1
p1

+1 + |S2|
1
p2

+1) log2(|S1|
1
p1

+1 + |S2|
1
p2

+1) log2(d). (8.3)

Note that the above bound is super-linear in the sparsity: |S1| + |S2| and this would be the case even when the samples are
noiseless. In contrast, our bounds for Algorithms 1-4 are linear in sparsity, for the noiseless and bounded noise case. Also,
observe that α is actually block sparse: it has

(
d
2

)
“blocks”, each of length N2, out of which exactly |S2| blocks are non-zero.

Moreover, there are d blocks, each of length N1, out of which |S1| blocks are non-zero. While we are not aware of a RIP result
for BOS with block sparsity23, we would nevertheless still require m & (|S1|N1 + |S2|N2) ∼ |S1|

1
p1

+1 + |S2|
1
p2

+1, which
is super-linear in sparsity. For the setting of Gaussian noise however, it is possible that the above approach might give a better
scaling with k, ρm compared to our results.

20These were derived predominantly in the noiseless setting, with some discussion in [53] about handling Gaussian noise via resampling and averaging.
21ψ0 ≡ 1, i.e., it is the constant function.
22Consequently, we would be able to identify S1,S2 by thresholding.
23The existing ones seem to be only for matrices with i.i.d sub-Gaussian entries.

28

9 Concluding remarks
In this paper, we considered a generalization of Sparse Additive Models, of the form (1.1), now also allowing for the presence of
a small number of bivariate components. We started with the special case where each variable interacts with at most one other
variable, and then moved on to the general setting where variables can possibly be part of more than interaction term. For each of
these settings, we derived algorithms with sample complexity bounds – both in the noiseless as well as the noisy query settings.
For the general overlap case, the identification of the interaction set S2 essentially involved the estimation of the d × d Hessian
of f at carefully chosen points. In fact, these points were simply part of a collection of canonical two dimensional uniform grids,
within [−1, 1]d. Upon identifying S2, the estimation of S1 was subsequently performed by employing the sampling scheme of
Tyagi et al. [54] on the reduced set of variables. Furthermore, once S1,S2 are identified, we showed how one can recover uniform
approximations to the individual components of the model, by additionally querying f along the one/two dimensional subspaces
corresponding to S1,S2.

For the setting of noiseless queries, we observed that the sample complexity of Algorithm 4 is close to optimal. However for
the noisy setting – in particular the setting of Gaussian noise – we saw that the sample complexity of Algorithm 4 has a worse
dependency in terms of k, ρm compared to Algorithm 3. In general, the sample complexity bounds of our algorithms, in the
presence of Gaussian noise, have a sub optimal dependence on k, ρm. This is mainly due to the localized nature of our sampling
schemes – the external noise gets scaled by the step size parameter leading to the noise variance scaling up. Hence the number of
samples required to reduce the noise variance (by resampling and averaging) increases, leading to an increase in the total sample
complexity. An interesting direction for future work would be to consider alternate – possibly non localized sampling schemes –
with improved non-asymptotic sampling bounds for identifying S1,S2 in the setting of Gaussian noise.

Another limitation of our analysis is that it is restricted to C3 smooth functions. It would be interesting to extend the results
to more general Cr smooth functions r ≥ 1 and also to other smoothness classes such as Hölder/Lipschitz continuous functions.
Lastly, we only consider pairwise interactions between the variables; a natural generalization would be to consider a model that
can include components which are at most m-variate. The goal would then be to query f , in order to identify all interaction
terms.

Acknowledgments. This research was supported in part by SNSF grant CRSII2 147633 and by The Alan Turing Institute
under the EPSRC grant EP/N510129/1. This work was mostly done while H.T was affiliated to the Department of Computer
Science, ETH Zürich. H.T would like to thank: Yuxin Chen for helpful discussions related to the recovery of sparse symmetric
matrices in Section 5.1; Jan Vybiral for helpful discussions related to bounded orthonormal systems in Section 8. The authors
would like to thank the anonymous reviewers for helpful comments and suggestions that greatly helped to improve a preliminary
version of the manuscript.

References
[1] A.S. Bandeira, K. Scheinberg, and L.N. Vicente. Computation of sparse low degree interpolating polynomials and their

application to derivative-free optimization. Mathematical Programming, 134(1):223–257, 2012.

[2] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random
matrices. Constructive Approximation, 28(3):253–263, 2008.

[3] J. Bien, J. Taylor, and R. Tibshirani. A Lasso for hierarchical interactions. Ann. Statist., 41(3):1111–1141, 2013.

[4] T. Blumensath and M.E. Davies. Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic
Analysis, 27(3):265 – 274, 2009.

[5] T. Blumensath and M.E. Davies. Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE
Journal of Selected Topics in Signal Processing, 4(2):298–309, 2010.

[6] E.J. Candès, J.K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Communi-
cations on Pure and Applied Mathematics, 59(8):1207–1223, 2006.

[7] Y. Chen, Y. Chi, and A.J. Goldsmith. Exact and stable covariance estimation from quadratic sampling via convex program-
ming. IEEE Transactions on Information Theory, 61(7):4034–4059, 2015.

[8] N.H. Choi, W. Li, and J. Zhu. Variable selection with the strong heredity constraint and its oracle property. Journal of the
American Statistical Association, 105(489):354–364, 2010.

[9] A. Cohen, I. Daubechies, R.A. DeVore, G. Kerkyacharian, and D. Picard. Capturing ridge functions in high dimensions
from point queries. Constr. Approx., pages 1–19, 2011.

[10] T.F. Coleman and J.J. Moré. Estimation of sparse Hessian matrices and graph coloring problems. Mathematical Program-
ming, 28(3):243–270, 1984.

29

[11] L. Comminges and A.S. Dalalyan. Tight conditions for consistency of variable selection in the context of high dimension-
ality. Ann. Statist., 40(5):2667–2696, 2012.

[12] L. Comminges and A.S. Dalalyan. Tight conditions for consistent variable selection in high dimensional nonparametric
regression. J. Mach. Learn. Res., 19:187–206, 2012.

[13] A. Dalalyan, Y. Ingster, and A.B. Tsybakov. Statistical inference in compound functional models. Probability Theory and
Related Fields, 158(3-4):513–532, 2014.

[14] C. de Boor. A practical guide to splines. Springer Verlag (New York), 1978.

[15] R. DeVore, G. Petrova, and P. Wojtaszczyk. Approximation of functions of few variables in high dimensions. Constr.
Approx., 33:125–143, 2011.

[16] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[17] J. Fan and I. Gijbels. Local polynomial modeling and its applications. Chapman & Hall, London, New York, 1996.

[18] M. Fornasier, K. Schnass, and J. Vybı́ral. Learning functions of few arbitrary linear parameters in high dimensions. Foun-
dations of Computational Mathematics, 12(2):229–262, 2012.

[19] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Birkhäuser/Springer (New York), 2013.

[20] M. Fredman and J. Komlos. On the size of separating systems and families of perfect hash functions. SIAM J. Algebr.
Discrete Methods, 5:61–68, 1984.

[21] C. Gu. Smoothing Spline ANOVA Models. Springer (New York), 2002.

[22] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression. Springer, New
York, 2002.

[23] J. Huang, J.L. Horowitz, and F. Wei. Variable selection in nonparametric additive models. Ann. Statist., 38(4):2282–2313,
2010.

[24] V. Kekatos and G.B. Giannakis. Sparse volterra and polynomial regression models: Recoverability and estimation. Trans.
Sig. Proc., 59(12):5907–5920, 2011.

[25] V. Koltchinskii and M. Yuan. Sparse recovery in large ensembles of kernel machines. In 21st Annual Conference on
Learning Theory (COLT), pages 229–238, 2008.

[26] V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Ann. Statist., 38(6):3660–3695, 2010.

[27] J. Korner and K. Martin. New bounds for perfect hashing via information theory. Eur. J. Combin., 9:523–530, 1988.

[28] A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In 4th IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 353–356, 2011.

[29] A. Kyrillidis and V. Cevher. Combinatorial selection and least absolute shrinkage via the CLASH algorithm. In IEEE
International Symposium on Information Theory (ISIT), pages 2216–2220, 2012.

[30] A. Kyrillidis, G. Puy, and V. Cevher. Hard thresholding with norm constraints. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3645–3648, 2012.

[31] Y. Lin and H.H. Zhang. Component selection and smoothing in multivariate nonparametric regression. Ann. Statist.,
34(5):2272–2297, 2006.

[32] M.H. Maathuis, M. Kalisch, and P. Bühlmann. Estimating high-dimensional intervention effects from observational data.
Ann. Statist., 37(6A):3133–3164, 2009.

[33] L. Meier, S. Van De Geer, and P. Bühlmann. High-dimensional additive modeling. Ann. Statist., 37(6B):3779–3821, 2009.

[34] E. Mossel, R. O’Donnell, and R. Servedio. Learning juntas. In 35th Annual ACM Symposium on Theory of Computing
(STOC), pages 206–212, 2003.

[35] Th. Muller-Gronbach and K. Ritter. Minimal errors for strong and weak approximation of stochastic differential equations.
Monte Carlo and Quasi-Monte Carlo Methods, pages 53–82, 2008.

[36] M. Naor, L.J. Schulman, and A. Srinivasan. Splitters and near-optimal derandomization. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, 1995., pages 182–191, 1995.

30

[37] B. Nazer and R.D. Nowak. Sparse interactions: Identifying high-dimensional multilinear systems via compressed sensing.
In 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1589–1596, 2010.

