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Abstract In this paper, we present and analyze a new set
of low-rank recovery algorithms for linear inverse problems
within the class of hard thresholding methods. We provide
strategies on how to set up these algorithms via basic in-
gredients for different configurations to achieve complex-
ity vs. accuracy tradeoffs. Moreover, we study acceleration
schemes via memory-based techniques and randomized, ε-
approximate matrix projections to decrease the computa-
tional costs in the recovery process. For most of the configu-
rations, we present theoretical analysis that guarantees con-
vergence under mild problem conditions. Simulation results
demonstrate notable performance improvements as compared
to state-of-the-art algorithms both in terms of reconstruction
accuracy and computational complexity.

Keywords Affine rank minimization · hard thresholding ·
ε-approximation schemes · randomized algorithms.

1 Introduction

In this work, we consider the general affine rank minimiza-
tion (ARM) problem, described as follows:
THE ARM PROBLEM: Assume X∗ ∈ Rm×n is a rank-k
matrix of interest (k � min{m,n}) and let A : Rm×n →
Rp be a known linear operator. Given a set of observations
as y = AX∗ + ε ∈ Rp, we desire to recover X∗from y in
a scalable and robust manner.

The challenge in this problem is to recover the true low-
rank matrix in subsampled settings where p� m·n. In such
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cases, we typically exploit the prior information that X∗ is
low-rank and thus, we are interested in finding a matrix X
of rank at most k that minimizes the data error f(X) :=
‖y −AX‖22 as follows:

minimize
X∈Rm×n

f(X)

subject to rank(X) ≤ k.
(1)

The ARM problem appears in many applications; low di-
mensional embedding [1], matrix completion [2], image com-
pression [3], function learning [4, 5] just to name a few. We
present below important ARM problem cases, as character-
ized by the nature of the linear operatorA.

General linear maps: In many ARM problem cases,A
or A∗ has a dense range, satisfying specific incoherence or
restricted isometry properties (discussed later in the paper);
here,A∗ is the adjoint operator ofA. In Quantum Tomogra-
phy, [6] studies the Pauli operator, a compressive linear map
A that consists of the kronecker product of 2 × 2 matrices
and obeys restricted isometry properties, defined later in the
paper. Furthermore, recent developments indicate connec-
tions of ridge function learning [4, 7] and phase retrieval [8]
with the ARM problem whereA is a Bernoulli and a Fourier
operator, respectively.

Matrix Completion (MC): Let Ω be the set of ordered
pairs that represent the coordinates of the observable entries
inX∗. Then, the set of observations satisfy y = AΩX∗+ε
whereAΩ defines a linear mask over the observable entries
Ω. To solve the MC problem, a potential criterion is given
by (1) [2]. As a motivating example, consider the famous
Netflix problem [9], a recommender system problem where
users’ movie preferences are inferred by a limited subset of
entries in a database.

Principal Component Analysis: In Principal Compo-
nent Analysis (PCA), we are interested in identifying a low
rank subspace that best explains the data in the Euclidean
sense from the observations y = AX∗ whereA : Rm×n →
Rp is an identity linear map that stacks the columns of the
matrix X∗ into a single column vector with p = m · n.
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We observe that the PCA problem falls under the ARM cri-
terion in (1). While (1) is generally NP-hard to solve op-
timally, PCA can be solved in polynomial time using the
truncated Singular Value Decomposition (SVD) ofA∗y. As
an extension to the PCA setting, [10] considers the Robust
PCA problem where y is further corrupted by gross sparse
noise. We extend the framework proposed in this paper for
the RPCA case and its generalizations in [11].

For the rest of the paper, we consider only the low rank
estimation case in (1). As running test cases to support our
claims, we consider the MC setting as well as the general
ARM setting where A is constituted by permuted subsam-
pled noiselets [12].

1.1 Two camps of recovery algorithms

Convex relaxations: In [13], the authors study the nu-
clear norm ‖X‖∗ :=

∑rank(X)
i=1 σi as a convex surrogate of

rank(X) operator so that we can leverage convex optimiza-
tion approaches, such as interior-point methods—here, σi
denotes the i-th singular value of X . Under basic incoher-
ence properties of the sensing linear mapping A, [13] pro-
vides provable guarantees for unique low rank matrix recov-
ery using the nuclear norm.

Once (1) is relaxed to a convex problem, decades of
knowledge on convex analysis and optimization can be lever-
aged. Interior point methods find a solution with fixed preci-
sion in polynomial time but their complexity might be pro-
hibitive even for moderate-sized problems [14, 15]. More
suitable for large-scale data analysis, first-order methods con-
stitute low-complexity alternatives but most of them intro-
duce complexity vs. accuracy tradeoffs [16–19].

