# Matrix Recipes for Hard Thresholding Methods

Anastasios Kyrillidis · Volkan Cevher

Received: date / Accepted: date

Abstract In this paper, we present and analyze a new set of low-rank recovery algorithms for linear inverse problems within the class of hard thresholding methods. We provide strategies on how to set up these algorithms via basic ingredients for different configurations to achieve complexity vs. accuracy tradeoffs. Moreover, we study acceleration schemes via memory-based techniques and randomized,  $\epsilon$ approximate matrix projections to decrease the computational costs in the recovery process. For most of the configurations, we present theoretical analysis that guarantees convergence under mild problem conditions. Simulation results demonstrate notable performance improvements as compared to state-of-the-art algorithms both in terms of reconstruction accuracy and computational complexity.

**Keywords** Affine rank minimization  $\cdot$  hard thresholding  $\cdot \epsilon$ -approximation schemes  $\cdot$  randomized algorithms.

### **1** Introduction

In this work, we consider the general affine rank minimization (ARM) problem, described as follows:

THE ARM PROBLEM: Assume  $X^* \in \mathbb{R}^{m \times n}$  is a rank-k matrix of interest  $(k \ll \min\{m, n\})$  and let  $\mathcal{A} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p$  be a known linear operator. Given a set of observations as  $y = \mathcal{A}X^* + \varepsilon \in \mathbb{R}^p$ , we desire to recover  $X^*$  from y in a scalable and robust manner.

The challenge in this problem is to recover the true low-rank matrix in subsampled settings where  $p \ll m \cdot n$ . In such

Laboratory for Information and Inference Systems, Ecole Polytechnique Federale de Lausanne Tel.: +41 21 69 31154 E-mail: anastasios.kyrillidis@epfl.ch

V. Cevher

Laboratory for Information and Inference Systems, Ecole Polytechnique Federale de Lausanne Tel.: +41 21 69 31101 E-mail: volkan.cevher@epfl.ch cases, we typically exploit the prior information that  $X^*$  is low-rank and thus, we are interested in finding a matrix Xof rank at most k that minimizes the data error  $f(X) := \|y - AX\|_2^2$  as follows:

$$\begin{array}{ll} \underset{\boldsymbol{X} \in \mathbb{R}^{m \times n}}{\text{minimize}} & f(\boldsymbol{X}) \\ \text{subject to} & \operatorname{rank}(\boldsymbol{X}) \leq k. \end{array}$$
(1)

The ARM problem appears in many applications; low dimensional embedding [1], matrix completion [2], image compression [3], function learning [4, 5] just to name a few. We present below important ARM problem cases, as characterized by the nature of the linear operator A.

General linear maps: In many ARM problem cases,  $\mathcal{A}$ or  $\mathcal{A}^*$  has a dense range, satisfying specific incoherence or restricted isometry properties (discussed later in the paper); here,  $\mathcal{A}^*$  is the adjoint operator of  $\mathcal{A}$ . In Quantum Tomography, [6] studies the Pauli operator, a *compressive* linear map  $\mathcal{A}$  that consists of the kronecker product of  $2 \times 2$  matrices and obeys restricted isometry properties, defined later in the paper. Furthermore, recent developments indicate connections of ridge function learning [4, 7] and phase retrieval [8] with the ARM problem where  $\mathcal{A}$  is a Bernoulli and a Fourier operator, respectively.

Matrix Completion (MC): Let  $\Omega$  be the set of ordered pairs that represent the coordinates of the observable entries in  $X^*$ . Then, the set of observations satisfy  $y = \mathcal{A}_{\Omega}X^* + \varepsilon$ where  $\mathcal{A}_{\Omega}$  defines a linear mask over the observable entries  $\Omega$ . To solve the MC problem, a potential criterion is given by (1) [2]. As a motivating example, consider the famous Netflix problem [9], a recommender system problem where users' movie preferences are inferred by a limited subset of entries in a database.

**Principal Component Analysis:** In Principal Component Analysis (PCA), we are interested in identifying a low rank subspace that best explains the data in the Euclidean sense from the observations  $\boldsymbol{y} = \boldsymbol{\mathcal{A}} \boldsymbol{X}^*$  where  $\boldsymbol{\mathcal{A}} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p$  is an identity linear map that stacks the columns of the matrix  $\boldsymbol{X}^*$  into a single column vector with  $p = m \cdot n$ .

A. Kyrillidis

We observe that the PCA problem falls under the ARM criterion in (1). While (1) is generally NP-hard to solve optimally, PCA can be solved in polynomial time using the truncated Singular Value Decomposition (SVD) of  $\mathcal{A}^* y$ . As an extension to the PCA setting, [10] considers the Robust PCA problem where y is further corrupted by gross sparse noise. We extend the framework proposed in this paper for the RPCA case and its generalizations in [11].

For the rest of the paper, we consider only the low rank estimation case in (1). As running test cases to support our claims, we consider the MC setting as well as the general ARM setting where  $\mathcal{A}$  is constituted by permuted subsampled noiselets [12].

### 1.1 Two camps of recovery algorithms

**Convex relaxations:** In [13], the authors study the nuclear norm  $\|X\|_* := \sum_{i=1}^{\operatorname{rank}(X)} \sigma_i$  as a convex surrogate of  $\operatorname{rank}(X)$  operator so that we can leverage convex optimization approaches, such as interior-point methods—here,  $\sigma_i$  denotes the *i*-th singular value of X. Under basic incoherence properties of the sensing linear mapping  $\mathcal{A}$ , [13] provides provable guarantees for unique low rank matrix recovery using the nuclear norm.

Once (1) is relaxed to a convex problem, decades of knowledge on convex analysis and optimization can be leveraged. Interior point methods find a solution with fixed precision in polynomial time but their complexity might be prohibitive even for moderate-sized problems [14, 15]. More suitable for large-scale data analysis, first-order methods constitute low-complexity alternatives but most of them introduce complexity vs. accuracy tradeoffs [16–19].

**Non-convex approaches:** In contrast to the convex relaxation approaches, iterative greedy algorithms maintain the nonconvex nature of (1). Unfortunately, solving (1) optimally is in general NP-hard [20]. Due to this computational intractability, the algorithms in this class greedily refine a rank-k solution using only "local" information available at the current iteration [21–23].

### 1.2 Contributions

In this work, we study a special class of iterative greedy algorithms known as hard thresholding methods. Similar results have been derived for the vector case [24]. Note that the transition from sparse vector approximation to ARM is *non-trivial*; while *s*-sparse signals "live" in the union of finite number of subspaces, the set of rank-*k* matrices expands to infinitely many subspaces. Thus, the selection rules do not generalize in a straightforward way.

Our contributions are the following:

**Ingredients of hard thresholding methods:** We analyze the behaviour and performance of hard thresholding methods from a global perspective. Five building blocks are studied: *i*) step size selection  $\mu_i$ , *ii*) gradient or least-squares updates over restricted low-rank subspaces (e.g., adaptive

block coordinate descent), iii) memory exploitation, iv) active low-rank subspace tracking and, v) low-rank matrix approximations (described next). We highlight the impact of these key pieces on the convergence rate and signal reconstruction performance and provide optimal and/or efficient strategies on how to set up these ingredients under different problem conditions.

Low-rank matrix approximations in hard thresholding methods: In [25], the authors show that the solution efficiency can be significantly improved by  $\epsilon$ -approximation algorithms. Based on similar ideas, we analyze the impact of  $\epsilon$ -approximate low rank-revealing schemes in the proposed algorithms with well-characterized time and space complexities. Moreover, we provide extensive analysis to prove convergence using  $\epsilon$ -approximate low-rank projections.

Hard thresholding-based framework with improved convergence conditions: We study hard thresholding variants that provide salient computational tradeoffs for the class of greedy methods on low-rank matrix recovery. These methods, as they iterate, exploit the non-convex scaffold of low rank subspaces on which the approximation problem resides. Using simple analysis tools, we derive improved conditions that guarantee convergence, compared to state-of-the-art approaches.

The organization of the paper is as follows. In Section 2, we set up the notation and provide some definitions and properties, essential for the rest of the paper. In Section 3, we describe the basic algorithmic frameworks in a nutshell, while in Section 4 we provide important "ingredients" for the class of hard-thresholding methods; detailed convergence analysis proofs are provided in Section 5. The complexity analysis of the proposed algorithms is provided in Section 6. We study two acceleration schemes in Sections 7 and 8, based on memory utilization and  $\epsilon$ -approximate low-rank projections, respectively. We further improve convergence speed by exploiting randomized low rank projections in Section 9, based on power iteration-based subspace finder tools [26]. We provide empirical support for our claims through experimental results on synthetic and real data in Section 10. Finally, we conclude with future work directions in Section 11.

#### 2 Elementary Definitions and Properties

We reserve lower-case and bold lower-case letters for scalar and vector variable representation, respectively. Bold uppercase letters denote matrices while bold calligraphic uppercase letters represent linear operators. We use calligraphic upper-case letters for set representations. We use X(i) to represent the matrix estimate at the *i*-th iteration.

The rank of X is denoted as  $\operatorname{rank}(X) \leq \min\{m, n\}$ . The empirical data error is denoted as  $f(X) := \|y - \mathcal{A}X\|_2^2$ with gradient  $\nabla f(X) := -2\mathcal{A}^*(y - \mathcal{A}X)$ , where \* is the adjoint operation over the linear mapping  $\mathcal{A}$ . The inner product between matrices  $A, B \in \mathbb{R}^{m \times n}$  is denoted as  $\langle A, B \rangle = \operatorname{trace}(B^T A)$ , where <sup>T</sup> represents the transpose operation. I represents an identity matrix with dimensions apparent from the context. Let S be a set of orthonormal, rank-1 matrices that span an arbitrary subspace in  $\mathbb{R}^{m \times n}$ . We reserve span(S) to denote the subspace spanned by S. With slight abuse of notation, we use:

$$\operatorname{rank}(\operatorname{span}(\mathcal{S})) \equiv \max_{\mathbf{X}} \left\{ \operatorname{rank}(\mathbf{X}) : \mathbf{X} \in \operatorname{span}(\mathcal{S}) \right\}, \qquad (2)$$

to denote the *maximum* rank a matrix  $X \in \mathbb{R}^{m \times n}$  can have such that X lies in the subspace spanned by the set S. Given a finite set S, |S| denotes the cardinality of S. For any matrix X, we use R(X) to denote its range.

We define a *minimum cardinality* set of orthonormal, rank-1 matrices that span the subspace induced by a set of rank-1 (and possibly non-orthogonal) matrices S as:

$$\operatorname{ortho}(\mathcal{S}) \in \operatorname{arg\,min}_{\mathcal{T}} \{ |\mathcal{T}| : \mathcal{T} \subseteq \mathcal{U} \text{ s.t. } \operatorname{span}(\mathcal{T}) = \operatorname{span}(\mathcal{S}) \}$$

where  $\mathcal{U}$  denotes the superset that includes all the sets of *or*thonormal, rank-1 matrices in  $\mathbb{R}^{m \times n}$  such that  $\langle \mathbf{T}_i, \mathbf{T}_j \rangle = 0$ ,  $i \neq j, \forall \mathbf{T}_i, \mathbf{T}_j \in \mathcal{T}$  and,  $\|\mathbf{T}_i\|_F = 1, \forall i$ . In general, ortho( $\mathcal{S}$ ) is not unique.

A well-known lemma used in the convergence rate proofs of this class of greedy hard thresholding algorithms is defined next.

**Lemma 1** [27] Let  $\mathcal{J} \subseteq \mathbb{R}^{m \times n}$  be a closed convex set and  $f : \mathcal{J} \to \mathbb{R}$  be a smooth objective function defined over  $\mathcal{J}$ . Let  $X^* \in \mathcal{J}$  be a local minimum of the objective function f over the set  $\mathcal{J}$ . Then

$$\langle \nabla f(\boldsymbol{X}^*), \boldsymbol{X} - \boldsymbol{X}^* \rangle \ge 0, \ \forall \boldsymbol{X} \in \mathcal{J}.$$
 (3)

2.1 Singular Value Decomposition (SVD) and its properties

**Definition 1** [SVD] Let  $X \in \mathbb{R}^{m \times n}$  be a rank-l ( $l < \min \{m, n\}$ ) matrix. Then, the SVD of X is given by:

$$\boldsymbol{X} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T} = \begin{bmatrix} \boldsymbol{U}_{\alpha} \ \boldsymbol{U}_{\beta} \end{bmatrix} \begin{bmatrix} \boldsymbol{\tilde{\Sigma}} \ \boldsymbol{0} \\ \boldsymbol{0} \ \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{\alpha}^{T} \\ \boldsymbol{V}_{\beta}^{T} \end{bmatrix},$$
(4)

where  $U_{\alpha} \in \mathbb{R}^{m \times l}, U_{\beta} \in \mathbb{R}^{m \times (m-l)}, V_{\alpha} \in \mathbb{R}^{n \times l}, V_{\beta} \in \mathbb{R}^{n \times (n-l)}$  and  $\widetilde{\Sigma} = \text{diag}(\sigma_1, \ldots, \sigma_l) \in \mathbb{R}^{l \times l}$  for  $\sigma_1, \ldots, \sigma_l \in \mathbb{R}_+$ . Here, the columns of U, V represent the set of left and right singular vectors, respectively, and  $\sigma_1, \ldots, \sigma_l$  denote the singular values.

For any matrix  $X \in \mathbb{R}^{m \times n}$  with arbitrary rank $(X) \leq \min\{m, n\}$ , its best orthogonal projection  $\mathcal{P}_k(X)$  onto the set of rank-k ( $k < \operatorname{rank}(X)$ ) matrices  $\mathcal{C}_k := \{A \in \mathbb{R}^{m \times n} : \operatorname{rank}(A) \leq k\}$  defines the optimization problem:

$$\mathcal{P}_{k}(\boldsymbol{X}) \in \underset{\boldsymbol{Y} \in \mathcal{C}_{k}}{\operatorname{arg\,min}} \left\| \boldsymbol{Y} - \boldsymbol{X} \right\|_{F}.$$
(5)

According to the Eckart-Young theorem [28], the best rankk approximation of a matrix X corresponds to its truncated SVD: if  $X = U\Sigma V^T$ , then  $\mathcal{P}_k(X) := U_k \Sigma_k V_k^T$  where  $\Sigma_k \in \mathbb{R}^{k \times k}$  is a diagonal matrix that contains the first k diagonal entries of  $\Sigma$  and  $U_k$ ,  $V_k$  contain the corresponding left and right singular vectors, respectively. Moreover, this projection is not always unique. In the case of multiple identical singular values, the lexicographic approach is used to break ties. In any case,  $\|\mathcal{P}_k(\boldsymbol{X}) - \boldsymbol{X}\|_F \leq \|\boldsymbol{W} - \boldsymbol{X}\|_F$  for any rank- $k \ \boldsymbol{W} \in \mathbb{R}^{m \times n}$ .

### 2.2 Subspace projections

Given a set of orthonormal, rank-1 matrices S, we denote the orthogonal projection operator onto the subspace induced by S as  $\mathcal{P}_S^{-1}$  which is an idempotent linear transformation; furthermore, we denote the orthogonal projection operator onto the orthogonal subspace of S as  $\mathcal{P}_{S^{\perp}}$ . We can always decompose a matrix  $X \in \mathbb{R}^{m \times n}$  into two matrix components, as follows:

$$X := \mathcal{P}_{\mathcal{S}} X + \mathcal{P}_{\mathcal{S}^{\perp}} X$$
, such that  $\langle \mathcal{P}_{\mathcal{S}} X, \mathcal{P}_{\mathcal{S}^{\perp}} X \rangle = 0$ .

If  $X \in \text{span}(S)$ , the best projection of X onto the subspace induced by S is the matrix X itself. Moreover,  $\|\mathcal{P}_S X\|_F \leq \|X\|_F$  for any S and X.

**Definition 2** [Orthogonal projections using SVD] Let  $X \in \mathbb{R}^{m \times n}$  be a matrix with arbitrary rank and SVD decomposition given by (4). Then,  $S := \{u_i v_i^T : i = 1, ..., k\}$  $(k \leq \operatorname{rank}(X))$  constitutes a set of orthonormal, rank-1 matrices that spans the best k-rank subspace in R(X) and  $R(X^T)$ ; here,  $u_i$  and  $v_i$  denote the *i*-th left and right singular vectors, respectively. The orthogonal projection onto this subspace is given by [2]:

$$\mathcal{P}_{\mathcal{S}}X = \mathcal{P}_{\mathcal{U}}X + X\mathcal{P}_{\mathcal{V}} - \mathcal{P}_{\mathcal{U}}X\mathcal{P}_{\mathcal{V}}$$
(6)

where  $\mathcal{P}_{\mathcal{U}} = U_{:,1:k}U_{:,1:k}^T$  and  $\mathcal{P}_{\mathcal{V}} = V_{:,1:k}V_{:,1:k}^T$  in MAT-LAB notation. Moreover, the orthogonal projection onto the  $S^{\perp}$  is given by:

$$\mathcal{P}_{\mathcal{S}^{\perp}} X = X - \mathcal{P}_{\mathcal{S}} X. \tag{7}$$

In the algorithmic descriptions, we use  $S \leftarrow \mathcal{P}_k(X)$  to denote the set of rank-1, orthonormal matrices as outer products of the k left  $u_i$  and right  $v_i$  principal singular vectors of X that span the best rank-k subspace of X; e.g.  $S = \{u_i v_i, i = 1, ..., k\}$ . Moreover,  $\widehat{X} \leftarrow \mathcal{P}_k(X)$  denotes a/the best rank-k projection matrix of X. In some cases, we use  $\{S, \widehat{X}\} \leftarrow \mathcal{P}_k(X)$  when we compute both. The distiction between these cases is apparent from the context.

### 2.3 Restricted Isometry Property

Many conditions have been proposed in the literature to establish solution uniqueness and recovery stability such as null space property [29], exact recovery condition [30], etc. For the matrix case, [13] proposed the *restricted isometry property* (RIP) for the ARM problem.

 $<sup>^1\,</sup>$  The distinction between  $\mathcal{P}_{\mathcal{S}}$  and  $\mathcal{P}_k$  for k positive integer is apparent from context.

**Definition 3** [Rank Restricted Isometry Property (R-RIP) for matrix linear operators [13]] A linear operator  $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$  satisfies the R-RIP with constant  $\delta_k(\mathcal{A}) \in (0,1)$  if and only if:

$$(1 - \delta_k(\boldsymbol{\mathcal{A}})) \|\boldsymbol{X}\|_F^2 \le \|\boldsymbol{\mathcal{A}}\boldsymbol{X}\|_2^2 \le (1 + \delta_k(\boldsymbol{\mathcal{A}})) \|\boldsymbol{X}\|_F^2,$$
(8)

 $\forall X \in \mathbb{R}^{m \times n}$  such that rank $(X) \leq k$ . We write  $\delta_k$  to mean  $\delta_k(A)$ , unless otherwise stated.

[6] shows that Pauli operators satisfy the rank-RIP in compressive settings while, in function learning, the linear map  $\mathcal{A}$  is designed specifically to satisfy the rank-RIP [7].

### 2.4 Some useful bounds using R-RIP

In this section, we present some lemmas that are useful in our subsequent developments—these lemmas are consequences of the R-RIP of  $\mathcal{A}$ .

**Lemma 2** [21] Let  $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$  be a linear operator that satisfies the *R*-*R*IP with constant  $\delta_k$ . Then,  $\forall v \in \mathbb{R}^p$ , the following holds true:

$$\left\|\mathcal{P}_{\mathcal{S}}(\mathcal{A}^* \boldsymbol{v})\right\|_F \le \sqrt{1 + \delta_k} \left\|\boldsymbol{v}\right\|_2,\tag{9}$$

where S is a set of orthonormal, rank-1 matrices in  $\mathbb{R}^{m \times n}$ such that rank $(\mathcal{P}_{S} \mathbf{X}) \leq k, \forall \mathbf{X} \in \mathbb{R}^{m \times n}$ .

**Lemma 3** [21] Let  $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$  be a linear operator that satisfies the *R*-*RIP* with constant  $\delta_k$ . Then,  $\forall \mathbf{X} \in \mathbb{R}^{m \times n}$ , the following holds true:

$$(1 - \delta_k) \| \mathcal{P}_{\mathcal{S}} \boldsymbol{X} \|_F \leq \| \mathcal{P}_{\mathcal{S}} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}} \boldsymbol{X} \|_F \\ \leq (1 + \delta_k) \| \mathcal{P}_{\mathcal{S}} \boldsymbol{X} \|_F,$$
(10)

where S is a set of orthonormal, rank-1 matrices in  $\mathbb{R}^{m \times n}$ such that rank $(\mathcal{P}_{S} \mathbf{X}) \leq k, \forall \mathbf{X} \in \mathbb{R}^{m \times n}$ .

**Lemma 4** [22] Let  $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$  be a linear operator that satisfies the R-RIP with constant  $\delta_k$  and S be a set of orthonormal, rank-1 matrices in  $\mathbb{R}^{m \times n}$  such that  $rank(\mathcal{P}_S \mathbf{X}) \leq k, \forall \mathbf{X} \in \mathbb{R}^{m \times n}$ . Then, for  $\mu > 0, \mathcal{A}$  satisfies:

$$\lambda(\mu \mathcal{P}_{\mathcal{S}} \mathcal{A}^* \mathcal{A} \mathcal{P}_{\mathcal{S}}) \in [\mu(1-\delta_k), \mu(1+\delta_k)].$$
(11)

where  $\lambda(\mathcal{B})$  represents the range of eigenvalues of the linear operator  $\mathcal{B} : \mathbb{R}^p \to \mathbb{R}^{m \times n}$ . Moreover,  $\forall X \in \mathbb{R}^{m \times n}$ , it follows that:

$$\left\| \left( \mathbf{I} - \mu \mathcal{P}_{\mathcal{S}} \mathcal{A}^* \mathcal{A} \mathcal{P}_{\mathcal{S}} \right) \mathcal{P}_{\mathcal{S}} \mathbf{X} \right\|_F$$
  
$$\leq \max \left\{ \mu (1 + \delta_k) - 1, 1 - \mu (1 - \delta_k) \right\} \left\| \mathcal{P}_{\mathcal{S}} \mathbf{X} \right\|_F.$$
(12)

**Lemma 5** [22] Let  $\mathcal{A} : \mathbb{R}^{m \times n} \to \mathbb{R}^p$  be a linear operator that satisfies the R-RIP with constant  $\delta_k$  and  $S_1, S_2$  be two sets of orthonormal, rank-1 matrices in  $\mathbb{R}^{m \times n}$  such that

$$rank(\mathcal{P}_{\mathcal{S}_1 \cup \mathcal{S}_2} \mathbf{X}) \le k, \ \forall \mathbf{X} \in \mathbb{R}^{m \times n}.$$
(13)

Then, the following inequality holds:

$$\left\|\mathcal{P}_{\mathcal{S}_{1}}\mathcal{A}^{*}\mathcal{A}\mathcal{P}_{\mathcal{S}_{1}^{\perp}}\mathbf{X}\right\|_{F} \leq \delta_{k}\left\|\mathcal{P}_{\mathcal{S}_{1}^{\perp}}\mathbf{X}\right\|_{F}, \forall \mathbf{X} \in span(\mathcal{S}_{2}).$$
(14)

### **3** Algrebraic Pursuits in a nutshell

Explicit descriptions of the proposed algorithms are provided in Algorithms 1 and 2. Algorithm 1 follows from the ALgrebraic PursuitS (ALPS) scheme for the vector case [31]. MATRIX ALPS I provides efficient strategies for adaptive step size selection and additional signal estimate updates at each iteration (these motions are explained in detail in the next subsection). Algorithm 2 (ADMiRA) [21] further improves the performance of Algorithm 1 by introducing least squares optimization steps on restricted subspaces this technique borrows from a series of vector reconstruction algorithms such as CoSaMP [32], Subspace Pursuit (SP) [33] and Hard Thresholding Pursuit (HTP) [34].

In a nutshell, both algorithms simply seek to improve the subspace selection by iteratively collecting an extended subspace  $S_i$  with rank $(\text{span}(S_i)) \leq 2k$  and then finding the rank-k matrix that fits the measurements in this restricted subspace using least squares or gradient descent motions.

At each iteration, the Algorithms 1 and 2 perform motions from the following list:

1) Best rank-k subspace orthogonal to  $\mathcal{X}_i$  and active subspace expansion: We identify the best rank-k subspace of the current gradient  $\nabla f(\mathbf{X}(i))$ , orthogonal to  $\mathcal{X}_i$  and then merge this low-rank subspace with  $\mathcal{X}_i$ . This motion guarantees that, at each iteration, we expand the current rank-k subspace estimate with k new, rank-1 orthogonal subspaces to explore.

2a) Error norm reduction via greedy descent with adaptive step size selection (Algorithm 1): We decrease the data error by performing a single gradient descent step. This scheme is based on a one-shot step size selection procedure (Step size selection step)—detailed description of this approach is given in Section 4.

2b) Error norm reduction via least squares optimization (Algorithm 2): We decrease the data error  $f(\mathbf{X})$  on the active O(k)-low rank subspace. Assuming  $\mathbf{A}$  is well-conditioned over low-rank subspaces, the main complexity of this operation is dominated by the solution of a symmetric linear system of equations.

3) Best rank-k subspace selection: We project the constrained solution onto the set of rank-k matrices  $C_k := \{A \in \mathbb{R}^{m \times n} : \operatorname{rank}(A) \leq k\}$  to arbitrate the active support set. This step is calculated in polynomial time complexity as a function of  $m \times n$  using SVD or other matrix rank-revealing decomposition algorithms—further discussions about this step and its approximations can be found in Sections 8 and 9.

4) De-bias using gradient descent (Algorithm 1): We de-bias the current estimate W(i) by performing an additional gradient descent step, decreasing the data error. The step size selection procedure follows the same motions as in 2a).

| <b>Input:</b> $y, A, k$ , Tolerance $\eta$ , MaxIterations<br><b>Initialize:</b> $X(0) \leftarrow 0, \chi_0 \leftarrow \{\emptyset\}, i \leftarrow 0$                                                                                                                                                                                                                                          |                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| repeat                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| 1: $\mathcal{D}_i \leftarrow \mathcal{P}_k \left( \mathcal{P}_{\chi^{\perp}} \nabla f(\boldsymbol{X}(i)) \right)$                                                                                                                                                                                                                                                                              | (Best rank-k subspace orthogonal to $\mathcal{X}_i$ ) |
| 2: $S_i \leftarrow \mathcal{D}_i \cup \mathcal{X}_i^{i}$                                                                                                                                                                                                                                                                                                                                       | (Active subspace expansion)                           |
| 3: $\mu_i \leftarrow \operatorname{argmin}_{\mu} \left\  \boldsymbol{y} - \boldsymbol{\mathcal{A}} \left( \boldsymbol{X}(i) - \frac{\mu}{2} \mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{X}(i)) \right) \right\ _2^2 = \frac{\ \mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{X}(i))\ _F^2}{\ \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{X}(i))\ _2^2}$   | (Step size selection)                                 |
| 4: $V(i) \leftarrow X(i) - \frac{\mu_i}{2} \mathcal{P}_{\mathcal{S}_i} \nabla f(X(i))$                                                                                                                                                                                                                                                                                                         | (Error norm reduction via gradient descent)           |
| 5: $\{\mathcal{W}_i, \mathbf{W}(i)\} \leftarrow \tilde{\mathcal{P}}_k(\mathbf{V}(i))$                                                                                                                                                                                                                                                                                                          | (Best rank-k subspace selection)                      |
| 6: $\xi_i \leftarrow \operatorname{argmin}_{\xi} \left\  \boldsymbol{y} - \boldsymbol{\mathcal{A}} \left( \boldsymbol{W}(i) - \frac{\xi}{2} \mathcal{P}_{\mathcal{W}_i} \nabla f(\boldsymbol{W}(i)) \right) \right\ _2^2 = \frac{\ \mathcal{P}_{\mathcal{W}_i} \nabla f(\boldsymbol{W}(i))\ _F^2}{\ \boldsymbol{\mathcal{A}}_{\mathcal{P}_{\mathcal{W}_i}} \nabla f(\boldsymbol{W}(i))\ _2^2}$ | (Step size selection)                                 |
| 7: $\mathbf{X}(i+1) \leftarrow \mathbf{W}(i) - \frac{\xi_i}{2} \mathcal{P}_{\mathcal{W}_i} \nabla f(\mathbf{W}(i))$ with $\mathcal{X}_{i+1} \leftarrow \mathcal{P}_k(\mathbf{X}(i+1))$                                                                                                                                                                                                         | (De-bias using gradient descent)                      |
| $i \leftarrow i + 1$                                                                                                                                                                                                                                                                                                                                                                           |                                                       |
| until $\ \mathbf{X}(i) - \mathbf{X}(i-1)\ _2 \leq \eta \ \mathbf{X}(i)\ _2$ or MaxIterations.                                                                                                                                                                                                                                                                                                  |                                                       |
| Algorithm 1: MATRIX ALPS I                                                                                                                                                                                                                                                                                                                                                                     |                                                       |

### Input: $y, \mathcal{A}, k$ , Tolerance $\eta$ , MaxIterations Initialize: $X(0) \leftarrow 0, \mathcal{X}_0 \leftarrow \{\emptyset\}, i \leftarrow 0$ repeat 1: $\mathcal{D}_i \leftarrow \mathcal{P}_k(\mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(X(i)))$ 2: $\mathcal{S}_i \leftarrow \mathcal{D}_i \cup \mathcal{X}_i$ 3: $V(i) \leftarrow \arg\min_{\mathbf{V}: \mathbf{V} \in \operatorname{span}(\mathcal{S}_i)} \| y - \mathcal{A} \mathbf{V} \|_2^2$ 4: $\{\mathcal{X}_{i+1}, X(i+1)\} \leftarrow \mathcal{P}_k(\mathbf{V}(i))$ $i \leftarrow i+1$ until $\| \mathbf{X}(i) - \mathbf{X}(i-1) \|_2 \le \eta \| \mathbf{X}(i) \|_2$ or MaxIterations. Algorithm 2: ADMiRA Instance

(Best rank-k subspace orthogonal to X<sub>i</sub>) (Active subspace expansion) (Error norm reduction via least-squares optimization) (Best rank-k subspace selection)

# 4 Ingredients for hard thresholding methods

### 4.1 Step size selection

For the sparse vector approximation problem, recent works on the performance of the IHT algorithm provide strong convergence rate guarantees in terms of RIP constants [35]. However, as a prerequisite to achieve these strong isometry constant bounds, the step size is set  $\mu_i = 1, \forall i$ , given that the sensing matrix satisfies  $\|\boldsymbol{\Phi}\|_2^2 < 1$  where  $\|\cdot\|_2$  denotes the spectral norm [34]; similar analysis can be found in [3] for the matrix case. From a different perspective, [36] proposes a constant step size  $\mu_i = 1/(1 + \delta_{2K}), \forall i$ , based on a simple but intuitive convergence analysis of the gradient descent method.