[38] A. Nemirovski. Topics in non-parametric statistics. In Ecole d‘Et‘e de Probabilitès de Saint-Flour XVIII, 1998, 85-277,
Springer, New York, 2000.

[39] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and
Applied Mathematics, Philadelphia, 1994.

[40] A. Nilli. Perfect hashing and probability. Combinatorics, Probability and Computing, 3:407–409, 1994.

[41] M.J.D. Powell and Ph. L. Toint. On the estimation of sparse Hessian matrices. SIAM Journal on Numerical Analysis,
16(6):pp. 1060–1074, 1979.

[42] P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction structures in high dimensions. J.
Amer. Statist. Assoc., 105:1541–1553, 2010.

[43] G. Raskutti, M.J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models over kernel classes via convex
programming. J. Mach. Learn. Res., 13(1):389–427, 2012.

[44] H. Rauhut. Compressive sensing and structured random matrices. Theoretical foundations and numerical methods for
sparse recovery, 9:1–92, 2010.

[45] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 71(5):1009–1030, 2009.

[46] K. Schnass and J. Vybiral. Compressed learning of high-dimensional sparse functions. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 3924–3927, 2011.

[47] V.I Smirnov. A course of higher mathematics. Addison-Wesley, Reading, MA, 1964.

[48] J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans-
actions on Automatic Control, 37(3):332–341, 1992.

[49] C. B. Storlie, H. D. Bondell, B. J. Reich, and H. H. Zhang. Surface estimation, variable selection, and the nonparametric
oracle property. Statistica Sinica, 21(2):679–705, 2011.

[50] T. Suzuki. PAC-Bayesian bound for Gaussian process regression and multiple kernel additive model. In 25th Annual
Conference on Learning Theory (COLT), pages 8.1–8.20, 2012.

[51] J.F. Traub, G.W. Wasilkowski, and H. Wozniakowski. Information-Based Complexity. Academic Press, New York, 1988.

[52] A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2008.

[53] H. Tyagi and V. Cevher. Active learning of multi-index function models. In Advances in Neural Information Processing
Systems (NIPS) 25, pages 1475–1483. 2012.

[54] H. Tyagi, A. Krause, and B. Gärtner. Efficient sampling for learning sparse additive models in high dimensions. In Advances
in Neural Information Processing Systems (NIPS) 27, pages 514–522. 2014.

[55] H. Tyagi, A. Kyrillidis, B. Gärtner, and A. Krause. Learning sparse additive models with interactions in high dimensions.
In 19th International Conference on Artificial Intelligence and Statistics (AISTATS), pages 111–120, 2016.

[56] G. Wahba. An introduction to (smoothing spline) ANOVA models in RKHS, with examples in geographical data, medicine,
atmospheric science and machine learning. 13th IFAC Symposium on System Identification, Rotterdam, pages 549–559,
2003.

[57] M. Wahl. Variable selection in high-dimensional additive models based on norms of projections. ArXiv e-prints,
arXiv:1406.0052, 2015, 2015.

[58] M.J. Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. IEEE Trans.
Inform. Theory, 55(12):5728–5741, 2009.

[59] M.J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic pro-
gramming (lasso). IEEE Trans. Inf. Theor., 55(5):2183–2202, May 2009.

[60] P. Wojtaszczyk. `1 minimization with noisy data. SIAM J. Numer. Anal., 50(2):458–467, 2012.

[61] Y. Yang and S.T. Tokdar. Minimax-optimal nonparametric regression in high dimensions. Ann. Statist., 43(2):652–674,
2015.

31

A Model uniqueness
We show here that the model representation (2.4) is a unique representation for f of the form (2.1). We first note that any
measurable f : [−1, 1]d → R admits a unique ANOVA decomposition [21, 56] of the form:

f(x1, . . . , xd) = c+
∑
α

fα(xα) +
∑
α<β

fαβ +
∑

α<β<γ

fαβγ + · · · (A.1)

Indeed, for any probability measure µα on [−1, 1], let Eα denote the averaging operator, defined as

Eα(f)(x) :=

∫
[−1,1]

f(x1, . . . , xd)dµα. (A.2)

Then the components of the model can be written as: c = (
∏
α Eα)f , fα = (I − Eα)

∏
β 6=α Eβf , fαβ = ((I − Eα)(I −

Eβ)
∏
γ 6=α,β Eγ)f , and so on. For our purpose, µα is taken to be the uniform probability measure on [−1, 1]. Given this, we now

find the ANOVA decomposition of f defined in (2.1). As a sanity check, let us verify that fαβγ ≡ 0 for all α < β < γ. Indeed
if p ∈ S1, then at least two of α < β < γ will not be equal to p. Similarly for any (l, l′) ∈ S2, at least one of α, β, γ will not
be equal to l and l′. This implies fαβγ ≡ 0. The same reasoning trivially applies for high order components of the ANOVA
decomposition.

That c = E[f] =
∑
p∈S1 Ep[φp] +

∑
(l,l′)∈S2 E(l,l′)[φ(l,l′)] is readily seen. Next, we have that

(I − Eα)
∏
β 6=α

Eβφp =

{
0 ; α 6= p,

φp − Ep[φp] ; α = p

}
; p ∈ S1. (A.3)

(I − Eα)
∏
β 6=α

Eβφ(l,l′) =

 El′ [φ(l,l′)]− E(l,l′)[φ(l,l′)] ; α = l,
El[φ(l,l′)]− E(l,l′)[φ(l,l′)] ; α = l′,

0 ; α 6= l, l′,

 ; (l, l′) ∈ S2. (A.4)

(A.3), (A.4) give us the first order components of φp, φ(l,l′) respectively. One can next verify using the same arguments as earlier
that for any α < β:

(I − Eα)(I − Eβ)
∏
γ 6=α,β

Eγφp = 0; ∀p ∈ S1. (A.5)

Lastly, we have for any α < β that the corresponding second order component of φ(l,l′) is given by:

(I − Eα)(I − Eβ)
∏
γ 6=α,β

Eγφ(l,l′) =

 φ(l,l′) − El[φ(l,l′)]
−El′ [φ(l,l′)] + E(l,l′)[φ(l,l′)] ; α = l, β = l′,

0 ; otherwise

 ; (l, l′) ∈ S2. (A.6)

We now make the following observations regarding the variables in S1 ∩ Svar
2 .

1. For each l ∈ S1 ∩ Svar
2 such that: ρ(l) = 1, and (l, l′) ∈ S2, we can simply merge φl with φ(l,l′). Thus l is no longer in S1.

2. For each l ∈ S1 ∩Svar
2 such that: ρ(l) > 1, we can add the first order component for φl with the total first order component

corresponding to all φ(l,l′)’s and φ(l′,l)’s. Hence again, l will no longer be in S1.

Therefore all q ∈ S1 ∩ Svar
2 can essentially be merged with S2. Keeping this re-arrangement in mind, we can to begin with,

assume in (2.1) that S1 ∩ Svar
2 = ∅. Then with the help of (A.3), (A.4), (A.5), (A.6), we have that any f of the form (2.1) (with

S1 ∩ Svar
2 = ∅), can be uniquely written as:

f(x1, . . . , xd) = c+
∑
p∈S1

φ̃p(xp) +
∑

(l,l′)∈S2

φ̃(l,l′)(xl, xl′) +
∑

q∈Svar
2 :ρ(q)>1

φ̃q(xq); S1 ∩ Svar
2 = ∅, (A.7)

where

c =
∑
p∈S1

Ep[φp] +
∑

(l,l′)∈S2

E(l,l′)[φ(l,l′)], (A.8)

φ̃p = φp − Ep[φp]; ∀p ∈ S1, (A.9)

φ̃(l,l′) =

φ(l,l′) − E(l,l′)[φ(l,l′)]; ρ(l), ρ(l′) = 1,

φ(l,l′) − El[φ(l,l′)]; ρ(l) = 1, ρ(l′) > 1,
φ(l,l′) − El′ [φ(l,l′)]; ρ(l) > 1, ρ(l′) = 1,

φ(l,l′) − El[φ(l,l′)]− El′ [φ(l,l′)] + E(l,l′)[φ(l,l′)]; ρ(l) > 1, ρ(l′) > 1,

(A.10)

and φ̃q =
∑

q′:(q,q′)∈S2

(Eq′ [φ(q,q′)]− Eq,q′ [φ(q,q′)])

+
∑

q′:(q′,q)∈S2

(Eq′ [φ(q′,q)]− Eq′,q[φ(q′,q)]); ∀q ∈ Svar
2 : ρ(q) > 1. (A.11)

32

B Real roots of a cubic equation in trigonometric form
Before proceeding with the proofs, we briefly recall the conditions under which a cubic equation possesses real roots, along with
expressions for the same. The material in this section is taken from [47, Chapter 18 (Secs. 191,192)]. To begin with, given any
cubic equation:

y3 + a1y
2 + a2y + a3 = 0, (B.1)

one can make the substitution x = y − (a1/3) to change (B.1) to the form:

x3 + px+ q = 0 where p = a2 −
a2

1

3
and q =

2a3
1

27
− a1a2

3
+ a3. (B.2)

If p, q are real (which is the case if a1, a2, a3 are real), then (B.2) has three real and distinct roots if its discriminant: (q2/4)+
(p3/27) < 0. Denoting

r =

√
−p

3

27
, cosφ = − q

2r
, (B.3)

we then have that the real roots of (B.2) are given by

x = 2 3
√
r cos

φ+ 2jπ

3
= 2

√
−p

3
cos

φ+ 2jπ

3
; j = 0, 1, 2. (B.4)

Consequently, the roots of (B.1) are then given by:

y = 2

√
−p

3
cos

φ+ 2jπ

3
− a1

3
; j = 0, 1, 2. (B.5)

C Proofs for Section 3

C.1 Proof of Lemma 1
Recall that for x ∈ χ, we recover a stable approximation ∇̂f(x) to ∇f(x) via `1 minimization [6, 16]:

∇̂f(x) = 4(y) := argmin
y=Vz

‖ z ‖1 . (C.1)

Applying Theorem 1 to our setting yields the following Corollary.