Non-convex approaches: In contrast to the convex re-
laxation approaches, iterative greedy algorithms maintain
the nonconvex nature of (1). Unfortunately, solving (1) opti-
mally is in general NP-hard [20]. Due to this computational
intractability, the algorithms in this class greedily refine a
rank-k solution using only “local” information available at
the current iteration [21–23].

1.2 Contributions

In this work, we study a special class of iterative greedy al-
gorithms known as hard thresholding methods. Similar re-
sults have been derived for the vector case [24]. Note that
the transition from sparse vector approximation to ARM is
non-trivial; while s-sparse signals “live” in the union of fi-
nite number of subspaces, the set of rank-k matrices expands
to infinitely many subspaces. Thus, the selection rules do not
generalize in a straightforward way.

Our contributions are the following:
Ingredients of hard thresholding methods: We ana-

lyze the behaviour and performance of hard thresholding
methods from a global perspective. Five building blocks are
studied: i) step size selection µi, ii) gradient or least-squares
updates over restricted low-rank subspaces (e.g., adaptive

block coordinate descent), iii) memory exploitation, iv) ac-
tive low-rank subspace tracking and, v) low-rank matrix ap-
proximations (described next). We highlight the impact of
these key pieces on the convergence rate and signal recon-
struction performance and provide optimal and/or efficient
strategies on how to set up these ingredients under different
problem conditions.

Low-rank matrix approximations in hard threshold-
ing methods: In [25], the authors show that the solution ef-
ficiency can be significantly improved by ε-approximation
algorithms. Based on similar ideas, we analyze the impact
of ε-approximate low rank-revealing schemes in the pro-
posed algorithms with well-characterized time and space co-
mplexities. Moreover, we provide extensive analysis to prove
convergence using ε-approximate low-rank projections.

Hard thresholding-based framework with improved
convergence conditions: We study hard thresholding vari-
ants that provide salient computational tradeoffs for the class
of greedy methods on low-rank matrix recovery. These meth-
ods, as they iterate, exploit the non-convex scaffold of low
rank subspaces on which the approximation problem resides.
Using simple analysis tools, we derive improved conditions
that guarantee convergence, compared to state-of-the-art ap-
proaches.

The organization of the paper is as follows. In Section
2, we set up the notation and provide some definitions and
properties, essential for the rest of the paper. In Section 3,
we describe the basic algorithmic frameworks in a nutshell,
while in Section 4 we provide important “ingredients” for
the class of hard-thresholding methods; detailed convergence
analysis proofs are provided in Section 5. The complexity
analysis of the proposed algorithms is provided in Section
6. We study two acceleration schemes in Sections 7 and 8,
based on memory utilization and ε-approximate low-rank
projections, respectively. We further improve convergence
speed by exploiting randomized low rank projections in Sec-
tion 9, based on power iteration-based subspace finder tools
[26]. We provide empirical support for our claims through
experimental results on synthetic and real data in Section 10.
Finally, we conclude with future work directions in Section
11.

2 Elementary Definitions and Properties

We reserve lower-case and bold lower-case letters for scalar
and vector variable representation, respectively. Bold upper-
case letters denote matrices while bold calligraphic upper-
case letters represent linear operators. We use calligraphic
upper-case letters for set representations. We use X(i) to
represent the matrix estimate at the i-th iteration.

The rank of X is denoted as rank(X) ≤ min{m,n}.
The empirical data error is denoted as f(X) := ‖y−AX‖22
with gradient ∇f(X) := −2A∗(y − AX), where ∗ is
the adjoint operation over the linear mapping A. The in-
ner product between matrices A, B ∈ Rm×n is denoted as
〈A,B〉 = trace(BTA), where T represents the transpose
operation. I represents an identity matrix with dimensions
apparent from the context.
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Let S be a set of orthonormal, rank-1 matrices that span
an arbitrary subspace in Rm×n. We reserve span(S) to de-
note the subspace spanned by S. With slight abuse of nota-
tion, we use:

rank(span(S)) ≡ max
X
{rank(X) : X ∈ span(S)} , (2)

to denote the maximum rank a matrix X ∈ Rm×n can have
such thatX lies in the subspace spanned by the set S. Given
a finite set S, |S| denotes the cardinality of S. For any matrix
X , we use R(X) to denote its range.

We define a minimum cardinality set of orthonormal,
rank-1 matrices that span the subspace induced by a set of
rank-1 (and possibly non-orthogonal) matrices S as:

ortho(S) ∈ argmin
T
{|T | : T ⊆ U s.t. span(T ) = span(S)},

where U denotes the superset that includes all the sets of or-
thonormal, rank-1 matrices in Rm×n such that 〈T i,T j〉 =
0, i 6= j, ∀T i,T j ∈ T and,

∥∥T i∥∥F = 1, ∀i. In general,
ortho(S) is not unique.