Unfortunately, most of the above problem assumptions are not naturally met; the authors in [37] provide an intuitive example where IHT algorithm behaves differently under various scalings of the sensing matrix; similar counterexamples can be devised for the matrix case. Violating these assumptions usually leads to unpredictable signal recovery performance of the class of hard thresholding methods. Therefore, more sophisticated step size selection procedures should be devised to tackle these issues during actual recovery. On the other hand, the computation of R-RIP constants has exponential time complexity for the strategy of [3].

To this end, existing approaches broadly fall into two categories: constant and adaptive step size selection. In this work, we present efficient strategies to adaptively select the step size  $\mu_i$  that implies fast convergence rate, for mild R-

RIP assumptions on A. Constant step size strategies easily follow from [24] and are not listed in this work.

Adaptive step size selection. There is limited work on the adaptive step size selection for hard thresholding methods. To the best of our knowledge, apart from [24], [37]-[38] are the only studies that attempt this via line searching for the vector case. At the time of review process, we become aware of [39] which implements ideas presented in [37] for the matrix case.

According to Algorithm 1, let X(i) be the current rankk matrix estimate spanned by the set of orthonormal, rank-1 matrices in  $\mathcal{X}_i$ . Using regular gradient descent motions, the new rank-k estimate W(i) can be calculated through:

$$\boldsymbol{V}_i = \boldsymbol{X}(i) - \frac{\mu}{2} \nabla f(\boldsymbol{X}(i)), \quad \{\mathcal{W}_i, \, \boldsymbol{W}(i)\} \leftarrow \mathcal{P}_k(\boldsymbol{V}(i)).$$

We highlight that the rank-k approximate matrix may not be unique. It then holds that the subspace spanned by  $W_i$ originates: i) either from the subspace of  $\mathcal{X}_i$ , ii) or from the best subspace (in terms of the Frobenius norm metric) of the current gradient  $\nabla f(\mathbf{X}(i))$ , orthogonal to  $\mathcal{X}_i$ , iii) or from the combination of orthonormal, rank-1 matrices lying on the union of the above two subspaces. The statements above can be summarized in the following expression:

$$\operatorname{span}(\mathcal{W}_i) \in \operatorname{span}\left(\mathcal{D}_i \cup \mathcal{X}_i\right)$$
 (15)

for any step size  $\mu_i$  and  $\mathcal{D}_i \leftarrow \mathcal{P}_k(\mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\mathbf{X}(i)))$ . Since rank(span( $\mathcal{W}_i$ ))  $\leq k$ , we easily deduce the following key observation: let  $\mathcal{S}_i \leftarrow \mathcal{D}_i \cup \mathcal{X}_i$  be a set of rank-1, orthonormal matrices where rank(span( $\mathcal{S}_i$ ))  $\leq 2k$ . Given  $\mathcal{W}_i$  is unknown



Fig. 1 Median error per iteration for various step size policies and 20 Monte-Carlo repetitions. In brackets, we present the median time consumed for convergene in seconds. (a) m = n = 2048,  $p = 0.4n^2$ , and rank k = 70—A is formed by permuted and subsampled noiselets [40]. (b) n = 2048, m = 512,  $p = 0.4n^2$ , and rank k = 50—we use underdetermined linear map A according to the MC problem (c) n = 2048, m = 512,  $p = 0.4n^2$ , and rank k = 40—we use underdetermined linear map A according to the MC problem.

before the *i*-th iteration,  $S_i$  spans the smallest subspace that contains  $W_i$  such that the following equality

$$\mathcal{P}_{k}\left(\boldsymbol{X}(i) - \frac{\mu_{i}}{2}\nabla f(\boldsymbol{X}(i))\right)$$
$$= \mathcal{P}_{k}\left(\boldsymbol{X}(i) - \frac{\mu_{i}}{2}\mathcal{P}_{\mathcal{S}_{i}}\nabla f(\boldsymbol{X}(i))\right)$$
(16)

necessarily holds.<sup>2</sup>

To compute step-size  $\mu_i$ , we use:

$$\mu_{i} = \underset{\mu}{\operatorname{arg\,min}} \left\| \boldsymbol{y} - \boldsymbol{\mathcal{A}} \left( \boldsymbol{X}(i) - \frac{\mu}{2} \mathcal{P}_{\mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i)) \right) \right\|_{2}^{2}$$
$$= \frac{\|\mathcal{P}_{\mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i))\|_{F}^{2}}{\|\boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i))\|_{2}^{2}},$$
(17)

i.e.,  $\mu_i$  is the minimizer of the objective function, given the current gradient  $\nabla f(\mathbf{X}(i))$ . Note that:

$$1 - \delta_{2k}(\boldsymbol{\mathcal{A}}) \le \frac{1}{\mu_i} \le 1 + \delta_{2k}(\boldsymbol{\mathcal{A}}), \tag{18}$$

due to R-RIP—i.e., we select 2k subspaces such that  $\mu_i$  satisfies (18). We can derive similar arguments for the additional step size selection  $\xi_i$  in Step 6 of Algorithm 1.

Adaptive  $\mu_i$  scheme results in more restrictive worstcase isometry constants compared to [3, 34, 41], but faster convergence and better stability are empirically observed in general. In [3], the authors present the Singular Value Projection (SVP) algorithm, an iterative hard thresholding algorithm for the ARM problem. According to [3], both constant and iteration dependent (but user-defined) step sizes are considered. Adaptive strategies presented in [3] require the computation of R-RIP constants which has exponential time complexity. Figures 1(a)-(b) illustrate some characteristic examples. The performance varies for different problem configurations. For  $\mu > 1$ , SVP diverges for various test cases. We note that, for large fixed matrix dimensions m, n, adaptive step size selection becomes computationally expensive compared to constant step size selection strategies, as the rank of  $X^*$  increases.

### 4.2 Updates on restricted subspaces

In Algorithm 1, at each iteration, the new estimate  $W(i) \leftarrow \mathcal{P}_k(V(i))$  can be further refined by applying a single or multiple gradient descent updates with line search restricted on  $W_i$  [34] (Step 7 in Algorithm 1):

$$\boldsymbol{X}(i+1) \leftarrow \boldsymbol{W}(i) - \frac{\xi_i}{2} \mathcal{P}_{\mathcal{W}_i} \nabla f(\boldsymbol{W}(i)),$$

where  $\xi_i = \frac{\|\mathcal{P}_{W_i} \nabla f(\boldsymbol{W}(i))\|_F^2}{\|\mathcal{A}\mathcal{P}_{W_i} \nabla f(\boldsymbol{W}(i))\|_2^2}$ . In spirit, the gradient step above is the same as block coordinate descent in convex optimization where we find the subspaces adaptively. Figure 1(c) depicts the acceleration achieved by using additional gradient updates over restricted low-rank subspaces for a test case.

4.3 Acceleration via memory-based schemes and low-rank matrix approximations

Memory-based techniques can be used to improve convergence speed. Furthermore, low-rank matrix approximation tools overcome the computational overhead of computing the best low-rank projection by inexactly solving (5). We keep the discussion on memory utilization for Section 7 and low-rank matrix approximations for Sections 8 and 9 where we present new algorithmic frameworks for low-rank matrix recovery.

### 4.4 Active low-rank subspace tracking

Per iteration of Algorithms 1 and 2, we perform projection operations  $\mathcal{P}_{\mathcal{S}} X$  and  $\mathcal{P}_{\mathcal{S}^{\perp}} X$  where  $X \in \mathbb{R}^{m \times n}$ , as described by (6) and (7), respectively. Since  $\mathcal{S}$  is constituted

<sup>&</sup>lt;sup>2</sup> In the case of multiple identical singular values, any ties are lexicographically dissolved.



Fig. 2 Median error per iteration for MATRIX ALPS I and MATRIX ALPS II variants over 10 Monte-Carlo repetitions. In brackets, we present the median time consumed for convergene in seconds. (a)  $n = 2048, m = 512, p = 0.25n^2$ , and rank k = 40. (b)  $n = 2000, m = 1000, p = 0.25n^2$ , and rank k = 50. (c)  $n = m = 1000, p = 0.25n^2$ , and rank k = 50.

by outer products of left and right singular vectors as in Definition 2,  $\mathcal{P}_{\mathcal{S}} X$  (resp.  $\mathcal{P}_{\mathcal{S}^{\perp}} X$ ) projects onto the (resp. complement of the) best low-rank subspace in  $R(\mathbf{X})$  and  $R(\mathbf{X}^T)$ . These operations are highly connected with the adaptive step size selection and the updates on restricted subspaces. Unfortunately, the time-complexity to compute  $\mathcal{P}_{\mathcal{S}} X$  is dominated by three matrix-matrix multiplications which decelerates the convergence of the proposed schemes in high-dimensional settings. To accelerate the convergence in many test cases, it turns out that we do not have to use the best projection  $\mathcal{P}_{\mathcal{S}}$  in practice.<sup>3</sup> Rather, employing *inexact* projections is sufficient to converge to the optimal solution: either i)  $\mathcal{P}_{\mathcal{U}} \mathbf{X}$  onto the best low-rank subspace in  $R(\mathbf{X})$ only (if  $m \ll n$ ) or ii)  $X \mathcal{P}_{\mathcal{V}}$  onto the best low-rank subspace in  $R(\mathbf{X}^T)$  only (if  $m \gg n$ )<sup>4</sup>;  $\mathcal{P}_{\mathcal{U}}$  and  $\mathcal{P}_{\mathcal{V}}$  are defined in Definition 2 and require only one matrix-matrix multiplication.

Figure 2 shows the time overhead due to the exact projection application  $\mathcal{P}_{\mathcal{S}}$  compared to  $\mathcal{P}_{\mathcal{U}}$  for  $m \leq n$ . In Figure 2(a), we use subsampled and permuted noiselets for linear map  $\mathcal{A}$  and in Figures 2(b)-(c), we test the MC problem. While in the case m = n the use of (6)-(7) has a clear advantage over inexact projections using only  $\mathcal{P}_{\mathcal{U}}$ , the latter case converges faster to the desired accuracy  $5 \cdot 10^{-4}$  when  $m \ll n$  as shown in Figures 2(a)-(b). In our derivations, we assume  $\mathcal{P}_{\mathcal{S}}$  and  $\mathcal{P}_{\mathcal{S}^{\perp}}$  as defined in (6) and (7).

### **5** Convergence guarantees

In this section, we present the theoretical convergence guarantees of Algorithms 1 and 2 as functions of R-RIP constants. To characterize the performance of the proposed algorithms, both in terms of convergence rate and noise resilience, we use the following recursive expression:

$$\|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\|_F \le \rho \|\boldsymbol{X}(i) - \boldsymbol{X}^*\|_F + \gamma \|\boldsymbol{\varepsilon}\|_2.$$
(19)

In (19),  $\gamma$  denotes the approximation guarantee and provides insights into algorithm's reconstruction capabilities when additive noise is present;  $\rho < 1$  expresses the convergence rate towards a region around  $X^*$ , whose radius is determined by  $\frac{\gamma}{1-\rho} \|\varepsilon\|_2$ . In short, (19) characterizes how the distance to the true signal  $X^*$  is decreased and how the noise level affects the accuracy of the solution, at each iteration.

### 5.1 MATRIX ALPS I

An important lemma for our derivations below is given next:

**Lemma 6** [Active subspace expansion] Let X(i) be the matrix estimate at the *i*-th iteration and let  $\mathcal{X}_i$  be a set of orthonormal, rank-1 matrices such that  $\mathcal{X}_i \leftarrow \mathcal{P}_k(X(i))$ . Then, at each iteration, the Active Subspace Expansion step in Algorithms 1 and 2 identifies information in  $X^*$ , such that:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{X}^*} \mathcal{P}_{\mathcal{S}_i^{\perp}} \mathbf{X}^* \right\|_F &\leq (2\delta_{2k} + 2\delta_{3k}) \left\| \mathbf{X}(i) - \mathbf{X}^* \right\|_F \\ &+ \sqrt{2(1 + \delta_{2k})} \left\| \boldsymbol{\varepsilon} \right\|_2, \end{aligned}$$
(20)

where  $S_i \leftarrow \mathcal{X}_i \cup \mathcal{D}_i$  and  $\mathcal{X}^* \leftarrow \mathcal{P}_k(\boldsymbol{X}^*)$ .

Lemma 6 states that, at each iteration, the active subspace expansion step identifies a 2k rank subspace such that the amount of unrecovered energy of  $X^*$ —i.e., the projection of  $X^*$  onto the orthogonal subspace of span $(S_i)$ —is bounded by (20).

Then, Theorem 1 characterizes the iteration invariant of Algorithm 1 for the matrix case:

**Theorem 1** [Iteration invariant for MATRIX ALPS I] The (i + 1)-th matrix estimate X(i + 1) of MATRIX ALPS I satisfies the following recursion:

$$\left\|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\right\|_F \le \rho \left\|\boldsymbol{X}(i) - \boldsymbol{X}^*\right\|_F + \gamma \left\|\boldsymbol{\varepsilon}\right\|_2, \quad (21)$$

where  $\rho := \left(\frac{1+2\delta_{2k}}{1-\delta_{2k}}\right) \left(\frac{4\delta_{2k}}{1-\delta_{2k}} + (2\delta_{2k} + 2\delta_{3k})\frac{2\delta_{3k}}{1-\delta_{2k}}\right)$  and  $\gamma := \left(\frac{1+2\delta_{2k}}{1-\delta_{2k}}\right) \left(\frac{2\sqrt{1+\delta_{2k}}}{1-\delta_{2k}} + \frac{2\delta_{3k}}{1-\delta_{2k}}\sqrt{2(1+\delta_{2k})}\right) + \frac{\sqrt{1+\delta_k}}{1-\delta_k}.$  Moreover, when  $\delta_{3k} < 0.1235$ , the iterations are contractive.

<sup>&</sup>lt;sup>3</sup> From a different perspective and for a different problem case, similar ideas have been used in [18].

 $<sup>^{4}\,</sup>$  We can move between these two cases by a simple transpose of the problem.

To provide some intuition behind this result, assume that  $X^*$  is a rank-k matrix. Then, according to Theorem 1, for  $\rho < 1$ , the approximation parameter  $\gamma$  in (21) satisfies:

$$\gamma < 5.7624$$
, for  $\delta_{3k} < 0.1235$ .

Moreover, we derive the following:

$$\rho < \frac{1+2\delta_{3k}}{(1-\delta_{3k})^2} \left(4\delta_{3k} + 8\delta_{3k}^2\right) < \frac{1}{2} \Rightarrow \delta_{3k} < 0.079,$$

which is *a stronger* R-RIP condition assumption compared to state-of-the-art approaches [21]. In the next section, we further improve this guarantee using Algorithm 2.

Unfolding the recursive formula (21), we obtain the following upper bound for  $\|\boldsymbol{X}(i) - \boldsymbol{X}^*\|_F$  at the *i*-th iteration:

$$\left\|\boldsymbol{X}(i) - \boldsymbol{X}^*\right\|_F \le \rho^i \left\|\boldsymbol{X}(0) - \boldsymbol{X}^*\right\|_F + \frac{\gamma}{1-\rho} \left\|\boldsymbol{\varepsilon}\right\|_2.$$
(22)

Then, given X(0) = 0, MATRIX ALPS I finds a rank-k solution  $\widehat{X} \in \mathbb{R}^{m \times n}$  such that  $\|\widehat{X} - X^*\|_F \leq \frac{\gamma + 1 - \rho}{1 - \rho} \|\varepsilon\|_2$  after  $i := \left\lceil \frac{\log(\|X^*\|_F / \|\varepsilon\|_2)}{\log(1/\rho)} \right\rceil$  iterations.

If we ignore steps 5 and 6 in Algorithm 1, we obtain another projected gradient descent variant for the affine rank minimization problem, for which we obtain the following performance guarantees—the proof follows from the proof of Theorem 1.

**Corollary 1** [MATRIX ALPS I Instance] In Algorithm 1, we ignore steps 5 and 6 and let  $\{\mathcal{X}_{i+1}, \mathbf{X}(i+1)\} \leftarrow \mathcal{P}_k(\mathbf{V}_i)$ . Then, by the same analysis, we observe that the following recursion is satisfied:

$$\left\|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\right\|_F \le \rho \left\|\boldsymbol{X}(i) - \boldsymbol{X}^*\right\|_F + \gamma \left\|\boldsymbol{\varepsilon}\right\|_2, \quad (23)$$

for  $\rho := \left(\frac{4\delta_{2k}}{1-\delta_{2k}} + (2\delta_{2k}+2\delta_{3k})\frac{2\delta_{3k}}{1-\delta_{2k}}\right)$  and  $\gamma := \left(\frac{2\sqrt{1+\delta_{2k}}}{1-\delta_{2k}} + \frac{2\delta_{3k}}{1-\delta_{2k}}\sqrt{2(1+\delta_{2k})}\right)$ . Moreover,  $\rho < 1$  when  $\delta_{3k} < 0.1594$ .

We observe that the absence of the additional estimate update over restricted support sets results in less restrictive isometry constants compared to Theorem 1. In practice, additional updates result in faster convergence, as shown in Figure 1(c).

### 5.2 ADMiRA Instance

In MATRIX ALPS I, the gradient descent steps constitute a first-order approximation to least-squares minimization problems. Replacing Step 4 in Algorithm 1 with the following optimization problem:

$$\boldsymbol{V}(i) \leftarrow \operatorname*{arg\,min}_{\boldsymbol{V}:\boldsymbol{V}\in \operatorname{span}(\mathcal{S}_i)} \left\| \boldsymbol{y} - \boldsymbol{\mathcal{A}} \boldsymbol{V} \right\|_2^2, \tag{24}$$

we obtain ADMiRA (furthermore, we remove the de-bias step in Algorithm 1). Assuming that the linear operator  $\mathcal{A}$ , restricted on sufficiently low-rank subspaces, is well conditioned in terms of the R-RIP assumption, the optimization problem (24) has a unique optimal minimizer. By exploiting the optimality condition in Lemma 1, ADMiRA instance in Algorithm 2 features the following guarantee: **Theorem 2** [Iteration invariant for ADMiRA instance] The (i+1)-th matrix estimate  $\mathbf{X}(i+1)$  of ADMiRA answers the following recursive expression:

$$\begin{split} \left\| \mathbf{X}(i+1) - \mathbf{X}^* \right\|_F &\leq \rho \left\| \mathbf{X}(i) - \mathbf{X}^* \right\|_F + \gamma \left\| \mathbf{\varepsilon} \right\|_F, \\ \rho &:= \left( 2\delta_{2k} + 2\delta_{3k} \right) \sqrt{\frac{1+3\delta_{3k}^2}{1-\delta_{3k}^2}}, \text{ and } \gamma &:= \sqrt{\frac{1+3\delta_{3k}^2}{1-\delta_{3k}^2}} \sqrt{2(1+\delta_{3k})} \\ &+ \left( \frac{\sqrt{1+3\delta_{3k}^2}}{1-\delta_{3k}} + \sqrt{3} \right) \sqrt{1+\delta_{2k}}. \text{ Moreover, when } \delta_{3k} < 0.2267, \\ \text{the iterations are contractive.} \end{split}$$

Similarly to MATRIX ALPS I analysis, the parameter  $\gamma$  in Theorem 2 satisfies:

 $\gamma < 5.1848$ , for  $\delta_{3k} < 0.2267$ .

Furthermore, to compare the approximation guarantees of Theorem 2 with [21], we further observe:

$$\delta_{3k} < 0.1214$$
, for  $\rho < 1/2$ .

We remind that [21] provides convergence guarantees for ADMiRA with  $\delta_{4k} < 0.04$  for  $\rho = 1/2$ .

### 6 Complexity Analysis

In each iteration, computational requirements of the proposed hard thresholding methods mainly depend on the total number of linear mapping operations  $\mathcal{A}$ , gradient descent steps, least-squares optimizations, projection operations and matrix decompositions for low rank approximation. Different algorithmic configurations (e.g. removing steps 6 and 7 in Algorithm 1) lead to hard thresholding variants with less computational complexity per iteration and better R-RIP conditions for convergence but a degraded performance in terms of stability and convergence speed is observed in practice. On the other hand, these additional processing steps increase the required time-complexity per iteration; hence, low iteration counts are desired to tradeoff these operations.

A non-exhaustive list of linear map examples includes the identity operator (Principal component analysis (PCA) problem), Fourier/Wavelets/Noiselets tranformations and the famous Matrix Completion problem where  $\mathcal{A}$  is a mask operator such that only a fraction of elements in X is observed. Assuming the most demanding case where  $\mathcal{A}$  and  $\mathcal{A}^*$  are dense linear maps with no structure, the computation of the gradient  $\nabla f(X(i))$  at each iteration requires O(pkmn) arithmetic operations.

Given a set S of orthonormal, rank-1 matrices, the projection  $\mathcal{P}_S X$  for any matrix  $X \in \mathbb{R}^{m \times n}$  requires time complexity  $O(\max\{m^2n, mn^2\})$  as a sequence of matrix-matrix multiplication operations.<sup>5</sup> In MATRIX ALPS I, the adaptive step size selection steps require  $O(\max\{pkmn, m^2n\})$ time complexity for the calculation of  $\mu_i$  and  $\xi_i$  quantities. In

<sup>&</sup>lt;sup>5</sup> While such operation has  $O(\max\{m^2n, mn^2\})$  complexity, each application of  $\mathcal{P}_S \mathbf{X}$  requires three matrix-matrix multiplications. To reduce such computational cost, we *relax* this operation in Section 10 where in practice we use only  $\mathcal{P}_{\mathcal{U}}$  that needs one matrix-matrix multiplication.

ADMiRA solving a least-squares system restricted on rank-2k and rank-k subspaces requires  $O(pk^2)$  complexity; according to [32], [21], the complexity of this step can be further reduced using iterative techniques such as the Richardson method or conjugate gradients algorithm.

Using the Lanczos method, we require O(kmn) arithmetic operations to compute a rank-*k* matrix approximation for a given constant accuracy; a prohibitive time-complexity that does not scale well for many practical applications. Sections 8 and 9 describe approximate low rank matrix projections and how they affect the convergence guarantees of the proposed algorithms.

Overall, the operation that dominates per iteration requires  $O(\max\{pkmn, m^2n, mn^2\})$  time complexity in the proposed schemes.

### 7 Memory-based Acceleration

Iterative algorithms can use memory to gain momentum in convergence. Based on Nesterov's optimal gradient methods [42], we propose a hard thresholding variant, described in Algorithm 3 where an additional update on X(i + 1) with momentum step size  $\tau_i$  is performed using previous matrix estimates.

Similar to  $\mu_i$  strategies,  $\tau_i$  can be preset as constant or adaptively computed at each iteration. Constant momentum step size selection has no additional computational cost but convergence rate acceleration is not guaranteed for some problem formulations in practice. On the other hand, empirical evidence has shown that adaptive  $\tau_i$  selection strategies result in faster convergence compared to zero-memory methods with *similar complexity*.

For the case of strongly convex objective functions, Nesterov [43] proposed the following constant momentum step size selection scheme:  $\tau_i = \frac{\alpha_i(1-\alpha_i)}{\alpha_i^2+\alpha_{i+1}}$ , where  $\alpha_0 \in (0,1)$  and  $\alpha_{i+1}$  is computed as the root  $\in (0,1)$  of

$$\alpha_{i+1}^2 = (1 - \alpha_{i+1})\alpha_i^2 + q\alpha_{i+1}, \text{ for } q \triangleq \frac{1}{\kappa^2(\mathcal{A})}, \qquad (25)$$

where  $\kappa(\mathcal{A})$  denotes the condition number of  $\mathcal{A}$ . In this scheme, exact calculation of q parameter is computationally expensive for large-scale data problems and approximation schemes are leveraged to compensate this complexity bottleneck.

Based upon adaptive  $\mu_i$  selection, we propose to select  $\tau_i$  as the minimizer of the objective function:

$$\tau_{i} = \underset{\tau}{\arg\min} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{Q}(i+1)\|_{2}^{2}$$
$$= \frac{\langle \boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i), \boldsymbol{A}\boldsymbol{X}(i) - \boldsymbol{A}\boldsymbol{X}(i-1) \rangle}{\|\boldsymbol{A}\boldsymbol{X}(i) - \boldsymbol{A}\boldsymbol{X}(i-1)\|_{2}^{2}}, \quad (26)$$

where  $\mathcal{A}X(i)$ ,  $\mathcal{A}X(i-1)$  are already *pre-computed* at each iteration. According to (26),  $\tau_i$  is dominated by the calculation of a vector inner product, a computationally cheaper process than q calculation.

Theorem 3 characterizes Algorithm 3 for *constant* momentum step size selection. To keep the main ideas simple,



**Fig. 3** Median error per iteration for various momentum step size policies and 10 Monte-Carlo repetitions. Here, n = 1024, m = 256,  $p = 0.25n^2$ , and rank k = 40. We use permuted and subsampled noiselets for the linear map A. In brackets, we present the median time for convergence in seconds.

we ignore the additional gradient updates in Algorithm 3. In addition, we only consider the noiseless case for clarity. The convergence rate proof for these cases is provided in the appendix.

**Theorem 3** [Iteration invariant for MATRIX ALPS II] Let  $y = AX^*$  be a noiseless set of observations. To recover  $X^*$  from y and A, the (i + 1)-th matrix estimate X(i + 1) of MATRIX ALPS II satisfies the following recursion:

$$\begin{aligned} \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F &\leq \alpha (1+\tau_i) \left\| \boldsymbol{X}(i) - \boldsymbol{X}^* \right\|_F \\ &+ \alpha \tau_i \left\| \boldsymbol{X}(i-1) - \boldsymbol{X}^* \right\|_F, \end{aligned}$$
(27)

where  $\alpha := \frac{4\delta_{3k}}{1-\delta_{3k}} + (2\delta_{3k} + 2\delta_{4k})\frac{2\delta_{3k}}{1-\delta_{3k}}$ . Moreover, solving the above second-order recurrence, the following inequality holds true:

$$\| \mathbf{X}(i+1) - \mathbf{X}^* \|_F \le \rho^{i+1} \| \mathbf{X}(0) - \mathbf{X}^* \|_F,$$

$$for \ \rho := \frac{\alpha(1+\tau_i) + \sqrt{\alpha^2(1+\tau_i)^2 + 4\alpha\tau_i}}{2}.$$
(28)

Theorem 3 provides convergence rate behaviour proof for the case where  $\tau_i$  is constant  $\forall i$ . The more elaborate case where  $\tau_i$  follows the policy described in (26) is left as an open question for future work. To provide some insight for (28), for  $\tau_i = 1/4$ ,  $\forall i$  and  $\tau_i = 1/2$ ,  $\forall i, \delta_{4k} < 0.1187$ and  $\delta_{4k} < 0.095$  guarantee convergence in Algorithm 3, respectively. While the RIP requirements for memory-based MATRIX ALPS II are more stringent than the schemes proposed in the previous section, it outperforms Algorithms 1 and 2. Figure 2 shows the acceleration achieved in MATRIX ALPS II by using inexact projections  $\mathcal{P}_{\mathcal{U}}$ . Using the proper projections (6)-(7), Figure 3 shows acceleration in practice when using the adaptive momentum step size strategy: while a wide range of constant momentum step sizes leads to convergence, providing flexibility to select an appropriate  $\tau_i$ , adaptive  $\tau_i$  avoids this arbitrary  $\tau_i$  selection while further decreases the number of iterations needed for convergence in most cases.

**Input:** y, A, k, Tolerance  $\eta$ , MaxIterations **Initialize:**  $\mathbf{X}(0) \leftarrow 0, \mathcal{X}_0 \leftarrow \{\emptyset\}, \mathbf{Q}(0) \leftarrow 0, \mathcal{Q}_0 \leftarrow \{\emptyset\}, \tau_i \ \forall i, i \leftarrow 0$ repeat  $\begin{array}{c} \mathcal{P}_{i} \leftarrow \mathcal{P}_{k} \left( \mathcal{P}_{\mathcal{Q}_{i}^{\perp}} \nabla f(\boldsymbol{Q}(i)) \right) \\ \mathcal{S}_{i} \leftarrow \mathcal{D}_{i} \cup \mathcal{Q}_{i} \end{array}$ 1: 2:  $\mu_i \leftarrow \arg\min_{\mu} \left\| \boldsymbol{y} - \boldsymbol{\mathcal{A}} \big( \boldsymbol{Q}(i) - \frac{\mu}{2} \mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{Q}(i)) \big) \right\|_2^2 = \frac{\|\mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{Q}(i))\|_F^2}{\|\boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{Q}(i))\|_2^2}$ 3:  $\begin{aligned} \boldsymbol{V}(i) \leftarrow \boldsymbol{Q}(i) - \frac{\mu_i}{2} \mathcal{P}_{\mathcal{S}_i} \nabla f(\boldsymbol{Q}(i)) \\ \{ \mathcal{X}_{i+1}, \, \boldsymbol{X}(i+1) \} \leftarrow \mathcal{P}_k(\boldsymbol{V}(i)) \\ \boldsymbol{Q}(i+1) \leftarrow \boldsymbol{X}(i+1) + \tau_i(\boldsymbol{X}(i+1) - \boldsymbol{X}(i)) \end{aligned}$ 4: 5: 6: 7.  $\mathcal{Q}_{i+1} \leftarrow \operatorname{ortho}(\mathcal{X}_i \cup \mathcal{X}_{i+1})$  $i \leftarrow \bar{i} + 1$ until  $\|\mathbf{X}(i) - \mathbf{X}(i-1)\|_2 \le \eta \|\mathbf{X}(i)\|_2$  or MaxIterations.