Corollary 1. There exist constants c′3 ≥ 1 and C, c′1 > 0 such that for mv satisfying c′3k log(d/k) < mv < d/(log 6)2 we have
with probability at least 1− e−c′1mv − e−

√
mvd that ∇̂f(x) satisfies for all x ∈ χ:

‖ ∇̂f(x)−∇f(x) ‖2≤
2Cµ2B3k

3mv
, (C.2)

where B3 > 0 is the constant defined in Assumption 2.

Proof. Since∇f(x) is at most k-sparse for any x ∈ Rd we immediately have from (3.10) that

‖ ∇̂f(x)−∇f(x) ‖2≤ C max
{
‖ n ‖2,

√
log d ‖ n ‖∞

}
; ∀x ∈ χ. (C.3)

It remains to bound ‖ n ‖2, ‖ n ‖∞. To this end, recall that n = [n1 . . . nmv] where nj =
R3(ζj)−R3(ζ′j)

2µ , for some ζj , ζ ′j ∈ Rd.
Here R3(ζ) denotes the third order Taylor remainder term. By taking the structure of f into account, we can uniformly bound
|R3(ζj)| as follows (so the same bound holds for |R3(ζ ′j)|).

|R3(ζj)| =
µ3

6
|
∑
p∈S1

∂3
pφp(ζj,p)v

3
p +

∑
(l,l′)∈S2

(∂3
l φ(l,l′)(ζj,l, ζj,l′)v

3
l + ∂3

l′φ(l,l′)(ζj,l, ζj,l′)v
3
l′) (C.4)

+
∑

(l,l′)∈S2

(3∂l∂
2
l′φ(l,l′)(ζj,l, ζj,l′)vlv

2
l′ + 3∂2

l ∂l′φ(l,l′)(ζj,l, ζj,l′)v
2
l vl′)|,

≤ µ3

6

[(
1√
mv

)3

k1B3 +

(
1√
mv

)3

k2(2B3) +

(
1√
mv

)3

k2(6B3)

]
, (C.5)

=
µ3B3(k1 + 8k2)

6m
3/2
v

. (C.6)

33

Using the fact that k1 + 8k2 ≤ 4(k1 + 2k2) = 4k, we consequently obtain

‖ n ‖∞ = max
j
|nj | ≤

µ2B3(k1 + 8k2)

6m
3/2
v

≤ 2µ2B3k

3m
3/2
v

, (C.7)

and ‖ n ‖2 ≤
√
mv ‖ n ‖∞≤

2µ2B3k

3mv
. (C.8)

Using (C.7),(C.8) in (C.3), we finally obtain for the stated choice of mv (cf. Remark 4), the bound in (C.2).

Let us denote τ = 2Cµ2B3k
3mv

. In order to prove the lemma, we first observe that (C.2) trivially implies that

∂̂qf(x) ∈ [∂qf(x)− τ, ∂qf(x) + τ]; q = 1, . . . , d. (C.9)

Now, in case q /∈ S1∪Svar
2 , then ∂qf(x) = 0 ∀x ∈ Rd, meaning that ∂̂qf(x) ∈ [−τ, τ]. Ifmx ≥ λ−1

1 then for every q ∈ S1∪Svar
2 ,

∃h ∈ Hd2 and at least one x ∈ χ(h), so that |∂qf(x)| > D1. Indeed, this follows from the definition of Hd2 , and by construction
of χ(h) for h ∈ Hd2 . Furthermore, for such x, we have from (C.9) that |∂̂qf(x)| ≥ D1 − τ . Therefore if τ < D1

2 holds, then
clearly we would have |∂̂qf(x)| > D1

2 > τ , meaning that we will be able to identify q.
Lastly, we observe that the condition τ < D1

2 translates to an equivalent condition on the step size µ as follows.

τ <
D1

2
⇔ 2Cµ2B3k

3mv
<
D1

2
⇔ µ <

(
3D1mv

4CB3k

)1/2

(C.10)

C.2 Proof of Lemma 2
We proceed by first bounding the error term that arises in the estimation of ∂ig(x). As g is C3 smooth, consider the Taylor’s
expansion of g at x, along e1(i),−e1(i) ∈ Rk, with step size β > 0. For some ζ = x + θe1(i), ζ ′ = x − θ′e1(i) with
θ, θ′ ∈ (0, β), we obtain the identities:

g(x + βe1(i)) = g(x) + β〈e1(i),∇g(x)〉+
β2

2
e1(i)T∇2g(x)e1(i) +R3(ζ), (C.11)

g(x− βe1(i)) = g(x)− β〈e1(i),∇g(x)〉+
β2

2
e1(i)T∇2g(x)e1(i) +R3(ζ ′), (C.12)

with R3(ζ), R3(ζ ′) = O(β3) being the third order remainder terms. Subtracting the above leads to the following identity.

g(x + βe1(i))− g(x− βe1(i))

2β︸ ︷︷ ︸
∂̂ig(x)

= 〈e1(i),∇g(x)〉︸ ︷︷ ︸
∂ig(x)

+
R3(ζ)−R3(ζ ′)

2β︸ ︷︷ ︸
ηi(x,β)=O(β2)

(C.13)

We now uniformly bound |R3(ζ)|, so the same bound holds for |R3(ζ ′)|. Due to the structure of g, we have that

|R3(ζ)| = β3

6
|
∑
p∈S1

∂3
pφp(ζp)(e1(i))3

p +
∑

(l,l′)∈S2

(∂3
l φ(l,l′)(ζl, ζl′)(e1(i))3

l + ∂3
l′φ(l,l′)(ζl, ζl′)(e1(i))3

l′) (C.14)

+
∑

(l,l′)∈S2

(3∂2
l ∂l′φ(l,l′)(ζl, ζl′)(e1(i))2

l (e1(i))l′ + 3∂2
l′∂lφ(l,l′)(ζl, ζl′)(e1(i))2

l′(e1(i))l)| (C.15)

=

β3

6 |∂3
i φi(ζi)|; i ∈ S1,

β3

6 |∂3
i φi,j(ζi, ζj)|; i ∈ Svar

2 , (i, j) ∈ S2,
β3

6 |∂3
i φj,i(ζj , ζi)|; i ∈ Svar

2 , (j, i) ∈ S2

(C.16)

≤ β3B3

6
. (C.17)

The above consequently implies that |ηi(x, β)| ≤ β2B3

6 . This in turn means, for any v ∈ Rk, µ1 > 0, that

|ηi(x + µ1v, β)− ηi(x, β)

µ1
| ≤ β2B3

3µ1
. (C.18)

Thus we have a uniform bound on the magnitude of one of the contributors of the error term in (3.18). We can bound the
magnitude of the other term as follows. For v ∈ Rk and ζ = x + θv; θ ∈ (0, µ1), we have

vT∇2∂ig(ζ)v =

{
v2
i ∂

3
i φi(ζi); i ∈ S1,

v2
i ∂

3
i φi,i′(ζi, ζi′) + v2

i′∂
2
i′∂iφi,i′(ζi, ζi′) + 2vivi′∂i′∂

2
i φi,i′(ζi, ζi′); i ∈ Svar

2 , (i, i′) ∈ S2
(C.19)

34

Since in our scheme we employ only v ∈ {0, 1}k, this leads to the following uniform bound.

|µ1

2
vT∇2∂ig(ζ)v| ≤ 4B3

µ1

2
= 2µ1B3; ∀i ∈ S1 ∪ Svar

2 . (C.20)

Denoting by τ ′, the upper bound on the magnitude of the error term in (3.18), we thus obtain:

τ ′ = 2µ1B3 +
β2B3

3µ1
. (C.21)

Now in case i ∈ S1, we have 〈∇∂ig(x),v0(i)〉 = 0, ∀x ∈ Rk. This in turn implies that

| ∂̂ig(x + µ1v0(i))− ∂̂ig(x)

µ1
| ≤ τ ′; ∀x ∈ Rk. (C.22)

If i ∈ Svar
2 with (i, i′) ∈ S2, then

〈∇∂ig(x),v0(i)〉 = ∂i∂i′g(x) = ∂i∂i′φ(i,i′)(xi, xi′). (C.23)

For the choice m′x > λ−1
2 , ∃x∗ ∈ χi such that |∂i∂i′φ(i,i′)(x

∗
i , x
∗
i′)| > D2. This is clear from the construction of χi, and on

account of Assumption 3. If we guarantee that τ ′ < D2/2 holds, then consequently

| ∂̂ig(x∗ + µ1v0(i))− ∂̂ig(x∗)

µ1
| > D2 − τ ′ > τ ′ (C.24)

meaning that the pair (i, i′) can be identified. Lastly, it is easily verifiable, that the requirement τ ′ < D2/2, equivalently translates
to the stated conditions on β, µ.

C.3 Proof of Theorem 2
We begin by first establishing the conditions that guarantee Ŝ = S, and then derive conditions that guarantee exact recovery of
S1,S2.