A well-known lemma used in the convergence rate proofs
of this class of greedy hard thresholding algorithms is de-
fined next.

Lemma 1 [27] Let J ⊆ Rm×n be a closed convex set and
f : J → R be a smooth objective function defined over J .
LetX∗ ∈ J be a local minimum of the objective function f
over the set J . Then

〈∇f(X∗),X −X∗〉 ≥ 0, ∀X ∈ J . (3)

2.1 Singular Value Decomposition (SVD) and its properties

Definition 1 [SVD] Let X ∈ Rm×n be a rank-l (l < min
{m,n}) matrix. Then, the SVD ofX is given by:

X = UΣV T =
[
Uα Uβ

] [Σ̃ 0
0 0

] [
V T
α

V T
β

]
, (4)

where Uα ∈ Rm×l,Uβ ∈ Rm×(m−l),V α ∈ Rn×l,V β ∈
Rn×(n−l) and Σ̃ = diag(σ1, . . . , σl) ∈ Rl×l for σ1, . . . ,
σl ∈ R+. Here, the columns of U ,V represent the set of
left and right singular vectors, respectively, and σ1, . . . , σl
denote the singular values.

For any matrix X ∈ Rm×n with arbitrary rank(X) ≤
min{m,n}, its best orthogonal projection Pk(X) onto the
set of rank-k (k < rank(X)) matrices Ck := {A ∈ Rm×n :
rank(A) ≤ k} defines the optimization problem:

Pk(X) ∈ argmin
Y ∈Ck

∥∥Y −X∥∥
F
. (5)

According to the Eckart-Young theorem [28], the best rank-
k approximation of a matrix X corresponds to its truncated
SVD: if X = UΣV T , then Pk(X) := UkΣkV

T
k where

Σk ∈ Rk×k is a diagonal matrix that contains the first k
diagonal entries of Σ and Uk, V k contain the correspond-
ing left and right singular vectors, respectively. Moreover,

this projection is not always unique. In the case of multiple
identical singular values, the lexicographic approach is used
to break ties. In any case,

∥∥Pk(X)−X
∥∥
F
≤
∥∥W −X

∥∥
F

for any rank-kW ∈ Rm×n.

2.2 Subspace projections

Given a set of orthonormal, rank-1 matrices S , we denote the
orthogonal projection operator onto the subspace induced by
S as PS1 which is an idempotent linear transformation; fur-
thermore, we denote the orthogonal projection operator onto
the orthogonal subspace of S as PS⊥ . We can always de-
compose a matrixX ∈ Rm×n into two matrix components,
as follows:

X := PSX + PS⊥X, such that 〈PSX,PS⊥X〉 = 0.

IfX ∈ span(S), the best projection ofX onto the subspace
induced by S is the matrixX itself. Moreover,

∥∥PSX∥∥F ≤∥∥X∥∥
F

for any S andX .

Definition 2 [Orthogonal projections using SVD] Let X ∈
Rm×n be a matrix with arbitrary rank and SVD decompo-
sition given by (4). Then, S := {uivTi : i = 1, . . . , k}
(k ≤ rank(X)) constitutes a set of orthonormal, rank-1
matrices that spans the best k-rank subspace in R(X) and
R(XT ); here, ui and vi denote the i-th left and right singu-
lar vectors, respectively. The orthogonal projection onto this
subspace is given by [2]:

PSX = PUX +XPV − PUXPV (6)

where PU = U :,1:kU
T
:,1:k and PV = V :,1:kV

T
:,1:k in MAT-

LAB notation. Moreover, the orthogonal projection onto the
S⊥ is given by:

PS⊥X =X − PSX. (7)

In the algorithmic descriptions, we use S ← Pk (X)
to denote the set of rank-1, orthonormal matrices as outer
products of the k left ui and right vi principal singular vec-
tors of X that span the best rank-k subspace of X; e.g.
S = {uivi, i = 1, . . . , k}. Moreover, X̂ ← Pk (X) de-
notes a/the best rank-k projection matrix of X . In some
cases, we use {S, X̂} ← Pk (X) when we compute both.
The distiction between these cases is apparent from the con-
text.

2.3 Restricted Isometry Property

Many conditions have been proposed in the literature to es-
tablish solution uniqueness and recovery stability such as
null space property [29], exact recovery condition [30], etc.
For the matrix case, [13] proposed the restricted isometry
property (RIP) for the ARM problem.