Algorithm 3: MATRIX ALPS II

 $(Best rank-k \ subspace \ orthogonal \ to \ \mathcal{Q}_i)$   $(Active \ subspace \ expansion)$   $(Step \ size \ selection)$   $(Error \ norm \ reduction \ via \ gradient \ descent)$   $(Best \ rank-k \ subspace \ selection)$   $(Momentum \ update)$ 

# 8 Accelerating MATRIX ALPS: ε-Approximation of SVD via Column Subset Selection

A time-complexity bottleneck in the proposed schemes is the computation of the singular value decomposition to find subspaces that describe the unexplored information in matrix  $X^*$ . Unfortunately, the computational cost of regular SVD for best subspace tracking is prohibitive for many applications.

Based on [44, 45], we can obtain randomized SVD approximations of a matrix X using *column subset selection* ideas: we compute a leverage score for each column that represents its "significance". In particular, we define a probability distribution that weights each column depending on the amount of information they contain; usually, the distribution is related to the  $\ell_2$ -norm of the columns. The main idea of this approach is to compute a surrogate rank-k matrix  $\mathcal{P}_k^{\epsilon}(X)$  by subsampling the columns according to this distribution. It turns out that the total number of sampled columns is a function of the parameter  $\epsilon$ . Moreover, [46, 47] proved that, given a target rank k and an approximation parameter  $\epsilon$ , we can compute an  $\epsilon$ -approximate rank-k matrix  $\mathcal{P}_k^{\epsilon}(X)$  according to the following definition.

**Definition 4** [ $\epsilon$ -approximate low-rank projection] Let X be an arbitrary matrix. Then,  $\mathcal{P}_k^{\epsilon}(X)$  projection provides a rank-k matrix approximation to X such that:

$$\left\|\mathcal{P}_{k}^{\epsilon}(\boldsymbol{X}) - \boldsymbol{X}\right\|_{F}^{2} \leq (1+\epsilon)\left\|\mathcal{P}_{k}(\boldsymbol{X}) - \boldsymbol{X}\right\|_{F}^{2},$$
(29)

where  $\mathcal{P}_k(\mathbf{X}) \in \arg\min_{\mathbf{Y}: \operatorname{rank}(\mathbf{Y}) \leq k} \|\mathbf{X} - \mathbf{Y}\|_F$ .

For the following theoretical results, we assume the following condition on the sensing operator  $\mathcal{A} : \|\mathcal{A}^*\beta\|_F \le \lambda, \forall \beta \in \mathbb{R}^p$  where  $\lambda > 0$ . Using  $\epsilon$ -approximation schemes to perform the Active subspace selection step, the following upper bound holds. The proof is provided in the Appendix:

**Lemma 7** [ $\epsilon$ -approximate active subspace expansion] Let  $\mathbf{X}(i)$  be the matrix estimate at the *i*-th iteration and let  $\mathcal{X}_i$  be a set of orthonormal, rank-1 matrices in  $\mathbb{R}^{m \times n}$  such that  $\mathcal{X}_i \leftarrow \mathcal{P}_k(\mathbf{X}(i))$ . Furthermore, let

$$\mathcal{D}_i^{\epsilon} \leftarrow \mathcal{P}_k^{\epsilon} \big( \mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\boldsymbol{X}(i)) \big),$$

be a set of orthonormal, rank-1 matrices that span rank-k subspace such that (29) is satisfied for  $\mathbf{X} := \mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\mathbf{X}(i))$ . Then, at each iteration, the Active Subspace Expansion step in Algorithms 1 and 2 captures information contained in the true matrix  $\mathbf{X}^*$ , such that:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{X}^*} \mathcal{P}_{\mathcal{S}_i^{\perp}} \mathbf{X}^* \right\|_F \\ &\leq \left( 2\delta_{2k} + 2\delta_{3k} \right) \left\| \mathbf{X}(i) - \mathbf{X}^* \right\|_F + \sqrt{2(1 + \delta_{2k})} \left\| \boldsymbol{\varepsilon} \right\|_2 \\ &+ 2\lambda \sqrt{\epsilon}, \end{aligned}$$
(30)

where  $S_i \leftarrow \mathcal{X}_i \cup \mathcal{D}_i^{\epsilon}$  and  $\mathcal{X}^* \leftarrow \mathcal{P}_k(\boldsymbol{X}^*)$ .

Furthermore, to prove the following theorems, we extend Lemma 10, provided in the Appendix, as follows. The proof easily follows from the proof of Lemma 10, using Definition 4:

**Lemma 8** [ $\epsilon$ -approximation rank-k subspace selection] Let V(i) be a rank-2k proxy matrix in the subspace spanned by  $S_i$  and let  $\widehat{W}(i) \leftarrow \mathcal{P}_k^{\epsilon}(V(i))$  denote the rank-k  $\epsilon$ -approximation to V(i), according to (5). Then:

$$\begin{aligned} \left\| \mathbf{\hat{W}}(i) - \mathbf{V}(i) \right\|_{F}^{2} &\leq (1 + \epsilon) \left\| \mathbf{W}(i) - \mathbf{V}(i) \right\|_{F} \\ &\leq (1 + \epsilon) \left\| \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{V}(i) - \mathbf{X}^{*}) \right\|_{F} \\ &\leq (1 + \epsilon) \left\| \mathbf{V}(i) - \mathbf{X}^{*} \right\|_{F} \end{aligned}$$
(31)

where  $W(i) \leftarrow \mathcal{P}_k(V(i))$ .

8.1 MATRIX ALPS I using  $\epsilon$ -approximate low-rank projection via column subset selection

Using  $\epsilon$ -approximate SVD in MATRIX ALPS I, the following iteration invariant theorem holds:

**Theorem 4** [Iteration invariant with  $\epsilon$ -approximate projections for MATRIX ALPS I] The (i + 1)-th matrix estimate  $\boldsymbol{X}(i + 1)$  of MATRIX ALPS I with  $\epsilon$ -approximate projections  $\mathcal{D}_i^{\epsilon} \leftarrow \mathcal{P}_k^{\epsilon}(\mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\boldsymbol{X}(i)))$  and  $\widehat{\boldsymbol{W}}(i) \leftarrow \mathcal{P}_k^{\epsilon}(\boldsymbol{V}(i))$ in Algorithm 1 satisfies the following recursion:

$$\left\|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\right\|_F \le \rho \left\|\boldsymbol{X}(i) - \boldsymbol{X}^*\right\|_F + \gamma \|\boldsymbol{\varepsilon}\|_2 + \beta \lambda,$$
(32)

where 
$$\rho := \left(1 + \frac{3\delta_k}{1 - \delta_k}\right) (2 + \epsilon) \left[\left(1 + \frac{\delta_{3k}}{1 - \delta_{2k}}\right) 4\delta_{3k} + \frac{2\delta_{2k}}{1 - \delta_{2k}}\right]$$
$$\beta := \left(1 + \frac{3\delta_k}{1 - \delta_k}\right) (2 + \epsilon) \left(1 + \frac{\delta_{3k}}{1 - \delta_{2k}}\right) 2\sqrt{\epsilon}, and$$
$$\gamma := \left(1 + \frac{3\delta_k}{1 - \delta_k}\right) (2 + \epsilon) \left[\left(1 + \frac{\delta_{3k}}{1 - \delta_{2k}}\right) \sqrt{2(1 + \delta_{2k})} + 2\frac{\sqrt{1 + \delta_{2k}}}{1 - \delta_{2k}}\right].$$



Fig. 4 Performance comparison using  $\epsilon$ -approximation SVD [47] in MATRIX ALPS II. m = n = 256,  $p = 0.4n^2$ , rank of  $X^*$  equals 2 and A constituted by permuted noiselets. The non-smoothness in the error curves is due to the extreme low rankness of  $X^*$  for this setting.

Similar analysis can be conducted for the ADMiRA algorithm. To illustrate the impact of SVD  $\epsilon$ -approximation on the signal reconstruction performance of the proposed methods, we replace the *best* rank-*k* projections in steps 1 and 5 of Algorithm 1 by the  $\epsilon$ -approximation SVD algorithm, presented in [47]. In this paper, the column subset selection algorithm satisfies the following theorem:

**Theorem 5** Let  $X \in \mathbb{R}^{m \times n}$  be a signal of interest with arbitrary rank  $< \min\{m, n\}$  and let  $X_k$  represent the best rank-k approximation of X. After  $2(k+1)(\log(k+1)+1)$  passes over the data, the Linear Time Low-Rank Matrix Approximation algorithm in [47] computes a rank-k approximation  $\mathcal{P}_k^{\epsilon}(X) \in \mathbb{R}^{m \times n}$  such that Definition 4 is satisfied with probability at least 3/4.

The proof is provided in [47]. In total, Linear Time Low-Rank Matrix Approximation algorithm [47] requires  $O(mn (k/\epsilon + k^2 \log k) + (m+n)(k^2/\epsilon^2 + k^3 \log k/\epsilon + k^4 \log^2 k))$ and  $O(\min\{m, n\}(k/\epsilon + k^2 \log k))$  time and space complexity, respectively. However, while column subset selection methods such as [47] reduce the overall complexity of low-rank projections in theory, in practice this applies only in very high-dimensional settings. To strengthen this argument, in Figure 4 we compare SVD-based MATRIX ALPS II with MATRIX ALPS II using the  $\epsilon$ -approximate column subset selection method in [47]. We observe that the total number of iterations for convergence increases due to  $\epsilon$ -approximate low-rank projections, as expected. Nevertheless, we observe that, on average, the column subset selection process [47] is computationally prohibitive compared to regular SVD due to the time overhead in the column selection procedure—fewer passes over the data are desirable in practice to tradeoff the increased number of iterations for convergence. In the next section, we present alternatives based on recent trends in randomized matrix decompositions and how we can use them in low-rank recovery.

### 9 Accelerating MATRIX ALPS: SVD Approximation using Randomized Matrix Decompositions

Finding low-cost SVD approximations to tackle the above complexity issues is a challenging task. Recent works on probabilistic methods for matrix approximation [26] provide a family of efficient approximate projections on the set of rank-deficient matrices with clear computational advantages over regular SVD computation in practice and attractive theoretical guarantees. In this work, we build on the low-cost, power-iteration *subspace tracking* scheme, described in Algorithm 4.

The convergence guarantees of Algorithm 4 follow the same motions described in Section 8, where  $\epsilon$  is a function of m, n, k and q.

### **10 Experiments**

### 10.1 List of algorithms

In the following experiments, we compare the following algorithms: (i) the Singular Value Projection (SVP) algorithm [3], a non-convex first-order projected gradient descent algorithm with *constant* step size selection (we study the case where  $\mu = 1$ , (*ii*) the inexact ALM algorithm [18] based on augmented Langrance multiplier method, (*iii*) the OptSpace algorithm [48], a gradient descent algorithm on the Grassmann manifold, (iv) the Grassmannian Rank-One Update Subspace Estimation (GROUSE) and the Grassmannian Robust Adaptive Subspace Tracking methods (GRASTA) [49, 50], two stochastic gradient descent algorithms that operate on the Grassmannian-moreover, to allay the impact of outliers in the subspace selection step, GRASTA incorporates the augmented Lagrangian of  $\ell_1$ -norm loss function into the Grassmannian optimization framework, (v) the Riemannian Trust Region Matrix Completion algorithm (RTRMC) [51], a matrix completion method using first- and second-order Riemannian trust-region approaches, (vi) the Low rank Matrix Fitting algorithm (LMatFit) [52], a nonlinear successive over-relaxation algorithm and (vii) the algorithms MA-TRIX ALPS I, ADMiRA [21], MATRIX ALPS II and Randomized MATRIX ALPS II with QR Factorization (referred shortly as MATRIX ALPS II with QR) presented in this paper.





**Fig. 5** Median error per iteration for MATRIX ALPS II variants over 10 Monte-Carlo repetitions. In brackets, we present the mean time consumed for convergene in seconds. (a) n = 1024, m = 256,  $p = 0.25n^2$ , and rank k = 20. (b) n = 2048, m = 512,  $p = 0.25n^2$ , and rank k = 60. (c) n = 1000, m = 500,  $p = 0.25n^2$ , and rank k = 50.

### 10.2 Implementation details

To properly compare the algorithms in the above list, we preset a set of parameters that are common. We denote the ratio between the number of observed samples and the number of variables in  $X^*$  as SR :=  $p/(m \cdot n)$  (sampling ratio). Furthemore, we reserve FR to represent the degree of freedom in a rank-k matrix to the number of observations—this corresponds to the following definition FR := (k(m+n-k))/p. In most of the experiments, we fix the number of observable data p = 0.3mn and vary the dimensions and the rank k of the matrix  $X^*$ . This way, we create a wide range of different problem configurations with variable FR.

Most of the algorithms in comparison as well as the proposed schemes are implemented in MATLAB. We note that the LMaFit software package contains parts implemented in C that reduce the per iteration computational time. This provides insights for further time savings in our schemes; we leave a fully optimized implementation of our algorithms as future work. In this paper, we mostly test cases where  $m \ll n$ . Such settings can be easily found in real-world problems such as recommender systems (e.g. Netflix, Amazon, etc.) where the number of products, movies, etc. is much greater than the number of active users.

In all algorithms, we fix the maximum number of iterations to 500, unless otherwise stated. To solve a least squares problem over a restricted low-rank subspace, we use conjugate gradients with maximum number of iterations given by cg\_maxiter := 500 and tolerance parameter cg\_tol :=  $10^{-10}$ . We use the same stopping criteria for the majority of algorithms under consideration:

$$\frac{\left\|\boldsymbol{X}(i) - \boldsymbol{X}(i-1)\right\|_{F}}{\left\|\boldsymbol{X}(i)\right\|_{F}} \le \text{tol},$$
(33)

where X(i), X(i-1) denote the current and the previous estimate of  $X^*$  and tol :=  $5 \cdot 10^{-5}$ . If this is not the case, we tweak the algorithms to minimize the total execution time and achieve similar reconstruction performance as the rest of the algorithms. For SVD calculations, we use the lansvd implementation in PROPACK package [53]-moreover, all the algorithms in comparison use the same linear operators  $\mathcal{A}$  and  $\mathcal{A}^*$  for gradient and SVD calculations and conjugategradient least-squares minimizations. For fairness, we modified all the algorithms so that they *exploit the true rank*. Small deviations from the true rank result in relatively small degradation in terms of the reconstruction performance. In case the rank of  $X^*$  is unknown, one has to predict the dimension of the principal singular space. The authors in [3], based on ideas in [48], propose to compute singular values incrementally until a significant gap between singular values is found. Similar strategies can be found in [18] for the convex case.

In MATRIX ALPS II and MATRIX ALPS II with OR, we perform  $Q_i \leftarrow \operatorname{ortho}(\mathcal{X}_i \cup \mathcal{X}_{i+1})$  to construct a set of orthonormal rank-1 matrices that span the subspace, spanned by  $\mathcal{X}_i \cup \mathcal{X}_{i+1}$ . While such operation can be implemented using factorization procedures (such as SVD or QR decompositions), in practice this degrades the time complexity of the algorithm substantially as the rank k and the problem dimensionality increase. In our implementations, we simply union the set of orthonormal rank-1 matrices, without further orthogonalization. Thus, we employ inexact projections for computational efficiency which results in faster convergence. Figure 5 shows the time overhead due to the additional orthogonalization process. We compare three algorithms: MATRIX ALPS II (no orthogonalization step), MA-TRIX ALPS II using SVD for orthogonalization and, MA-TRIX ALPS II using QR for orthogonalization. In Figures 5(a)-(b), we use subsampled and permuted noiselets for linear map  $\mathcal{A}$  and in Figure 5(c), we test the MC problem. In all the experimental cases considered in this work, we observed identical performace in terms of reconstruction accuracy for the three variants, as can be also seen in Figure 5. To this end, for the rest of the paper, we use MATRIX ALPS II where  $Q_i \leftarrow X_i \cup X_{i+1}$ .

# 10.3 Limitations of $\|\cdot\|_*$ -based algorithms: a toy example

While nucluear norm heuristic is widely used in solving the low-rank minimization problem, [54] presents simple problem cases where convex, nuclear norm-based, algorithms *fail* in practice. Using the  $\|\cdot\|_*$ -norm in the objective function as the convex surrogate of the rank( $\cdot$ ) metric might lead to a candidate set with multiple solutions, introducing ambiguity in the selection process. Borrowing the example in [54], we test the list of algorithms above on a toy problem setting that does not satisfy the rank-RIP. To this end, we design the following problem: let  $X^* \in \mathbb{R}^{5\times 4}$  be the matrix of interest with rank( $X^*$ ) = 2, as shown in Figure 6(a). We consider the case where we have access to  $X^*$  only through a subset of its entries, as shown in Figure 6(b).

| $\begin{pmatrix} 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ | $\begin{pmatrix} 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ ? & ? & ? & 1 \\ 2 & ? & ? & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$ |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| (a)                                                                                                               | (b)                                                                                                               |

**Fig. 6** Matrix Completion toy example for  $X^* \in \mathbb{R}^{5 \times 4}$ . We use '?' to denote the unobserved entried.

In Figure 7, we present the reconstruction performance of various matrix completion solvers after 300 iterations. Although there are multiple solutions that induce the recovered matrix and have the same rank as  $X^*$ , most of the algorithms in comparison reconstruct  $X^*$  successfully. We note that, in some cases, the inadequancy of an algorithm to re-

construct  $X^*$  is not because of the (relaxed) problem formulation but due to its fast—but inaccurate—implementation (fast convergence versus reconstruction accuracy tradeoff).

10.4 Synthetic data

**General affine rank minimization using noiselets:** In this experiment, the set of observations  $y \in \mathbb{R}^p$  satisfy:

$$y = \mathcal{A}X^* + \varepsilon \tag{34}$$

Here, we use permuted and subsampled noiselets for the linear operator  $\mathcal{A}$  [12]. The signal  $\mathbf{X}^*$  is generated as the multiplication of two low-rank matrices,  $\mathbf{L} \in \mathbb{R}^{m \times k}$  and  $\mathbf{R} \in \mathbb{R}^{n \times k}$ , such that  $\mathbf{X}^* = \mathbf{L}\mathbf{R}^T$  and  $\|\mathbf{X}^*\|_F = 1$ . Both  $\mathbf{L}$  and  $\mathbf{R}$  have random independent and identically distributed (iid) Gaussian entries with zero mean and unit variance. In the noisy case, the additive noise term  $\boldsymbol{\varepsilon} \in \mathbb{R}^p$  contains entries drawn from a zero mean Gaussian distribution with  $\|\boldsymbol{\varepsilon}\|_2 \in \{10^{-3}, 10^{-4}\}$ . We compare the following algorithms: SVP, ADMiRA,

We compare the following algorithms: SVP, ADMiRA, MATRIX ALPS I, MATRIX ALPS II and MATRIX ALPS II with QR for various problem configurations, as depicted in Table 1 (there is no available code with arbitrary sensing operators for the rest algorithms). In Table 1, we show the median values of reconstruction error, number of iterations and execution time over 50 Monte Carlo iterations. For all cases, we assume SR = 0.3 and we set the maximum number of iterations to 500. Bold font denotes the fastest execution time. Furthermore, Figure 8 illustrates the effectiveness of the algorithms for some representative problem configurations.

In Table 1, MATRIX ALPS II and MATRIX ALPS II with QR obtain accurate low-rank solutions much faster than the rest of the algorithms in comparison. In high dimensional settings, MATRIX ALPS II with QR scales better as the problem dimensions increase, leading to faster convergence. Moreover, its execution time is at least a few orders of magnitude smaller compared to SVP, ADMiRA and MA-TRIX ALPS I implementations.

**Robust matrix completion:** We design matrix completion problems in the following way. The signal of interest  $X^* \in \mathbb{R}^{m \times n}$  is synthesized as a rank-*k* matrix, factorized as  $X^* := \mathbf{LR}^T$  with  $||X^*||_F = 1$  where  $\mathbf{L} \in \mathbb{R}^{m \times k}$  and  $\mathbf{R} \in \mathbb{R}^{n \times k}$  as defined above. In sequence, we subsample  $X^*$  by observing p = 0.3mn entries, drawn uniformly at random. We denote the set of ordered pairs that represent the coordinates of the observable entries as  $\Omega = \{(i, j) :$  $[X^*]_{ij}$  is known $\} \subseteq \{1, \ldots, m\} \times \{1, \ldots, n\}$  and let  $\mathcal{A}_{\Omega}$ denote the linear operator (mask) that samples a matrix according to  $\Omega$ . Then, the set of observations satisfies:

$$\boldsymbol{y} = \boldsymbol{\mathcal{A}}_{\boldsymbol{\Omega}} \boldsymbol{X}^* + \boldsymbol{\varepsilon}, \tag{35}$$

i.e., the known entries of  $X^*$  are structured as a vector  $y \in \mathbb{R}^p$ , disturbed by a dense noise vector  $\varepsilon \in \mathbb{R}^p$  with fixedenergy, which is populated by iid zero-mean Gaussians.

To demonstrate the reconstruction accuracy and the convergence speeds, we generate various problem configurations (both noisy and noiseless settings), according to (35).



Fig. 7 Toy example reconstruction performance for various algorithms. We observe that  $X^*$  is an integer matrix—since the algorithms under consideration return real matrices as solutions, we round the solution elementwise.