Estimation of S. We first note that (3.6) now changes to y = V∇f(x) + n + z where zj = (z′j,1 − z′j,2)/(2µ) represents the
external noise component, for j = 1, . . . ,mv . Since ‖ z ‖∞≤ ε/µ, therefore using the bounds on ‖ n ‖∞ from Section C.1 one
can verify that (C.2) in Corollary 1 changes to

‖ ∇̂f(x)−∇f(x) ‖2≤ C
(

2µ2B3k

3mv
+
ε
√
mv

µ

)
. (C.25)

Following the same arguments mentioned in Section C.1, we observe that if τ < D1/2 holds, then it implies that Ŝ = S.
Now, τ < D1/2 is equivalent to

2µ2B3k

3mv︸ ︷︷ ︸
aµ2

+
ε
√
mv

µ︸ ︷︷ ︸
bε
µ

<
D1

2C
⇔ µ3 − D1

2aC
µ+

bε

a
< 0. (C.26)

(C.26) is a cubic inequality. Recall from Section B that a cubic equation of the form: y3 + py + q = 0, has 3 distinct real
roots if its discriminant p

3

27 + q2

4 < 0. Note that for this to be possible, p must be negative, which is the case in (C.26). Applying
the discriminant condition on (C.26) leads to

− D3
1

27 · 8a3C3
+

b2

4a2
ε2 < 0 ⇔ ε <

D
3/2
1

3bC
√

6aC
. (C.27)

Also, recall from (B.4) that the 3 distinct real roots of the cubic equation are then given by:

y1 = 2
√
−p/3 cos(θ/3), y2 = −2

√
−p/3 cos(θ/3 + π/3), y3 = −2

√
−p/3 cos(θ/3− π/3) (C.28)

where θ = cos−1

(
−q/2√
−p3/27

)
. In particular, if q > 0, then one can verify that y3 + py + q < 0 holds if y ∈ (y2, y1). Applying

this to the cubic equation corresponding to (C.26), we consequently obtain:

µ ∈
(

2

√
D1

6aC
cos(θ1/3− 2π/3), 2

√
D1

6aC
cos(θ1/3)

)
. (C.29)

where θ1 = cos−1(−ε/ε1).

35

Estimation of S1,S2. On account of noise, we first note that (C.13) changes to

g(x + βe1(i))− g(x− βe1(i))

2β︸ ︷︷ ︸
∂̂ig(x)

= 〈e1(i),∇g(x)〉︸ ︷︷ ︸
∂ig(x)

+
R3(ζ)−R3(ζ ′)

2β︸ ︷︷ ︸
ηi(x,β)=O(β2)

+
z′i,1 − z′i,2

2β︸ ︷︷ ︸
zi(x,β)

. (C.30)

This in turn results in (3.18) changing to

∂̂ig(x + µ1v)− ∂̂ig(x)

µ1
= 〈∇∂ig(x),v〉+

µ1

2
vT∇2∂ig(ζi)v +

ηi(x + µ1v, β)− ηi(x, β)

µ1
+
zi(x + µ1v, β)− zi(x, β)

µ1︸ ︷︷ ︸
Error term

.

(C.31)
Using (C.18), (C.20) and noting that |(zi(x + µ1v, β)− zi(x, β))/µ1| ≤ 2ε/(βµ1), then by denoting τ ′ to be an upper

bound on the magnitude of the error term in (C.31), we have that τ ′ = 2µ1B3 + β2B3

3µ1
+ 2ε

βµ1
. Following the same argument as

in Section C.2, we have that τ ′ < D2/2 implies Ŝ1 = S1 and Ŝ2 = S2. The condition τ ′ < D2/2 is equivalent to

2µ1B3 +
β2B3

3µ1
+

2ε

βµ1
<
D2

2
(C.32)

⇔ 6B3βµ
2
1 −

3D2

2
βµ1 + (β3B3 + 6ε) < 0. (C.33)

Solving (C.33) in terms of µ1 leads to

µ1 ∈

 3D2

2 β −
√

9D2
2

4 β2 − 24βB3(β3B3 + 6ε)

12B3β
,

3D2

2 β +

√
9D2

2

4 β2 − 24βB3(β3B3 + 6ε)

12B3β

 (C.34)

⇔ µ1 ∈

D2 −
√
D2

2 − 32
3βB3(β3B3 + 6ε)

8B3
,
D2 +

√
D2

2 − 32
3βB3(β3B3 + 6ε)

8B3

 (C.35)

Now in order for the above condition on µ1 to be meaningful, we require

D2
2 −

32

3β
B3(β3B3 + 6ε) > 0 ⇔ β3 − 3D2

2

32B2
3

β +
6ε

B3
< 0. (C.36)

Since (C.36) is a cubic inequality, therefore by following the steps described earlier (for identification of S), one readily
obtains the stated conditions on µ1, ε and β.

C.4 Proof of Theorem 3
We first derive conditions for estimating S, and then for estimating S1,S2.

Estimating S . Upon resampling N1 times and averaging, we have for the noise vector z ∈ Rmv that

z =

[
(z′1,1 − z′1,2)

2µ
· · · (z

′
mv,1 − z′mv,2)

2µ

]
, (C.37)

where z′j,1, z
′
j,2 ∼ N (0, σ2/N1) are i.i.d. Our aim is to guarantee that |z′j,1 − z′j,2| < 2ε holds ∀j = 1, . . . ,mv , and across all

points where ∇f is estimated. Indeed, we then obtain a bounded noise model and can simply use the analysis for the setting of
arbitrary bounded noise.

To this end, note that z′j,1 − z′j,2 ∼ N (0, 2σ2

N1
). It can be shown that for any X ∼ N (0, 1) we have:

P(|X| > t) ≤ 2e−t
2/2, ∀t > 0. (C.38)

Since z′j,1 − z′j,2 = σ
√

2
N1
X therefore for any ε > 0 we have that:

P(|z′j,1 − z′j,2| > 2ε) = P

(
|X| > 2ε

σ

√
N1

2

)
(C.39)

≤ 2 exp

(
−ε

2N1

σ2

)
. (C.40)

36

Now to estimate ∇f(x) we have mv many “difference” terms: z′j,1 − z′j,2. As this is done for each x ∈ χ, therefore we have
a total of mv(2mx + 1)2|Hd2| many difference terms. Taking a union bound over all of them, we have for any p1 ∈ (0, 1) that
the choice N1 >

σ2

ε2 log(2
p1
mv(2mx + 1)2|Hd2|) implies that the magnitudes of all difference terms are bounded by 2ε, with

probability at least 1− p1.

Estimating S1,S2. In this case, we resample each query N2 times and average – therefore the variance of the noise terms
gets scaled by N2. Note that for each i ∈ S and x ∈ χi, we have two difference terms corresponding to external noise – one
corresponding to ∂̂ig(x) and the other corresponding to ∂̂ig(x+µ1v). This means that in total we have at most k(2m′x

2
+dlog ke)

many difference terms arising.
Therefore, taking a union bound over all of them, we have for any p2 ∈ (0, 1) that the choice N2 >

σ2

ε′2
log(

2k(2m′x
2+dlog ke)
p2

)

implies that the magnitudes of all difference terms are bounded by 2ε′, with probability at least 1− p2.

D Proofs for Section 4

D.1 Proof of Theorem 4
The proof is divided into the following steps.

Bounding the ηq,2 term. The proof of this step is similar to that of Corollary 1. Since∇f(x) is at most k sparse, therefore for
any x ∈ Rd we immediately have from Theorem 1, (3.10), the following. ∃C1, c

′
4 > 0, c′1 ≥ 1 such that for c′1k log(dk) < mv <

d
(log 6)2 we have with probability at least 1− e−c′4mv − e−

√
mvd that

‖ ∇̂f(x)−∇f(x) ‖2≤ C1 max
{
‖ n ‖2,

√
log d ‖ n ‖∞

}
. (D.1)

Recall from (3.5) that n = [n1 . . . nmv] where nj =
R3(ζj)−R3(ζ′j)

2µ , for some ζj , ζ ′j ∈ Rd. Here R3(ζ) denotes the third order
Taylor remainder terms of f . By taking the structure of f into account, we can uniformly bound |R3(ζj)| as follows (so the same
bound holds for |R3(ζ ′j)|). Let us define α := |{q ∈ Svar

2 : ρ(q) > 1}|, to be the number of variables in Svar
2 , with degree greater

than one.

|R3(ζj)| =
µ3

6
|
∑
p∈S1

∂3
pφp(ζj,p)v

3
p +

∑
(l,l′)∈S2

(∂3
l φ(l,l′)(ζj,l, ζj,l′)v

3
l + ∂3

l′φ(l,l′)(ζj,l, ζj,l′)v
3
l′)

+
∑

(l,l′)∈S2

(3∂l∂
2
l′φ(l,l′)(ζj,l, ζj,l′)vlv

2
l′ + 3∂2

l ∂l′φ(l,l′)(ζj,l, ζj,l′)v
2
l vl′) +

∑
q∈Svar

2 :ρ(q)>1

∂3
qφq(ζj,q)v

3
q | (D.2)

≤ µ3

6

(
k1B3

m
3/2
v

+
2k2B3

m
3/2
v

+
αB3

m
3/2
v

+
6k2B3

m
3/2
v

)
(D.3)

=
µ3

6

(k1 + α+ 8k2)B3

m
3/2
v

. (D.4)

Using the fact 2k2 =
∑
l∈Svar

2 :ρ(l)>1 ρ(l) + (|Svar
2 | − α), we can observe that 2k2 ≤ ρmα + (|Svar

2 | − α) = |Svar
2 |+ (ρm − 1)α.