1 The distinction between PS and Pk for k positive integer is appar-
ent from context.
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Definition 3 [Rank Restricted Isometry Property (R-RIP)
for matrix linear operators [13]] A linear operatorA : Rm×n
→ Rp satisfies the R-RIP with constant δk(A) ∈ (0, 1) if
and only if:

(1− δk(A))
∥∥X∥∥2

F
≤
∥∥AX∥∥2

2
≤ (1 + δk(A))

∥∥X∥∥2
F
, (8)

∀X ∈ Rm×n such that rank(X) ≤ k.We write δk to mean
δk(A), unless otherwise stated.

[6] shows that Pauli operators satisfy the rank-RIP in com-
pressive settings while, in function learning, the linear map
A is designed specifically to satisfy the rank-RIP [7].

2.4 Some useful bounds using R-RIP

In this section, we present some lemmas that are useful in
our subsequent developments—these lemmas are consequen-
ces of the R-RIP ofA.

Lemma 2 [21] LetA : Rm×n → Rp be a linear operator
that satisfies the R-RIP with constant δk. Then, ∀v ∈ Rp,
the following holds true:∥∥PS(A∗v)∥∥F ≤√1 + δk

∥∥v∥∥
2
, (9)

where S is a set of orthonormal, rank-1 matrices in Rm×n
such that rank(PSX) ≤ k, ∀X ∈ Rm×n.

Lemma 3 [21] Let A : Rm×n → Rp be a linear opera-
tor that satisfies the R-RIP with constant δk. Then, ∀X ∈
Rm×n, the following holds true:

(1− δk)
∥∥PSX∥∥F ≤ ∥∥PSA∗APSX∥∥F

≤ (1 + δk)
∥∥PSX∥∥F , (10)

where S is a set of orthonormal, rank-1 matrices in Rm×n
such that rank(PSX) ≤ k, ∀X ∈ Rm×n.

Lemma 4 [22] Let A : Rm×n → Rp be a linear op-
erator that satisfies the R-RIP with constant δk and S be
a set of orthonormal, rank-1 matrices in Rm×n such that
rank(PSX) ≤ k, ∀X ∈ Rm×n. Then, for µ > 0,A satis-
fies:

λ(µPSA∗APS) ∈ [µ(1− δk), µ(1 + δk)]. (11)

where λ(B) represents the range of eigenvalues of the linear
operator B : Rp → Rm×n. Moreover, ∀X ∈ Rm×n, it
follows that:∥∥(I− µPSA∗APS)PSX∥∥F
≤ max {µ(1 + δk)− 1, 1− µ(1− δk)}

∥∥PSX∥∥F . (12)

Lemma 5 [22] LetA : Rm×n → Rp be a linear operator
that satisfies the R-RIP with constant δk and S1,S2 be two
sets of orthonormal, rank-1 matrices in Rm×n such that

rank(PS1∪S2X) ≤ k, ∀X ∈ Rm×n. (13)

Then, the following inequality holds:∥∥PS1A∗APS⊥1 X∥∥F ≤ δk∥∥PS⊥1 X∥∥F ,∀X ∈ span(S2).
(14)

3 Algrebraic Pursuits in a nutshell

Explicit descriptions of the proposed algorithms are pro-
vided in Algorithms 1 and 2. Algorithm 1 follows from the
ALgrebraic PursuitS (ALPS) scheme for the vector case [31].
MATRIX ALPS I provides efficient strategies for adaptive
step size selection and additional signal estimate updates
at each iteration (these motions are explained in detail in
the next subsection). Algorithm 2 (ADMiRA) [21] further
improves the performance of Algorithm 1 by introducing
least squares optimization steps on restricted subspaces—
this technique borrows from a series of vector reconstruction
algorithms such as CoSaMP [32], Subspace Pursuit (SP)
[33] and Hard Thresholding Pursuit (HTP) [34].

In a nutshell, both algorithms simply seek to improve
the subspace selection by iteratively collecting an extended
subspace Si with rank(span(Si)) ≤ 2k and then finding the
rank-k matrix that fits the measurements in this restricted
subspace using least squares or gradient descent motions.

At each iteration, the Algorithms 1 and 2 perform mo-
tions from the following list:

1) Best rank-k subspace orthogonal to Xi and ac-
tive subspace expansion: We identify the best rank-k
subspace of the current gradient∇f(X(i)), orthogonal
to Xi and then merge this low-rank subspace with Xi.
This motion guarantees that, at each iteration, we ex-
pand the current rank-k subspace estimate with k new,
rank-1 orthogonal subspaces to explore.