Table 1 General ARM using Noiselets.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Configu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ration                                               |                                                                                                                                                             | FR                                                                                                                 | FR SVP                                                                                                                                                        |                                                                                                                                                                                                                             |                                                                                                                                                                                        |       | ADMiRA                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       | MATRIX ALPS I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------|
| m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k                                                    | $\left\  \mathbf{\varepsilon} \right\ _{2}$                                                                                                                 |                                                                                                                    | iter.                                                                                                                                                         | err.                                                                                                                                                                                                                        | time                                                                                                                                                                                   | iter. | err.                                                                                                                                                                                                               | time                                                                                                                                                                                                                                                                                                  | iter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | err.                                                                                                 | time           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                    | 0                                                                                                                                                           | 0.097                                                                                                              | 38                                                                                                                                                            | $2.2 \cdot 10^{-4}$                                                                                                                                                                                                         | 0.78                                                                                                                                                                                   | 27    | $4.4 \cdot 10^{-5}$                                                                                                                                                                                                | 2.26                                                                                                                                                                                                                                                                                                  | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1 \cdot 10^{-5}$                                                                                    | 0.7            |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                    | $10^{-3}$                                                                                                                                                   | 0.097                                                                                                              | 38                                                                                                                                                            | $6 \cdot 10^{-4}$                                                                                                                                                                                                           | 0.91                                                                                                                                                                                   | 700   | $2 \cdot 10^{-3}$                                                                                                                                                                                                  | 65.94                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $7 \cdot 10^{-4}$                                                                                    | 0.92           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                    | $10^{-4}$                                                                                                                                                   | 0.097                                                                                                              | 38                                                                                                                                                            | $2.1 \cdot 10^{-4}$                                                                                                                                                                                                         | 0.94                                                                                                                                                                                   | 700   | $4.1 \cdot 10^{-4}$                                                                                                                                                                                                | 69.03                                                                                                                                                                                                                                                                                                 | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $7.9 \cdot 10^{-5}$                                                                                  | 0.72           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                   | 0                                                                                                                                                           | 0.193                                                                                                              | 50                                                                                                                                                            | $3.4 \cdot 10^{-4}$                                                                                                                                                                                                         | 1.44                                                                                                                                                                                   | 38    | $5 \cdot 10^{-5}$                                                                                                                                                                                                  | 4.42                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $3.9 \cdot 10^{-5}$                                                                                  | 0.92           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                   | $10^{-3}$                                                                                                                                                   | 0.193                                                                                                              | 50                                                                                                                                                            | $9 \cdot 10^{-4}$                                                                                                                                                                                                           | 1.39                                                                                                                                                                                   | 700   | $1.7 \cdot 10^{-3}$                                                                                                                                                                                                | 56.94                                                                                                                                                                                                                                                                                                 | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.2 \cdot 10^{-3}$                                                                                  | 1.78           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                   | $10^{-4}$                                                                                                                                                   | 0.193                                                                                                              | 50                                                                                                                                                            | $3.5 \cdot 10^{-4}$                                                                                                                                                                                                         | 1.38                                                                                                                                                                                   | 700   | $9.3 \cdot 10^{-5}$                                                                                                                                                                                                | 64.69                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.4 \cdot 10^{-4}$                                                                                  | 0.93           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                   | 0                                                                                                                                                           | 0.38                                                                                                               | 86                                                                                                                                                            | $7 \cdot 10^{-4}$                                                                                                                                                                                                           | 3.32                                                                                                                                                                                   | 700   | $4.1 \cdot 10^{-5}$                                                                                                                                                                                                | 81.93                                                                                                                                                                                                                                                                                                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2 \cdot 10^{-4}$                                                                                    | 4.09           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                   | $10^{-3}$                                                                                                                                                   | 0.38                                                                                                               | 86                                                                                                                                                            | $1.5 \cdot 10^{-3}$                                                                                                                                                                                                         | 3.45                                                                                                                                                                                   | 700   | $4.2 \cdot 10^{-2}$                                                                                                                                                                                                | 77.35                                                                                                                                                                                                                                                                                                 | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2.3 \cdot 10^{-3}$                                                                                  | 5.05           |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                   | $10^{-4}$                                                                                                                                                   | 0.38                                                                                                               | 86                                                                                                                                                            | $7 \cdot 10^{-4}$                                                                                                                                                                                                           | 3.26                                                                                                                                                                                   | 700   | $4 \cdot 10^{-2}$                                                                                                                                                                                                  | 79.47                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4 \cdot 10^{-4}$                                                                                    | 4.1            |
| 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                   | 0                                                                                                                                                           | 0.287                                                                                                              | 66                                                                                                                                                            | $4.9 \cdot 10^{-4}$                                                                                                                                                                                                         | 8.79                                                                                                                                                                                   | 295   | $5.4 \cdot 10^{-5}$                                                                                                                                                                                                | 143.53                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1 \cdot 10^{-4}$                                                                                    | 8.01           |
| 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                   | 0                                                                                                                                                           | 0.38                                                                                                               | 86                                                                                                                                                            | $7 \cdot 10^{-4}$                                                                                                                                                                                                           | 10.09                                                                                                                                                                                  | 700   | $4.3 \cdot 10^{-2}$                                                                                                                                                                                                | 251.27                                                                                                                                                                                                                                                                                                | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2 \cdot 10^{-4}$                                                                                    | 11.08          |
| 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                   | 0                                                                                                                                                           | 0.24                                                                                                               | 57                                                                                                                                                            | $4.3 \cdot 10^{-4}$                                                                                                                                                                                                         | 42.88                                                                                                                                                                                  | 103   | $5.2 \cdot 10^{-5}$                                                                                                                                                                                                | 312.62                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $5.7 \cdot 10^{-5}$                                                                                  | 35.86          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                             |                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                        |       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                             |                                                                                                                    | N                                                                                                                                                             | MATRIX ALPS                                                                                                                                                                                                                 | S II                                                                                                                                                                                   |       | MA                                                                                                                                                                                                                 | ATRIX ALF                                                                                                                                                                                                                                                                                             | PS II wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | th QR                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k                                                    | $\left\  \boldsymbol{\varepsilon} \right\ _{2}$                                                                                                             |                                                                                                                    | N<br>iter.                                                                                                                                                    | MATRIX ALPS<br>err.                                                                                                                                                                                                         | 5 II<br>time                                                                                                                                                                           |       | MA<br>iter.                                                                                                                                                                                                        | ATRIX ALF                                                                                                                                                                                                                                                                                             | PS II wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | th QR<br>time                                                                                        |                |
| $\frac{m}{256}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{k}{5}$                                        | $\left\ \boldsymbol{\varepsilon}\right\ _{2}$                                                                                                               | 0.097                                                                                                              | iter.                                                                                                                                                         | MATRIX ALPS<br>err.<br>$7.1 \cdot 10^{-6}$                                                                                                                                                                                  | 5 II<br>time<br>0.42                                                                                                                                                                   |       | MA<br>iter.<br>10                                                                                                                                                                                                  | ATRIX ALP<br>err<br>9.1 · 1                                                                                                                                                                                                                                                                           | PS II wit<br>0 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | time                                                                                                 |                |
| $     \frac{m}{256}     \frac{256}{256} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>512<br>512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k}{5}$                                        | $ \begin{array}{c} \left\ \boldsymbol{\varepsilon}\right\ _{2} \\ 0 \\ 10^{-3} \end{array} $                                                                | 0.097                                                                                                              | N           iter.           8           9                                                                                                                     | $     \begin{array}{r} \text{MATRIX ALPS} \\             err. \\             \overline{7.1 \cdot 10^{-6}} \\             7 \cdot 10^{-4} \\         \end{array} $                                                           | 5 II<br>time<br>0.42<br>0.56                                                                                                                                                           |       | MA<br>iter.<br>10<br>20                                                                                                                                                                                            | 47777777777777777777777777777777777777                                                                                                                                                                                                                                                                | $\frac{1}{0^{-6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | th QR<br>time<br>0.39<br>0.93                                                                        | 1              |
| $     \frac{m}{256}     \frac{256}{256}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n<br>512<br>512<br>512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{k}{5}$ $5$ $5$                                | $egin{array}{                                      $                                                                                                        | 0.097<br>0.097<br>0.097                                                                                            | N           iter.           8           9           8                                                                                                         | $     \begin{array}{r} \text{MATRIX ALPS} \\             err. \\             \hline             7.1 \cdot 10^{-6} \\             7 \cdot 10^{-4} \\             7 \cdot 10^{-5} \\             \end{array}     $            | 5 II<br>time<br>0.42<br>0.56<br>0.5                                                                                                                                                    |       | MA<br>iter.<br>10<br>20<br>10                                                                                                                                                                                      | ATRIX ALF<br>err<br>9.1 · 1<br>7 · 10<br>7.8 · 1                                                                                                                                                                                                                                                      | $\frac{1}{0^{-6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time<br>0.39<br>0.93<br>0.46                                                                         |                |
| $     \frac{m}{256} \\     \frac{256}{256} \\     \frac{256}{256} \\     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     n \\     512 \\     512 \\     512 \\     512 \\     512   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} k\\ 5\\ 5\\ 5\\ 10 \end{array}$    | $ \begin{array}{c c} \  \boldsymbol{\varepsilon} \ _2 \\ \hline 0 \\ 10^{-3} \\ 10^{-4} \\ \hline 0 \end{array} $                                           | 0.097<br>0.097<br>0.097<br>0.193                                                                                   | N           iter.           8           9           8           10                                                                                            | $\begin{array}{r} & \text{MATRIX ALPS} \\ \hline & \text{err.} \\ \hline & 7.1 \cdot 10^{-6} \\ \hline & 7 \cdot 10^{-4} \\ \hline & 7 \cdot 10^{-5} \\ \hline & 2.3 \cdot 10^{-5} \end{array}$                             | 5 II<br>time<br>0.42<br>0.56<br>0.5<br>0.68                                                                                                                                            |       | MA<br>iter.<br>10<br>20<br>10<br>13                                                                                                                                                                                | ATRIX ALF           err           9.1 · 1           7 · 10           7.8 · 1           2.4 · 1                                                                                                                                                                                                        | $ \frac{1}{0^{-6}} $ $ \frac{-4}{0^{-5}} $ $ \frac{1}{0^{-5}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64                                                         | <br> <br> <br> |
| $     \frac{m}{256} \\     \frac{256}{256} \\     \frac{256}{$ | $ \begin{array}{r} n \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ $ | $k \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10$                 | $ \begin{array}{c c} \  \boldsymbol{\varepsilon} \ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \end{array} $                                            | 0.097<br>0.097<br>0.097<br>0.193<br>0.193                                                                          | N<br>iter.<br>8<br>9<br>8<br>10<br>19                                                                                                                         | $\begin{array}{c} \hline \text{MATRIX ALPS} \\ \hline \text{err.} \\ \hline \hline 7.1 \cdot 10^{-6} \\ \hline 7 \cdot 10^{-4} \\ \hline 7 \cdot 10^{-5} \\ \hline 2.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \end{array}$ | 5 II<br>time<br>0.42<br>0.56<br>0.5<br>0.68<br>1.29                                                                                                                                    |       | MA<br>iter.<br>10<br>20<br>10<br>13<br>27                                                                                                                                                                          | ATRIX ALF<br>err<br>9.1 · 1<br>7 · 10<br>7.8 · 1<br>2.4 · 1<br>1 · 10                                                                                                                                                                                                                                 | $ \frac{1}{2} 1$ | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64<br>1.35                                                 |                |
| $\begin{array}{c c} \hline m \\ \hline 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} n \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $k \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $ | $\begin{array}{c c} \ \varepsilon\ _2 \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \end{array}$                                                    | 0.097<br>0.097<br>0.193<br>0.193<br>0.193                                                                          | N           iter.           8           9           8           10           19           10                                                                  |                                                                                                                                                                                                                             | S II           time           0.42           0.56           0.5           0.68           1.29           0.68                                                                           |       | MA<br>iter.<br>10<br>20<br>10<br>13<br>27<br>13                                                                                                                                                                    | ATRIX ALF           err           9.1 · 1           7 · 10           7.8 · 1           2.4 · 1           1 · 10           1.1 · 1                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64<br>1.35<br>0.62                                         |                |
| $\begin{array}{c c} \hline m \\ \hline 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} n \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $k \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10 \\ 20$           | $ \begin{array}{c c} \  \boldsymbol{\varepsilon} \ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ \end{array} $                         | 0.097<br>0.097<br>0.097<br>0.193<br>0.193<br>0.193<br>0.193<br>0.38                                                | N           iter.           8           9           8           10           19           10           21                                                     |                                                                                                                                                                                                                             | S II           time           0.42           0.56           0.5           0.68           1.29           0.68           1.92                                                            |       | MA<br>iter.<br>10<br>20<br>10<br>13<br>27<br>13<br>24                                                                                                                                                              | $\begin{array}{c} \text{ATRIX ALF} \\ \text{err.} \\ \hline 9.1 \cdot 1 \\ \hline 7 \cdot 10 \\ \hline 7.8 \cdot 1 \\ 2.4 \cdot 1 \\ \hline 1 \cdot 10 \\ \hline 1.1 \cdot 1 \\ \hline 1 \cdot 10 \end{array}$                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64<br>1.35<br>0.62<br>1.26                                 |                |
| $\begin{array}{c c} \hline m \\ \hline 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} n \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k $5$ $5$ $5$ $10$ $10$ $10$ $20$ $20$               | $\begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \end{array}$                                  | 0.097<br>0.097<br>0.193<br>0.193<br>0.193<br>0.193<br>0.38<br>0.38                                                 | N           iter.           8           9           8           10           19           10           21           36                                        |                                                                                                                                                                                                                             | S II           time           0.42           0.56           0.5           0.68           1.29           0.68           1.92           2.67                                             |       | MA<br>iter.<br>10<br>20<br>10<br>13<br>27<br>13<br>27<br>13<br>24<br>39                                                                                                                                            | $\begin{array}{c} \text{ATRIX ALF} \\ \text{err.} \\ \hline 9.1 \cdot 1 \\ \hline 7 \cdot 10 \\ \hline 7.8 \cdot 1 \\ 2.4 \cdot 1 \\ \hline 1 \cdot 10 \\ \hline 1.1 \cdot 1 \\ \hline 1 \cdot 10 \\ \hline 1.5 \cdot 1 \end{array}$                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64<br>1.35<br>0.62<br>1.26<br>1.69                         |                |
| $\begin{array}{c} \hline m \\ \hline 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} n \\ \hline 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \end{array} $                     | 0.097<br>0.097<br>0.193<br>0.193<br>0.193<br>0.193<br>0.38<br>0.38<br>0.38                                         | N           iter.           8           9           8           10           19           10           21           36           21                           |                                                                                                                                                                                                                             | S II           time           0.42           0.56           0.5           0.68           1.29           0.68           1.92           2.67           1.87                              |       | MA           iter.           10           20           113           227           113           224           339           224                                                                                   | $\begin{array}{c} \text{TRIX ALF} \\ \hline \\ 9.1 \cdot 1 \\ \hline \\ 7 \cdot 10 \\ \hline \\ 7.8 \cdot 1 \\ 2.4 \cdot 1 \\ \hline \\ 1 \cdot 10 \\ \hline \\ 1.1 \cdot 1 \\ \hline \\ 1 \cdot 10 \\ \hline \\ 1.5 \cdot 1 \\ \hline \\ 2 \cdot 10 \end{array}$                                     | $     S II wit     0^{-6}     -4     0^{-5}     0^{-5}     0^{-5}     0^{-5}     0^{-4}     0^{-4}     0^{-3}     -4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64<br>1.35<br>0.62<br>1.26<br>1.26<br>1.29                 |                |
| $\begin{array}{c} m \\ \hline 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 512 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} n \\ \hline 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 1024 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | $\frac{\ \varepsilon\ _2}{10^{-3}}$ $\frac{0}{10^{-3}}$ $\frac{0}{10^{-3}}$ $\frac{0}{10^{-3}}$ $\frac{10^{-3}}{10^{-4}}$ $\frac{0}{0}$                     | $\begin{array}{c} 0.097\\ 0.097\\ 0.097\\ 0.193\\ 0.193\\ 0.193\\ 0.38\\ 0.38\\ 0.38\\ 0.287\\ \end{array}$        | N           iter.           8           9           8           10           19           10           21           36           21           14              |                                                                                                                                                                                                                             | S II           time           0.42           0.56           0.5           0.68           1.92           2.67           1.87           4.7                                              |       | MA           iter.           10           20           113           27           13           24           39           24           18                                                                           | $\begin{array}{c} \text{TRIX ALF} \\ \hline \\ \text{err.} \\ \hline 9.1 \cdot 1 \\ \hline 7 \cdot 10 \\ \hline 7.8 \cdot 1 \\ 2.4 \cdot 1 \\ \hline 1 \cdot 10 \\ \hline 1.1 \cdot 1 \\ \hline 1 \cdot 10 \\ \hline 1.5 \cdot 1 \\ \hline 2 \cdot 10 \\ \hline 3.3 \cdot 1 \end{array}$              | $     S II wit     0^{-6}     -4     0^{-5}     0^{-5}     -3     0^{-4}     -4     0^{-3}     -4     0^{-5}     -5     -4     0^{-5}     -5     -4     0^{-5}     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5     -5    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h QR<br>time<br>0.39<br>0.46<br>0.64<br>1.35<br>0.62<br>1.26<br>1.26<br>1.69<br>1.22<br>4.15         |                |
| $\begin{array}{c} \hline m \\ \hline 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 256 \\ 512 \\ 512 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} n \\ \hline 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 512 \\ 1024 \\ 1024 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      | $\begin{array}{c} \left\ \varepsilon\right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$ | $\begin{array}{c} 0.097\\ 0.097\\ 0.097\\ 0.193\\ 0.193\\ 0.193\\ 0.38\\ 0.38\\ 0.38\\ 0.287\\ 0.38\\ \end{array}$ | N           iter.           8           9           8           10           19           10           21           36           21           14           21 |                                                                                                                                                                                                                             | S II           time           0.42           0.56           0.5           0.68           1.29           0.68           1.92           2.67           1.87           4.7           6.01 |       | MA           iter.           10           20           110           20           110           20           113           227           113           224           339           224           118           224 | $\begin{array}{c} \text{TTRIX ALF} \\ \hline \\ \text{err.} \\ \hline \\ 9.1 \cdot 1 \\ \hline \\ 7 \cdot 10 \\ \hline \\ 7.8 \cdot 1 \\ \hline \\ 2.4 \cdot 1 \\ \hline \\ 1 \cdot 10 \\ \hline \\ 1.5 \cdot 1 \\ \hline \\ 2 \cdot 10 \\ \hline \\ 3.3 \cdot 1 \\ \hline \\ 1 \cdot 10 \end{array}$ | $     S II wit     0^{-6}     -4     0^{-5}     0^{-5}     -3     0^{-4}     -4     0^{-3}     -4     0^{-5}     -4     0^{-5}     -4   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h QR<br>time<br>0.39<br>0.93<br>0.46<br>0.64<br>1.35<br>0.62<br>1.26<br>1.69<br>1.22<br>4.15<br>4.53 |                |

The energy of the additive noise takes values  $\|\varepsilon\|_2 \in \{10^{-3}, 10^{-4}\}$ . All the algorithms are tested for the same signalmatrix-noise realizations. A summary of the results can be found in Tables 2, 3 and, 4 where we present the median values of reconstruction error, number of iterations and execution time over 50 Monte Carlo iterations. For all cases, we assume SR = 0.3 and set the maximum number of iterations to 700. Bold font denotes the fastest execution time. Some convergence error curves for specific cases are illustrated in Figures 9 and 10.

In Table 2, LMaFit [52] implementation has the fastest convergence for small scale problem configuration where m = 300 and n = 600. We note that part of LMaFit im-

plementation uses C code for acceleration. GROUSE [49] is a competitive low-rank recovery method with attractive execution times for the *extreme low rank* problem settings due to stochastic gradient descent techniques. Nevertheless, its execution time performance degrades significantly as we increase the rank of  $X^*$ . Moreover, we observe how randomized low rank projections accelerate the convergence speed where MATRIX ALPS II with QR converges faster than MATRIX ALPS II. In Tables 3 and 4, we increase the problem dimensions. Here, MATRIX ALPS II with QR has faster convergence for most of the cases and scales well as the problem size increases. We note that we do not exploit



**Fig. 8** Low rank signal reconstruction using noiselet linear operator. The error curves are the median values across 50 Monte-Carlo realizations over each iteration. For all cases, we assume p = 0.3mn. (a) m = 256, n = 512, k = 10 and  $\|\varepsilon\|_2 = 10^{-3}$ . (b) m = 256, n = 512, k = 10 and  $\|\varepsilon\|_2 = 10^{-4}$ . (c) m = 256, n = 512, k = 20 and  $\|\varepsilon\|_2 = 0$ . (d) m = 512, n = 1024, k = 30 and  $\|\varepsilon\|_2 = 0$ . (e) m = 512, n = 1024, k = 40 and  $\|\varepsilon\|_2 = 0$ . (f) m = 1024, n = 2048, k = 50 and  $\|\varepsilon\|_2 = 0$ .



Fig. 9 Low rank matrix recovery for the matrix completion problem. The error curves are the median values across 50 Monte-Carlo realizations over each iteration. For all cases, we assume p = 0.3mn. (a) m = 300, n = 600, k = 5 and  $\|\varepsilon\|_2 = 0$ . (b) m = 300, n = 600, k = 20 and  $\|\varepsilon\|_2 = 10^{-4}$ .

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Config                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uratio                                                                                      | n                                                                                                                                               | FR                                                                                                                                                                                                          | SVP iter. err. time                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                | GROUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  | TFOCS                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k                                                                                           | $ \varepsilon _2$                                                                                                                               |                                                                                                                                                                                                             | iter.                                                                                                         | err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time                                                                                                                               | iter.                                                                                                          | err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | time                                                                                                                                             | iter.                                                                                                                         | err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                           | 0                                                                                                                                               | 0.083                                                                                                                                                                                                       | 43                                                                                                            | $2.9\cdot10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.59                                                                                                                               | -                                                                                                              | $1.52 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                             | -                                                                                                                             | $8.69 \cdot 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.36                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                           | $10^{-3}$                                                                                                                                       | 0.083                                                                                                                                                                                                       | 42                                                                                                            | $6 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.65                                                                                                                               | -                                                                                                              | $2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.082                                                                                                                                            | -                                                                                                                             | $5 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.85                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                           | $10^{-4}$                                                                                                                                       | 0.083                                                                                                                                                                                                       | 43                                                                                                            | $3 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.64                                                                                                                               | -                                                                                                              | $2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.079                                                                                                                                            | -                                                                                                                             | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5                                                                                                                                                     |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                          | 0                                                                                                                                               | 0.165                                                                                                                                                                                                       | 54                                                                                                            | $4 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9                                                                                                                                | -                                                                                                              | $4.5 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.22                                                                                                                                             | -                                                                                                                             | $2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.43                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                          | $10^{-3}$                                                                                                                                       | 0.165                                                                                                                                                                                                       | 54                                                                                                            | $9 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89                                                                                                                               | -                                                                                                              | $2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.16                                                                                                                                             | -                                                                                                                             | $8 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.83                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                          | $10^{-4}$                                                                                                                                       | 0.165                                                                                                                                                                                                       | 54                                                                                                            | $4 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.91                                                                                                                               | -                                                                                                              | $2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.16                                                                                                                                             | -                                                                                                                             | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.75                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                          | 0                                                                                                                                               | 0.326                                                                                                                                                                                                       | 85                                                                                                            | $8 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.04                                                                                                                               | -                                                                                                              | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.81                                                                                                                                             | -                                                                                                                             | $2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.04                                                                                                                                                   |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                          | 0                                                                                                                                               | 0.637                                                                                                                                                                                                       | 241                                                                                                           | $3.4 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.1                                                                                                                               | -                                                                                                              | $3.1 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.94                                                                                                                                            | -                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                               | Inexact ALM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                  |                                                                                                                | OptSpace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                               | GRASTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |
| m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k                                                                                           | $\left\ m{arepsilon} ight\ _{2}$                                                                                                                |                                                                                                                                                                                                             | iter.                                                                                                         | err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time                                                                                                                               | iter.                                                                                                          | err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | time                                                                                                                                             | iter.                                                                                                                         | err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                           | 0                                                                                                                                               | 0.083                                                                                                                                                                                                       | 24                                                                                                            | $6.7 \cdot 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.47                                                                                                                               | 31                                                                                                             | $2.8 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.41                                                                                                                                             | -                                                                                                                             | $2.2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.07                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                           | $10^{-3}$                                                                                                                                       | 0.083                                                                                                                                                                                                       | 24                                                                                                            | $6 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.49                                                                                                                               | 297                                                                                                            | $5 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.82                                                                                                                                            | -                                                                                                                             | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.07                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                           | $10^{-4}$                                                                                                                                       | 0.083                                                                                                                                                                                                       | 24                                                                                                            | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.49                                                                                                                               | 267                                                                                                            | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.56                                                                                                                                            | -                                                                                                                             | $8 \cdot 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.1                                                                                                                                                     |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                          | 0                                                                                                                                               | 0.165                                                                                                                                                                                                       | 26                                                                                                            | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                | 37                                                                                                             | $2.3 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.42                                                                                                                                             | -                                                                                                                             | $8.6 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5                                                                                                                                                     |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                          | $10^{-3}$                                                                                                                                       | 0.165                                                                                                                                                                                                       | 26                                                                                                            | $8 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.59                                                                                                                               | 304                                                                                                            | $8 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.02                                                                                                                                            | -                                                                                                                             | $5.5 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.43                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                          | $10^{-4}$                                                                                                                                       | 0.165                                                                                                                                                                                                       | 26                                                                                                            | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61                                                                                                                               | 304                                                                                                            | $1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65.56                                                                                                                                            | -                                                                                                                             | $5.3 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.44                                                                                                                                                    |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                          | 0                                                                                                                                               | 0.326                                                                                                                                                                                                       | 44                                                                                                            | $3 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.37                                                                                                                               | -                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                | -                                                                                                                             | $5 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.51                                                                                                                                                   |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                          | 0                                                                                                                                               | 0.637                                                                                                                                                                                                       | 134                                                                                                           | $1.6 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.08                                                                                                                               | _                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                | _                                                                                                                             | $5.2 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251.34                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                           |                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                             |                                                                                                               | RTRMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                                                                                | LMaFit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |                                                                                                                               | MATRIX ALP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S I                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k                                                                                           | $\left\  \boldsymbol{\varepsilon} \right\ _2$                                                                                                   |                                                                                                                                                                                                             | iter.                                                                                                         | RTRMC<br>err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | time                                                                                                                               | iter.                                                                                                          | LMaFit<br>err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time                                                                                                                                             | iter.                                                                                                                         | MATRIX ALP<br>err.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S I<br>time                                                                                                                                             |
| $\frac{m}{300}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k<br>5                                                                                      | $\left\ \boldsymbol{\varepsilon}\right\ _{2}$                                                                                                   | 0.083                                                                                                                                                                                                       | iter.                                                                                                         | $\frac{\text{RTRMC}}{\text{err.}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time<br>0.59                                                                                                                       | iter.                                                                                                          | $\frac{\text{LMaFit}}{\text{err.}}$ $2.2 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | time<br>0.054                                                                                                                                    | iter.                                                                                                                         | $\frac{\text{MATRIX ALP}}{\text{err.}}$ $1.8 \cdot 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2S I<br>time<br>0.76                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k<br>5<br>5                                                                                 | $\frac{\left\ \boldsymbol{\varepsilon}\right\ _{2}}{0}$                                                                                         | 0.083                                                                                                                                                                                                       | iter. 13 13                                                                                                   | $\frac{\text{RTRMC}}{\text{err.}} \\ \hline 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | time<br>0.59<br>0.59                                                                                                               | iter. 20 19                                                                                                    | $\frac{\text{LMaFit}}{\text{err.}} \\ \hline 2.2 \cdot 10^{-4} \\ \hline 5 \cdot 10^{-4} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | time<br>0.054<br>0.049                                                                                                                           | iter. 22 37                                                                                                                   | $\frac{\text{MATRIX ALP}}{\text{err.}}$ $\frac{1.8 \cdot 10^{-5}}{7 \cdot 10^{-4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S I<br>time<br>0.76<br>1.34                                                                                                                             |
| m $300$ $300$ $300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>600<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | k<br>5<br>5<br>5                                                                            | $\ \varepsilon\ _{2}$<br>0<br>$10^{-3}$<br>$10^{-4}$                                                                                            | 0.083<br>0.083<br>0.083                                                                                                                                                                                     | iter. 13 13 13 13                                                                                             | $\begin{tabular}{c} \hline RTRMC \\ \hline err. \\ \hline 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | time<br>0.59<br>0.59<br>0.59                                                                                                       | iter.<br>20<br>19<br>21                                                                                        | $\begin{tabular}{c} LMaFit \\ \hline err. \\ \hline 2.2 \cdot 10^{-4} \\ \hline 5 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | time<br>0.054<br>0.049<br>0.052                                                                                                                  | iter. 22 37 18                                                                                                                | $\frac{MATRIX ALP}{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S I<br>time<br>0.76<br>1.34<br>0.61                                                                                                                     |
| $     \frac{m}{300} \\     \frac{300}{300} \\     \frac{300}{30} \\ $ | n<br>600<br>600<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k<br>5<br>5<br>5<br>10                                                                      |                                                                                                                                                 | 0.083<br>0.083<br>0.083<br>0.165                                                                                                                                                                            | iter.<br>13<br>13<br>13<br>13<br>16                                                                           | $\begin{array}{c} \text{RTRMC} \\ \text{err.} \\ \hline 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | time<br>0.59<br>0.59<br>0.59<br>1.03                                                                                               | iter.<br>20<br>19<br>21<br>23                                                                                  | $\begin{tabular}{ c c c c } \hline LMaFit \\ \hline err. \\ \hline 2.2 \cdot 10^{-4} \\ \hline 5 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | time<br>0.054<br>0.049<br>0.052<br>0.064                                                                                                         | iter.<br>22<br>37<br>18<br>16                                                                                                 | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65                                                                                                             |
| $     \begin{array}{c}         m \\         \hline         \\         \hline         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>600<br>600<br>600<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $k \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10$                                                        | $ \begin{array}{c c} \  \boldsymbol{\varepsilon} \ _2 \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \end{array} $                                  | 0.083<br>0.083<br>0.165<br>0.165                                                                                                                                                                            | iter.<br>13<br>13<br>13<br>13<br>16<br>17                                                                     | $\begin{tabular}{ c c c c c } \hline RTRMC \\ \hline err. \\ \hline 1.2 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | time<br>0.59<br>0.59<br>0.59<br>1.03<br>1.09                                                                                       | iter.<br>20<br>19<br>21<br>23<br>26                                                                            | $\begin{tabular}{ c c c c c } \hline LMaFit\\ \hline err.\\ \hline $2.2\cdot10^{-4}$\\ \hline $5\cdot10^{-4}$\\ \hline $1\cdot10^{-4}$\\ \hline $1\cdot10^{-4}$\\ \hline $8\cdot10^{-4}$\\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077                                                                                                | iter.<br>22<br>37<br>18<br>16<br>30                                                                                           | $\begin{array}{c} \mbox{MATRIX ALP} \\ \hline \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | time           0.76           1.34           0.61           0.65           1.16                                                                         |
| $     \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>n</i> 600 600 600 600 600 600 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $k \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $                                        | $\begin{array}{c c} \  \boldsymbol{\varepsilon} \ _2 \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \end{array}$                         | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165                                                                                                                                                          | iter.<br>13<br>13<br>13<br>16<br>17<br>17                                                                     | $\begin{tabular}{ c c c c c } \hline RTRMC \\ \hline err. \\ \hline 1.2 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time<br>0.59<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09                                                                               | iter.<br>20<br>19<br>21<br>23<br>26<br>32                                                                      | $\begin{tabular}{ c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $8 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline \hline $1 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline \hline $$ | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097                                                                                       | iter.<br>22<br>37<br>18<br>16<br>30<br>16                                                                                     | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1.10^{-4} \\ 1.1 \cdot 10^{-3} \\ \hline 1.10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | time           0.76           1.34           0.61           0.65           1.16           0.63                                                          |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ $ | $k \\ 5 \\ 5 \\ 5 \\ 10 \\ 10 \\ 10 \\ 20$                                                  | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ \end{array} $                            | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.165\\ 0.165\\ 0.165\\ 0.326\\ \end{array}$                                                                                                                      | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22                                                               | $\begin{tabular}{ c c c c c c } \hline RTRMC & err. & \\ \hline 1.2 \cdot 10^{-4} & \\ \hline 1.10^{-4} & \\ \hline 2.10^{-4} & \\ \hline 1.1 \cdot 10^{-3} & \\ \hline 1.10^{-4} & \\ \hline 2.10^{-4} & \\ \hline 4.10^{-4} & \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | time<br>0.59<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99                                                                       | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37                                                                | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $8 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $2 \cdot 10^{-4}$ \\ \hline $2 \cdot 10^{-4}$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12                                                                               | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37                                                                               | $\begin{array}{c} \hline \text{MATRIX ALP} \\ \hline \text{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1.10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S I           time           0.76           1.34           0.61           0.65           1.16           0.63           2.05                             |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ $ | k $5$ $5$ $10$ $10$ $10$ $20$ $40$                                                          | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ 0 \\ \end{array} $                  | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.165\\ 0.165\\ 0.165\\ 0.326\\ 0.637\\ \end{array}$                                                                                                              | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22<br>35                                                         | $\begin{tabular}{ c c c c c } \hline RTRMC \\ \hline err. \\ \hline 1.2 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 4 \cdot 10^{-4} \\ \hline 3 \cdot 10^{-5} \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83                                                                      | iter.           20           19           21           23           26           32           37           233 | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $8 \cdot 10^{-4}$ \\ \hline $1 \cdot 10^{-4}$ \\ \hline $2 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52                                                                       | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500                                                                        | $\begin{array}{c} \hline \text{MATRIX ALP} \\ \hline \text{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1.1 0^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                         |
| m           300           300           300           300           300           300           300           300           300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>n</i> 600 600 600 600 600 600 600 600 600 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k $5$ $5$ $5$ $10$ $10$ $10$ $20$ $40$                                                      | $ \begin{array}{c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array} $                         | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.165\\ 0.165\\ 0.165\\ 0.326\\ 0.637\\ \end{array}$                                                                                                              | iter. 13 13 13 13 16 17 17 22 35                                                                              | $\begin{array}{c} \text{RTRMC} \\ \text{err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83                                                                      | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233                                                         | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline 2.2 \cdot 10^{-4} \\ \hline 5 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 8 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 4.9 \cdot 10^{-4} \\ \hline \hline MATRIX ALPS \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>II                                                                 | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>x</sup>                                                     | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \mbox{FRIX ALPS II} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR                                                                 |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n 600 600 600 600 600 600 600 600 600 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k<br>5<br>5<br>5<br>10<br>10<br>10<br>20<br>40<br>k                                         | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array} $                       | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165<br>0.326<br>0.637                                                                                                                                        | iter. 13 13 13 13 16 17 17 22 35 iter.                                                                        | $\begin{array}{c} \text{RTRMC} \\ \text{err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline \\ \text{ADMiRA} \\ \text{err.} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time                                                              | iter. 20 19 21 23 26 32 37 233 iter.                                                                           | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $MATRIX ALPS$ \\ \hline $err.$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>III<br>time                                                        | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>c</sup><br>iter.                                            | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \mbox{FRIX ALPS II} \\ \mbox{err.} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time                                                         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n           600           600           600           600           600           600           600           600           600           600           600           600           600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             | $\begin{array}{c} \left\ \varepsilon\right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$                | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165<br>0.326<br>0.637                                                                                                                                        | iter. 13 13 13 13 16 17 17 22 35 iter. 59                                                                     | $\begin{array}{c} \text{RTRMC} \\ \text{err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline \\ \text{ADMiRA} \\ \text{err.} \\ \hline 5.2 \cdot 10^{-5} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86                                                      | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10                                          | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $MATRIX ALPS$ \\ \hline $err.$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>III<br>time<br>0.34                                                | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>r</sup><br>iter.<br>14                                      | $\begin{array}{c} \hline \text{MATRIX ALP} \\ \hline \text{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \hline \text{FRIX ALPS II} \\ \hline \\ \hline \text{err.} \\ \hline 3.2 \cdot 10^{-5} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45                                                 |
| $\begin{tabular}{ c c c c c c } \hline m & & & \\ \hline 300 & & & \\ \hline m & & & \\ \hline m & & & \\ \hline 300 & & & \\ \hline 300 & & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{r}       n \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       \hline       n \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\   $                                                                                                                                                                       |                                                                                             | $\begin{array}{c} \left\ \varepsilon\right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$                | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165<br>0.326<br>0.637<br>0.083<br>0.083                                                                                                                      | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22<br>35<br>iter.<br>59<br>700                                   | $\begin{array}{c} \text{RTRMC} \\ \text{err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline \text{ADMiRA} \\ \text{err.} \\ \hline 5.2 \cdot 10^{-5} \\ 4 \cdot 10^{-3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86<br>30.96                                             | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10<br>12                                    | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $MATRIX ALPS$ \\ \hline $err.$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>III<br>time<br>0.34<br>0.44                                        | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>c</sup><br>iter.<br>14<br>24                                | $\begin{array}{c} \hline \text{MATRIX ALP} \\ \hline \text{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1.10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1.10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \hline \text{FRIX ALPS II} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45<br>0.81                                         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       n \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       \hline       n \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       600 \\       60 \\    $                                                                                                                                                                       |                                                                                             | $\begin{array}{c} \left\  \boldsymbol{\varepsilon} \right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$ | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165<br>0.326<br>0.637<br>0.083<br>0.083<br>0.083                                                                                                             | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22<br>35<br>iter.<br>59<br>700<br>700                            | $\begin{array}{c} {\rm RTRMC} \\ {\rm err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline {\rm ADMiRA} \\ {\rm err.} \\ 5.2 \cdot 10^{-5} \\ 4 \cdot 10^{-3} \\ 4.5 \cdot 10^{-3} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86<br>30.96<br>31.45                                    | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10<br>12<br>10                              | $\begin{tabular}{ c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $MATRIX ALPS$ \\ \hline $err.$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline \hline \hline $1.10^{-4}$ \\ \hline \hline \hline $1.10^{-4}$ \\ \hline \hline \hline \hline \hline $1.10^{-4}$ \\ \hline \hline \hline \hline $1.10^{-4}$ \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>III<br>time<br>0.34<br>0.44<br>0.36                                | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>c</sup><br>iter.<br>14<br>24<br>14                          | $\begin{array}{c} \hline \text{MATRIX ALP} \\ \hline \text{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1.10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1.10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \hline \text{FRIX ALPS II} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45<br>0.81<br>0.47                                 |
| $\begin{tabular}{ c c c c c c } \hline m & & & \\ \hline \hline m & & & \\ \hline 300 & & & \\ \hline m & & & \\ \hline m & & & \\ \hline m & & & \\ \hline 300 & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             | $\begin{array}{c} \left\  \varepsilon \right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$              | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165<br>0.326<br>0.637<br>0.083<br>0.083<br>0.083<br>0.083<br>0.165                                                                                           | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22<br>35<br>iter.<br>59<br>700<br>700<br>47                      | $\begin{array}{c} {\rm RTRMC} \\ {\rm err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline {\rm ADMiRA} \\ {\rm err.} \\ \hline {\rm 5.2 \cdot 10^{-5}} \\ 4 \cdot 10^{-3} \\ 4.5 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86<br>30.96<br>31.45<br>2.56                            | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10<br>12<br>10<br>12                        | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.10^{-5}$ \\ \hline $1.0^{-5}$ \\ \hline \hline $1.0^{-5}$ \\ \hline \hline $1.0^{-5}$ \\ \hline $                                                                                                                                                                                                                                                                                                                                                      | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>III<br>time<br>0.34<br>0.44<br>0.36<br>0.48                        | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>c</sup><br>iter.<br>14<br>24<br>14<br>16<br>16<br>37<br>500 | $\begin{array}{c} \hline \text{MATRIX ALP} \\ \hline \text{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1.10^{-4} \\ \hline 1.10^{-4} \\ \hline 2.10^{-4} \\ \hline 2.10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \hline \text{FRIX ALPS II} \\ \hline \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45<br>0.81<br>0.47<br>0.49                         |
| $\begin{tabular}{ c c c c c c } \hline m & & & \\ \hline \hline m & & & \\ \hline 300 & & & \\ \hline m & & & \\ \hline m & & & \\ \hline m & & & \\ \hline 300 & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline n \\ \hline n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \frac{k}{5} $ 5 5 10 10 10 20 40 $ \frac{k}{5} $ 5 10 10 10 10 10 10 10 10 10 10 10 10 10 | $\begin{array}{c} \left\  \varepsilon \right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$              | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.165<br>0.326<br>0.637<br>0.637<br>0.083<br>0.083<br>0.083<br>0.083<br>0.165                                                                                  | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22<br>35<br>iter.<br>59<br>700<br>700<br>47<br>700               | $\begin{array}{c} {\rm RTRMC} \\ {\rm err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline {\rm ADMiRA} \\ {\rm err.} \\ \hline {\rm 5.2 \cdot 10^{-5}} \\ 4 \cdot 10^{-3} \\ 4.5 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ 1.5 \cdot 10^{-3} \\ \hline {\rm 1.5 \cdot 10^{-3}} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86<br>30.96<br>31.45<br>2.56<br>28.49                   | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10<br>12<br>10<br>12<br>19<br>19            | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.10^{-5}$ \\ \hline $9.10^{-4}$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>III<br>time<br>0.34<br>0.44<br>0.36<br>0.48<br>0.74                | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>c</sup><br>iter.<br>14<br>24<br>14<br>16<br>29              | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \hline \mbox{FRIX ALPS II} \\ \hline \mbox{err.} \\ \hline \hline 3.2 \cdot 10^{-5} \\ \hline 6 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 3.4 \cdot 10^{-5} \\ \hline 9 \cdot 10^{-4} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45<br>0.81<br>0.47<br>0.49<br>0.95                 |
| $\begin{tabular}{ c c c c c c } \hline m & & & \\ \hline \hline m & & & \\ \hline 300 & & & \\ \hline m & & & \\ \hline m & & & \\ \hline m & & & \\ \hline 300 & & \\ \hline 300 & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | $\begin{array}{c} \left\  \boldsymbol{\varepsilon} \right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$ | 0.083<br>0.083<br>0.083<br>0.165<br>0.165<br>0.326<br>0.637<br>0.637<br>0.083<br>0.083<br>0.083<br>0.083<br>0.165<br>0.165                                                                                  | iter.<br>13<br>13<br>13<br>16<br>17<br>17<br>22<br>35<br>iter.<br>59<br>700<br>700<br>47<br>700<br>700<br>700 | $\begin{array}{c} {\rm RTRMC} \\ {\rm err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline {\rm ADMiRA} \\ {\rm err.} \\ \hline {\rm 5.2 \cdot 10^{-5}} \\ 4 \cdot 10^{-3} \\ 4 \cdot 5 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ 1 \cdot 5 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86<br>30.96<br>31.45<br>2.56<br>28.49<br>31.99          | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10<br>12<br>10<br>12<br>19<br>12            | $\begin{tabular}{ c c c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $3.10^{-5}$ \\ \hline $9.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline \hline \hline $1.10^{-4}$ \\ \hline \hline \hline $1.10^{-4}$ \\ \hline \hline \hline \hline $1.10^{-4}$ \\ \hline \hline \hline \hline \hline \hline \hline $1.10^{-4}$ \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>II<br>time<br>0.34<br>0.44<br>0.36<br>0.48<br>0.74<br>0.49         | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>c</sup><br>iter.<br>14<br>24<br>14<br>16<br>29<br>16        | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \hline \mbox{FRIX ALPS II} \\ \hline \mbox{err.} \\ \hline \hline 3.2 \cdot 10^{-5} \\ \hline 6 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 3.4 \cdot 10^{-5} \\ \hline 9 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45<br>0.81<br>0.47<br>0.49<br>0.95<br>0.54         |
| $\begin{tabular}{ c c c c c c } \hline m & & & \\ \hline \hline m & & & \\ \hline 300 & & & \\ \hline m & & & \\ \hline m & & & \\ \hline m & & & \\ \hline 300 & & \\ \hline 300 & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline n \\ \hline n \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ 600 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | $\begin{array}{c} \left\  \varepsilon \right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0 \\ \end{array}$              | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.165\\ 0.165\\ 0.165\\ 0.326\\ 0.637\\ \hline \end{array}$ $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.083\\ 0.165\\ 0.165\\ 0.165\\ 0.326\\ \hline \end{array}$ | iter. 13 13 13 13 14 17 17 22 35 iter. 59 700 700 47 700 700 700 700 700 700 700                              | $\begin{array}{c} {\rm RTRMC} \\ {\rm err.} \\ 1.2 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 1.1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 2 \cdot 10^{-4} \\ 4 \cdot 10^{-4} \\ 3 \cdot 10^{-5} \\ \hline {\rm ADMiRA} \\ {\rm err.} \\ \hline {\rm 5.2 \cdot 10^{-5}} \\ 4 \cdot 10^{-3} \\ 4 \cdot 5 \cdot 10^{-3} \\ 1 \cdot 10^{-3} \\ 1 \cdot 5 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \\ 1 \cdot 2 \cdot 10^{-3} \\ \hline {\rm 1.2 \cdot 10^{-3}} \\ \hline {\rm 1.2 \cdot 10^{-3}$ | time<br>0.59<br>0.59<br>1.03<br>1.09<br>1.09<br>2.99<br>11.83<br>time<br>2.86<br>30.96<br>31.45<br>2.56<br>28.49<br>31.99<br>41.86 | iter.<br>20<br>19<br>21<br>23<br>26<br>32<br>37<br>233<br>iter.<br>10<br>12<br>10<br>12<br>19<br>12<br>20      | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline $2.2 \cdot 10^{-4}$ \\ \hline $5.10^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $1.0^{-4}$ \\ \hline $2.10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-4}$ \\ \hline $4.9 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.7 \cdot 10^{-5}$ \\ \hline $6.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $3.10^{-5}$ \\ \hline $9.10^{-4}$ \\ \hline $1.10^{-4}$ \\ \hline $                                                                                                                                                                                                                                                                                                                                                              | time<br>0.054<br>0.049<br>0.052<br>0.064<br>0.077<br>0.097<br>0.12<br>2.52<br>II<br>time<br>0.34<br>0.44<br>0.36<br>0.48<br>0.74<br>0.49<br>1.16 | iter.<br>22<br>37<br>18<br>16<br>30<br>16<br>37<br>500<br>MA <sup>*</sup><br>iter.<br>14<br>24<br>14<br>16<br>29<br>16<br>23  | $\begin{array}{c} \mbox{MATRIX ALP} \\ \mbox{err.} \\ \hline 1.8 \cdot 10^{-5} \\ \hline 7 \cdot 10^{-4} \\ 1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \\ \hline 6.5 \cdot 10^{-2} \\ \hline \\ \hline \mbox{FRIX ALPS II} \\ \mbox{err.} \\ \hline \hline \\ \hline \mbox{action} \\ \hline \\ \hline \\ \hline \mbox{blue} \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$ | S I<br>time<br>0.76<br>1.34<br>0.61<br>0.65<br>1.16<br>0.63<br>2.05<br>45.67<br>with QR<br>time<br>0.45<br>0.81<br>0.47<br>0.49<br>0.95<br>0.54<br>0.79 |