Plugging this in (D.4), and using the fact α ≤ k (since we do not assume α to be known), we obtain

|R3(ζj)| ≤
µ3

6

(k1 + α+ 4|Svar
2 |+ 4(ρm − 1)α)B3

m
3/2
v

≤ µ3(4k + (4ρm − 3)α)B3

6m
3/2
v

≤ µ3((4ρm + 1)k)B3

6m
3/2
v

. (D.5)

This in turn implies that ‖ n ‖∞≤ µ2((4ρm+1)k)B3

6m
3/2
v

. Using the fact ‖ n ‖2≤
√
mv ‖ n ‖∞, we thus obtain for the stated choice

of mv (cf. Remark 4) that

‖ ∇̂f(x)−∇f(x) ‖2≤
C1µ

2((4ρm + 1)k)B3

6mv
, ∀x ∈ [−(1 + r), 1 + r]d. (D.6)

Recall that [−(1 + r), 1 + r]d, r > 0, denotes the enlargement around [−1, 1]d, in which the smoothness properties of φp, φ(l,l′)

are defined in Section 2 (as Assumption 1). Also recall w(x) ∈ Rd, ηq,2 ∈ Rmv′ from (4.4). Since ‖ w(x) ‖∞≤‖
∇̂f(x)−∇f(x) ‖2, this then implies that ‖ ηq,2 ‖∞≤ C1µ

2((4ρm+1)k)B3

3mvµ1
.

37

Bounding the ηq,1 term. We will bound ‖ ηq,1 ‖∞. To this end, we see from (4.4) that it suffices to uniformly bound
|v′T∇2∂qf(ζ)v′|, over all: q ∈ S1 ∪ Svar

2 , v′ ∈ V ′, ζ ∈ [−(1 + r), (1 + r)]d. Note that

v′
T∇2∂qf(ζ)v′ =

d∑
l=1

v′l
2
(∇2∂qf)l,l +

d∑
i 6=j=1

v′iv
′
j(∇2∂qf)i,j . (D.7)

We have the following three cases, depending on the type of q.

1. q ∈ S1.
v′
T∇2∂qf(ζ)v′ = v′q

2
∂3
qφq(ζq)⇒ |v′

T∇2∂qf(ζ)v′| ≤ B3

mv′
. (D.8)

2. (q,q′) ∈ S2, ρ(q) = 1.

v′
T∇2∂qf(ζ)v′ = v′q

2
∂3
qφ(q,q′)(ζq, ζq′) + v′q′

2
∂2
q′∂qφ(q,q′)(ζq, ζq′) + 2v′qv

′
q′∂q′∂

2
qφ(q,q′)(ζq, ζq′), (D.9)

⇒ |v′T∇2∂qf(ζ)v′| ≤ 4B3

mv′
. (D.10)

3. q ∈ Svar
2 , ρ(q) > 1.

v′
T∇2∂qf(ζ)v′ = v′q

2
(∂3
qφq(ζq) +

∑
(q,q′)∈S2

∂3
qφ(q,q′)(ζq, ζq′) +

∑
(q′,q)∈S2

∂3
qφ(q′,q)(ζq′ , ζq))

+
∑

(q,q′)∈S2

v′q′
2
∂2
q′∂qφ(q,q′)(ζq, ζq′) +

∑
(q′,q)∈S2

v′q′
2
∂2
q′∂qφ(q′,q)(ζq′ , ζq)

+ 2
∑

(q,q′)∈S2

v′qv
′
q′∂q′∂

2
qφ(q,q′)(ζq, ζq′) + 2

∑
(q′,q)∈S2

v′qv
′
q′∂q′∂

2
qφ(q′,q)(ζq′ , ζq), (D.11)

⇒ |v′T∇2∂qf(ζ)v′| ≤ 1

mv′
((ρm + 1)B3 + ρmB3 + 2ρmB3) =

(4ρm + 1)B3

mv′
. (D.12)

We can now uniformly bound ‖ ηq,1 ‖∞ as follows.

‖ ηq,1 ‖∞:= max
j=1,...,mv′

µ1

2
|v′j

T∇2∂qf(ζj)v
′
j | ≤

µ1(4ρm + 1)B3

2mv′
. (D.13)

Estimating S2. We now proceed towards estimating S2. To this end, we estimate ∇∂qf(x) for each q = 1, . . . , d and x ∈ χ.
Since ∇∂qf(x) is at most (ρm + 1)-sparse, therefore Theorem 1, (3.10), immediately yield the following. ∃C2, c

′
5 > 0, c′2 ≥ 1

such that for c′2ρm log(d
ρm

) < mv′ <
d

(log 6)2 we have with probability at least 1− e−c′5mv′ − e−
√
mv′d that

‖ ∇̂∂qf(x)−∇∂qf(x) ‖2≤ C2 max
{
‖ ηq,1 + ηq,2 ‖2,

√
log d ‖ ηq,1 + ηq,2 ‖∞

}
. (D.14)

Since ‖ ηq,1 + ηq,2 ‖∞≤‖ ηq,1 ‖∞ + ‖ ηq,2 ‖∞, therefore using the bounds on ‖ ηq,1 ‖∞, ‖ ηq,2 ‖∞ and noting that
‖ ηq,1 + ηq,2 ‖2≤

√
mv′ ‖ ηq,1 + ηq,2 ‖∞, we obtain for the stated choice of mv′ (cf. Remark 4) that

‖ ∇̂∂qf(x)−∇∂qf(x) ‖2≤ C2

(
µ1(4ρm + 1)B3

2
√
mv′

+
C1
√
mv′µ

2((4ρm + 1)k)B3

3mvµ1

)
︸ ︷︷ ︸

τ ′

; q = 1, . . . , d, ∀x ∈ [−1, 1]d.

(D.15)
We next note that (D.15) trivially leads to the bound

∂̂q∂q′f(x) ∈ [∂q∂q′f(x)− τ ′, ∂q∂q′f(x) + τ ′]; q, q′ = 1, . . . , d. (D.16)

Now if q /∈ Svar
2 then clearly ∂̂q∂q′f(x) ∈ [−τ ′, τ ′]; ∀x ∈ [−1, 1]d, q 6= q′. On the other hand, if (q, q′) ∈ S2 then

∂̂q∂q′f(x) ∈ [∂q∂q′φ(q,q′)(xq, xq′)− τ ′, ∂q∂q′φ(q,q′)(xq, xq′) + τ ′]. (D.17)

If furthermore mx ≥ λ−1
2 , then due to the construction of χ, ∃x ∈ χ so that |∂̂q∂q′f(x)| ≥ D2 − τ ′. Hence if τ ′ < D2/2 holds,

the we would have |∂̂q∂q′f(x)| > D2/2, leading to the identification of (q, q′). Since this is true for each (q, q′) ∈ S2, hence it

38

follows that Ŝ2 = S2. Now, τ ′ < D2/2 is equivalent to

(4ρm + 1)B3

2
√
mv′︸ ︷︷ ︸
a

µ1 +

(
C1
√
mv′((4ρm + 1)k)B3

3mv

)
︸ ︷︷ ︸

b

µ2

µ1
<

D2

2C2
⇔ aµ2

1 −
D2

C2
µ1 + bµ2 < 0 (D.18)

⇔ µ1 ∈
(

(D2/(4aC2))−
√

(D2/(4aC2))2 − (bµ2/a), (D2/(4aC2)) +
√

(D2/(4aC2))2 − (bµ2/a)
)
. (D.19)

Lastly, we see that the bounds in (D.19) are valid if:

µ2 <
D2

2

16abC2
2

=
3D2

2mv

8C1C2
2B

2
3(4ρm + 1)((4ρm + 1)k)

. (D.20)

Estimating S1. With P := [d] \ Ŝvar
2 , we have via Taylor’s expansion of f :

f((x + µ′v′′j)P)− f((x− µ′v′′j)P)

2µ′
= 〈(v′′j)P , (∇f((x)P))P〉+

R3((ζj)P)−R3((ζ ′j)P)

2µ′︸ ︷︷ ︸
nj

; j = 1, . . . ,mv′′ . (D.21)

(D.21) corresponds to linear measurements of the (k−|Ŝvar
2 |) sparse vector: (∇f((x)P))P . We now proceed similar to the proof

of Corollary 1. Note that we effectively perform `1 minimization over R|P|. Therefore for any x ∈ Rd we immediately have
from Theorem 1, (3.10), the following. ∃C3, c

′
6 > 0, c′3 ≥ 1 such that for c′3(k− |Ŝvar

2 |) log(|P|
k−|Ŝvar

2 |
) < mv′′ <

|P|
(log 6)2 , we have

with probability at least 1− e−c′6mv′′ − e−
√
mv′′ |P| that

‖ (∇̂f((x)P))P − (∇f((x)P))P ‖2≤ C3 max
{
‖ n ‖2,

√
log |P| ‖ n ‖∞

}
. (D.22)

We now uniformly bound R3((ζj)P) for all j = 1, . . . ,mv′′ and ζj ∈ [−(1 + r), 1 + r]d as follows.