2a) Error norm reduction via greedy descent with
adaptive step size selection (Algorithm 1): We decrease
the data error by performing a single gradient descent
step. This scheme is based on a one-shot step size se-
lection procedure (Step size selection step)—detailed
description of this approach is given in Section 4.

2b) Error norm reduction via least squares opti-
mization (Algorithm 2): We decrease the data error
f(X) on the active O(k)-low rank subspace. Assum-
ingA is well-conditioned over low-rank subspaces, the
main complexity of this operation is dominated by the
solution of a symmetric linear system of equations.

3) Best rank-k subspace selection: We project the
constrained solution onto the set of rank-k matrices
Ck := {A ∈ Rm×n : rank(A) ≤ k} to arbitrate
the active support set. This step is calculated in poly-
nomial time complexity as a function of m × n us-
ing SVD or other matrix rank-revealing decomposition
algorithms—further discussions about this step and its
approximations can be found in Sections 8 and 9.

4) De-bias using gradient descent (Algorithm 1):
We de-bias the current estimateW (i) by performing an
additional gradient descent step, decreasing the data er-
ror. The step size selection procedure follows the same
motions as in 2a).
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Input: y, A, k, Tolerance η, MaxIterations
Initialize:X(0)← 0, X0 ← {∅}, i← 0
repeat

1: Di ← Pk
(
PX⊥i ∇f(X(i))

)
(Best rank-k subspace orthogonal to Xi)

2: Si ← Di ∪ Xi (Active subspace expansion)

3: µi ← argminµ
∥∥y −A

(
X(i)− µ

2
PSi∇f(X(i))

)∥∥2
2
=
‖PSi∇f(X(i))‖2F
‖APSi∇f(X(i))‖22

(Step size selection)

4: V (i)←X(i)− µi
2
PSi∇f(X(i)) (Error norm reduction via gradient descent)

5: {Wi, W (i)} ← Pk(V (i)) (Best rank-k subspace selection)

6: ξi ← argminξ
∥∥y −A

(
W (i)− ξ

2
PWi∇f(W (i))

)∥∥2
2
=
‖PWi∇f(W (i))‖2F
‖APWi∇f(W (i))‖22

(Step size selection)

7: X(i+ 1)←W (i)− ξi
2
PWi∇f(W (i)) with Xi+1 ← Pk(X(i+ 1)) (De-bias using gradient descent)

i← i+ 1
until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Algorithm 1: MATRIX ALPS I

Input: y, A, k, Tolerance η, MaxIterations
Initialize:X(0)← 0, X0 ← {∅}, i← 0
repeat

1: Di ← Pk
(
PX⊥i ∇f(X(i))

)
(Best rank-k subspace orthogonal to Xi)

2: Si ← Di ∪ Xi (Active subspace expansion)
3: V (i)← argminV :V ∈span(Si)

∥∥y −AV
∥∥2
2

(Error norm reduction via least-squares optimization)
4: {Xi+1, X(i+ 1)} ← Pk(V (i)) (Best rank-k subspace selection)

i← i+ 1
until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Algorithm 2: ADMiRA Instance

4 Ingredients for hard thresholding methods

4.1 Step size selection

For the sparse vector approximation problem, recent works
on the performance of the IHT algorithm provide strong
convergence rate guarantees in terms of RIP constants [35].
However, as a prerequisite to achieve these strong isometry
constant bounds, the step size is set µi = 1,∀i, given that
the sensing matrix satisfies ‖Φ‖22 < 1 where ‖ · ‖2 denotes
the spectral norm [34]; similar analysis can be found in [3]
for the matrix case. From a different perspective, [36] pro-
poses a constant step size µi = 1/(1 + δ2K), ∀i, based on
a simple but intuitive convergence analysis of the gradient
descent method.

Unfortunately, most of the above problem assumptions
are not naturally met; the authors in [37] provide an intu-
itive example where IHT algorithm behaves differently un-
der various scalings of the sensing matrix; similar coun-
terexamples can be devised for the matrix case. Violating
these assumptions usually leads to unpredictable signal re-
covery performance of the class of hard thresholding meth-
ods. Therefore, more sophisticated step size selection pro-
cedures should be devised to tackle these issues during ac-
tual recovery. On the other hand, the computation of R-RIP
constants has exponential time complexity for the strategy
of [3].

To this end, existing approaches broadly fall into two
categories: constant and adaptive step size selection. In this
work, we present efficient strategies to adaptively select the
step size µi that implies fast convergence rate, for mild R-

RIP assumptions on A. Constant step size strategies easily
follow from [24] and are not listed in this work.