Table 2 Matrix Completion problem for m = 300 and n = 600. "-" depicts no information or not applicable due to time overhead.

stochastic gradient descent techniques in the recovery process to accelerate convergence which is left for future work.

### 10.5 Real data

We use real data images to highlight the reconstruction performance of the proposed schemes. To this end, we perform grayscale image denoising from an incomplete set of observed pixels—similar experiments can be found in [52]. Based on the matrix completion setting, we observe a limited number of pixels from the original image and perform a low rank approximation based only on the set of measurements. While the true underlying image might not be lowrank, we apply our solvers to obtain low-rank approximations.

Figures 11 and 12 depict the reconstruction results. In the first test case, we use a  $512 \times 512$  grayscale image as

shown in the top left corner of Figure 11. For this case, we observe only the 35% of the total number of pixels, randomly selected-a realization is depicted in the top right plot in Figure 11. In sequel, we fix the desired rank to k =40. The best rank-40 approximation using SVD is shown in the top middle of Figure 11 where the full set of pixels is observed. Given a fixed common tolerance and the same stopping criteria, Figure 11 shows the recovery performance achieved by a range of algorithms under consideration for 10 Monte-Carlo realizations. We repeat the same experiment for the second image in Figure 12. Here, the size of the image is  $256 \times 256$ , the desired rank is set to k = 30 and we observe the 33% of the image pixels. In constrast to the image denoising procedure above, we measure the reconstruction error of the computed solutions with respect to the best rank-30 approximation of the true image. In both cases,

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Config                                                                                           | uration                         |                                                                                                                     | FR                                                | FR SVP                                           |                                                                                                                                                                                        |                                                                             |                                                 | Inexact ALN                                                                                                                                                                                                                                | М                                                                      | GROUSE                                                 |                                                                                                                                                                                                                                       |                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                                                                                                | k                               | $\left \varepsilon\right _{2}$                                                                                      |                                                   | iter.                                            | err.                                                                                                                                                                                   | time                                                                        | iter.                                           | err.                                                                                                                                                                                                                                       | time                                                                   | iter.                                                  | err.                                                                                                                                                                                                                                  | time                                                                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 5                               | 0                                                                                                                   | 0.04                                              | 34                                               | $1.9 \cdot 10^{-4}$                                                                                                                                                                    | 1.77                                                                        | 23                                              | $6.5 \cdot 10^{-5}$                                                                                                                                                                                                                        | 1.69                                                                   | -                                                      | $3.5 \cdot 10^{-5}$                                                                                                                                                                                                                   | 0.23                                                                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 5                               | 10 - 3                                                                                                              | 0.04                                              | 34                                               | $4.2 \cdot 10^{-4}$                                                                                                                                                                    | 1.92                                                                        | 23                                              | $3.7\cdot10^{-4}$                                                                                                                                                                                                                          | 1.87                                                                   | -                                                      | $3.1 \cdot 10^{-4}$                                                                                                                                                                                                                   | 0.24                                                                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 30                              | 0                                                                                                                   | 0.239                                             | 61                                               | $4.6 \cdot 10^{-4}$                                                                                                                                                                    | 6.39                                                                        | 29                                              | $1.2 \cdot 10^{-4}$                                                                                                                                                                                                                        | 3.91                                                                   | -                                                      | $3.2 \cdot 10^{-5}$                                                                                                                                                                                                                   | 3.15                                                                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 30                              | $10^{-3}$                                                                                                           | 0.239                                             | 61                                               | $1.1 \cdot 10^{-3}$                                                                                                                                                                    | 6.33                                                                        | 29                                              | $1 \cdot 10^{-3}$                                                                                                                                                                                                                          | 3.87                                                                   | -                                                      | $8 \cdot 10^{-4}$                                                                                                                                                                                                                     | 3.14                                                                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 50                              | 0                                                                                                                   | 0.393                                             | 95                                               | $8.5 \cdot 10^{-4}$                                                                                                                                                                    | 14.47                                                                       | 49                                              | $3.2 \cdot 10^{-4}$                                                                                                                                                                                                                        | 9.02                                                                   | -                                                      | $1.3 \cdot 10^{-5}$                                                                                                                                                                                                                   | 10.31                                                                  |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 50                              | $10^{-3}$                                                                                                           | 0.393                                             | 95                                               | $1.6 \cdot 10^{-3}$                                                                                                                                                                    | 15.15                                                                       | 49                                              | $1.4 \cdot 10^{-3}$                                                                                                                                                                                                                        | 9.11                                                                   | -                                                      | $8 \cdot 10^{-4}$                                                                                                                                                                                                                     | 10.34                                                                  |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 110                             | 0                                                                                                                   | 0.833                                             | 683                                              | $1.2 \cdot 10^{-2}$                                                                                                                                                                    | 253.1                                                                       | 374                                             | $5.8 \cdot 10^{-3}$                                                                                                                                                                                                                        | 152.61                                                                 | -                                                      | $1.2 \cdot 10^{-1}$                                                                                                                                                                                                                   | 110.93                                                                 |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                             | 110                             | $10^{-3}$                                                                                                           | 0.833                                             | 682                                              | $1.3 \cdot 10^{-2}$                                                                                                                                                                    | 256.21                                                                      | 374                                             | $6.8 \cdot 10^{-3}$                                                                                                                                                                                                                        | 154.34                                                                 | -                                                      | $1.05 \cdot 10^{-1}$                                                                                                                                                                                                                  | 111.05                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                 |                                                                                                                     |                                                   |                                                  |                                                                                                                                                                                        |                                                                             |                                                 |                                                                                                                                                                                                                                            |                                                                        |                                                        |                                                                                                                                                                                                                                       |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                                 |                                                                                                                     |                                                   |                                                  | LMaFit                                                                                                                                                                                 |                                                                             |                                                 | MATRIX ALP                                                                                                                                                                                                                                 | S II                                                                   | MA                                                     | TRIX ALPS II                                                                                                                                                                                                                          | with QR                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                | k                               | $\left\  \boldsymbol{\varepsilon} \right\ _{2}$                                                                     |                                                   | iter.                                            | LMaFit<br>err.                                                                                                                                                                         | time                                                                        | iter.                                           | MATRIX ALP<br>err.                                                                                                                                                                                                                         | S II<br>time                                                           | MAT iter.                                              | FRIX ALPS II v<br>err.                                                                                                                                                                                                                | with QR<br>time                                                        |
| $\frac{m}{700}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>1000                                                                                        | $\frac{k}{5}$                   | $\left\ \boldsymbol{\varepsilon}\right\ _{2}$                                                                       | 0.04                                              | iter.<br>24                                      | $\frac{\text{LMaFit}}{\text{err.}}$ $7.2 \cdot 10^{-6}$                                                                                                                                | time<br>0.67                                                                | iter.                                           | $\frac{\text{MATRIX ALP}}{\text{err.}}$ $1.5 \cdot 10^{-5}$                                                                                                                                                                                | S II<br>time<br>1.15                                                   | MA<br>iter.<br>15                                      | $\frac{\text{RIX ALPS II}}{\text{err.}}$ $8.3 \cdot 10^{-5}$                                                                                                                                                                          | with QR<br>time<br>1.05                                                |
| $     \frac{m}{700}     \overline{700}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n<br>1000<br>1000                                                                                | $\frac{k}{5}$                   | $ \begin{array}{c} \left\ \boldsymbol{\varepsilon}\right\ _{2} \\ 0 \\ 10^{-3} \end{array} $                        | 0.04                                              | iter.<br>24<br>17                                | $\frac{\text{LMaFit}}{\text{err.}} \\ \hline 7.2 \cdot 10^{-6} \\ \hline 3.7 \cdot 10^{-4} \\ \hline \end{array}$                                                                      | time<br>0.67<br>0.5                                                         | iter.<br>8<br>10                                | $\frac{\text{MATRIX ALP}}{\text{err.}}$ $\frac{1.5 \cdot 10^{-5}}{4.5 \cdot 10^{-4}}$                                                                                                                                                      | S II<br>time<br>1.15<br>1.38                                           | MA<br>iter.<br>15<br>15                                | $     \begin{array}{r} \text{FRIX ALPS II} \\             err. \\             8.3 \cdot 10^{-5} \\             3.8 \cdot 10^{-4}         \end{array} $                                                                                | with QR<br>time<br>1.05<br>1.1                                         |
| $     \frac{m}{700}     \frac{700}{700}   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>1000<br>1000<br>1000                                                                        |                                 | $ \begin{array}{c} \left\ \boldsymbol{\varepsilon}\right\ _{2} \\ 0 \\ 10^{-3} \\ 0 \end{array} $                   | 0.04<br>0.04<br>0.239                             | iter.<br>24<br>17<br>34                          | $\frac{\text{LMaFit}}{\text{err.}} \\ \hline 7.2 \cdot 10^{-6} \\ \hline 3.7 \cdot 10^{-4} \\ \hline 9.2 \cdot 10^{-6} \\ \hline \end{array}$                                          | time<br>0.67<br>0.5<br><b>1.95</b>                                          | iter.<br>8<br>10<br>14                          | $\frac{\text{MATRIX ALP}}{\text{err.}} \\ \hline \frac{1.5 \cdot 10^{-5}}{4.5 \cdot 10^{-4}} \\ \hline 4.5 \cdot 10^{-5} \\ \hline \end{array}$                                                                                            | S II<br>time<br>1.15<br>1.38<br>3.69                                   | MA<br>iter.<br>15<br>15<br>35                          | $\frac{\text{RIX ALPS II}}{\text{err.}}$ $\frac{8.3 \cdot 10^{-5}}{3.8 \cdot 10^{-4}}$ $1.1 \cdot 10^{-4}$                                                                                                                            | with QR<br>time<br>1.05<br>1.1<br>2.6                                  |
| $     \frac{m}{700} \\     \frac{700}{700} \\     \frac{700}{700} \\     \frac{700}{700} \\     \hline   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n<br>1000<br>1000<br>1000<br>1000                                                                |                                 |                                                                                                                     | 0.04<br>0.04<br>0.239<br>0.239                    | iter.<br>24<br>17<br>34<br>30                    | $\begin{tabular}{c} LMaFit \\ err. \\ \hline 7.2 \cdot 10^{-6} \\ 3.7 \cdot 10^{-4} \\ 9.2 \cdot 10^{-6} \\ 1 \cdot 10^{-3} \end{tabular}$                                             | time<br>0.67<br>0.5<br><b>1.95</b><br><b>1.71</b>                           | iter.<br>8<br>10<br>14<br>25                    | $\frac{\text{MATRIX ALP}}{\text{err.}} \\ \hline 1.5 \cdot 10^{-5} \\ \hline 4.5 \cdot 10^{-4} \\ \hline 4.5 \cdot 10^{-5} \\ \hline 1.1 \cdot 10^{-3} \\ \hline \end{array}$                                                              | S II<br>time<br>1.15<br>1.38<br>3.69<br>6.1                            | MA<br>iter.<br>15<br>15<br>35<br>35                    | $ \begin{array}{c} \text{FRIX ALPS II } \\ \text{err.} \\ \hline 8.3 \cdot 10^{-5} \\ \hline 3.8 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-3} \end{array} $                                                    | with QR<br>time<br>1.05<br>1.1<br>2.6<br>2.61                          |
| $     \frac{m}{700} \\     \frac{700}{700} \\     \frac{700}{700} \\     \frac{700}{700} \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>1000<br>1000<br>1000<br>1000<br>1000                                                        | $k \\ 5 \\ 5 \\ 30 \\ 30 \\ 50$ | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 0 \\ 10^{-3} \\ 0 \\ \end{array} $                      | 0.04<br>0.04<br>0.239<br>0.239<br>0.393           | iter.<br>24<br>17<br>34<br>30<br>53              | $\begin{array}{c} LMaFit\\ err.\\ 7.2\cdot 10^{-6}\\ 3.7\cdot 10^{-4}\\ 9.2\cdot 10^{-6}\\ 1\cdot 10^{-3}\\ 2.7\cdot 10^{-5}\\ \end{array}$                                            | time<br>0.67<br>0.5<br><b>1.95</b><br><b>1.71</b><br>4.59                   | iter.<br>8<br>10<br>14<br>25<br>25              | $\frac{\text{MATRIX ALP}}{\text{err.}} \\ \hline 1.5 \cdot 10^{-5} \\ \hline 4.5 \cdot 10^{-4} \\ \hline 4.5 \cdot 10^{-5} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 8.6 \cdot 10^{-5} \\ \hline \end{array}$                                  | S II<br>time<br>1.15<br>1.38<br>3.69<br>6.1<br>8.87                    | MA<br>iter.<br>15<br>15<br>35<br>35<br>57              | $ \begin{array}{c} \text{FRIX ALPS II }\\ \text{err.}\\ \hline 8.3 \cdot 10^{-5}\\ \hline 3.8 \cdot 10^{-4}\\ \hline 1.1 \cdot 10^{-4}\\ \hline 1 \cdot 10^{-3}\\ \hline 1.6 \cdot 10^{-5} \end{array} $                              | with QR<br>time<br>1.05<br>1.1<br>2.6<br>2.61<br>4.47                  |
| $     \frac{m}{700} \\     \frac{700}{700} \\     \frac{700}{70} \\     70$ | $\begin{array}{c} n \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \end{array}$         |                                 | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 0 \\ 10^{-3} \\ 0 \\ 10^{-3} \end{array} $              | 0.04<br>0.239<br>0.239<br>0.393<br>0.393          | iter.<br>24<br>17<br>34<br>30<br>53<br>52        | $\begin{array}{c} LMaFit\\ err.\\ 7.2 \cdot 10^{-6}\\ 3.7 \cdot 10^{-4}\\ 9.2 \cdot 10^{-6}\\ 1 \cdot 10^{-3}\\ 2.7 \cdot 10^{-5}\\ 1.4 \cdot 10^{-3} \end{array}$                     | time<br>0.67<br>0.5<br><b>1.95</b><br><b>1.71</b><br>4.59<br>4.53           | iter.<br>8<br>10<br>14<br>25<br>25<br>40        | $\begin{array}{c} \\ \hline MATRIX ALP \\ \hline err. \\ \hline 1.5 \cdot 10^{-5} \\ \hline 4.5 \cdot 10^{-4} \\ \hline 4.5 \cdot 10^{-5} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 8.6 \cdot 10^{-5} \\ \hline 1.6 \cdot 10^{-3} \end{array}$ | S II<br>time<br>1.15<br>1.38<br>3.69<br>6.1<br>8.87<br>14.38           | MA<br>iter.<br>15<br>15<br>35<br>35<br>57<br>57        | $\begin{array}{c} \text{rr.} \\ \hline \text{err.} \\ \hline 8.3 \cdot 10^{-5} \\ \hline 3.8 \cdot 10^{-4} \\ \hline 1.1 \cdot 10^{-4} \\ \hline 1 \cdot 10^{-3} \\ \hline 1.6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \end{array}$ | with QR<br>time<br>1.05<br>1.1<br>2.6<br>2.61<br>4.47<br>4.49          |
| $     \frac{m}{700} \\             700 \\             700 \\           $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} n \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \end{array}$ |                                 | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 0 \\ 10^{-3} \\ 0 \\ 10^{-3} \\ 0 \\ 0 \\ \end{array} $ | 0.04<br>0.239<br>0.239<br>0.393<br>0.393<br>0.393 | iter.<br>24<br>17<br>34<br>30<br>53<br>52<br>584 | $\begin{array}{c} LMaFit\\ err.\\ 7.2 \cdot 10^{-6}\\ 3.7 \cdot 10^{-4}\\ 9.2 \cdot 10^{-6}\\ 1 \cdot 10^{-3}\\ 2.7 \cdot 10^{-5}\\ 1.4 \cdot 10^{-3}\\ 9 \cdot 10^{-4}\\ \end{array}$ | time<br>0.67<br>0.5<br><b>1.95</b><br><b>1.71</b><br>4.59<br>4.53<br>101.95 | iter.<br>8<br>10<br>14<br>25<br>25<br>40<br>280 |                                                                                                                                                                                                                                            | S II<br>time<br>1.15<br>1.38<br>3.69<br>6.1<br>8.87<br>14.38<br>214.93 | MA<br>iter.<br>15<br>35<br>35<br>57<br>57<br>57<br>553 | $ \begin{array}{c} \text{FRIX ALPS II} \\ \hline \text{err.} \\ 8.3 \cdot 10^{-5} \\ 3.8 \cdot 10^{-4} \\ 1.1 \cdot 10^{-4} \\ 1 \cdot 10^{-3} \\ 1.6 \cdot 10^{-5} \\ 1.4 \cdot 10^{-3} \\ 7 \cdot 10^{-4} \end{array} $             | with QR<br>time<br>1.05<br>1.1<br>2.6<br>2.61<br>4.47<br>4.49<br>51.72 |

Table 3 Matrix Completion problem for m = 700 and n = 1000. "-" depicts no information or not applicable due to time overhead.

Table 4 Matrix Completion problem for m = 500 and n = 2000. "-" depicts no information or not applicable due to time overhead.