R3((ζj)P) =
µ′

3

6

∑
p∈S1∩P

∂3
pφp(ζj,p)v

′′
j,p

3 ⇒ |R3((ζj)P)| ≤ (k − |Ŝvar
2 |)µ′3B3

6m
3/2
v′′

. (D.23)

This in turn implies that ‖ n ‖∞≤ (k−|Ŝvar
2 |)µ

′2B3

6m
3/2

v′′
and ‖ n ‖2≤

√
mv′′ ‖ n ‖∞≤ (k−|Ŝvar

2 |)µ
′2B3

6mv′′
. Plugging these bounds in

(D.22), we obtain for the stated choice of mv′′ (cf. Remark 4) that

‖ (∇̂f((x)P))P − (∇f((x)P))P ‖2≤
C3(k − |Ŝvar

2 |)µ′2B3

6mv′′︸ ︷︷ ︸
τ ′′

; x ∈ [−1, 1]d. (D.24)

Finally, using the same arguments as before, we have that τ ′′ < D1/2 or equivalently µ′2 < 3mv′′D1

C3(k−|Ŝvar
2 |)B3

is sufficient to recover

S1. This completes the proof.

D.2 Proof of Theorem 5
We begin by establishing the conditions pertaining to the estimation of S2. Then we prove the conditions for estimation of S1.

Estimation of S2. We first note that the linear system (3.6) now has the form: y = V∇f(x) + n + z where zj = (z′j,1 −
z′j,2)/(2µ) represents the external noise component, for j = 1, . . . ,mv . Observe that ‖ z ‖∞≤ ε/µ. Using the bounds on
‖ n ‖∞, ‖ n ‖2 from Section D.1, we then observe that (D.6) changes to:

‖ ∇̂f(x)−∇f(x) ‖2≤ C1

(
µ2((4ρm + 1)k)B3

6mv
+
ε
√
mv

µ

)
, ∀x ∈ [−(1 + r), 1 + r]d. (D.25)

As a result, we then have that

‖ ηq,2 ‖∞≤ C1

(
µ2((4ρm + 1)k)B3

3mvµ1
+

2ε
√
mv

µµ1

)
. (D.26)

Now note that the bound on ‖ ηq,1 ‖∞ is unchanged from Section D.1, i.e., ‖ ηq,1 ‖∞≤ µ1(4ρm+1)B3

2mv′
. As a consequence, we

see that (D.15) changes to:

‖ ∇̂∂qf(x)−∇∂qf(x) ‖2≤ C2

(
µ1(4ρm + 1)B3

2
√
mv′

+ C1

√
mv′µ

2((4ρm + 1)k)B3

3mvµ1
+

2C1ε
√
mvmv′

µµ1

)
︸ ︷︷ ︸

τ ′

. (D.27)

39

With a and b as stated in the Theorem, we then see that τ ′ < D2/2 is equivalent to

aµ2
1 −

D2

2C2
µ1 +

(
bµ2 +

2C1ε
√
mvmv′

µ

)
< 0. (D.28)

which in turn is equivalent to

µ1 ∈

 D2

4aC2
−
√(

D2

4aC2

)2

−
(
bµ3 + 2C1ε

√
mvmv′

aµ

)
,
D2

4aC2
+

√(
D2

4aC2

)2

−
(
bµ3 + 2C1ε

√
mvmv′

aµ

) . (D.29)

For the above bound to be valid, we require

bµ2

a
+

2C1ε
√
mvmv′

aµ
<

D2
2

16a2C2
2

(D.30)

⇔ µ3 − D2
2

16abC2
2

µ+
2C1ε

√
mvmv′

b
< 0 (D.31)

to hold. (D.31) is a cubic inequality. Recall from Section B that a cubic equation of the form: y3 + py+ q = 0, has 3 distinct real
roots if its discriminant p

3

27 + q2

4 < 0. Note that for this to be possible, p must be negative, which is the case in (D.31). Applying

this to (D.31) leads to the condition: ε < D3
2

192
√

3C1C3
2

√
a3bmv′mv

= ε1. Furthermore, as stated in (B.4), the 3 distinct real roots

are given by:

y1 = 2
√
−p/3 cos(θ/3), y2 = −2

√
−p/3 cos(θ/3 + π/3), y3 = −2

√
−p/3 cos(θ/3− π/3) (D.32)

where θ = cos−1

(
−q/2√
−p3/27

)
. Applying this to (D.31) then leads to θ1 = cos−1(−ε/ε1). For 0 < ε < ε1 we have π/2 < θ1 <

π which implies 0 < y2 < y1 and y3 < 0. In particular if q > 0, then one can verify that y3 + py + q < 0 holds if y ∈ (y2, y1).
Applying this to (D.31), we consequently obtain:

µ ∈
(√

D2
2

12abC2
2

cos(θ1/3− 2π/3),

√
D2

2

12abC2
2

cos(θ1/3)

)
. (D.33)

Estimation of S1. We now prove the conditions for estimation of S1. First note that (D.21) now changes to:

f((x + µ′v′′j)P)− f((x− µ′v′′j)P)

2µ′
= 〈(v′′j)P , (∇f((x)P))P〉+

R3((ζj)P)−R3((ζ ′j)P)

2µ′︸ ︷︷ ︸
nj

+
z′j,1 − z′j,2

2µ′︸ ︷︷ ︸
zj

, (D.34)

for j = 1, . . . ,mv′′ . Denoting z = [z1 · · · zmv′′], we have ‖ z ‖∞≤ ε/µ′. As the bounds on ‖ n ‖2, ‖ n ‖∞ are unchanged,
therefore (D.35) now changes to:

‖ (∇̂f((x)P))P − (∇f((x)P))P ‖2≤ C3

(
(k − |Ŝvar

2 |)µ′2B3

6mv′′
+
ε
√
mv′′

µ′

)
︸ ︷︷ ︸

τ ′′

; x ∈ [−1, 1]d. (D.35)

Denoting a1 =
(k−|Ŝvar

2 |)B3

6mv′′
, b1 =

√
mv′′ , we then see from (D.35) that the condition τ ′′ < D1/2 is equivalent to

µ′
3 − D1

2a1C3
µ′ +

b1ε

a1
< 0. (D.36)

As discussed earlier for estimation of S2, the cubic equation corresponding to (D.36) has 3 distinct real roots if its discriminant

is negative. This then leads to the condition ε < D
3/2
1

3
√

6a1C3
3b

2
1

= ε2. Then by using the expressions for the roots of the cubic from

(D.32), one can verify that (D.36) holds if

µ′ ∈ (2
√
D1/(6a1C3) cos(θ2/3− 2π/3), 2

√
D1/(6a1C3) cos(θ2/3)) (D.37)

with θ2 = cos−1(ε/ε2). This completes the proof.

D.3 Proof of Theorem 6
We first derive conditions for estimating S2, and then for S1. The outline is essentially the same as the proof of Theorem 3 in
Section C.4, so we omit the details.

40

Estimating S2. Upon resampling N1 times and averaging, we have for the noise vector z ∈ Rmv that

z =

[
(z′1,1 − z′1,2)

2µ
· · · (z

′
mv,1 − z′mv,2)

2µ

]
, (D.38)

where z′j,1, z
′
j,2 ∼ N (0, σ2/N1) are i.i.d. Our aim is to guarantee that |z′j,1 − z′j,2| < 2ε holds ∀j = 1, . . . ,mv , and across all

points where ∇f is estimated. Indeed, we then obtain a bounded noise model and can simply use the analysis for the setting of
arbitrary bounded noise.

Now to estimate ∇f(x) we have mv many “difference” terms: z′j,1 − z′j,2. We additionally estimate mv′ many gradients
at each x implying a total of mv(mv′ + 1) difference terms. As this is done for each x ∈ χ, therefore we have a total of
mv(mv′ + 1)(2mx + 1)2|Hd2| many difference terms. Taking a union bound over all of them, we have for any p1 ∈ (0, 1) that
the choiceN1 >

σ2

ε2 log(2
p1
mv(mv′ + 1)(2mx + 1)2|Hd2|) implies that the magnitudes of all difference terms are bounded by 2ε,

with probability at least 1− p1.

Estimating S1. In this case, we resample each query N2 times and average – therefore the variance of the noise terms gets
scaled by N2. We now have |χdiag|mv′′ = (2m′x + 1)mv′′ many “difference” terms corresponding to Gaussian noise. Therefore,
taking a union bound over all of them, we have for any p2 ∈ (0, 1) that the choice N2 >

σ2

ε′2
log(

2(2m′x+1)mv′′
p2

) implies that the
magnitudes of all difference terms are bounded by 2ε′, with probability at least 1− p2.

