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Multi-way Compressed Sensing for Sparse Low-rank Tensors
Nicholas D. Sidiropoulos, Fellow, IEEE, and Anastasios Kyrillidis, Student Member, IEEE

Abstract—For linear models, compressed sensing theory and methods
enable recovery of sparse signals of interest from few measurements
- in the order of the number of nonzero entries as opposed to the
length of the signal of interest. Results of similar flavor have more
recently emerged for bilinear models, but no results are available for
multilinear models of tensor data. In this contribution, we consider
compressed sensing for sparse and low-rank tensors. More specifically,
we consider low-rank tensors synthesized as sums of outer products
of sparse loading vectors, and a special class of linear dimensionality-
reducing transformations that reduce each mode individually. We prove
interesting ‘oracle’ properties showing that it is possible to identify
the uncompressed sparse loadings directly from the compressed tensor
data. The proofs naturally suggest a two-step recovery process: fitting
a low-rank model in compressed domain, followed by per-mode ℓ0
/ ℓ1 de-compression. This two-step process is also appealing from a
computational complexity and memory capacity point of view, especially
for big tensor datasets.

Keywords: Compressed sensing, tensor decomposition, multi-way analy-
sis, CANDECOMP / PARAFAC

I. INTRODUCTION

For linear models, compressed sensing [1], [2] ideas have made
headways in enabling compression down to levels proportional to the
number of nonzero elements, well below equations-versus-unknowns
considerations. These developments rely on latent sparsity and ℓ1-
relaxation of the ℓ0 quasi-norm to recover the sparse unknown.
Results of similar flavor have more recently emerged for bilinear
models [3], [4], but, to the best of the author’s knowledge, compressed
sensing has not been generalized to higher-way multilinear models
of tensors, also known as multi-way arrays [5]–[10].

In this contribution, we consider compressed sensing for sparse
and low-rank tensors. A rank-one matrix is an outer product of two
vectors; a rank-one tensor is an outer product of three or more (so-
called loading) vectors. The rank of a tensor is the smallest number
of rank-one tensors that sum up to the given tensor. A rank-one
tensor is sparse if and only if one or more of the underlying loadings
are sparse. For small enough rank, sparse loadings imply a sparse
tensor. With F denoting tensor rank, na the number of nonzero
elements per loading in one mode, and likewise nb, nc for the
other modes, the synthesized tensor has at most nanbncF nonzero
elements. The converse is not necessarily true: sparse tensor ; sparse
loadings in general. On the other hand, the elements of a tensor
are multivariate polynomials in the loadings, thus if the loadings are
randomly drawn from a jointly continuous distribution, the tensor
will not be sparse, almost surely. These considerations suggest that
for low-enough rank it is reasonable to model sparse tensors as
arising from sparse loadings. We therefore consider low-rank tensors
synthesized as sums of outer products of sparse loading vectors,
and a special class of linear dimensionality-reducing transformations
that reduce each mode individually using a random compression
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matrix. We prove interesting ‘oracle’ properties showing that it is
possible to identify the uncompressed sparse loadings directly from
the compressed tensor data. The proofs naturally suggest a two-step
recovery process: fitting a low-rank model in compressed domain,
followed by per-mode ℓ0 / ℓ1 de-compression. This two-step process
is also appealing from a computational complexity and memory
capacity point of view, especially for big tensor datasets.