|                                                                          | Config                                                                                                           | uration                                                                                                         |                                                                                                                                                                | FR                                                                                                                               |                                                                        | SVP                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                                                                                                                                        | Inexact ALM                                                                                                                                                                                                                          | 1                                                                                                                                                                                                |                                                                                      | GROUSE                                                                                                                                                                                                                                  |                                                                                                                                                                  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{m}$                                                           | n                                                                                                                | k                                                                                                               | $\left \varepsilon\right _{2}$                                                                                                                                 |                                                                                                                                  | iter.                                                                  | err.                                                                                                                                                                                                                                                                                                                                                  | time                                                                                       | iter.                                                                                                                                                  | err.                                                                                                                                                                                                                                 | time                                                                                                                                                                                             | iter.                                                                                | err.                                                                                                                                                                                                                                    | time                                                                                                                                                             |
| 500                                                                      | 2000                                                                                                             | 30                                                                                                              | 0                                                                                                                                                              | 0.083                                                                                                                            | 64                                                                     | $5.3 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                   | 10.18                                                                                      | 32                                                                                                                                                     | $1.9 \cdot 10^{-4}$                                                                                                                                                                                                                  | 6.47                                                                                                                                                                                             | -                                                                                    | $1.6 \cdot 10^{-4}$                                                                                                                                                                                                                     | 2.46                                                                                                                                                             |
| 500                                                                      | 2000                                                                                                             | 30                                                                                                              | $10^{-3}$                                                                                                                                                      | 0.083                                                                                                                            | 64                                                                     | $1.1 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                   | 6.69                                                                                       | 32                                                                                                                                                     | $1 \cdot 10^{-3}$                                                                                                                                                                                                                    | 4.51                                                                                                                                                                                             | -                                                                                    | $6 \cdot 10^{-4}$                                                                                                                                                                                                                       | 1.94                                                                                                                                                             |
| 500                                                                      | 2000                                                                                                             | 30                                                                                                              | $10^{-4}$                                                                                                                                                      | 0.083                                                                                                                            | 64                                                                     | $5.4 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                   | 10.14                                                                                      | 32                                                                                                                                                     | $2.2 \cdot 10^{-4}$                                                                                                                                                                                                                  | 6.51                                                                                                                                                                                             | _                                                                                    | $1.6 \cdot 10^{-4}$                                                                                                                                                                                                                     | 2.46                                                                                                                                                             |
| 500                                                                      | 2000                                                                                                             | 50                                                                                                              | 0                                                                                                                                                              | 0.408                                                                                                                            | 103                                                                    | $1.1 \cdot 10^{-4}$                                                                                                                                                                                                                                                                                                                                   | 15.74                                                                                      | 54                                                                                                                                                     | $5 \cdot 10^{-4}$                                                                                                                                                                                                                    | 10.8                                                                                                                                                                                             | -                                                                                    | $8 \cdot 10^{-5}$                                                                                                                                                                                                                       | 7.32                                                                                                                                                             |
| 500                                                                      | 2000                                                                                                             | 50                                                                                                              | $10^{-3}$                                                                                                                                                      | 0.408                                                                                                                            | 103                                                                    | $1.8 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                   | 24.97                                                                                      | 54                                                                                                                                                     | $1.55 \cdot 10^{-3}$                                                                                                                                                                                                                 | 16.14                                                                                                                                                                                            | -                                                                                    | $9 \cdot 10^{-4}$                                                                                                                                                                                                                       | 8.6                                                                                                                                                              |
| 500                                                                      | 2000                                                                                                             | 50                                                                                                              | $10^{-4}$                                                                                                                                                      | 0.408                                                                                                                            | 102                                                                    | $1.1 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                   | 24.85                                                                                      | 54                                                                                                                                                     | $5 \cdot 10^{-4}$                                                                                                                                                                                                                    | 16.17                                                                                                                                                                                            | -                                                                                    | $7 \cdot 10^{-5}$                                                                                                                                                                                                                       | 8.59                                                                                                                                                             |
| 500                                                                      | 2000                                                                                                             | 80                                                                                                              | 0                                                                                                                                                              | 0.645                                                                                                                            | 239                                                                    | $3.5 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                   | 92.91                                                                                      | 134                                                                                                                                                    | $1.7 \cdot 10^{-3}$                                                                                                                                                                                                                  | 59.33                                                                                                                                                                                            | -                                                                                    | $1 \cdot 10^{-4}$                                                                                                                                                                                                                       | 79.64                                                                                                                                                            |
| 500                                                                      | 2000                                                                                                             | 80                                                                                                              | $10^{-3}$                                                                                                                                                      | 0.645                                                                                                                            | 239                                                                    | $4.2 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                   | 94.86                                                                                      | 134                                                                                                                                                    | $2.8 \cdot 10^{-3}$                                                                                                                                                                                                                  | 60.68                                                                                                                                                                                            | -                                                                                    | $1 \cdot 10^{-4}$                                                                                                                                                                                                                       | 79.98                                                                                                                                                            |
| 500                                                                      | 2000                                                                                                             | 80                                                                                                              | $10^{-4}$                                                                                                                                                      | 0.645                                                                                                                            | 239                                                                    | $3.6 \cdot 10^{-3}$                                                                                                                                                                                                                                                                                                                                   | 93.95                                                                                      | 134                                                                                                                                                    | $1.8 \cdot 10^{-3}$                                                                                                                                                                                                                  | 60.76                                                                                                                                                                                            | -                                                                                    | $1 \cdot 10^{-4}$                                                                                                                                                                                                                       | 79.48                                                                                                                                                            |
| 500                                                                      | 2000                                                                                                             | 100                                                                                                             | 0                                                                                                                                                              | 0.8                                                                                                                              | 523                                                                    | $1.1 \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                   | 259.13                                                                                     | 307                                                                                                                                                    | $6 \cdot 10^{-3}$                                                                                                                                                                                                                    | 173.14                                                                                                                                                                                           | -                                                                                    | $4.5 \cdot 10^{-2}$                                                                                                                                                                                                                     | 143.41                                                                                                                                                           |
| 500                                                                      | 2000                                                                                                             | 100                                                                                                             | $10^{-3}$                                                                                                                                                      | 0.8                                                                                                                              | 525                                                                    | $1.2 \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                   | 262.19                                                                                     | 308                                                                                                                                                    | $7 \cdot 10^{-3}$                                                                                                                                                                                                                    | 176.04                                                                                                                                                                                           | -                                                                                    | $5.2 \cdot 10^{-2}$                                                                                                                                                                                                                     | 142.85                                                                                                                                                           |
| 500                                                                      | 2000                                                                                                             | 100                                                                                                             | $10^{-4}$                                                                                                                                                      | 0.8                                                                                                                              | 523                                                                    | $1.1 \cdot 10^{-2}$                                                                                                                                                                                                                                                                                                                                   | 262.11                                                                                     | 307                                                                                                                                                    | $6 \cdot 10^{-3}$                                                                                                                                                                                                                    | 170.47                                                                                                                                                                                           | —                                                                                    | $5.1 \cdot 10^{-2}$                                                                                                                                                                                                                     | 144.78                                                                                                                                                           |
|                                                                          |                                                                                                                  |                                                                                                                 |                                                                                                                                                                |                                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                  |                                                                                      |                                                                                                                                                                                                                                         |                                                                                                                                                                  |
|                                                                          |                                                                                                                  |                                                                                                                 |                                                                                                                                                                |                                                                                                                                  |                                                                        | LMaFit                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                                                                                                        | MATRIX ALPS                                                                                                                                                                                                                          | S II                                                                                                                                                                                             | MAT                                                                                  | RIX ALPS II                                                                                                                                                                                                                             | with QR                                                                                                                                                          |
|                                                                          | n                                                                                                                | k                                                                                                               | $\left\  \boldsymbol{\varepsilon} \right\ _{2}$                                                                                                                |                                                                                                                                  | iter.                                                                  | LMaFit<br>err.                                                                                                                                                                                                                                                                                                                                        | time                                                                                       | iter.                                                                                                                                                  | MATRIX ALPS<br>err.                                                                                                                                                                                                                  | 5 II<br>time                                                                                                                                                                                     | MAT<br>iter.                                                                         | RIX ALPS II<br>err.                                                                                                                                                                                                                     | with QR<br>time                                                                                                                                                  |
| $\frac{m}{500}$                                                          | n<br>2000                                                                                                        | k<br>30                                                                                                         | $\left\ \boldsymbol{\varepsilon}\right\ _{2}$                                                                                                                  | 0.083                                                                                                                            | iter.<br>37                                                            | LMaFit<br>err.<br>$1.3 \cdot 10^{-5}$                                                                                                                                                                                                                                                                                                                 | time<br>3.05                                                                               | iter.                                                                                                                                                  | MATRIX ALPS<br>err.<br>$3.1 \cdot 10^{-5}$                                                                                                                                                                                           | 5 II<br>time<br>4.84                                                                                                                                                                             | MAT<br>iter.<br>37                                                                   | $\frac{\text{RIX ALPS II}}{\text{err.}}$ $1.2 \cdot 10^{-5}$                                                                                                                                                                            | with QR<br>time<br>4.04                                                                                                                                          |
| $     \frac{m}{500}   $                                                  | n<br>2000<br>2000                                                                                                | k<br>30<br>30                                                                                                   | $ \begin{array}{c} \left\ \boldsymbol{\varepsilon}\right\ _{2} \\ 0 \\ 10^{-3} \end{array} $                                                                   | 0.083                                                                                                                            | iter.<br>37<br>37                                                      | $\frac{\text{LMaFit}}{\text{err.}} \\ \hline 1.3 \cdot 10^{-5} \\ 1 \cdot 10^{-3} \\ \hline \end{array}$                                                                                                                                                                                                                                              | time<br>3.05<br>2.52                                                                       | iter.<br>13<br>22                                                                                                                                      | $\frac{\text{MATRIX ALPS}}{\text{err.}} \\ \hline 3.1 \cdot 10^{-5} \\ \hline 1.1 \cdot 10^{-3} \\ \hline \end{array}$                                                                                                               | 5 II<br>time<br>4.84<br>5.35                                                                                                                                                                     | MAT<br>iter.<br>37<br>37                                                             | $\begin{array}{r} \hline \text{TRIX ALPS II} \\ \hline \text{err.} \\ \hline 1.2 \cdot 10^{-5} \\ 1 \cdot 10^{-3} \end{array}$                                                                                                          | with QR<br>time<br>4.04<br>3.32                                                                                                                                  |
|                                                                          | n<br>2000<br>2000<br>2000                                                                                        | k<br>30<br>30<br>30                                                                                             | $egin{array}{   arepsilon   _2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                        | 0.083<br>0.083<br>0.083                                                                                                          | iter.<br>37<br>37<br>35                                                | $\begin{tabular}{c} LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ 1 \cdot 10^{-3} \\ 1 \cdot 10^{-4} \end{tabular}$                                                                                                                                                                                                                            | time<br>3.05<br>2.52<br>2.86                                                               | iter.<br>13<br>22<br>13                                                                                                                                | $\frac{\text{MATRIX ALPS}}{\text{err.}}$ $\frac{3.1 \cdot 10^{-5}}{1.1 \cdot 10^{-3}}$ $1.3 \cdot 10^{-4}$                                                                                                                           | 5 II<br>time<br>4.84<br>5.35<br>4.85                                                                                                                                                             | MAT<br>iter.<br>37<br>37<br>37                                                       | $\frac{\text{RIX ALPS II}}{\text{err.}}$ $\frac{1.2 \cdot 10^{-5}}{1 \cdot 10^{-3}}$ $1.6 \cdot 10^{-4}$                                                                                                                                | with QR<br>time<br>4.04<br>3.32<br>4.05                                                                                                                          |
| $     \frac{m}{500} \\             500 \\             500 \\           $ | n<br>2000<br>2000<br>2000<br>2000                                                                                | k<br>30<br>30<br>30<br>30<br>50                                                                                 |                                                                                                                                                                | 0.083<br>0.083<br>0.083<br>0.408                                                                                                 | iter.<br>37<br>37<br>35<br>60                                          | $\begin{tabular}{c} LMaFit\\ \hline err.\\ \hline 1.3\cdot 10^{-5}\\ \hline 1\cdot 10^{-3}\\ \hline 1\cdot 10^{-4}\\ \hline 6\cdot 10^{-5} \end{tabular}$                                                                                                                                                                                             | time<br>3.05<br>2.52<br>2.86<br>6.06                                                       | iter.<br>13<br>22<br>13<br>22                                                                                                                          | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                             | 5 II<br>time<br>4.84<br>5.35<br>4.85<br>7.6                                                                                                                                                      | MAT<br>iter.<br>37<br>37<br>37<br>60                                                 | $\begin{array}{c} \text{RIX ALPS II} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 1.2 \cdot 10^{-5} \\ \hline \\ 1.6 \cdot 10^{-3} \\ \hline \\ \hline \\ 1.6 \cdot 10^{-4} \\ \hline \\ 2 \cdot 10^{-4} \end{array}$ | with QR<br>time<br>4.04<br>3.32<br>4.05<br>5.67                                                                                                                  |
| $     \begin{array}{ c c c c c c c c c c c c c c c c c c c$              | n<br>2000<br>2000<br>2000<br>2000<br>2000                                                                        |                                                                                                                 | $ \begin{array}{c c}                                    $                                                                                                      | 0.083<br>0.083<br>0.083<br>0.408<br>0.408                                                                                        | iter.<br>37<br>37<br>35<br>60<br>60                                    | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \end{tabular}$                                                                                                                                       | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.26                                               | iter.<br>13<br>22<br>13<br>22<br>36                                                                                                                    | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                             | 5 II<br>time<br>4.84<br>5.35<br>4.85<br>7.6<br>19.64                                                                                                                                             | MAT<br>iter.<br>37<br>37<br>37<br>60<br>59                                           | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                | with QR<br>time<br>4.04<br>3.32<br>4.05<br>5.67<br>6.91                                                                                                          |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                   | n<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                        |                                                                                                                 | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \end{array} $                                                   | 0.083<br>0.083<br>0.083<br>0.408<br>0.408<br>0.408                                                                               | iter.<br>37<br>37<br>35<br>60<br>60<br>60                              | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \\ \hline 2 \cdot 10^{-4} \end{tabular}$                                                                                                             | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.26<br>7.29                                       | iter.           13           22           13           22           36           22                                                                    | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                             | S II           time           4.84           5.35           4.85           7.6           19.64           11.87                                                                                   | MAT<br>iter.<br>37<br>37<br>37<br>60<br>59<br>59                                     | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                | with QR<br>time<br>4.04<br>3.32<br>4.05<br>5.67<br>6.91<br>6.75                                                                                                  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                   | $\begin{array}{c} n \\ \hline 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \end{array}$  |                                                                                                                 | $ \begin{array}{c c} \ \varepsilon\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ \end{array} $                                           | 0.083<br>0.083<br>0.083<br>0.408<br>0.408<br>0.408<br>0.408<br>0.645                                                             | iter.<br>37<br>37<br>35<br>60<br>60<br>60<br>183                       | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \\ \hline 2 \cdot 10^{-4} \\ \hline 3 \cdot 10^{-4} \end{tabular}$                                                                                   | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.26<br>7.29<br>33.65                              | iter.<br>13<br>22<br>13<br>22<br>36<br>22<br>61                                                                                                        | $\begin{array}{c} \mbox{MATRIX ALPS} \\ \hline err. \\ \hline 3.1 \cdot 10^{-5} \\ \hline 1.1 \cdot 10^{-3} \\ \hline 1.3 \cdot 10^{-4} \\ \hline 1.6 \cdot 10^{-3} \\ \hline 2 \cdot 10^{-4} \\ \hline 2 \cdot 10^{-4} \end{array}$ | S II           time           4.84           5.35           4.85           7.6           19.64           11.87           49.53                                                                   | MAT<br>iter.<br>37<br>37<br>37<br>60<br>59<br>59<br>59<br>151                        | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                | with QR           time           4.04           3.32           4.05           5.67           6.91           6.75           18.66                                 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                   | $\begin{array}{c} n \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \\ 2000 \end{array}$ |                                                                                                                 | $\begin{array}{c c} \  \varepsilon \ _2 \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \end{array}$                                     | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.408\\ 0.408\\ 0.408\\ 0.645\\ 0.645\\ \end{array}$                                   | iter.<br>37<br>37<br>35<br>60<br>60<br>60<br>183<br>183                | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \\ \hline 2 \cdot 10^{-4} \\ \hline 3 \cdot 10^{-4} \\ \hline 2.3 \cdot 10^{-3} \end{tabular}$                                                       | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.26<br>7.29<br>33.65<br>33.48                     | iter.<br>13<br>22<br>13<br>22<br>36<br>22<br>61<br>92                                                                                                  | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                             | S II           time           4.84           5.35           4.85           7.6           19.64           11.87           49.53           75.51                                                   | MAT<br>iter.<br>37<br>37<br>60<br>59<br>59<br>151<br>151                             | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                | with QR           time           4.04           3.32           4.05           5.67           6.91           6.75           18.66           18.87                 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                   | n<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>20                                                  | $\begin{array}{c} k \\ 30 \\ 30 \\ 30 \\ 50 \\ 50 \\ 50 \\ 80 \\ 80 \\ 80 \\ 80 \\ \end{array}$                 | $\begin{array}{c c} \ \varepsilon\ _2 \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \end{array}$                            | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.408\\ 0.408\\ 0.408\\ 0.645\\ 0.645\\ 0.645\\ \end{array}$                           | iter.<br>37<br>35<br>60<br>60<br>183<br>183<br>183                     | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \\ \hline 2 \cdot 10^{-4} \\ \hline 3 \cdot 10^{-4} \\ \hline 2.3 \cdot 10^{-3} \\ \hline 3 \cdot 10^{-4} \end{tabular}$                             | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.26<br>7.29<br>33.65<br>33.48<br>33.47            | iter.<br>13<br>22<br>13<br>22<br>36<br>22<br>61<br>92<br>61                                                                                            | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                             | S II           time           4.84           5.35           4.85           7.6           19.64           11.87           49.53           75.51           49.52                                   | MAT<br>iter.<br>37<br>37<br>37<br>60<br>59<br>59<br>151<br>151<br>151<br>151         | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                | with QR           time           4.04           3.32           4.05           5.67           6.91           6.75           18.66           18.87           18.92 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                   | n<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                        | $\begin{array}{c c} k \\ \hline 30 \\ 30 \\ 30 \\ 50 \\ 50 \\ 50 \\ 80 \\ 80 \\ 80 \\ 80 \\ 100 \\ \end{array}$ | $\begin{array}{c} \left\ \varepsilon\right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \end{array}$            | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.408\\ 0.408\\ 0.408\\ 0.645\\ 0.645\\ 0.645\\ 0.645\\ 0.8\end{array}$                | iter.<br>37<br>35<br>60<br>60<br>183<br>183<br>183<br>519              | $\begin{tabular}{ c c c c c } \hline LMaFit \\ \hline err. \\ \hline 1.3 \cdot 10^{-5} \\ \hline 1 \cdot 10^{-3} \\ \hline 1 \cdot 10^{-4} \\ \hline 6 \cdot 10^{-5} \\ \hline 1.4 \cdot 10^{-3} \\ \hline 2 \cdot 10^{-4} \\ \hline 3 \cdot 10^{-4} \\ \hline 2.3 \cdot 10^{-3} \\ \hline 3 \cdot 10^{-4} \\ \hline 1.5 \cdot 10^{-3} \end{tabular}$ | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.26<br>7.29<br>33.65<br>33.48<br>33.47<br>115.11  | iter.<br>13<br>22<br>13<br>22<br>36<br>22<br>61<br>92<br>61<br>148                                                                                     |                                                                                                                                                                                                                                      | S II           time           4.84           5.35           4.85           7.6           19.64           11.87           49.53           75.51           49.52           153.74                  | MAT<br>iter.<br>37<br>37<br>37<br>60<br>59<br>59<br>151<br>151<br>151<br>151<br>429  |                                                                                                                                                                                                                                         | with QR<br>time<br>4.04<br>3.32<br>4.05<br>5.67<br>6.91<br>6.75<br>18.66<br>18.87<br>18.92<br>55.1                                                               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                   | n<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>20                                                  |                                                                                                                 | $\begin{array}{c} \left\ \varepsilon\right\ _{2} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 10^{-3} \end{array}$ | $\begin{array}{c} 0.083\\ 0.083\\ 0.083\\ 0.408\\ 0.408\\ 0.408\\ 0.645\\ 0.645\\ 0.645\\ 0.645\\ 0.8\\ 0.8\\ 0.8\\ \end{array}$ | iter.<br>37<br>35<br>60<br>60<br>60<br>183<br>183<br>183<br>519<br>529 | $\begin{array}{c} LMaFit\\ \hline \\ err.\\ \hline 1.3\cdot 10^{-5}\\ 1\cdot 10^{-3}\\ 1\cdot 10^{-4}\\ 6\cdot 10^{-5}\\ 1.4\cdot 10^{-3}\\ 2\cdot 10^{-4}\\ 3\cdot 10^{-4}\\ \hline 2.3\cdot 10^{-3}\\ 3\cdot 10^{-4}\\ \hline 1.5\cdot 10^{-3}\\ 3.6\cdot 10^{-3}\\ \end{array}$                                                                    | time<br>3.05<br>2.52<br>2.86<br>6.06<br>7.29<br>33.65<br>33.48<br>33.47<br>115.11<br>117.7 | iter.           13           22           13           22           36           22           61           92           61           148           228 |                                                                                                                                                                                                                                      | S II           time           4.84           5.35           4.85           7.6           19.64           11.87           49.53           75.51           49.52           153.74           239.92 | MAT<br>iter.<br>37<br>37<br>60<br>59<br>59<br>151<br>151<br>151<br>151<br>429<br>427 |                                                                                                                                                                                                                                         | with QR<br>time<br>4.04<br>3.32<br>4.05<br>5.67<br>6.91<br>6.75<br>18.66<br>18.87<br>18.92<br>55.1<br>55.7                                                       |

we note that MATRIX ALPS II has a better phase transition performance as compared to the rest of the algorithms.

## **11 Discussion**

In this paper, we present new strategies and review existing ones for hard thresholding methods to recover low-rank matrices from dimensionality reducing, linear projections. Our discussion revolves around four basic building blocks that exploit the problem structure to reduce computational complexity without sacrificing stability.

In theory, constant  $\mu_i$  selection schemes are accompanied with strong RIP constant conditions but empirical evidence reveal signal reconstruction vulnerabilities. While con-



**Fig. 10** Low rank matrix recovery for the matrix completion problem. The error curves are the median values across 50 Monte-Carlo realizations over each iteration. For all cases, we assume p = 0.3mn. (a) m = 700, n = 1000, k = 30 and  $\|\varepsilon\|_2 = 0$ . (b) m = 700, n = 1000, k = 50 and  $\|\varepsilon\|_2 = 10^{-3}$ . (c) m = 700, n = 1000, k = 110 and  $\|\varepsilon\|_2 = 0$ . (d) m = 500, n = 2000, k = 10 and  $\|\varepsilon\|_2 = 0$ . (e) m = 500, n = 2000, k = 50 and  $\|\varepsilon\|_2 = 10^{-3}$ . (f) m = 500, n = 2000, k = 80 and  $\|\varepsilon\|_2 = 10^{-4}$ .

vergence derivations of adaptive schemes are characterized by weaker bounds, the performance gained by this choice in terms of convergence rate, is quite significant. Memorybased methods lead to convergence speed with (almost) no extra cost on the complexity of hard thresholding methods we provide theoretical evidence for convergence for simple cases but more theoretical justification is needed to generalize this part as future work. Lastly, further estimate refinement over low rank subspaces using gradient update steps or pseudoinversion optimization techniques provides signal reconstruction efficacy, but more computational power is needed per iteration.

We connect  $\epsilon$ -approximation low-rank revealing schemes with first-order gradient descent algorithms to solve general affine rank minimization problems; to the best of our knowledge, this is the first attempt to theoretically characterize the performance of iterative greedy algorithms with  $\epsilon$ -approximation schemes. In all cases, experimental results illustrate the effectiveness of the proposed schemes on different problem configurations.

### Acknowledgments

This work was supported in part by the European Commission under Grant MIRG-268398, ERC Future Proof, SNF 200021-132548 and DARPA KeCoM program #11-DARPA-1055. VC also would like to acknowledge Rice University for his Faculty Fellowship.

### **A** Appendix

*Remark l* Let  $X \in \mathbb{R}^{m \times n}$  with SVD:  $X = U\Sigma V^T$ , and  $Y \in \mathbb{R}^{m \times n}$  with SVD:  $Y = \widetilde{U}\widetilde{\Sigma}\widetilde{V}^T$ . Assume two sets: *i*)  $S_1 = \{u_i u_i^T : i \in \mathcal{I}_1\}$  where  $u_i$  is the *i*-th singular vector of X and  $\mathcal{I}_1 \subseteq \{1, ..., rank(X)\}$  and, *ii*)  $S_2 = \{u_i u_i^T, \widetilde{u}_j \widetilde{u}_j^T : i \in \mathcal{I}_2, j \in \mathcal{I}_3\}$  where  $\widetilde{u}_i$  is the *i*-th singular vector of Y,  $\mathcal{I}_1 \subseteq \mathcal{I}_2 \subseteq \{1, ..., rank(X)\}$  and  $\mathcal{I}_3 \subseteq \{1, ..., rank(Y)\}$ . We observe that the subspaces defined by  $u_i u_i^T$  and  $\widetilde{u}_j \widetilde{u}_j^T$  are not necessarily orthogonal.

To this end, let  $\hat{S}_2 = \operatorname{ortho}(S_2)$ ; this operation can be easily computed via SVD. Then, the following commutativity property holds true for any matrix  $W \in \mathbb{R}^{m \times n}$ :

$$\mathcal{P}_{\mathcal{S}_1}\mathcal{P}_{\widehat{\mathcal{S}}_2}\boldsymbol{W} = \mathcal{P}_{\widehat{\mathcal{S}}_2}\mathcal{P}_{\mathcal{S}_1}\boldsymbol{W}.$$
(36)

### A.1 Proof of Lemma 6

Given  $\mathcal{X}^* \leftarrow \mathcal{P}_k(\mathbf{X}^*)$  using SVD factorization, we define the following quantities:  $\mathcal{S}_i \leftarrow \mathcal{X}_i \cup \mathcal{D}_i, \ \mathcal{S}_i^* \leftarrow \text{ ortho } (\mathcal{X}_i \cup \mathcal{X}^*)$ . Then, given the structure of the sets  $\mathcal{S}_i$  and  $\mathcal{S}_i^*$ 

$$\mathcal{P}_{\mathcal{S}_i} \mathcal{P}_{(\mathcal{S}_i^*)^{\perp}} = \mathcal{P}_{\mathcal{D}_i} \mathcal{P}_{(\mathcal{X}^* \cup \mathcal{X}_i)^{\perp}},$$
(37)



Fig. 11 Reconstruction performance in image denoising settings. The image size is  $512 \times 512$  and the desired rank is preset to k = 40. We observe 35% of the pixels of the true image. We depict the median reconstruction error with respect to the true image in dB over 10 Monte Carlo realizations.

and

$$\mathcal{P}_{\mathcal{S}_{i}^{*}}\mathcal{P}_{\mathcal{S}_{i}^{\perp}} = \mathcal{P}_{\mathcal{X}^{*}}\mathcal{P}_{(\mathcal{D}_{i}\cup\mathcal{X}_{i})^{\perp}}$$
(38)

Since the subspace defined in  $D_i$  is the best rank-k subspace, orthogonal to the subspace spanned by  $X_i$ , the following holds true:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{D}_{i}} \mathcal{P}_{\mathcal{X}_{i}^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\geq \left\| \mathcal{P}_{\mathcal{X}^{*}} \mathcal{P}_{\mathcal{X}_{i}^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \neq \\ \left\| \mathcal{P}_{\mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\geq \left\| \mathcal{P}_{\mathcal{S}_{i}^{*}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \end{aligned}$$

Removing the common subspaces in  $S_i$  and  $S_i^*$  by the commutativity property of the projection operation and using the shortcut  $\mathcal{P}_{\mathcal{A} \setminus \mathcal{B}} \equiv \mathcal{P}_{\mathcal{A}} \mathcal{P}_{\mathcal{B}^{\perp}}$  for sets  $\mathcal{A}$ ,  $\mathcal{B}$ , we get:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\geq \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \Rightarrow \\ \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\mathcal{A}}(\boldsymbol{X}^{*} - \boldsymbol{X}(i)) + \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\varepsilon} \right\|_{F} \geq \\ \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\mathcal{A}}(\boldsymbol{X}^{*} - \boldsymbol{X}(i)) + \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\varepsilon} \right\|_{F} \end{aligned} \tag{39}$$

Next, we assume that  $\mathcal{P}_{(\mathcal{A} \setminus \mathcal{B})^{\perp}}$  denotes the orthogonal projection onto the subspace spanned by  $\mathcal{P}_{\mathcal{A}}\mathcal{P}_{\mathcal{B}^{\perp}}$ . Then, on the left hand side of (39), we have:

$$\begin{split} & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A}(\mathbf{X}^{*} - \mathbf{X}(i)) + \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \varepsilon \right\|_{F} \\ & \stackrel{(i)}{\leq} \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A}(\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} + \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \varepsilon \right\|_{F} \\ & \stackrel{(ii)}{=} \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} (\mathbf{X}^{*} - \mathbf{X}(i)) + \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A}(\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ & + \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \varepsilon \right\|_{F} \\ & \stackrel{(iii)}{=} \left\| (\mathbf{I} - \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} )(\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ & + \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{(\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*})^{\perp}} (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ & \leq \left\| (\mathbf{I} - \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} )(\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ & + \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{(\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*})^{\perp}} (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} + \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \varepsilon \right\|_{F} \end{split}$$



Fig. 12 Reconstruction performance in image denoising settings. The image size is  $256 \times 256$  and the desired rank is preset to k = 30. We observe 33% of the pixels of the best rank-30 approximation of the image. We depict the median reconstruction with respect to the best rank-30 approximation in dB over 10 Monte Carlo realizations

$$\begin{split} \stackrel{(iv)}{\leq} \delta_{3k} \| \mathbf{X}^* - \mathbf{X}(i) \|_F + \| \mathcal{P}_{\mathcal{S}_i \setminus \mathcal{S}_i^*} \mathbf{\mathcal{A}}^* \mathbf{\varepsilon} \|_F \\ + \| \mathcal{P}_{\mathcal{S}_i \setminus \mathcal{S}_i^*} \mathbf{\mathcal{A}}^* \mathbf{\mathcal{A}} \mathcal{P}_{(\mathcal{S}_i \setminus \mathcal{S}_i^*)^{\perp}} (\mathbf{X}^* - \mathbf{X}(i)) \|_F \\ \stackrel{(v)}{\leq} \delta_{3k} \| \mathbf{X}^* - \mathbf{X}(i) \|_F + \| \mathcal{P}_{\mathcal{S}_i \setminus \mathcal{S}_i^*} \mathbf{\mathcal{A}}^* \mathbf{\varepsilon} \|_F \\ + \delta_{3k} \| \mathcal{P}_{(\mathcal{S}_i \setminus \mathcal{S}_i^*)^{\perp}} (\mathbf{X}^* - \mathbf{X}(i)) \|_F \\ \stackrel{(vi)}{\leq} 2\delta_{3k} \| \mathbf{X}^* - \mathbf{X}(i) \|_F + \| \mathcal{P}_{\mathcal{S}_i \setminus \mathcal{S}_i^*} \mathbf{\mathcal{A}}^* \mathbf{\varepsilon} \|_F$$

$$\end{split}$$

$$(40)$$

where (i) due to triangle inequality over Frobenius metric norm, (ii) since  $\mathcal{P}_{S_i \setminus S_i^*}(\mathbf{X}(i) - \mathbf{X}^*) = \mathbf{0}$ , (iii) by using the fact that  $\mathbf{X}(i) - \mathbf{X}^* := \mathcal{P}_{S_i \setminus S_i^*}(\mathbf{X}(i) - \mathbf{X}^*) + \mathcal{P}_{(S_i \setminus S_i^*)^{\perp}}(\mathbf{X}(i) - \mathbf{X}^*)$ , (iv) due to Lemma 4, (v) due to Lemma 5 and (vi) since  $\left\| \mathcal{P}_{(S_i \setminus S_i^*)^{\perp}}(\mathbf{X}^* - \mathbf{X}(i)) \right\|_F \leq \left\| \mathbf{X}(i) - \mathbf{X}^* \right\|_F$ .

For the right hand side of (39), we calculate:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A}(\mathbf{X}^{*} - \mathbf{X}(i)) + \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \boldsymbol{\varepsilon} \right\|_{F} \\ &\geq \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ &- \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{(\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i})^{\perp}} (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ &- \left\| (\mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} - \mathbf{I}) (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} \\ &\geq \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} - 2\delta_{2k} \left\| \mathbf{X}(i) - \mathbf{X}^{*} \right\|_{F} \\ &- \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \boldsymbol{\varepsilon} \right\|_{F} \end{aligned} \tag{41}$$

by using Lemmas 4 and 5. Combining (40) and (41) in (39), we get:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{X}^* \setminus \mathcal{S}_i} \boldsymbol{X}^* \right\|_F &\leq (2\delta_{2k} + 2\delta_{3k}) \left\| \boldsymbol{X}(i) - \boldsymbol{X}^* \right\|_F \\ &+ \sqrt{2(1 + \delta_{2k})} \|\boldsymbol{\varepsilon}\|_2. \end{aligned}$$

### A.2 Proof of Theorem 1

Let  $\mathcal{X}^* \leftarrow \mathcal{P}_k(\mathbf{X}^*)$  be a set of orthonormal, rank-1 matrices that span the range of  $\mathbf{X}^*$ . In Algorithm 1,  $\mathbf{W}(i) \leftarrow \mathcal{P}_k(\mathbf{V}(i))$ . Thus:

$$\begin{aligned} \left\| \boldsymbol{W}(i) - \boldsymbol{V}(i) \right\|_{F}^{2} &\leq \left\| \boldsymbol{X}^{*} - \boldsymbol{V}(i) \right\|_{F}^{2} \Rightarrow \\ \left\| \boldsymbol{W}(i) - \boldsymbol{X}^{*} + \boldsymbol{X}^{*} - \boldsymbol{V}(i) \right\|_{F}^{2} &\leq \left\| \boldsymbol{X}^{*} - \boldsymbol{V}(i) \right\|_{F}^{2} \Rightarrow \\ \left\| \boldsymbol{W}(i) - \boldsymbol{X}^{*} \right\|_{F}^{2} &\leq 2 \langle \boldsymbol{W}(i) - \boldsymbol{X}^{*}, \boldsymbol{V}(i) - \boldsymbol{X}^{*} \rangle \end{aligned}$$

$$(42)$$

From Algorithm 1, *i*)  $V(i) \in \operatorname{span}(S_i)$ , *ii*)  $X(i) \in \operatorname{span}(S_i)$ and *iii*)  $W(i) \in \operatorname{span}(S_i)$ . We define  $\mathcal{E} \leftarrow \operatorname{ortho}(S_i \cup \mathcal{X}^*)$  where rank(span( $\mathcal{E}$ ))  $\leq 3k$  and let  $\mathcal{P}_{\mathcal{E}}$  be the orthogonal projection onto the subspace defined by  $\mathcal{E}$ .