E Proofs for Section 5

E.1 Proof of Theorem 8
We only prove the part concerning the identification of S2, as the proof for identifying S1 is identical to that of Theorem 4 (see
Section D.1). Consider the linear system defined in (5.8) at some x ∈ [−1, 1]d. We begin by uniformly bounding the magnitude
of the remainder terms: |R3(ζj)|, |R3(ζ ′j)| where ζj , ζ ′j ∈ [−(1 + r), 1 + r]d for some r > 0; j = 1, . . . ,mv . Let us define
α := |{q ∈ Svar

2 : ρ(q) > 1}|, to be the number of variables in Svar
2 , with degree greater than one. By taking the structure of f

into account, we can uniformly bound |R3(ζj)| as follows.

|R3(ζj)| =
µ3

6
|
∑
p∈S1

∂3
pφp(ζj,p)(2vp)

3 +
∑

(l,l′)∈S2

(∂3
l φ(l,l′)(ζj,l, ζj,l′)(2vl)

3 + ∂3
l′φ(l,l′)(ζj,l, ζj,l′)(2vl′)

3)

+
∑

(l,l′)∈S2

(3∂l∂
2
l′φ(l,l′)(ζj,l, ζj,l′)(2vl)(2vl′)

2 + 3∂2
l ∂l′φ(l,l′)(ζj,l, ζj,l′)(2vl)

2(2vl′)) +
∑

q∈Svar
2 :ρ(q)>1

∂3
qφq(ζj,q)(2vq)

3|

(E.1)

≤ µ3

6

(
8k1B3(

√
3)3

m
3/2
v

+
16k2B3(

√
3)3

m
3/2
v

+
8αB3(

√
3)3

m
3/2
v

+
48k2B3(

√
3)3

m
3/2
v

)
(E.2)

=
4
√

3µ3B3

m
3/2
v

(k1 + α+ 8k2). (E.3)

By observing 2k2 =
∑
l∈Svar

2 :ρ(l)>1 ρ(l) + (|Svar
2 | − α), we obtain 2k2 ≤ ρmα + (|Svar

2 | − α) = |Svar
2 | + (ρm − 1)α. Plugging

this in (E.3), and using the fact α ≤ k, we obtain

|R3(ζj)| ≤
4
√

3µ3B3

m
3/2
v

(4ρm + 1)k. (E.4)

Since the same bound holds also for |R3(ζ ′j)|, we thus obtain:

‖ n ‖∞ ≤
1

2µ2

(
4
√

3µ3B3

m
3/2
v

(4ρm + 1)k

)
=

2
√

3µB3

m
3/2
v

(4ρm + 1)k, (E.5)

⇒‖ n ‖1 ≤ mv
2
√

3µB3

m
3/2
v

(4ρm + 1)k =
2
√

3µB3

m
1/2
v

(4ρm + 1)k. (E.6)

Therefore by setting η = 2
√

3µB3

m
1/2
v

(4ρm + 1)k, and for the stated choice of mv , we obtain via Theorem 7 that

‖ ∇̂2f(x)−∇2f(x) ‖F≤ C1η = C1
2
√

3µB3

m
1/2
v

(4ρm + 1)k︸ ︷︷ ︸
τ

; ∀x ∈ [−1, 1]d. (E.7)

41

We next note that (E.7) leads to

∂̂q∂q′f(x) ∈ [∂q∂q′f(x)− τ√
2
, ∂q∂q′f(x) +

τ√
2

]; (q, q′) ∈
(

[d]

2

)
. (E.8)

Now if (q, q′) /∈ S2 then clearly ∂̂q∂q′f(x) ∈ [− τ√
2
, τ√

2
]; ∀x ∈ [−1, 1]d. On the other hand, if (q, q′) ∈ S2 then

∂̂q∂q′f(x) ∈ [∂q∂q′φ(q,q′)(xq, xq′)−
τ√
2
, ∂q∂q′φ(q,q′)(xq, xq′) +

τ√
2

]. (E.9)

If furthermore mx ≥ λ−1
2 , then due to the construction of χ, ∃x ∈ χ so that |∂̂q∂q′f(x)| ≥ D2 − τ√

2
. Hence if τ√

2
< D2/2

holds, the we would have |∂̂q∂q′f(x)| > D2/2, leading to the identification of (q, q′). Since this is true for each (q, q′) ∈ S2,
hence it follows that Ŝ2 = S2. Lastly, we easily see that τ√

2
< D2/2 is equivalent to the stated condition on µ.

E.2 Proof of Theorem 9
We only prove the part concerning the identification of S2, as the proof for identifying S1 is identical to that of Theorem 5
(see Section D.2). To this end, note that (5.8) now changes to the linear system y = M(∇2f(x)) + n + z, where zj =
(z′j,1 + z′j,2− 2z′3)/(4µ2) for j = 1, . . . ,mv . Since ‖ z ‖∞≤ ε

µ2 , therefore using the bound on ‖ n ‖1 in (E.6), we readily obtain

‖ n + z ‖1≤
2
√

3µB3

m
1/2
v

(4ρm + 1)k +
εmv

µ2︸ ︷︷ ︸
η

, (E.10)

which in conjunction with Theorem 7 readily implies that

‖ ∇̂2f(x)−∇2f(x) ‖F≤ C1η = C1

(
2
√

3µB3

m
1/2
v

(4ρm + 1)k +
εmv

µ2

)
︸ ︷︷ ︸

τ

; ∀x ∈ [−1, 1]d. (E.11)

As shown in Section E.1, it is sufficient to guarantee τ/
√

2 < D2/2 for exact identification of S2. This is equivalent to saying
that

√
6µB3

m
1/2
v

(4ρm + 1)k︸ ︷︷ ︸
aµ

+
εmv

µ2
√

2︸ ︷︷ ︸
b/µ2

<
D2

2C1
⇔ µ3 − D2

2aC1
µ2 +

b

a
< 0. (E.12)

(E.12) is a cubic inequality. Recall from Section B that a cubic equation of the form: x3 +Ax2 +C = 0, has 3 distinct real roots
if its discriminant p

3

27 + q2

4 < 0 where p = −A2

3 and q = 27C+2A3

27 . Assuming the discriminant to be negative (which means
p < 0), and denoting θ1 = cos−1(− q/2√

−p3/27
), the three roots are given as in (B.5):

x1 = 2

√
−p

3
cos

(
θ1

3

)
− A

3
= −2A

3
cos

(
θ1

3

)
− A

3
, (E.13)

x2 = 2

√
−p

3
cos

(
θ1

3
+

2π

3

)
− A

3
=

2A

3
cos

(
θ1

3
− π

3

)
− A

3
, (E.14)

x3 = 2

√
−p

3
cos

(
θ1

3
+

4π

3

)
− A

3
=

2A

3
cos

(
θ1

3
+
π

3

)
− A

3
. (E.15)

For 0 < θ1 < π one can verify that x2 < 0 and 0 < x3 < x1. Moreover, since A < 0 and C > 0, it is not hard to verify that
x3 +Ax2 + C < 0 for x ∈ (x3, x1).

Translated to our setting, we have A = −D2/(2aC1), C = b/a which gives us p = − D2
2

12a2C2
1

and q =
(

27b
a −

D3
2

4a3C3
1

)
/27.

The cubic equation corresponding to (E.12) has three distinct real roots if

|q|/2 < (−p3/27)1/2 =
D3

2

216a3C3
1

, (E.16)

⇔ 27b

a
− D3

2

4a3C3
1

<
D3

2

4a3C3
1

, (E.17)

⇔ ε <

√
2D3

2

54a2C3
1mv

=
D3

2

162
√

2C3
1B

2
3

1

(4ρm + 1)2k2
= ε1. (E.18)

42

Furthermore, we have:

θ1 = cos−1

(
−q/2√
−p3/27

)
= cos−1

 −27b
a +

D3
2

4a3C3
1

D3
2

4a3C3
1

 = cos−1

(
1− 2ε

ε1

)
. (E.19)

Lastly, (E.12) is satisfied for µ ∈ (x3, x1). Substituting the expression for A in (E.13),(E.15), we arrive at the stated condition
on µ. This completes the proof.

E.3 Proof of Theorem 10
Let the external noise vector be denoted by z ∈ Rmv where zj = (z′j,1 + z′j,2 − 2z′3)/(4µ2). Upon resampling N1 times and
averaging, we have z′j,1, z′j,2, z′3 ∼ N (0, σ2/N1), which in turn implies z′j,1 + z′j,2 − 2z′3 ∼ N (0, 6σ2/N1). Our aim is to
guarantee that |z′j,1 + z′j,2 − 2z′3| < 4ε holds ∀j = 1, . . . ,mv , and across all points where ∇2f is estimated. Indeed, we then
obtain a bounded noise model and can simply use the analysis for the setting of arbitrary bounded noise.

To this end, we proceed as in the proof of Theorem 3 in Section C.4. Denoting X ∼ N (0, 1), we first have z′j,1 + z′j,2 − 2z′3

= σ
√

6
N1
X . Using the tail bound for standard Gaussian random variables, we then obtain

P(|z′j,1 + z′j,2 − 2z′j,3| > 4ε) ≤ 2 exp

(
−4ε2N1

3σ2

)
.

At each x ∈ χ, we havemv many terms of the form: z′j,1+z′j,2−2z′3, meaning that we have a total ofmv(2mx+1)2|Hd2| such

terms. Taking a union bound over all of them, we have for any p1 ∈ (0, 1) that the choice N1 >
3σ2

4ε2 log(2
p1
mv(2mx + 1)2|Hd2|)

implies that the magnitudes of all such terms are bounded by 4ε, with probability at least 1− p1.

F Proofs for Section 6

F.1 Proof of Proposition 1
1. p ∈ S1.

We have for φ̃p that ‖ φ̃p − (φp + C) ‖L∞[−1,1]= O(n−3). Denoting φ̃p(xp) − (φp(xp) + C) = zp(xp), this means
|zp(xp)| = O(n−3), ∀xp ∈ [−1, 1]. Now |Ep[φ̃p − (φp + C)]| = |Ep[φ̃p]− C| = |Ep[zp]| ≤ Ep[|zp|] = O(n−3).

Lastly, we have that:

‖ φ̂p − φp ‖L∞[−1,1] =‖ φ̃p − Ep[φ̃p]− φp ‖L∞[−1,1] (F.1)

=‖ φ̃p − (φp + C)− (Ep[φ̃p]− C) ‖L∞[−1,1] (F.2)

= O(n−3). (F.3)

2. (l, l′) ∈ S2.