Our results appear to be the first to cross-leverage the identifiability
properties of multilinear decomposition and compressive sensing. A
few references have considered sparsity and incoherence properties
of tensor decompositions, notably [11] and [12]. Latent sparsity is
considered in [11] as a way to select subsets of elements in each
mode to form co-clusters, without regard to identifiability properties
though. Reference [12] considers identifiability conditions expressed
in terms of restricted isometry / incoherence properties of the mode
loading matrices; but it does not deal with tensor compression or
compressive sensing for tensors.
Notation: A scalar is denoted by an italic letter, e.g. a. A column
vector is denoted by a bold lowercase letter, e.g. a whose i-th
entry is a(i). A matrix is denoted by a bold uppercase letter, e.g.,
A with (i, j)-th entry A(i, j); A(:, j) (A(i, :)) denotes the j-th
column (resp. i-th row) of A. A three-way array is denoted by
an underlined bold uppercase letter, e.g., X, with (i, j, k)-th entry
X(i, j, k). Vector, matrix and three-way array size parameters (mode
lengths) are denoted by uppercase letters, e.g. I . ◦ stands for the
vector outer product; i.e., for two vectors a (I × 1) and b (J × 1),
a ◦ b is an I × J rank-one matrix with (i, j)-th element a(i)b(j);
i.e., a◦b = abT . For three vectors, a (I×1), b (J×1), c (K×1),
a ◦ b ◦ c is an I × J ×K rank -one three-way array with (i, j, k)-
th element a(i)b(j)c(k). The rank of a three-way array X is the
smallest number of outer products needed to synthesize X. The vec(·)
operator stacks the columns of its matrix argument in one tall column;
⊗ stands for the Kronecker product; ⊙ stands for the Khatri-Rao
(column-wise Kronecker) product: given A (I ×F ) and B (J ×F ),
A⊙B is the JI × F matrix

A⊙B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, F )⊗B(:, F )

]
II. TENSOR DECOMPOSITION PRELIMINARIES

There are two basic multi-way (tensor) models: Tucker3, and
PARAFAC. Tucker3 is generally not identifiable, but it is useful
for data compression / interpolation and as an exploratory tool.
PARAFAC is identifiable under certain conditions, and is the model
of choice when one is interested in unraveling latent structure.
We refer the reader to [9], [10] for gentle introductions to tensor
decompositions and applications. Here we briefly review Tucker3 and
PARAFAC to lay the foundation for our main result.
Tucker3: Consider an I × J × K three-way array X comprising
K matrix slabs {Xk}Kk=1, arranged into the tall matrix X :=
[vec(X1), · · · , vec(XK)]. The Tucker3 model (see also [13]) can
be written as

X ≈ (B⊗A)GCT ,

where A, B, C, are three mode loading matrices, assumed orthogonal
without loss of generality, and G is the so-called Tucker3 core
tensor G recast in matrix form. The non-zero elements of the core
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tensor determine the interactions between columns of A, B, C. The
associated model-fitting problem is

min
A,B,C,G

||X− (B⊗A)GCT ||2F ,

which is usually solved using an alternating least squares proce-
dure. The Tucker3 model can be fully vectorized as vec(X) ≈
(C⊗B⊗A) vec(G).
PARAFAC: When the core tensor G is constrained to be diagonal
(i.e., G(ℓ,m, n) = 0 if m ̸= ℓ or n ̸= ℓ), one obtains the
parallel factor analysis (PARAFAC) [6], [7] model, sometimes also
referred to as canonical decomposition (CANDECOMP) [5], or CP
for CANDECOMP-PARAFAC. PARAFAC can be written as a system
of matrix equations Xk = ADk(C)BT , where Dk(C) is a diagonal
matrix holding the k-th row of C in its diagonal; or in compact
matrix form as X ≈ (B ⊙ A)CT , using the Khatri-Rao product.
PARAFAC is in a way the most basic tensor model, because of
its direct relationship to tensor rank and the concept of low-rank
decomposition or approximation. In particular, employing a property
of the Khatri-Rao product,

X ≈ (B⊙A)CT ⇐⇒ vec(X) ≈ (C⊙B⊙A)1,

where 1 is a vector of all 1’s. Equivalently,

X ≈
F∑

f=1

af ◦ bf ◦ cf ,

where af is the f -th column of A, and analogously for bf and cf .
The distinguishing feature of the PARAFAC model is its essential

uniqueness: under certain conditions, (A,B,C) can be identified
from X, i.e., they are unique up to permutation and scaling of
columns [5]–[8], [14]–[16]. Consider an I × J × K tensor X of
rank F . In vectorized form, it can be written as the IJK × 1
vector x = (A⊙B⊙C)1, for some A (I × F ), B (J × F ),
and C (K × F ) - a PARAFAC model of size I × J × K and
order F parameterized by (A,B,C). The Kruskal-rank of A,
denoted kA, is the maximum k such that any k columns of A are
linearly independent (kA ≤ rA := rank(A)). Given X (⇔ x), if
kA + kB + kC ≥ 2F + 2, then (A,B,C) are unique up to a
common column permutation and scaling, i.e., x = (A⊙B⊙C)1
=