Since  $W(i) - X^* \in \text{span}(\mathcal{E})$  and  $V(i) - X^* \in \text{span}(\mathcal{E})$ , the following hold true:

$$oldsymbol{W}(i) - oldsymbol{X}^* = \mathcal{P}_{\mathcal{E}}(oldsymbol{W}(i) - oldsymbol{X}^*)$$
 and  
 $oldsymbol{V}(i) - oldsymbol{X}^* = \mathcal{P}_{\mathcal{E}}(oldsymbol{V}(i) - oldsymbol{X}^*).$ 

Then, (42) can be written as:

$$\|\boldsymbol{W}(i) - \boldsymbol{X}^*\|_F^2 \leq 2\langle \mathcal{P}_{\mathcal{E}}(\boldsymbol{W}(i) - \boldsymbol{X}^*), \mathcal{P}_{\mathcal{E}}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \rangle \Rightarrow$$

$$= \underbrace{2\langle \mathcal{P}_{\mathcal{E}}(\boldsymbol{W}(i) - \boldsymbol{X}^*), \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^* - \mu_i \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}}(\boldsymbol{X}(i) - \boldsymbol{X}^*)) \rangle}_{\doteq A}$$

$$+ \underbrace{2\mu_i \langle \mathcal{P}_{\mathcal{E}}(\boldsymbol{W}(i) - \boldsymbol{X}^*), \mathcal{P}_{\mathcal{E}} \mathcal{P}_{\mathcal{S}_i}(\boldsymbol{\mathcal{A}}^* \boldsymbol{\varepsilon}) \rangle}_{\doteq B} \qquad (43)$$

In B, we observe:

$$B := 2\mu_{i} \langle \mathcal{P}_{\mathcal{E}}(\boldsymbol{W}(i) - \boldsymbol{X}^{*}), \mathcal{P}_{\mathcal{E}}\mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\varepsilon}) \rangle$$

$$\stackrel{(i)}{=} 2\mu_{i} \langle \boldsymbol{W}(i) - \boldsymbol{X}^{*}, \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\varepsilon}) \rangle$$

$$\stackrel{(ii)}{\leq} 2\mu_{i} \| \boldsymbol{W}(i) - \boldsymbol{X}^{*} \|_{F} \| \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\varepsilon}) \|_{F}$$

$$\stackrel{(iii)}{\leq} 2\mu_{i} \sqrt{1 + \delta_{2k}} \| \boldsymbol{W}(i) - \boldsymbol{X}^{*} \|_{F} \| \boldsymbol{\varepsilon} \|_{2}$$
(44)

where (i) holds since  $\mathcal{P}_{S_i}\mathcal{P}_{\mathcal{E}} = \mathcal{P}_{\mathcal{E}}\mathcal{P}_{S_i} = \mathcal{P}_{S_i}$  for span $(S_i) \in$  span $(\mathcal{E})$ , (ii) is due to Cauchy-Schwarz inequality and, (iii) is easily derived using Lemma 2.

In A, we perform the following motions:

$$A := 2\langle \boldsymbol{W}(i) - \boldsymbol{X}^{*}, \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*}) - \mu_{i}\mathcal{P}_{\mathcal{S}_{i}}\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\mathcal{A}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})$$

$$\stackrel{(i)}{=} 2\langle \boldsymbol{W}(i) - \boldsymbol{X}^{*}, \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})$$

$$- \mu_{i}\mathcal{P}_{\mathcal{S}_{i}}\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\mathcal{A}}[\mathcal{P}_{\mathcal{S}_{i}} + \mathcal{P}_{\mathcal{S}_{i}^{\perp}}]\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})\rangle$$

$$= 2\langle \boldsymbol{W}(i) - \boldsymbol{X}^{*}, (\mathbf{I} - \mu_{i}\mathcal{P}_{\mathcal{S}_{i}}\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\mathcal{A}}\mathcal{P}_{\mathcal{S}_{i}})\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})\rangle$$

$$- 2\mu_{i}\langle \boldsymbol{W}(i) - \boldsymbol{X}^{*}, \mathcal{P}_{\mathcal{S}_{i}}\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\mathcal{A}}\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})\rangle$$

$$\stackrel{(ii)}{\leq} 2\|\boldsymbol{W}(i) - \boldsymbol{X}^{*}\|_{F}\|(\mathbf{I} - \mu_{i}\mathcal{P}_{\mathcal{S}_{i}}\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\mathcal{A}}\mathcal{P}_{\mathcal{S}_{i}})\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})\|_{F}$$

$$+ 2\mu_{i}\|\boldsymbol{W}(i) - \boldsymbol{X}^{*}\|_{F}\|\mathcal{P}_{\mathcal{S}_{i}}\boldsymbol{\mathcal{A}}^{*}\boldsymbol{\mathcal{A}}\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*})\|_{F}$$
(45)

where (i) is due to  $\mathcal{P}_{\mathcal{E}}(\mathbf{X}(i) - \mathbf{X}^*) := \mathcal{P}_{\mathcal{S}_i} \mathcal{P}_{\mathcal{E}}(\mathbf{X}(i) - \mathbf{X}^*) + \mathcal{P}_{\mathcal{S}_i^{\perp}} \mathcal{P}_{\mathcal{E}}(\mathbf{X}(i) - \mathbf{X}^*)$  and (ii) follows from Cauchy-Schwarz inequality. Since  $\frac{1}{1+\delta_{2k}} \leq \mu_i \leq \frac{1}{1-\delta_{2k}}$ , Lemma 4 implies:

$$\lambda(\mathbf{I} - \mu_i \mathcal{P}_{\mathcal{S}_i} \mathcal{A}^* \mathcal{A} \mathcal{P}_{\mathcal{S}_i}) \in \left[1 - \frac{1 - \delta_{2k}}{1 + \delta_{2k}}, \frac{1 + \delta_{2k}}{1 - \delta_{2k}} - 1\right]$$
$$\leq \frac{2\delta_{2k}}{1 - \delta_{2k}}.$$

and thus:

$$\begin{split} \left\| \left( \mathbf{I} - \mu_i \mathcal{P}_{\mathcal{S}_i} \mathcal{A}^* \mathcal{A} \mathcal{P}_{\mathcal{S}_i} \right) \mathcal{P}_{\mathcal{E}} (\mathbf{X}(i) - \mathbf{X}^*) \right\|_F \\ & \leq \frac{2\delta_{2k}}{1 - \delta_{2k}} \left\| \mathcal{P}_{\mathcal{E}} (\mathbf{X}(i) - \mathbf{X}^*) \right\|_F. \end{split}$$

Furthermore, according to Lemma 5:

$$\left\|\mathcal{P}_{\mathcal{S}_{i}}\mathcal{A}^{*}\mathcal{A}\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i)-\boldsymbol{X}^{*})\right\|_{F} \leq \delta_{3k}\left\|\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i)-\boldsymbol{X}^{*})\right\|_{F}$$

since rank 
$$(\mathcal{P}_{\mathcal{K}} \mathbf{X}) \leq 3k$$
,  $\forall \mathbf{X} \in \mathbb{R}^{m \times n}$  for  $\mathcal{K} \leftarrow \text{ortho}(\mathcal{E} \cup \mathcal{S}_i)$ . Since  $\mathcal{P}_{\mathcal{S}_i^{\perp}} \mathcal{P}_{\mathcal{E}}(\mathbf{X}(i) - \mathbf{X}^*) = \mathcal{P}_{\mathcal{X}^* \setminus (\mathcal{D}_i \cup \mathcal{X}_i)} \mathbf{X}^*$  where

$$\mathcal{D}_i \leftarrow \mathcal{P}_k\left(\mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\boldsymbol{X}(i))\right),$$

then:

$$\begin{split} & \left\| \mathcal{P}_{\mathcal{S}_{i}^{\perp}} \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i) - \boldsymbol{X}^{*}) \right\|_{F} = \left\| \mathcal{P}_{\mathcal{X}^{*} \setminus (\mathcal{D}_{i} \cup \mathcal{X}_{i})} \boldsymbol{X}^{*} \right\|_{F} \\ & \leq (2\delta_{2k} + 2\delta_{3k}) \left\| \boldsymbol{X}(i) - \boldsymbol{X}^{*} \right\|_{F} + \sqrt{2(1 + \delta_{2k})} \left\| \boldsymbol{\varepsilon} \right\|_{2}, \end{split}$$

using Lemma 6. Combining the above in (45), we compute:

$$A \leq \left(\frac{4\delta_{2k}}{1-\delta_{2k}} + (2\delta_{2k} + 2\delta_{3k})\frac{2\delta_{3k}}{1-\delta_{2k}}\right) \|\boldsymbol{W}(i) - \boldsymbol{X}^*\|_F \cdot \|\boldsymbol{X}(i) - \boldsymbol{X}^*\|_F + \frac{2\delta_{3k}}{1-\delta_{2k}} \|\boldsymbol{W}(i) - \boldsymbol{X}^*\|_F \sqrt{2(1+\delta_{2k})} \|\boldsymbol{\varepsilon}\|_2$$
(46)

Combining (44) and (46) in (43), we get:

$$\begin{split} \| \mathbf{W}(i) - \mathbf{X}^* \|_F \\ &\leq \left( \frac{4\delta_{2k}}{1 - \delta_{2k}} + (2\delta_{2k} + 2\delta_{3k}) \frac{2\delta_{3k}}{1 - \delta_{2k}} \right) \| \mathbf{X}(i) - \mathbf{X}^* \|_F \\ &+ \left( \frac{2\sqrt{1 + \delta_{2k}}}{1 - \delta_{2k}} + \frac{2\delta_{3k}}{1 - \delta_{2k}} \sqrt{2(1 + \delta_{2k})} \right) \| \boldsymbol{\varepsilon} \|_2 \end{split}$$
(47)

Focusing on steps 5 and 6 of Algorithm 1, we perform similar motions to obtain:

$$\begin{aligned} \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F &\leq \left( \frac{1 + 2\delta_{2k}}{1 - \delta_{2k}} \right) \left\| \boldsymbol{W}(i) - \boldsymbol{X}^* \right\|_F \\ &+ \frac{\sqrt{1 + \delta_k}}{1 - \delta_k} \left\| \boldsymbol{\varepsilon} \right\|_2 \end{aligned}$$
(48)

)) Combining the recursions in (47) and (48), we finally compute:

$$\begin{split} \left\| \mathbf{X}(i+1) - \mathbf{X}^* \right\|_F &\leq \rho \left\| \mathbf{X}(i) - \mathbf{X}^* \right\|_F + \gamma \left\| \mathbf{\varepsilon} \right\|_2, \\ \text{for } \rho &:= \left( \frac{1+2\delta_{2k}}{1-\delta_{2k}} \right) \left( \frac{4\delta_{2k}}{1-\delta_{2k}} + (2\delta_{2k} + 2\delta_{3k}) \frac{2\delta_{3k}}{1-\delta_{2k}} \right) \text{ and} \\ \gamma &:= \left( \left( \frac{1+2\delta_{2k}}{1-\delta_{2k}} \right) \left( \frac{2\sqrt{1+\delta_{2k}}}{1-\delta_{2k}} + \frac{2\delta_{3k}}{1-\delta_{2k}} \sqrt{2(1+\delta_{2k})} \right) \\ &+ \frac{\sqrt{1+\delta_k}}{1-\delta_k} \right) \end{split}$$

For the convergence parameter  $\rho$ , further compute:

$$\left(\frac{1+2\delta_{2k}}{1-\delta_{2k}}\right)\left(\frac{4\delta_{2k}}{1-\delta_{2k}} + (2\delta_{2k}+2\delta_{3k})\frac{2\delta_{3k}}{1-\delta_{2k}}\right) \\
\leq \frac{1+2\delta_{3k}}{(1-\delta_{3k})^2}\left(4\delta_{3k}+8\delta_{3k}^2\right) =: \hat{\rho}.$$
(49)

for  $\delta_k \leq \delta_{2k} \leq \delta_{3k}$ . Calculating the roots of this expression, we easily observe that  $\rho < \hat{\rho} < 1$  for  $\delta_{3k} < 0.1235$ .

# A.3 Proof of Theorem 2

Before we present the proof of Theorem 2, we list a series of lemmas that correspond to the motions Algorithm 2 performs.

**Lemma 9** [Error norm reduction via least-squares optimization] Let  $S_i$  be a set of orthonormal, rank-1 matrices that span a rank-2k subspace in  $\mathbb{R}^{m \times n}$ . Then, the least squares solution V(i) given by:

$$\boldsymbol{V}(i) \leftarrow \operatorname*{arg\,min}_{\boldsymbol{V}:\boldsymbol{V} \in span(\mathcal{S}_i)} \|\boldsymbol{y} - \boldsymbol{\mathcal{A}}\boldsymbol{V}\|_2^2, \tag{50}$$

satisfies:

$$\begin{aligned} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F &\leq \frac{1}{\sqrt{1 - \delta_{3k}^2(\boldsymbol{\mathcal{A}})}} \left\| \mathcal{P}_{\mathcal{S}_i^{\perp}}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F \\ &+ \frac{\sqrt{1 + \delta_{2k}}}{1 - \delta_{3k}} \left\| \boldsymbol{\varepsilon} \right\|_2. \end{aligned}$$
(51)

*Proof* We observe that  $\|V(i) - X^*\|_F^2$  is decomposed as follows:

$$\left\|\boldsymbol{V}(i) - \boldsymbol{X}^*\right\|_F^2 = \left\|\mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}^*)\right\|_F^2 + \left\|\mathcal{P}_{\mathcal{S}_i^{\perp}}(\boldsymbol{V}(i) - \boldsymbol{X}^*)\right\|_F^2.$$
(52)

In (50), V(i) is the minimizer over the low-rank subspace spanned by  $S_i$  with rank $(\text{span}(S_i)) \leq 2k$ . Using the optimality condition (Lemma 1) over the convex set  $\Theta = \{X : \text{span}(X) \in S_i\}$ , we have:

$$\langle \nabla f(\mathbf{V}(i)), \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{X}^{*} - \mathbf{V}(i)) \rangle \geq 0 \Rightarrow \langle \mathbf{A}\mathbf{V}(i) - \mathbf{y}, \mathbf{A}\mathcal{P}_{\mathcal{S}_{i}}(\mathbf{V}(i) - \mathbf{X}^{*}) \rangle \leq 0.$$
 (53)

for  $\mathcal{P}_{S_i} X^* \in \text{span}(S_i)$ . Given condition (53), the first term on the right hand side of (52) becomes:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \right\|_{F}^{2} \\ &= \langle \boldsymbol{V}(i) - \boldsymbol{X}^{*}, \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle \\ &\stackrel{(53)}{\leq} \langle \boldsymbol{V}(i) - \boldsymbol{X}^{*}, \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle \\ &- \langle \boldsymbol{A} \boldsymbol{V}(i) - \boldsymbol{y}, \boldsymbol{A} \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle \\ &\leq |\langle \boldsymbol{V}(i) - \boldsymbol{X}^{*}, (\mathbf{I} - \boldsymbol{A}^{*} \boldsymbol{A}) \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle| \\ &+ \langle \boldsymbol{\varepsilon}, \boldsymbol{A} \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle \end{aligned}$$
(54)

Focusing on the term  $|\langle V(i) - X^*, (I - A^*A) \mathcal{P}_{S_i}(V(i) - X^*) \rangle|$ , we derive the following:

$$\begin{split} |\langle \mathbf{V}(i) - \mathbf{X}^*, (\mathbf{I} - \mathbf{A}^* \mathbf{A}) \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle| \\ &= |\langle \mathbf{V}(i) - \mathbf{X}^*, \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle \\ - \langle \mathbf{V}(i) - \mathbf{X}^*, \mathbf{A}^* \mathbf{A} \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle| \\ \stackrel{(i)}{=} |\langle \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*}(\mathbf{V}(i) - \mathbf{X}^*), \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle \\ - \langle \mathbf{A} \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*}(\mathbf{V}(i) - \mathbf{X}^*), \mathbf{A} \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle| \\ \stackrel{(ii)}{=} |\langle \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*}(\mathbf{V}(i) - \mathbf{X}^*), \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*} \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle| \\ - \langle \mathbf{A} \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*}(\mathbf{V}(i) - \mathbf{X}^*), \mathcal{A} \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*} \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle| \\ = |\langle \mathbf{V}(i) - \mathbf{X}^*, (\mathbf{I} - \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*} \mathbf{A}^* \mathcal{A} \mathcal{P}_{\mathcal{S}_i \cup \mathcal{X}^*}) \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}^*) \rangle| \end{split}$$

where (i) follows from the facts that  $V(i) - X^* \in \text{span}(\text{ortho}(S_i \cup \mathcal{X}^*))$  and thus  $\mathcal{P}_{S_i \cup \mathcal{X}^*}(V(i) - X^*) = V(i) - X^*$  and (ii) is due to  $\mathcal{P}_{S_i \cup \mathcal{X}^*}\mathcal{P}_{S_i} = \mathcal{P}_{S_i}$  since  $\text{span}(S_i) \subseteq \text{span}(\text{ortho}(S_i \cup \mathcal{X}^*))$ . Then,

(54) becomes:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \right\|_{F}^{2} \\ &\leq \left| \langle \boldsymbol{V}(i) - \boldsymbol{X}^{*}, (\mathbf{I} - \mathcal{P}_{\mathcal{S}_{i} \cup \mathcal{X}^{*}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_{i} \cup \mathcal{X}^{*}}) \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle \right| \\ &+ \langle \boldsymbol{\varepsilon}, \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \rangle \\ &\stackrel{(i)}{\leq} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^{*} \right\|_{F} \left\| (\mathbf{I} - \mathcal{P}_{\mathcal{S}_{i} \cup \mathcal{X}^{*}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_{i} \cup \mathcal{X}^{*}}) \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \right\|_{F} \\ &+ \left\| \mathcal{P}_{\mathcal{S}_{i}} \boldsymbol{\mathcal{A}}^{*} \boldsymbol{\varepsilon} \right\|_{F} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \right\|_{F} \\ &\stackrel{(ii)}{\leq} \delta_{3k} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \right\|_{F} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^{*} \right\|_{F} \\ &+ \sqrt{1 + \delta_{2k}} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*}) \right\|_{F} \left\| \boldsymbol{\varepsilon} \right\|_{2}, \end{aligned}$$
(55)

where (i) comes from Cauchy-Swartz inequality and (ii) is due to Lemmas 2 and 4. Simplifying the above quadratic expression, we obtain:

$$\left\|\mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i)-\boldsymbol{X}^{*})\right\|_{F} \leq \delta_{3k} \left\|\boldsymbol{V}(i)-\boldsymbol{X}^{*}\right\|_{F} + \sqrt{1+\delta_{2k}} \left\|\boldsymbol{\varepsilon}\right\|_{2}.$$
(56)

As a consequence, (52) can be upper bounded by:

-

$$\begin{aligned} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F^2 &\leq \left( \delta_{3k} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F + \sqrt{1 + \delta_{2k}} \left\| \boldsymbol{\varepsilon} \right\|_2 \right)^2 \\ &+ \left\| \mathcal{P}_{\mathcal{S}_i^{\perp}}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F^2. \end{aligned}$$
(57)

We form the quadratic polynomial for this inequality assuming as unknown variable the quantity  $\|V(i) - X^*\|_F$ . Bounding by the largest root of the resulting polynomial, we get:

$$\begin{aligned} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F &\leq \frac{1}{\sqrt{1 - \delta_{3k}^2(\boldsymbol{\mathcal{A}})}} \left\| \mathcal{P}_{\mathcal{S}_i^{\perp}}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F \\ &+ \frac{\sqrt{1 + \delta_{2k}}}{1 - \delta_{3k}} \left\| \boldsymbol{\varepsilon} \right\|_2. \end{aligned}$$
(58)

The following Lemma characterizes how subspace *pruning* affects the recovered energy:

**Lemma 10** [Best rank-k subspace selection] Let  $\mathbf{V}(i) \in \mathbb{R}^{m \times n}$  be a rank-2k proxy matrix in the subspace spanned by  $S_i$  and let  $\mathbf{X}(i + 1) \leftarrow \mathcal{P}_k(\mathbf{V}(i))$  denote the best rank-k approximation to  $\mathbf{V}(i)$ , according to (5). Then:

$$\left\|\boldsymbol{X}(i+1) - \boldsymbol{V}(i)\right\|_{F} \le \left\|\mathcal{P}_{\mathcal{S}_{i}}(\boldsymbol{V}(i) - \boldsymbol{X}^{*})\right\|_{F} \le \left\|\boldsymbol{V}(i) - \boldsymbol{X}^{*}\right\|_{F}.$$
(59)

*Proof* Since X(i+1) denotes the best rank-*k* approximation to V(i), the following inequality holds for any rank-*k* matrix  $X \in \mathbb{R}^{m \times n}$  in the subspace spanned by  $S_i$ , i.e.  $\forall X \in \text{span}(S_i)$ :

$$\left\|\boldsymbol{X}(i+1) - \boldsymbol{V}(i)\right\|_{F} \le \left\|\boldsymbol{X} - \boldsymbol{V}(i)\right\|_{F}.$$
(60)

Since  $\mathcal{P}_{S_i} V(i) = V(i)$ , the left inequality in (59) is satisfied for  $X := \mathcal{P}_{S_i} X^*$  in (60).

**Lemma 11** Let  $\mathbf{V}(i)$  be the least squares solution in Step 2 of the ADMiRA algorithm and let  $\mathbf{X}(i+1)$  be a proxy, rank-k matrix to  $\mathbf{V}(i)$  according to:  $\mathbf{X}(i+1) \leftarrow \mathcal{P}_k(\mathbf{V}(i))$ . Then,  $\|\mathbf{X}(i+1) - \mathbf{X}^*\|_F$  can be expressed in terms of the distance from  $\mathbf{V}(i)$  to  $\mathbf{X}^*$  as follows:

$$\|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\|_F \le \sqrt{1 + 3\delta_{3k}^2} \|\boldsymbol{V}(i) - \boldsymbol{X}^*\|_F + \sqrt{1 + 3\delta_{3k}^2} \sqrt{\frac{3(1 + \delta_{2k})}{1 + 3\delta_{3k}^2}} \|\boldsymbol{\varepsilon}\|_2.$$
(61)

*Proof* We observe the following

$$\begin{aligned} \left\| \mathbf{X}(i+1) - \mathbf{X}^* \right\|_F^2 &= \left\| \mathbf{X}(i+1) - \mathbf{V}(i) + \mathbf{V}(i) - \mathbf{X}^* \right\|_F^2 \\ &= \left\| \mathbf{V}(i) - \mathbf{X}^* \right\|_F^2 + \left\| \mathbf{V}(i) - \mathbf{X}(i+1) \right\|_F^2 \\ &- 2 \langle \mathbf{V}(i) - \mathbf{X}^*, \mathbf{V}(i) - \mathbf{X}(i+1) \rangle. \end{aligned}$$
(62)

Focusing on the right hand side of expression (62),  $\langle \mathbf{V}(i) - \mathbf{X}^*, \mathbf{V}(i) - \mathbf{X}(i+1) \rangle = \langle \mathbf{V}(i) - \mathbf{X}^*, \mathcal{P}_{\mathcal{S}_i}(\mathbf{V}(i) - \mathbf{X}(i+1)) \rangle$  can be similarly analysed as in Lemma 10 where we obtain the following expression:

$$\begin{aligned} |\langle \boldsymbol{V}(i) - \boldsymbol{X}^*, \mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}(i+1))\rangle| \\ &\leq \delta_{3k} \|\boldsymbol{V}(i) - \boldsymbol{X}^*\|_F \|\boldsymbol{V}(i) - \boldsymbol{X}(i+1)\|_F \\ &+ \sqrt{1 + \delta_{2k}} \|\boldsymbol{V}(i) - \boldsymbol{X}(i+1)\|_F \|\boldsymbol{\varepsilon}\|_2. \end{aligned}$$
(63)

Now, expression (62) can be further transformed as:

$$\begin{aligned} \|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\|_F^2 &\stackrel{(i)}{\leq} \|\boldsymbol{V}(i) - \boldsymbol{X}^*\|_F^2 + \|\boldsymbol{V}(i) - \boldsymbol{X}(i+1)\|_F^2 \\ &+ 2(\delta_{3k} \|\boldsymbol{V}(i) - \boldsymbol{X}^*\|_F \|\boldsymbol{V}(i) - \boldsymbol{X}(i+1)\|_F \\ &+ \sqrt{1 + \delta_{2k}} \|\boldsymbol{V}(i) - \boldsymbol{X}(i+1)\|_F \|\boldsymbol{\varepsilon}\|_2) \end{aligned}$$

where (i) is due to (63). Using Lemma 10, we further have:

$$\begin{aligned} \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F^2 &\leq \left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F^2 + \left\| \mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F^2 \\ &+ 2 \Big( \delta_{3k} \left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F \left\| \mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F \\ &+ \sqrt{1 + \delta_{2k}} \left\| \mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F \left\| \boldsymbol{\varepsilon} \right\|_2 \Big) \end{aligned}$$
(65)

Furthermore, replacing  $\|\mathcal{P}_{\mathcal{S}_i}(\mathbf{X}^* - \mathbf{V}(i))\|_F$  with its upper bound defined in (56), we get:

$$\begin{aligned} \|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\|_2^2 \\ &\leq \left(1 + 3\delta_{3k}^2\right) \left( \|\boldsymbol{V}(i) - \boldsymbol{X}^*\|_2 + \sqrt{\frac{3(1+\delta_{2k})}{1+3\delta_{3k}^2}} \|\boldsymbol{\varepsilon}\| \right)^2 \tag{66}$$

where (i) is obtained by completing the squares and eliminating negative terms.

Applying basic algebra tools in (61) and (51), we get:

$$\begin{split} \| \mathbf{X}(i+1) - \mathbf{X}^* \|_F &\leq \sqrt{\frac{1+3\delta_{3k}^2}{1-\delta_{3k}^2}} \| \mathcal{P}_{\mathcal{S}_i^{\perp}}(\mathbf{V}(i) - \mathbf{X}^*) \|_F \\ &+ \left(\frac{\sqrt{1+3\delta_{3k}^2}}{1-\delta_{3k}} + \sqrt{3}\right) \sqrt{1+\delta_{2k}} \| \mathbf{\varepsilon} \|_2. \end{split}$$

Since  $V(i) \in \operatorname{span}(S_i)$ , we observe  $\mathcal{P}_{S_i^{\perp}}(V(i) - X^*) = -\mathcal{P}_{S_i^{\perp}}X^* = -\mathcal{P}_{\mathcal{X}^* \setminus (\mathcal{D}_i \cup \mathcal{X}_i)}X^*$ . Then, using Lemma 6, we obtain:

$$\begin{aligned} \|\mathbf{X}(i+1) - \mathbf{X}^*\|_F \\ &\leq \left(2\delta_{2k} + 2\delta_{3k}\right) \sqrt{\frac{1+3\delta_{3k}^2}{1-\delta_{3k}^2}} \|\mathbf{X}^* - \mathbf{X}(i)\|_F \\ &+ \left[\sqrt{\frac{1+3\delta_{3k}^2}{1-\delta_{3k}^2}} \sqrt{2(1+\delta_{3k})} + \left(\frac{\sqrt{1+3\delta_{3k}^2}}{1-\delta_{3k}} + \sqrt{3}\right) \sqrt{1+\delta_{2k}}\right] \|\boldsymbol{\varepsilon}\|_2 \end{aligned}$$
(67)

Given  $\delta_{2k} \leq \delta_{3k}$ ,  $\rho$  is upper bounded by  $\rho < 4\delta_{3k}\sqrt{\frac{1+3\delta_{3k}}{1-\delta_{3k}^2}}$ . Then,  $4\delta_{3k}\sqrt{\frac{1+3\delta_{3k}}{1-\delta_{3k}^2}} < 1 \Leftrightarrow \delta_{3k} < 0.2267$ .

### A.4 Proof of Theorem 3

Let  $\mathcal{X}^* \leftarrow \mathcal{P}_k(\mathbf{X}^*)$  be a set of orthonormal, rank-1 matrices that span the range of  $\mathbf{X}^*$ . In Algorithm 3,  $\mathbf{X}(i+1)$  is the best rank-k approximation of  $\mathbf{V}(i)$ . Thus:

$$\begin{aligned} \left\| \boldsymbol{X}(i+1) - \boldsymbol{V}(i) \right\|_{F}^{2} &\leq \left\| \boldsymbol{X}^{*} - \boldsymbol{V}(i) \right\|_{F}^{2} \Rightarrow \\ \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^{*} \right\|_{F}^{2} &\leq 2 \langle \boldsymbol{X}(i+1) - \boldsymbol{X}^{*}, \boldsymbol{V}(i) - \boldsymbol{X}^{*} \rangle \end{aligned}$$
(68)

From Algorithm 3, i)  $\mathbf{V}(i) \in \operatorname{span}(\mathcal{S}_i)$ , ii)  $\mathbf{Q}_i \in \operatorname{span}(\mathcal{S}_i)$  and iii)  $\mathbf{W}(i) \in \operatorname{span}(\mathcal{S}_i)$ . We define  $\mathcal{E} \leftarrow \operatorname{ortho}(\mathcal{S}_i \cup \mathcal{X}^*)$  where we observe  $\operatorname{rank}(\operatorname{span}(\mathcal{E})) \leq 4k$  and let  $\mathcal{P}_{\mathcal{E}}$  be the orthogonal projection onto the subspace defined by  $\mathcal{E}$ .