We only consider the case where ρ(l), ρ(l′) > 1 as proofs for the other cases are similar. Now for φ̃(l,l′) we have that
‖ φ̃(l,l′) − (g(l,l′) + C) ‖L∞[−1,1]2= O(n−3/2). Denoting φ̃(l,l′)(xl, xl′) − (g(l,l′)(xl, xl′) + C) = z(l,l′)(xl, xl′), this
means |z(l,l′)(xl, xl′)| = O(n−3/2), ∀(xl, xl′) ∈ [−1, 1]2. Consequently, one can easily verify that:

‖ El[φ̃(l,l′)]− (El[g(l,l′)] + C) ‖L∞[−1,1]= O(n−3/2), (F.4)

‖ El′ [φ̃(l,l′)]− (El′ [g(l,l′)] + C) ‖L∞[−1,1]= O(n−3/2), (F.5)

‖ E(l,l′)[φ̃(l,l′)]− (E(l,l′)[g(l,l′)] + C) ‖L∞= O(n−3/2). (F.6)

Now note that using the form for g(l,l′) from (6.5), we have that

El[g(l,l′)] =
∑

l1:(l,l1)∈S2
l1 6=l′

El[φ(l,l1)(xl, 0)] +
∑

l1:(l1,l)∈S2
l1 6=l′

El[φ(l1,l)(0, xl)] +
∑

l′1:(l′,l′1)∈S2
l′1 6=l

φ(l′,l′1)(xl′ , 0)

+
∑

l′1:(l′1,l
′)∈S2

l′1 6=l

φ(l′1,l
′)(0, xl′) + φl′(xl′) + C, and (F.7)

43

El′ [g(l,l′)] =
∑

l1:(l,l1)∈S2
l1 6=l′

φ(l,l1)(xl, 0) +
∑

l1:(l1,l)∈S2
l1 6=l′

φ(l1,l)(0, xl) +
∑

l′1:(l′,l′1)∈S2
l′1 6=l

El′ [φ(l′,l′1)(xl′ , 0)]

+
∑

l′1:(l′1,l
′)∈S2

l′1 6=l

El′φ(l′1,l
′)(0, xl′) + φl(xl) + C, and (F.8)

E(l,l′)[g(l,l′)] =
∑

l1:(l,l1)∈S2
l1 6=l′

El[φ(l,l1)(xl, 0)] +
∑

l1:(l1,l)∈S2
l1 6=l′

El[φ(l1,l)(0, xl)]

+
∑

l′1:(l′,l′1)∈S2
l′1 6=l

El′ [φ(l′,l′1)(xl′ , 0)] +
∑

l′1:(l′1,l
′)∈S2

l′1 6=l

El′φ(l′1,l
′)(0, xl′) + C. (F.9)

We then have from (6.5), (F.7), (F.8), (F.9) that

g(l,l′) − El[g(l,l′)]− El′ [g(l,l′)] + E(l,l′)[g(l,l′)] = φ(l,l′). (F.10)

Using (F.4), (F.5), (F.6), (F.10), and (6.7) it then follows that:

‖ φ̂(l,l′) − φ(l,l′) ‖L∞[−1,1]2= O(n−3/2). (F.11)

3. l ∈ Svar
2 : ρ(l) > 1.

In this case, for φ̃l : [−1, 1]2 → R, we have that ‖ φ̃l − (gl + C) ‖L∞[−1,1]2= O(n−3/2), with

gl(xl, x) = φl(xl) +
∑

ρ(l′)>1,l′ 6=l

φl′(x) +
∑

l′:(l,l′)∈S2

φ(l,l′)(xl, x)

+
∑

l′:(l′,l)∈S2

φ(l′,l)(x, xl) +
∑

(q,q′)∈S2:q,q′ 6=l

φ(q,q′)(x, x). (F.12)

From (F.12), we see that:

Ex[gl(xl, x)] = φl(xl) +
∑

(q,q′)∈S2:q,q′ 6=l

Ex[φ(q,q′)(x, x)], (F.13)

and E(l,x)[gl(xl, x)] =
∑

(q,q′)∈S2:q,q′ 6=l

Ex[φ(q,q′)(x, x)]. (F.14)

Hence clearly, Ex[gl(xl, x)]− E(l,x)[gl(xl, x)] = φl(xl). One can also easily verify that

‖ Ex[φ̃l]− (Ex[gl] + C) ‖L∞[−1,1] = O(n−3/2), (F.15)

‖ E(l,x)[φ̃l]− (E(l,x)[gl] + C) ‖L∞ = O(n−3/2). (F.16)

Therefore it follows that

‖ φ̂l − φl ‖L∞[−1,1] =‖ (Ex[φ̃l]− E(l,x)[φ̃l])− (Ex[gl]− E(l,x)[gl]) ‖L∞[−1,1] (F.17)

≤‖ Ex[φ̃l]− (Ex[gl] + C) ‖L∞[−1,1] + ‖ E(l,x)[φ̃l]− (E(l,x)[gl] + C) ‖L∞ (F.18)

= O(n−3/2). (F.19)

This completes the proof.

F.2 Proof of Proposition 3
Although the proof is again very similar to that of Proposition 1, there are some technical differences. Hence we provide a brief
sketch of the proof, avoiding details already highlighted in the proof of Proposition 1.

1. p ∈ S1.

We have for φ̃p that Ez[‖ φ̃p − (φp + C) ‖L∞[−1,1]] = O((n−1 log n)
3
7). Denoting φ̃p(xp) − (φp(xp) + C) = bp(xp),

this means Ez[|bp(xp)|] = O((n−1 log n)
3
7). Now,

Ez[|Ep[φ̃p − (φp + C)]|] = Ez[|Ep[bp]|] ≤ Ez[Ep[|bp|]] = Ep[Ez[|bp(xp)|]] = O((n−1 log n)
3
7). (F.20)

The penultimate equality above involves swapping the order of expectations, which is possible by Tonelli’s theorem (since
|bp| > 0). Then using triangle inequality, it follows that Ez[‖ φ̂p − φp ‖L∞[−1,1]] = O((n−1 log n)

3
7).

44

2. (l, l′) ∈ S2.

We only consider the case where ρ(l), ρ(l′) > 1 as proofs for the cases are similar. For φ̃(l,l′), we have that Ez[‖
φ̃(l,l′) − (g(l,l′) + C) ‖L∞[−1,1]2] = O((n−1 log n)

3
8). Denoting φ̃(l,l′)(xl, xl′) − (g(l,l′)(xl, xl′) + C) = b(l,l′)(xl, xl′),

this means Ez[|b(l,l′)(xl, xl′)|] = O((n−1 log n)
3
8), ∀(xl, xl′) ∈ [−1, 1]2. Using Tonelli’s theorem as earlier, one can next

verify that:

Ez[‖ El[φ̃(l,l′)]− (El[g(l,l′)] + C) ‖L∞[−1,1]] = O((n−1 log n)
3
8), (F.21)

Ez[‖ El′ [φ̃(l,l′)]− (El′ [g(l,l′)] + C) ‖L∞[−1,1]] = O((n−1 log n)
3
8), (F.22)

Ez[|E(l,l′)[φ̃(l,l′)]− (E(l,l′)[g(l,l′)] + C)|] = O((n−1 log n)
3
8). (F.23)

As in the proof of Proposition 1, we obtain from (F.21), (F.22), (F.23), (F.10), (6.7) (via triangle inequality):

Ez[‖ φ̂(l,l′) − φ(l,l′) ‖L∞[−1,1]2] = O((n−1 log n)
3
8). (F.24)

3. l ∈ Svar
2 : ρ(l) > 1.

In this case, for φ̃l : [−1, 1]2 → R, we have that Ez[‖ φ̃l − (gl + C) ‖L∞[−1,1]2] = O((n−1 log n)
3
8), with gl(xl, x) as

defined in (F.12). Using Tonelli’s theorem as earlier, one can verify that

Ez[‖ Ex[φ̃l]− (Ex[gl] + C) ‖L∞[−1,1]] = O((n−1 log n)
3
8), (F.25)

Ez[|E(l,x)[φ̃l]− (E(l,x)[gl] + C)|] = O((n−1 log n)
3
8). (F.26)

Then using the fact Ex[gl(xl, x)]−E(l,x)[gl(xl, x)] = φl(xl), we obtain via triangle inequality the bound: Ez[‖ φ̂l − φl ‖L∞[−1,1]

] = O((n−1 log n)
3
8). This completes the proof.

45

	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.3 Overview of methods used

	2 Notation and problem setup
	3 Sampling scheme for the non-overlap case
	3.1 Analysis for noiseless setting
	3.1.1 First Phase: Recovering all active variables
	3.1.2 Second Phase: Recovering individual sets

	3.2 Analysis for noisy setting

	4 Sampling scheme for the general overlap case
	4.1 Analysis for noiseless setting
	4.2 Analysis for noisy setting

	5 Alternate sampling scheme for the general overlap case
	5.1 Analysis for noiseless setting
	5.2 Analysis for noisy setting

	6 Learning individual components of model
	6.1 Noiseless queries
	6.2 Noisy queries

	7 Simulation results
	7.1 Non-overlapping setting
	7.2 Overlapping setting

	8 Discussion
	9 Concluding remarks
	A Model uniqueness
	B Real roots of a cubic equation in trigonometric form
	C Proofs for Section ??
	C.1 Proof of Lemma ??
	C.2 Proof of Lemma ??
	C.3 Proof of Theorem ??
	C.4 Proof of Theorem ??

	D Proofs for Section ??
	D.1 Proof of Theorem ??
	D.2 Proof of Theorem ??
	D.3 Proof of Theorem ??

	E Proofs for Section ??
	E.1 Proof of Theorem ??
	E.2 Proof of Theorem ??
	E.3 Proof of Theorem ??

	F Proofs for Section ??
	F.1 Proof of Proposition ??
	F.2 Proof of Proposition ??