(
Ā⊙ B̄⊙ C̄

)
1 =⇒ Ā = AΠ∆a, B̄ = BΠ∆b, C̄ = CΠ∆c,

where Π is a permutation matrix and ∆a, ∆b, ∆c non-singular
diagonal matrices such that ∆a∆b∆c = I, see [8], [14]–[16].

When dealing with big tensors X that do not fit in main memory,
a reasonable idea is to try to compress X to a much smaller tensor
that somehow captures most of the systematic variation in X. The
commonly used compression method is to fit a low-dimensional
orthogonal Tucker3 model (with low mode-ranks) [9], [10], then
regress the data onto the fitted mode-bases. This idea [17], [18]
has been exploited in existing PARAFAC model-fitting software,
such as COMFAC [19], as a useful quick-and-dirty way to ini-
tialize alternating least squares computations in the uncompressed
domain, thus accelerating convergence. Tucker3 compression requires
a separate preprocessing stage that can be cumbersome for big
tensors, and fitting a PARAFAC model to the compressed data only
yields an approximate model for the uncompressed data. Eventually,
decompression and iterations with the full data are needed to obtain
fine estimates.

Memory-efficient implementation avoiding intermediate data ex-
plosion for algebraic computations with sparse tensors (including
Tucker3 and PARAFAC factorization of sparse tensors) has been
considered in [20], [21] for cases where the sparse tensor can fit
in main memory.

III. RESULTS

Consider compressing x into y = Sx, where S is d × IJK,
d ≪ IJK. In particular, we propose to consider a specially structured
compression matrix S = UT ⊗ VT ⊗ WT , which corresponds to
multiplying (every slab of) X from the I-mode with UT , from the
J-mode with VT , and from the K-mode with WT , where U is
I × L, V is J × M , and W is K × N , with L ≤ I , M ≤ J ,
N ≤ K and LMN ≪ IJK; see Fig. III. Such an S corresponds to
compressing each mode individually, which is often natural, and the
associated multiplications can be efficiently implemented when the
tensor is sparse. Due to a property of the Kronecker product [22],
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Fig. 1. Schematic illustration of tensor compression: going from an I×J×K
tensor X to a much smaller L × M × N tensor Y via multiplying (every
slab of) X from the I-mode with UT , from the J-mode with VT , and from
the K-mode with WT , where U is I ×L, V is J ×M , and W is K×N .

(
UT ⊗VT ⊗WT

)
(A⊙B⊙C) =(

(UTA)⊙ (VTB)⊙ (WTC)
)
,

from which it follows that

y =
(
(UTA)⊙ (VTB)⊙ (WTC)

)
1 =

(
Ã⊙ B̃⊙ C̃

)
1.

i.e., the compressed data follow a PARAFAC model of size L ×
M×N and order F parameterized by (Ã, B̃, C̃), with Ã := UTA,
B̃ := VTB, C̃ := WTC. We have the following result.

Theorem 1: Let x = (A⊙B⊙C)1 ∈ RIJK , where A is
I × F , B is J × F , C is K × F , and consider compressing it to
y =

(
UT ⊗VT ⊗WT

)
x =

(
(UTA)⊙ (VTB)⊙ (WTC)

)
1 =(

Ã⊙ B̃⊙ C̃
)
1 ∈ RLMN , where the mode-compression matrices

U (I × L,L ≤ I), V (J ×M,M ≤ J), and W (K ×N,N ≤ K)
are randomly drawn from an absolutely continuous distribution with
respect to the Lebesgue measure in RIL, RJM , and RKN , respec-
tively. Assume that the columns of A,B,C are sparse, and let na

(nb, nc) be an upper bound on the number of nonzero elements per
column of A (respectively B, C). If

min(L, kA) + min(M,kB) + min(N, kC) ≥ 2F + 2, and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc,

then the original factor loadings A,B,C are almost
surely identifiable from the compressed data y, i.e., if(
(UT Ā)⊙ (VT B̄)⊙ (WT C̄)

)
1 = y, then, with probability

1, Ā = AΠ∆a, B̄ = BΠ∆b, C̄ = CΠ∆c, where Π is a
permutation matrix and ∆a, ∆b, ∆c non-singular diagonal matrices
such that ∆a∆b∆c = I.
For the proof, we will need two Lemmas. The first is the following.