Adaptive step size selection. There is limited work on
the adaptive step size selection for hard thresholding meth-
ods. To the best of our knowledge, apart from [24], [37]- [38]
are the only studies that attempt this via line searching for
the vector case. At the time of review process, we become
aware of [39] which implements ideas presented in [37] for
the matrix case.

According to Algorithm 1, letX(i) be the current rank-
k matrix estimate spanned by the set of orthonormal, rank-1
matrices in Xi. Using regular gradient descent motions, the
new rank-k estimateW (i) can be calculated through:

V i =X(i)− µ

2
∇f(X(i)), {Wi, W (i)} ← Pk(V (i)).

We highlight that the rank-k approximate matrix may not
be unique. It then holds that the subspace spanned by Wi

originates: i) either from the subspace of Xi, ii) or from the
best subspace (in terms of the Frobenius norm metric) of the
current gradient ∇f(X(i)), orthogonal to Xi, iii) or from
the combination of orthonormal, rank-1 matrices lying on
the union of the above two subspaces. The statements above
can be summarized in the following expression:

span(Wi) ∈ span (Di ∪ Xi) (15)

for any step size µi and Di ← Pk
(
PX⊥i ∇f(X(i))

)
. Since

rank(span(Wi)) ≤ k, we easily deduce the following key
observation: let Si ← Di∪Xi be a set of rank-1, orthonormal
matrices where rank(span(Si)) ≤ 2k. GivenWi is unknown
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(a) (b) (c)

Fig. 1 Median error per iteration for various step size policies and 20 Monte-Carlo repetitions. In brackets, we present the median time consumed
for convergene in seconds. (a) m = n = 2048, p = 0.4n2, and rank k = 70—A is formed by permuted and subsampled noiselets [40]. (b)
n = 2048 , m = 512, p = 0.4n2, and rank k = 50—we use underdetermined linear map A according to the MC problem (c) n = 2048,
m = 512, p = 0.4n2, and rank k = 40—we use underdetermined linear map A according to the MC problem.

before the i-th iteration, Si spans the smallest subspace that
containsWi such that the following equality

Pk
(
X(i)− µi

2
∇f(X(i))

)
= Pk

(
X(i)− µi

2
PSi∇f(X(i))

)
(16)

necessarily holds.2
To compute step-size µi, we use:

µi = argmin
µ

∥∥y −A(X(i)− µ

2
PSi∇f(X(i))

)∥∥2
2

=
‖PSi∇f(X(i))‖2F
‖APSi∇f(X(i))‖22

, (17)

i.e., µi is the minimizer of the objective function, given the
current gradient∇f(X(i)). Note that:

1− δ2k(A) ≤ 1

µi
≤ 1 + δ2k(A), (18)

due to R-RIP—i.e., we select 2k subspaces such that µi sat-
isfies (18). We can derive similar arguments for the addi-
tional step size selection ξi in Step 6 of Algorithm 1.

Adaptive µi scheme results in more restrictive worst-
case isometry constants compared to [3, 34, 41], but faster
convergence and better stability are empirically observed in
general. In [3], the authors present the Singular Value Pro-
jection (SVP) algorithm, an iterative hard thresholding al-
gorithm for the ARM problem. According to [3], both con-
stant and iteration dependent (but user-defined) step sizes
are considered. Adaptive strategies presented in [3] require
the computation of R-RIP constants which has exponential
time complexity. Figures 1(a)-(b) illustrate some character-
istic examples. The performance varies for different prob-
lem configurations. For µ > 1, SVP diverges for various
test cases. We note that, for large fixed matrix dimensions

2 In the case of multiple identical singular values, any ties are lexi-
cographically dissolved.

m,n, adaptive step size selection becomes computationally
expensive compared to constant step size selection strate-
gies, as the rank ofX∗ increases.

4.2 Updates on restricted subspaces

In Algorithm 1, at each iteration, the new estimateW (i)←
Pk (V (i)) can be further refined by applying a single or
multiple gradient descent updates with line search restricted
onWi [34] (Step 7 in Algorithm 1):

X(i+ 1)←W (i)− ξi
2
PWi
∇f(W (i)),

where ξi =
‖PWi∇f(W (i))‖2F
‖APWi∇f(W (i))‖22

. In spirit, the gradient step
above is the same as block coordinate descent in convex op-
timization where we find the subspaces adaptively. Figure
1(c) depicts the acceleration achieved by using additional
gradient updates over restricted low-rank subspaces for a
test case.

4.3 Acceleration via memory-based schemes and low-rank
matrix approximations

Memory-based techniques can be used to improve conver-
gence speed. Furthermore, low-rank matrix approximation
tools overcome the computational overhead of computing
the best low-rank projection by inexactly solving (5). We
keep the discussion on memory utilization for Section 7 and
low-rank matrix approximations for Sections 8 and 9 where
we present new algorithmic frameworks for low-rank matrix
recovery.