Since  $\mathbf{X}(i+1) - \mathbf{X}^* \in \operatorname{span}(\mathcal{E})$  and  $\mathbf{V}(i) - \mathbf{X}^* \in \operatorname{span}(\mathcal{E})$ , the following hold true:

$$\boldsymbol{X}(i+1) - \boldsymbol{X}^* = \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i+1) - \boldsymbol{X}^*),$$

and,

$$V(i) - X^* = \mathcal{P}_{\mathcal{E}}(V(i) - X^*).$$

Then, (68) can be written as:

$$\begin{split} \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F^2 \\ &\leq 2 \langle \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i+1) - \boldsymbol{X}^*), \mathcal{P}_{\mathcal{E}}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \rangle \\ &= 2 \langle \mathcal{P}_{\mathcal{E}}(\boldsymbol{X}(i+1) - \boldsymbol{X}^*), \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i + \mu_i \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}}(\boldsymbol{X}^* - \boldsymbol{Q}_i) - \boldsymbol{X}^*) \rangle \\ &\stackrel{(i)}{=} 2 \langle \boldsymbol{X}(i+1) - \boldsymbol{X}^*, \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) \rangle \\ &- \mu_i \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}} [\mathcal{P}_{\mathcal{S}_i} + \mathcal{P}_{\mathcal{S}_i^{\perp}}] \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) \rangle \\ &= 2 \langle \boldsymbol{X}(i+1) - \boldsymbol{X}^*, (\mathbf{I} - \mu_i \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_i}) \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) \rangle \\ &- 2 \mu_i \langle \boldsymbol{X}(i+1) - \boldsymbol{X}^*, \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_i^{\perp}} \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) \rangle \end{split}$$

$$\leq 2 \|\boldsymbol{X}(i+1) - \boldsymbol{X}^*\|_F \| (\mathbf{I} - \mu_i \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_i}) \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) \|_F + 2\mu_i \| \boldsymbol{X}(i+1) - \boldsymbol{X}^*\|_F \| \mathcal{P}_{\mathcal{S}_i} \boldsymbol{\mathcal{A}}^* \boldsymbol{\mathcal{A}} \mathcal{P}_{\mathcal{S}_i^{\perp}} \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) \|_F$$
(70)

where (i) is due to  $\mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) := \mathcal{P}_{\mathcal{S}_i} \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) + \mathcal{P}_{\mathcal{S}_i^{\perp}} \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*)$  and (ii) follows from Cauchy-Schwarz inequality. Since  $\frac{1}{1 + \delta_{3k}} \leq \mu_i \leq \frac{1}{1 - \delta_{3k}}$ , Lemma 4 implies:

$$\mathsf{A}(\mathbf{I}-\mu_i\mathcal{P}_{\mathcal{S}_i}\mathcal{A}^*\mathcal{A}\mathcal{P}_{\mathcal{S}_i}) \in \left[1-\frac{1-\delta_{3k}}{1+\delta_{3k}},\frac{1+\delta_{3k}}{1-\delta_{3k}}-1\right] \leq \frac{2\delta_{3k}}{1-\delta_{3k}}.$$

and thus:

$$\begin{aligned} \left\| (\mathbf{I} - \mu_i \mathcal{P}_{\mathcal{S}_i} \mathcal{A}^* \mathcal{A} \mathcal{P}_{\mathcal{S}_i}) \mathcal{P}_{\mathcal{E}} (\boldsymbol{Q}_i - \boldsymbol{X}^*) \right\|_F \\ &= \\ &\leq \frac{2\delta_{3k}}{1 - \delta_{3k}} \left\| \mathcal{P}_{\mathcal{E}} (\boldsymbol{Q}_i - \boldsymbol{X}^*) \right\|_F \end{aligned}$$

Furthermore, according to Lemma 5:

$$\left|\mathcal{P}_{\mathcal{S}_{i}}\mathcal{A}^{*}\mathcal{A}\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_{i}-\boldsymbol{X}^{*})\right\|_{F} \leq \delta_{4k}\left\|\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_{i}-\boldsymbol{X}^{*})\right\|_{F}$$

since rank( $\mathcal{P}_{\mathcal{K}} \boldsymbol{Q}$ )  $\leq 4k$ ,  $\forall \boldsymbol{Q} \in \mathbb{R}^{m \times n}$  where  $\mathcal{K} \leftarrow \operatorname{ortho}(\mathcal{E} \cup \mathcal{S}_i)$ . Since  $\mathcal{P}_{\mathcal{S}_i^{\perp}} \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_i - \boldsymbol{X}^*) = \mathcal{P}_{\mathcal{X}^* \setminus (\mathcal{D}_i \cup \mathcal{X}_i)} \boldsymbol{X}^*$  where

$$\mathcal{D}_i \leftarrow \mathcal{P}_k\left(\mathcal{P}_{\mathcal{Q}_i^{\perp}} \nabla f(\boldsymbol{Q}_i)\right),$$

then:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}^{\perp}} \mathcal{P}_{\mathcal{E}}(\boldsymbol{Q}_{i} - \boldsymbol{X}^{*}) \right\|_{F} &= \left\| \mathcal{P}_{\mathcal{X}^{*} \setminus (\mathcal{D}_{i} \cup \mathcal{X}_{i})} \boldsymbol{X}^{*} \right\|_{F} \leq (2\delta_{3k} \\ &+ 2\delta_{4k}) \left\| \boldsymbol{Q}_{i} - \boldsymbol{X}^{*} \right\|_{F}, \end{aligned}$$
(71)

(69)

$$g(i+1) \leq \left[b_1 \left(\frac{\alpha(1+\tau_i) + \sqrt{\Delta}}{2}\right)^{i+1} + b_2 \left(\frac{\alpha(1+\tau_i) - \sqrt{\Delta}}{2}\right)^{i+1}\right] \left\| \boldsymbol{X}(0) - \boldsymbol{X}^* \right\|_F$$
$$\leq \left[(b_1+b_2) \left(\frac{\alpha(1+\tau_i) + \sqrt{\Delta}}{2}\right)^{i+1}\right] \left\| \boldsymbol{X}(0) - \boldsymbol{X}^* \right\|_F$$

using Lemma 6. Using the above in (70), we compute:

$$\begin{aligned} \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F \\ &\leq \left( \frac{4\delta_{3k}}{1 - \delta_{3k}} + (2\delta_{3k} + 2\delta_{4k}) \frac{2\delta_{3k}}{1 - \delta_{3k}} \right) \left\| \boldsymbol{Q}_i - \boldsymbol{X}^* \right\|_F \end{aligned}$$
(72)

Furthermore:

$$\begin{aligned} \left\| \boldsymbol{Q}_{i} - \boldsymbol{X}^{*} \right\|_{F} &= \left\| \boldsymbol{X}(i) + \tau_{i} (\boldsymbol{X}(i) - \boldsymbol{X}(i-1)) \right\|_{F} \\ &= \left\| (1 + \tau_{i}) (\boldsymbol{X}(i) - \boldsymbol{X}^{*}) + \tau_{i} (\boldsymbol{X}^{*} - \boldsymbol{X}(i-1)) \right\|_{F} \\ &\leq (1 + \tau_{i}) \left\| \boldsymbol{X}(i) - \boldsymbol{X}^{*} \right\|_{F} + \tau_{i} \left\| \boldsymbol{X}(i-1) - \boldsymbol{X}^{*} \right\|_{F} \end{aligned}$$
(73)

Combining (72) and (73), we get:

$$\begin{split} \left\| \mathbf{X}(i+1) - \mathbf{X}^{*} \right\|_{F} \\ &\leq (1+\tau_{i}) \Big( \frac{4\delta_{3k}}{1-\delta_{3k}} + (2\delta_{3k} + 2\delta_{4k}) \frac{2\delta_{3k}}{1-\delta_{3k}} \Big) \left\| \mathbf{X}(i) - \mathbf{X}^{*} \right\|_{F} \\ &+ \tau_{i} \Big( \frac{4\delta_{3k}}{1-\delta_{3k}} + (2\delta_{3k} + 2\delta_{4k}) \frac{2\delta_{3k}}{1-\delta_{3k}} \Big) \left\| \mathbf{X}(i-1) - \mathbf{X}^{*} \right\|_{F} \end{split}$$

$$\tag{74}$$

Let  $\alpha := \frac{4\delta_{3k}}{1-\delta_{3k}} + (2\delta_{3k} + 2\delta_{4k})\frac{2\delta_{3k}}{1-\delta_{3k}}$  and  $g(i) := \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F$ . Then, (74) defines the following homogeneous recurrence:

$$g(i+1) - \alpha(1+\tau_i)g(i) + \alpha\tau_i g(i-1) \le 0$$
(75)

Using the method of characteristic roots to solve the above recurrence, we assume that the homogeneous linear recursion has solution of the form  $g(i) = r^i$  for  $r \in \mathbb{R}$ . Thus, replacing  $g(i) = r^i$  in (75) and factoring out  $r^{(i-2)}$ , we form the following characteristic polynomial:

$$r^2 - \alpha (1 + \tau_i)r - \alpha \tau_i \le 0 \tag{76}$$

Focusing on the worst case where (76) is satisfied with equality, we compute the roots  $r_{1,2}$  of the quadratic characteristic polynomial as:

$$r_{1,2} = rac{lpha(1+ au_i) \pm \sqrt{\Delta}}{2}, ext{ where } \Delta := lpha^2(1+ au_i)^2 + 4lpha au_i$$

Then, as a general solution, we combine the above roots with unknown coefficients  $b_1, b_2$  to obtain (69). Using the initial condition  $g(0) := \|\mathbf{X}(0) - \mathbf{X}^*\|_F \stackrel{\mathbf{X}(0)=\mathbf{0}}{=} \|\mathbf{X}^*\|_F = 1$ , we get  $b_1 + b_2 = 1$ . Thus, we conclude to the following recurrence:

$$\left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F \le \left( \frac{\alpha(1+\tau_i) + \sqrt{\Delta}}{2} \right)^{i+1}.$$

## A.5 Proof of Lemma 7

Let  $\mathcal{D}_i^{\epsilon} \leftarrow \mathcal{P}_k^{\epsilon}(\mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\mathbf{X}(i)))$  and  $\mathcal{D}_i \leftarrow \mathcal{P}_k(\mathcal{P}_{\mathcal{X}_i^{\perp}} \nabla f(\mathbf{X}(i)))$ .Using Definition 4, the following holds true:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) - \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \\ &\leq (1+\epsilon) \left\| \mathcal{P}_{\mathcal{D}_{i}} \nabla f(\boldsymbol{X}(i)) - \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2}. \end{aligned}$$
(77)

Furthermore, we observe:

$$\begin{aligned} \left\| \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &= \left\| \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \Leftrightarrow \\ \left\| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \left\| \mathcal{P}_{(\mathcal{D}_{i}^{\epsilon})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &= \\ \left\| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \end{aligned}$$
(78)

Here, we use the notation defined in the proof of Lemma 6. Since  $\mathcal{P}_{\mathcal{D}_i} \nabla f(\boldsymbol{X}(i))$  is the best rank-k approximation to  $\nabla f(\boldsymbol{X}(i))$ , we have:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{D}_{i}} \nabla f(\boldsymbol{X}(i)) - \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\leq \\ \left\| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) - \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\Leftrightarrow \\ \left\| \mathcal{P}_{\mathcal{D}_{i}^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\leq \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\Leftrightarrow \\ (1+\epsilon) \left\| \mathcal{P}_{\mathcal{D}_{i}^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\leq (1+\epsilon) \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \end{aligned}$$

$$(79)$$

where  $\operatorname{rank}(\operatorname{span}(\operatorname{ortho}(\mathcal{X}^* \setminus \mathcal{X}_i))) \leq k$ . Using (77) in (79), the following series of inequalities are observed:

$$\begin{aligned} \left\| \mathcal{P}_{(\mathcal{D}_{i}^{\epsilon})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} &\leq (1+\epsilon) \left\| \mathcal{P}_{\mathcal{D}_{i}^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \\ &\leq (1+\epsilon) \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \end{aligned} \tag{80}$$

Now, in (78), we compute the series of inequalities in (81)-(82). Focusing on  $\left\| \mathcal{P}_{\mathcal{X}^* \setminus \mathcal{X}_i}^{\perp} \mathcal{A}^*(y - \mathcal{A} \mathbf{X}(i)) \right\|_F$ , we observe:

$$\begin{aligned} \left\| \mathcal{P}_{(\mathcal{X}^* \setminus \mathcal{X}_i)^{\perp}} \mathcal{A}^* (\boldsymbol{y} - \mathcal{A} \boldsymbol{X}(i)) \right\|_F &= \\ \left\| \mathcal{P}_{(\mathcal{X}^* \setminus \mathcal{X}_i)^{\perp}} \mathcal{A}^* (\mathcal{A} \boldsymbol{X}^* + \boldsymbol{\varepsilon} - \mathcal{A} \boldsymbol{X}(i)) \right\|_F &\leq \\ \left\| \mathcal{P}_{(\mathcal{X}^* \setminus \mathcal{X}_i)^{\perp}} \mathcal{A}^* \mathcal{A} (\boldsymbol{X}^* - \boldsymbol{X}(i)) \right\|_F + \left\| \mathcal{P}_{\mathcal{X}^* \setminus \mathcal{X}_i}^{\perp} \mathcal{A}^* \boldsymbol{\varepsilon} \right\|_F &\leq \\ \left\| \mathcal{A}^* \mathcal{A} (\boldsymbol{X}^* - \boldsymbol{X}(i)) \right\|_F + \left\| \mathcal{A}^* \boldsymbol{\varepsilon} \right\|_F &\leq 2\lambda \end{aligned}$$
(83)

Moreover, we know the following hold true from Lemma 6:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \mathcal{A}(\mathbf{X}^{*} - \mathbf{X}(i)) + \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \varepsilon \right\|_{F} \\ &\leq 2\delta_{3k} \left\| \mathbf{X}^{*} - \mathbf{X}(i) \right\|_{F} + \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*} \varepsilon \right\|_{F} \end{aligned}$$
(84)

and

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A} (\mathbf{X}^{*} - \mathbf{X}(i)) + \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \boldsymbol{\varepsilon} \right\|_{F} \\ &\geq \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} (\mathbf{X}^{*} - \mathbf{X}(i)) \right\|_{F} - 2\delta_{2k} \left\| \mathbf{X}(i) - \mathbf{X}^{*} \right\|_{F} \\ &- \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*} \boldsymbol{\varepsilon} \right\|_{F} \end{aligned}$$
(85)

Combining (83)-(85) in (82), we obtain:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \boldsymbol{X}^{*} \right\|_{F} &= \left\| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{S}_{i}} \boldsymbol{X}^{*} \right\|_{F} \\ &\leq \left( 2\delta_{2k} + 2\delta_{3k} \right) \left\| \boldsymbol{X}(i) - \boldsymbol{X}^{*} \right\|_{F} + \sqrt{2(1 + \delta_{2k})} \left\| \boldsymbol{\varepsilon} \right\|_{2} \\ &+ 2\lambda \sqrt{\epsilon} \end{aligned}$$

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \left\| \mathcal{P}_{(\mathcal{D}_{i}^{\epsilon})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} = \left\| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \right\| \leq \| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} + (1 + \epsilon) \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} + \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \epsilon \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{D}_{i}^{\epsilon}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \left\| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{X}^{*} \setminus \mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} + \| \mathcal{P}_{\mathcal{X}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \epsilon \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \epsilon \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \nabla f(\boldsymbol{X}(i)) \right\|_{F}^{2} + \epsilon \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \nabla f(\boldsymbol{X}(i)) \|_{F}^{2} \geq \| \mathcal{P}_{\mathcal{S}_{i}^{*} \setminus \mathcal{S}_{i}} \mathcal{A}^{*}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*}} \mathcal{A}^{*}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i)) \right\|_{F}^{2} + \epsilon \| \mathcal{P}_{(\mathcal{X}^{*} \setminus \mathcal{X}_{i})^{\perp}} \mathcal{A}^{*}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i)) \|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*} \mathcal{A}^{*}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i)) \right\|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*} \mathcal{A}^{*}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i)) \right\|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*} \mathcal{A}^{*}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{X}(i)) \right\|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{*} \mathcal{A}^{*}(\boldsymbol{x}) \right\|_{F}^{2} \\ & \left\| \mathcal{P}_{\mathcal{S}_{i} \setminus \mathcal{S}_{i}^{$$

$$\|\boldsymbol{V}(i) - \boldsymbol{X}^{*}\|_{F} \leq \left[ \left( 1 + \frac{\delta_{3k}}{1 - \delta_{2k}} \right) \left( 2\delta_{2k} + 2\delta_{3k} + \delta_{k} \right) \right] + \frac{2\delta_{2k}}{1 - \delta_{2k}} \right] \|\boldsymbol{X}(i) - \boldsymbol{X}^{*}\|_{F} + \left[ \left( 1 + \frac{\delta_{3k}}{1 - \delta_{2k}} \right) \sqrt{2(1 + \delta_{2k})} + \frac{\sqrt{1 + \delta_{2k}}}{1 - \delta_{2k}} \right] \|\boldsymbol{\varepsilon}\|_{2} + \left( 1 + \frac{\delta_{3k}}{1 - \delta_{2k}} \right) 2\lambda \sqrt{\epsilon}.$$
(86)

### A.6 Proof of Theorem 4

To prove Theorem 4, we combine the following series of lemmas for each step of Algorithm 1.

**Lemma 12** [Error norm reduction via gradient descent] Let  $S_i \leftarrow ortho(\mathcal{X}_i \cup \mathcal{D}_i^{\epsilon})$  be a set of orthonormal, rank-1 matrices that span a rank-2k subspace in  $\mathbb{R}^{m \times n}$ . Then (86) holds.

*Proof* We observe the following:

$$\left\|\boldsymbol{V}(i) - \boldsymbol{X}^*\right\|_F^2 = \left\|\mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}^*)\right\|_F^2 + \left\|\mathcal{P}_{\mathcal{S}_i^{\perp}}(\boldsymbol{V}(i) - \boldsymbol{X}^*)\right\|_F^2$$
(87)

The following equations hold true:

$$\left\|\mathcal{P}_{\mathcal{S}_{i}^{\perp}}(\boldsymbol{V}(i)-\boldsymbol{X}^{*})\right\|_{F}^{2}=\left\|\mathcal{P}_{\mathcal{S}_{i}^{\perp}}\boldsymbol{X}^{*}\right\|_{F}^{2}=\left\|\mathcal{P}_{\mathcal{X}^{*}\setminus\mathcal{S}_{i}}\boldsymbol{X}^{*}\right\|_{F}^{2}$$

Furthermore, we compute:

$$\begin{aligned} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{V}(i) - \mathbf{X}^{*}) \right\|_{F} &= \left\| \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{X}(i) - \frac{\mathcal{P}_{i}}{2} \mathcal{P}_{\mathcal{S}_{i}} \nabla f(\mathbf{X}(i)) - \mathbf{X}^{*}) \right\|_{F} \\ &= \left\| \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{X}(i) - \mathbf{X}^{*}) - \mu_{i} \mathcal{P}_{\mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A}(\mathbf{X}(i) - \mathbf{X}^{*}) + \mu_{i} \mathcal{P}_{\mathcal{S}_{i}} \mathcal{A}^{*} \varepsilon \right\|_{F} \\ &\leq \left\| \left( \mathbf{I} - \mu_{i} \mathcal{P}_{\mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{\mathcal{S}_{i}} \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{X}(i) - \mathbf{X}^{*}) \right\|_{F} \\ &+ \mu_{i} \left\| \mathcal{P}_{\mathcal{S}_{i}} \mathcal{A}^{*} \mathcal{A} \mathcal{P}_{\mathcal{S}_{i}^{\perp}}(\mathbf{X}(i) - \mathbf{X}^{*}) \right\|_{F} + \mu_{i} \left\| \mathcal{P}_{\mathcal{S}_{i}} \mathcal{A}^{*} \varepsilon \right\|_{F} \\ & \stackrel{(i)}{\leq} \frac{2\delta_{2k}}{1 - \delta_{2k}} \left\| \mathcal{P}_{\mathcal{S}_{i}}(\mathbf{X}(i) - \mathbf{X}^{*}) \right\|_{F} + \frac{\delta_{3k}}{1 - \delta_{2k}} \left\| \mathcal{P}_{\mathcal{S}_{i}^{\perp}}(\mathbf{X}(i) - \mathbf{X}^{*}) \right\|_{F} \\ &+ \frac{\sqrt{1 + \delta_{2k}}}{1 - \delta_{2k}} \left\| \varepsilon \right\|_{2} \end{aligned} \tag{88}$$

II.i

where (i) is due to Lemmas 2, 4, 5 and  $\frac{1}{1+\delta_{2k}} \leq \mu_i \leq \frac{1}{1-\delta_{2k}}$ 

Using the subadditivity property of the square root in (87), (88), Lemma 7 and the fact that  $\|\mathcal{P}_{\mathcal{S}_i}(\boldsymbol{X}(i) - \boldsymbol{X}^*)\|_F \leq \|\boldsymbol{X}(i) - \boldsymbol{X}^*\|_F$ , we obtain:

$$\left\| \boldsymbol{V}(i) - \boldsymbol{X}^* \right\|_F \le \left\| \mathcal{P}_{\mathcal{S}_i}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F + \left\| \mathcal{P}_{\mathcal{S}_i^{\perp}}(\boldsymbol{V}(i) - \boldsymbol{X}^*) \right\|_F$$

$$\leq \hat{\rho} \left\| \boldsymbol{X}(i) - \boldsymbol{X}^* \right\|_F + \left( 1 + \frac{\delta_{3k}}{1 - \delta_{2k}} \right) \sqrt{\epsilon} \left\| \mathcal{P}_{\mathcal{X}^* \setminus \mathcal{X}_i}^{\perp} \boldsymbol{\mathcal{A}}^* \boldsymbol{\varepsilon} \right\|_F \\ + \left[ \left( 1 + \frac{\delta_{3k}}{1 - \delta_{2k}} \right) \sqrt{2(1 + \delta_{2k})} + \frac{\sqrt{1 + \delta_{2k}}}{1 - \delta_{2k}} \right] \left\| \boldsymbol{\varepsilon} \right\|_2 \tag{89}$$
where  $\hat{\rho} := \left( 1 + \frac{\delta_{3k}}{1 - \delta_{2k}} \right) \left( 2\delta_{2k} + 2\delta_{3k} \right) + \frac{2\delta_{2k}}{1 - \delta_{2k}}$ 

We exploit Lemma 8 to obtain the following inequalities:

$$\begin{aligned} \left\| \widehat{\boldsymbol{W}}_{i} - \boldsymbol{X}^{*} \right\|_{F} &= \left\| \widehat{\boldsymbol{W}}_{i} - \boldsymbol{V}(i) + \boldsymbol{V}(i) - \boldsymbol{X}^{*} \right\|_{F} \\ &\leq \left\| \widehat{\boldsymbol{W}}_{i} - \boldsymbol{V}(i) \right\|_{F} + \left\| \boldsymbol{V}(i) - \boldsymbol{X}^{*} \right\|_{F} \\ &\leq (1 + \epsilon) \left\| \boldsymbol{W}(i) - \boldsymbol{V}(i) \right\|_{F} + \left\| \boldsymbol{V}(i) - \boldsymbol{X}^{*} \right\|_{F} \\ &\leq (2 + \epsilon) \left\| \boldsymbol{V}(i) - \boldsymbol{X}^{*} \right\|_{F} \end{aligned}$$
(90)

where the last inequality holds since W(i) is the best rank-*k* matrix estimate of V(i) and, thus,  $\|W(i) - V(i)\|_F \le \|V(i) - X^*\|_F$ . Following similar motions for steps 6 and 7 in Matrix ALPS I, we

Following similar motions for steps 6 and 7 in Matrix ALPS I, we obtain:

$$\begin{aligned} \left\| \boldsymbol{X}(i+1) - \boldsymbol{X}^* \right\|_F &\leq \left( 1 + \frac{2\delta_k}{1 - \delta_k} + \frac{\delta_{2k}}{1 - \delta_k} \right) \left\| \widehat{\boldsymbol{W}}_i - \boldsymbol{X}^* \right\|_F \\ &+ \frac{\sqrt{1 + \delta_k}}{1 - \delta_k} \left\| \boldsymbol{\varepsilon} \right\|_2 \end{aligned} \tag{91}$$

Combining (91), (90) and (89), we obtain the desired inequality.

### References

- R.G. Baraniuk, V. Cevher, and M.B. Wakin. Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective. *Proceedings of the IEEE*, 98(6):959–971, 2010.
- E.J. Candès and B. Recht. Exact matrix completion via convex optimization. *Foundations of Computational Mathematics*, 9(6):717–772, 2009.
- 3. R. Meka, P. Jain, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. In *NIPS Workshop on Discrete Optimization in Machine Learning*, 2010.
- H. Tyagi and V. Cevher. Learning ridge functions with randomized sampling in high dimensions. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pages 2025–2028. IEEE, 2012.
- 5. H. Tyagi and V. Cevher. Learning non-parametric basis independent models from point queries via low-rank methods. *Technical report, EPFL*, 2012.
- Y.K. Liu. Universal low-rank matrix recovery from pauli measurements. 2011.

- 7. H. Tyagi and V. Cevher. Active learning of multi-index function models. In Advances in Neural Information Processing Systems 25, pages 1475–1483, 2012.
- E.J. Candes and X. Li. Solving quadratic equations via phaselift when there are about as many equations as unknowns. arXiv *preprint arXiv:1208.6247*, 2012. J. Bennett and S. Lanning. The netflix prize. In *In KDD Cup and*
- 9. Workshop in conjunction with KDD, 2007.
- 10. E.J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(3), 2011.
- A. Kyrillidis and V. Cevher. Matrix alps: Accelerated low rank 11. and sparse matrix reconstruction. Technical report, EPFL, 2012.
- 12. A.E. Waters, A.C. Sankaranarayanan, and R.G. Baraniuk. Sparcs: Recovering low-rank and sparse matrices from compressive measurements. In NIPS, 2011.
- 13. M. Fazel, B. Recht, and P. A. Parrilo. Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010.
- 14. Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application to system identification. SIAM J. Matrix Anal. Appl., 31:1235–1256, November 2009.
- K. Mohan and M. Fazel. Reweighted nuclear norm minimization 15. with application to system identification. In American Control Conference (ACC). IEEE, 2010.
- 16. Jian-Feng Cai, Emmanuel J. Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix completion. SIAM J. on Optimization, 20:1956-1982, March 2010.
- B. Recht and C. Re. Parallel stochastic gradient algorithms for 17. large-scale matrix completion. *Preprint*, 2011. Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier
- 18. method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.
- 19. J. Wright L. Wu M. Chen Z. Lin, A. Ganesh and Y. Ma. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2214.
- 20. B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on computing, 24(2):227-234, 1995.
- 21. K. Lee and Y. Bresler. Admira: Atomic decomposition for minimum rank approximation. IEEE Trans. on Information Theory, 56(9):4402-4416, 2010.
- 22 D. Goldfarb and S. Ma. Convergence of fixed-point continuation algorithms for matrix rank minimization. Found. Comput. Math., 11:183-210, April 2011.
- 23. A. Beck and M. Teboulle. A linearly convergent algorithm for solving a class of nonconvex/affine feasibility problems. Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 33-48, 2011.
- 24. A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computational Advances in Multi-Sensor Adaptive Processing, Dec. 2011.
- 25. A. Kyrillidis and V. Cevher. Combinatorial selection and least absolute shrinkage via the CLASH algorithm. In IEEE International Symposium on Information Theory, July 2012.
- 26. N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev., 53:217-288, May 2011.
- 27. D. Bertsekas. Nonlinear programming. Athena Scientific, 1995.
- 28. R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge Univ. Press, 1990.
- 29. A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. J. Amer. Math. Soc, 22(1):211-231, 2009
- 30. J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. on Information Theory, 50(10):2231-2242, Oct. 2004.
- V. Cevher. An alps view of sparse recovery. In Acoustics, Speech 31. and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 5808-5811. IEEE, 2011.
- 32 D. Needell and J.A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301-321, 2009.
- W. Dai and O. Milenkovic. Subspace pursuit for compressive 33. sensing signal reconstruction. IEEE Trans. on Information Theory, 55:2230-2249, May 2009.

- Hard thresholding pursuit: an algorithm for 34. S. Foucart. compressed sensing. SIAM Journal on Numerical Analysis, 49(6):2543-2563, 2011.
- T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Appl. Comp. Harm. Anal, 27(3):265-274, 2009
- R. Garg and R. Khandekar. Gradient descent with sparsification: 36. an iterative algorithm for sparse recovery with restricted isometry property. In ICML. ACM, 2009.
- T. Blumensath and M. E. Davies. Normalized iterative hard thresholding: Guaranteed stability and performance. J. Sel. Topics Signal Processing, 4(2):298-309, 2010.
- 38. T. Blumensath. Accelerated iterative hard thresholding. Signal Process., 92:752-756, March 2012.
- 39. J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion. Preprint, 2012.
- 40 R. Coifman, F. Geshwind, and Y. Meyer. Noiselets. Applied and Computational Harmonic Analysis, 10(1):27-44, 2001.
- S. Foucart. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants. In Proceedings of the 13th International Conference on Approximation Theory, 2010.
- 42. Y. Nesterov. Gradient methods for minimizing composite objective function. core discussion papers 2007076, université catholique de louvain. Center for Operations Research and Econometrics (CORE), 2007.
- Y. Nesterov. Introductory lectures on convex optimization. Kluwer Academic Publishers, 1996.
- 44 P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large graphs via the singular value decomposition. Machine Learning, 56(1):9-33, 2004.
- 45. P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix. SIAM J. Comput., 36:158-183, July 2006.
- 46. A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering via volume sampling. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, SODA '06, pages 1117-1126, New York, NY, USA, 2006. ACM.
- 47. A. Deshpande and S. Vempala. Adaptive sampling and fast lowrank matrix approximation. Electronic Colloquium on Computational Complexity (ECCC), 13(042), 2006.
- R.H. Keshavan, A. Montanari, and S. Oh. Matrix completion from 48 a few entries. IEEE Trans. on Information Theory, 56(6):2980-2998, 2010.
- 49 L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from highly incomplete information. In Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, pages 704-711. IEEE, 2010.
- 50 J. He, L. Balzano, and J. C. S. Lui. Online robust subspace tracking from partial information. arXiv:1109.3827, 2011.
- N. Boumal and P.A. Absil. Rtrmc: A riemannian trust-region 51 method for low-rank matrix completion. In NIPS, 2011.
- 52. Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a nonlinear successive overrelaxation algorithm. Rice University CAAM Technical Report TR10-07. Submitted, 2010.
- R. M. Larsen. Propack: Software for large and sparse svd calcula-53. tions. http://soi.stanford.edu/rmunk/PROPACK.
- X. Shi and P.S. Yu. Limitations of matrix completion via trace norm minimization. ACM SIGKDD Explorations Newsletter, 12(2):16-20, 2011.