Lemma 1: Consider Ã := UTA, where A is I × F , and let the
I × L matrix U be randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in RIL (e.g.,
multivariate Gaussian with a non-singular covariance matrix). Then
kÃ = min(L, kA) almost surely (with probability 1).
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Proof: From Sylvester’s inequality it follows that kÃ cannot
exceed min(L, kA). Let k := min(L, kA). It suffices to show that
any k columns of Ã are linearly independent, for all UT except
for a set of measure zero. Any selection of k columns of Ã can be
written as Ãs = UTAs, where As holds the respective columns
of A. Consider the square k × k top sub-matrix Ãs,t = UT

t As,
where UT

t holds the top k rows of UT . Note that det(Ãs,t) is an
analytic function of the elements of UT

t (a multivariate polynomial,
in fact). An analytic function that is not zero everywhere is nonzero
almost everywhere; see e.g., [23] and references therein. To prove
that det(Ãs,t) ̸= 0 for almost every UT

t , it suffices to find one UT
t

for which det(Ãs,t) ̸= 0. Towards this end, note that since k ≤ kA,
As is full column rank, k. It therefore has a subset of k linearly
independent rows. Let the corresponding k columns of UT

t form a
k × k identity matrix, and set the rest of the entries of UT

t to zero.
Then det(Ãs,t) ̸= 0 for this particular UT

t . This shows that the k
selected columns of Ã (in Ãs) are linearly independent for all UT

except for a set of measure zero. There are
(
F
k

)
ways to select k

columns out of F , and each excludes a set of measure zero. The
union of a finite number of measure zero sets has measure zero,
thus all possible subsets of k columns of Ã are linearly independent
almost surely.
We will also need the following Lemma, which is well-known in the
compressed sensing literature [1], albeit usually not stated in Kruskal-
rank terms:

Lemma 2: Consider Ã := UTA, where Ã and U are given and
A is sought. Suppose that every column of A has at most na nonzero
elements, and that kUT ≥ 2na. (The latter holds with probability
1 if the I × L matrix U is randomly drawn from an absolutely
continuous distribution with respect to the Lebesgue measure in RIL,
and min(I, L) ≥ 2na.) Then A is the unique solution with at most
na nonzero elements per column.

Proof: Consider UTa1 = UTa2 ⇒ UT (a1 − a2) = 0, but
a1 − a2 has at most 2na nonzero elements, hence the only way for
this to happen is if (a1 − a2) = 0, since any 2na columns of UT

are linearly independent, by definition of k-rank.
We can now prove Theorem 1.

Proof: Using Lemma 1 and Kruskal’s condition applied to the
compressed tensor y =

(
Ã⊙ B̃⊙ C̃

)
1 establishes uniqueness of

Ã := UTA, B̃ := VTB, C̃ := WTC, up to common permutation
and scaling / counter-scaling of columns, i.e., ÃΠΛa, B̃ΠΛb,
C̃ΠΛc will be identified, where Π is a permutation matrix, and Λa,
Λb, Λc are diagonal matrices such that ΛaΛbΛc = I. Then Lemma
2 finishes the job, as it ensures that, e.g., A will be recovered from
ÃΠΛa up to column permutation and scaling, and likewise for B
and C.