4.4 Active low-rank subspace tracking

Per iteration of Algorithms 1 and 2, we perform projection
operations PSX and PS⊥X where X ∈ Rm×n, as de-
scribed by (6) and (7), respectively. Since S is constituted
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Fig. 2 Median error per iteration for MATRIX ALPS I and MATRIX ALPS II variants over 10 Monte-Carlo repetitions. In brackets, we present
the median time consumed for convergene in seconds. (a) n = 2048,m = 512, p = 0.25n2, and rank k = 40. (b) n = 2000,m = 1000,
p = 0.25n2, and rank k = 50. (c) n = m = 1000, p = 0.25n2, and rank k = 50.

by outer products of left and right singular vectors as in
Definition 2, PSX (resp. PS⊥X) projects onto the (resp.
complement of the) best low-rank subspace in R(X) and
R(XT ). These operations are highly connected with the
adaptive step size selection and the updates on restricted
subspaces. Unfortunately, the time-complexity to compute
PSX is dominated by three matrix-matrix multiplications
which decelerates the convergence of the proposed schemes
in high-dimensional settings. To accelerate the convergence
in many test cases, it turns out that we do not have to use the
best projection PS in practice.3 Rather, employing inexact
projections is sufficient to converge to the optimal solution:
either i) PUX onto the best low-rank subspace in R(X)
only (if m � n) or ii) XPV onto the best low-rank sub-
space in R(XT ) only (if m � n)4; PU and PV are defined
in Definition 2 and require only one matrix-matrix multipli-
cation.

Figure 2 shows the time overhead due to the exact pro-
jection applicationPS compared toPU form ≤ n. In Figure
2(a), we use subsampled and permuted noiselets for linear
map A and in Figures 2(b)-(c), we test the MC problem.
While in the case m = n the use of (6)-(7) has a clear ad-
vantage over inexact projections using only PU , the latter
case converges faster to the desired accuracy 5 · 10−4 when
m� n as shown in Figures 2(a)-(b). In our derivations, we
assume PS and PS⊥ as defined in (6) and (7).

5 Convergence guarantees

In this section, we present the theoretical convergence guar-
antees of Algorithms 1 and 2 as functions of R-RIP con-
stants. To characterize the performance of the proposed al-
gorithms, both in terms of convergence rate and noise re-
silience, we use the following recursive expression:

‖X(i+ 1)−X∗‖F ≤ ρ‖X(i)−X∗‖F + γ‖ε‖2. (19)

3 From a different perspective and for a different problem case, sim-
ilar ideas have been used in [18].

4 We can move between these two cases by a simple transpose of
the problem.

In (19), γ denotes the approximation guarantee and provides
insights into algorithm’s reconstruction capabilities when ad-
ditive noise is present; ρ < 1 expresses the convergence rate
towards a region aroundX∗, whose radius is determined by
γ

1−ρ‖ε‖2. In short, (19) characterizes how the distance to the
true signal X∗ is decreased and how the noise level affects
the accuracy of the solution, at each iteration.

5.1 MATRIX ALPS I

An important lemma for our derivations below is given next:

Lemma 6 [Active subspace expansion] LetX(i) be the ma-
trix estimate at the i-th iteration and let Xi be a set of or-
thonormal, rank-1 matrices such thatXi ← Pk(X(i)). Then,
at each iteration, the Active Subspace Expansion step in Al-
gorithms 1 and 2 identifies information inX∗, such that:∥∥PX∗PS⊥i X∗∥∥F ≤ (2δ2k + 2δ3k)

∥∥X(i)−X∗
∥∥
F

+
√

2(1 + δ2k)
∥∥ε∥∥

2
, (20)

where Si ← Xi ∪ Di and X ∗ ← Pk(X∗).

Lemma 6 states that, at each iteration, the active sub-
space expansion step identifies a 2k rank subspace such that
the amount of unrecovered energy of X∗—i.e., the projec-
tion of X∗ onto the orthogonal subspace of span(Si)—is
bounded by (20).

Then, Theorem 1 characterizes the iteration invariant of
Algorithm 1 for the matrix case:

Theorem 1 [Iteration invariant for MATRIX ALPS I] The
(i + 1)-th matrix estimate X(i + 1) of MATRIX ALPS I
satisfies the following recursion:∥∥X(i+ 1)−X∗

∥∥
F
≤ ρ
∥∥X(i)−X∗

∥∥
F
+ γ
∥∥ε∥∥

2
, (21)

where ρ :=
(

1+2δ2k
1−δ2k

)(
4δ2k
1−δ2k + (2δ2k + 2δ3k)

2δ3k
1−δ2k

)
and

γ :=
(

1+2δ2k
1−δ2k

)(
2
√
1+δ2k

1−δ2k + 2δ3k
1−δ2k

√
2(1 + δ2k)

)
+
√
1+δk
1−δk .