Remark 1: Note that the condition in Theorem 1 does not require
L, M , or N to be ≥ F ; if L ≥ kA, M ≥ kB, N ≥ kC (which
is true a fortiori if L ≥ max(F, 2na), M ≥ max(F, 2nb), N ≥
max(F, 2nc)), however, then Theorem 1 asserts that it is possible
to identify A,B,C from the compressed data y under the same k-
rank condition as if the uncompressed data x were available. If one
ignores the underlying low-rank (multi-linear / Khatri-Rao) structure
in x and attempts to recover it as a sparse but otherwise unstructured
vector comprising up to Fnanbnc non-zero elements, then LMN ≥
2Fnanbnc is required. Consider a symmetric situation wherein na =
nb = nc = n, L = M = N , and F ≤ 2n. Then unstructured sparse
recovery requires a total compressed sample size of 2Fn3, whereas
the theorem calls for a total compressed sample size of 8n3.

Remark 2: Optimal PARAFAC fitting (and even optimal rank-
one tensor approximation) is NP-hard [24]; in practice though, alter-
nating least squares (ALS)-based fitting algorithms offer satisfactory

approximation accuracy at complexity O(IJKF ) in raw space, and
O(LMNF ) in compressed space (assuming that a hard limit on the
number of iterations is enforced). Computing the minimum ℓ1 norm
solution of a system of under-determined equations in Q unknowns
entails worst-case complexity O(Q3.5) [25], [26]. If one ignores
the underlying multi-linear structure and tries to recover the sparse
IJK × 1 vectorized tensor x directly from the compressed data y,
that has complexity O((IJK)3.5). If one i) first fits a PARAFAC
model to the compressed data at complexity O(LMNF ), and ii)
then solves an under-determined ℓ1 minimization subproblem for
each column of A, B, and C, at complexity O(I3.5), O(J3.5), and
O(K3.5), respectively, the overall complexity of part ii) amounts to
O((I3.5 + J3.5 +K3.5)F ). Summarizing, first fitting PARAFAC in
compressed space and then recovering the sparse A, B, C from the
fitted compressed factors entails complexity O(LMNF + (I3.5 +
J3.5 + K3.5)F ). Using sparsity first and then fitting PARAFAC in
raw space entails complexity O(IJKF +(IJK)3.5) - the difference
is huge. Also note that the proposed approach does not require
computations in the uncompressed data domain, which is important
for big data that do not fit in memory for processing.

If one mode is not compressed under F , say N ≥ F , then
it is possible to guarantee identifiability with higher compression
factors (smaller L, M ) in the other two modes, as shown next. In
what follows, we consider i.i.d. Gaussian compression matrices for
simplicity.

Theorem 2: Let x = (A⊙B⊙C)1 ∈ RIJK , where A is
I × F , B is J × F , C is K × F , and consider compressing it to
y =

(
UT ⊗VT ⊗WT

)
x =

(
(UTA)⊙ (VTB)⊙ (WTC)

)
1 =(

Ã⊙ B̃⊙ C̃
)
1 ∈ RLMN , where the mode-compression matrices

U (I × L,L ≤ I), V (J ×M,M ≤ J), and W (K ×N,N ≤ K)
have i.i.d. Gaussian zero mean, unit variance entries. Assume that the
columns of A,B,C are sparse, and let na (nb, nc) be an upper bound
on the number of nonzero elements per column of A (respectively
B, C). If

rA = rB = rC = F

L(L− 1)M(M − 1) ≥ 2F (F − 1), N ≥ F, and

L ≥ 2na, M ≥ 2nb, N ≥ 2nc,

then the original factor loadings A,B,C are almost surely identifi-
able from the compressed data y up to a common column permutation
and scaling.
Notice that this second theorem allows compression down to order
of

√
F in two out of three modes. For the proof, we will need the

following Lemma:
Lemma 3: Consider Ã = UTA, where A (I × F ) is determin-

istic, tall/square (I ≥ F ) and full column rank rA = F , and the
elements of U (I × L) are i.i.d. Gaussian zero mean, unit variance
random variables. Then the distribution of Ã is absolutely continuous
(nonsingular multivariate Gaussian) with respect to the Lebesgue
measure in RLF .

Proof: Define z := vec(ÃT ), and u := vec(U). Then
z = vec(ATUI) =

(
I⊗AT

)
vec(U) =

(
I⊗AT

)
u, and therefore

Rz := E[zzT ] =
(
I⊗AT

)
E[uuT ] (I⊗A) =

(
I⊗AT

)
(I⊗A)

= I ⊗
(
ATA

)
, where we have used the vectorization and mixed

product rules for the Kronecker product [22]. The rank of the
Kronecker product is the product of the ranks, hence rRz = LF .

We can now prove Theorem 2.
Proof: From [27] (see also [15] for a deterministic counterpart),

we know that PARAFAC is almost surely identifiable if the loading
matrices Ã, B̃ are randomly drawn from an absolutely continuous
distribution with respect to the Lebesgue measure in R(L+M)F , C̃ is
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full column rank, and L(L−1)M(M−1) ≥ 2F (F−1). Full rank of
C̃ is ensured almost surely by Lemma 1. Lemma 3 and independence
of U and V imply that the joint distribution of Ã and B̃ is absolutely
continuous with respect to the Lebesgue measure in R(L+M)F .

Theorems 1 and 2 readily generalize to four-and higher-way
tensors (having any number of modes). As an example, using the
generalization of Kruskal’s condition in [14]:

Theorem 3: Let x = (A1 ⊙ · · · ⊙Aδ)1 ∈ R
∏δ

d=1 Id , where Ad

is Id × F , and consider compressing it to y =
(
UT

1 ⊗ · · · ⊗UT
δ

)
x

=
(
(UT

1 A1)⊙ · · · ⊙ (UT
δ Aδ)

)
1 =

(
Ã1 ⊙ · · · ⊙ Ãδ

)
1

∈ R
∏δ

d=1 Ld , where the mode-compression matrices Ud

(Id × Ld, Ld ≤ Id) are randomly drawn from an absolutely
continuous distribution with respect to the Lebesgue measure in
RIdLd . Assume that the columns of Ad are sparse, and let nd be
an upper bound on the number of nonzero elements per column of
Ad, for each d ∈ {1, · · · , δ}. If
δ∑

d=1

min(Ld, kAd) ≥ 2F+δ−1, and Ld ≥ 2nd, ∀d ∈ {1, · · · , δ} ,

then the original factor loadings {Ad}δd=1 are almost surely identifi-
able from the compressed data y up to a common column permutation
and scaling.

IV. DISCUSSION

Identifiability guarantees are of course nice, at the end of the day,
however, practitioners are interested in actually computing the under-
lying loading matrices {Ad}δd=1. Our results naturally suggest a two-
step recovery process: fitting a PARAFAC model to the compressed
data using any of the available algorithms, such as [19] or those in
[9]; then recovering each Ad from the recovered Ãd = UT

d Ad using
any estimation algorithm from the compressed sensing literature. We
have written code to corroborate our identifiability claims, using
[19] for the first step and enumeration-based (ℓ0) de-compression
for the second step. This code is made available as proof-of-concept,
and will be posted at www.ece.umn.edu/∼nikos. Recall that optimal
PARAFAC fitting is NP-hard, hence any computational procedure
cannot be fail-safe, but in our tests the results were consistent. Also
note that, while identifiability considerations and ℓ0 recovery only
demand that Ld ≥ 2nd, ℓ1-based recovery algorithms typically need
Ld ≥ (3 ÷ 5)nd to produce acceptable results. In the same vain,
while PARAFAC identifiability only requires

∑δ
d=1 min(Ld, kAd) ≥

2F +δ−1, good estimation performance often calls for higher Ld’s,
which however can still afford very significant compression ratios.

Tomioka et al [28] considered low mode-rank tensor recovery from
compressed measurements, and derived approximation error bounds
without requiring sparsity. Instead, we focused on exact recovery of
the latent loadings / rank-one factors for the uncompressed tensor
from the compressed measurements, assuming low tensor rank (note
tensor rank ̸= mode-ranks) and latent sparsity. Tomioka’s approach
could be used to reconstruct the full tensor from the compressed one,
and then apply CP decomposition to the full tensor. This however
would give up the memory / storage / complexity benefits of our
approach.
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