Moreover, when δ3k < 0.1235, the iterations are contrac-
tive.
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To provide some intuition behind this result, assume that
X∗ is a rank-k matrix. Then, according to Theorem 1, for
ρ < 1, the approximation parameter γ in (21) satisfies:

γ < 5.7624, for δ3k < 0.1235.

Moreover, we derive the following:

ρ <
1 + 2δ3k
(1− δ3k)2

(
4δ3k + 8δ23k

)
<

1

2
⇒ δ3k < 0.079,

which is a stronger R-RIP condition assumption compared
to state-of-the-art approaches [21]. In the next section, we
further improve this guarantee using Algorithm 2.

Unfolding the recursive formula (21), we obtain the fol-
lowing upper bound for

∥∥X(i)−X∗
∥∥
F

at the i-th iteration:∥∥X(i)−X∗
∥∥
F
≤ ρi

∥∥X(0)−X∗
∥∥
F
+

γ

1− ρ
∥∥ε∥∥

2
. (22)

Then, given X(0) = 0, MATRIX ALPS I finds a rank-k
solution X̂ ∈ Rm×n such that

∥∥X̂ −X∗∥∥
F
≤ γ+1−ρ

1−ρ
∥∥ε∥∥

2

after i :=
⌈
log(‖X∗‖F /‖ε‖2)

log(1/ρ)

⌉
iterations.

If we ignore steps 5 and 6 in Algorithm 1, we obtain
another projected gradient descent variant for the affine rank
minimization problem, for which we obtain the following
performance guarantees—the proof follows from the proof
of Theorem 1.

Corollary 1 [MATRIX ALPS I Instance] In Algorithm 1,
we ignore steps 5 and 6 and let {Xi+1, X(i + 1)} ←
Pk(V i). Then, by the same analysis, we observe that the
following recursion is satisfied:∥∥X(i+ 1)−X∗

∥∥
F
≤ ρ
∥∥X(i)−X∗

∥∥
F
+ γ
∥∥ε∥∥

2
, (23)

for ρ :=
(

4δ2k
1−δ2k+(2δ2k+2δ3k)

2δ3k
1−δ2k

)
and γ :=

(
2
√
1+δ2k

1−δ2k +

2δ3k
1−δ2k

√
2(1 + δ2k)

)
. Moreover, ρ < 1 when δ3k < 0.1594.

We observe that the absence of the additional estimate
update over restricted support sets results in less restrictive
isometry constants compared to Theorem 1. In practice, ad-
ditional updates result in faster convergence, as shown in
Figure 1(c).

5.2 ADMiRA Instance

In MATRIX ALPS I, the gradient descent steps constitute a
first-order approximation to least-squares minimization prob-
lems. Replacing Step 4 in Algorithm 1 with the following
optimization problem:

V (i)← argmin
V :V ∈span(Si)

∥∥y −AV ∥∥2
2
, (24)

we obtain ADMiRA (furthermore, we remove the de-bias
step in Algorithm 1). Assuming that the linear operator A,
restricted on sufficiently low-rank subspaces, is well condi-
tioned in terms of the R-RIP assumption, the optimization
problem (24) has a unique optimal minimizer. By exploiting
the optimality condition in Lemma 1, ADMiRA instance in
Algorithm 2 features the following guarantee:

Theorem 2 [Iteration invariant for ADMiRA instance] The
(i+1)-th matrix estimateX(i+1) of ADMiRA answers the
following recursive expression:∥∥X(i+ 1)−X∗

∥∥
F
≤ ρ
∥∥X(i)−X∗

∥∥
F
+ γ
∥∥ε∥∥

F
,

ρ :=
(
2δ2k+2δ3k

)√ 1+3δ23k
1−δ23k

, and γ :=

√
1+3δ23k
1−δ23k

√
2(1 + δ3k)

+
(√

1+3δ23k
1−δ3k +

√
3
)√

1 + δ2k.Moreover, when δ3k < 0.2267,
the iterations are contractive.

Similarly to MATRIX ALPS I analysis, the parameter γ
in Theorem 2 satisfies:

γ < 5.1848, for δ3k < 0.2267.

Furthermore, to compare the approximation guarantees of
Theorem 2 with [21], we further observe:

δ3k < 0.1214, for ρ < 1/2.

We remind that [21] provides convergence guarantees for
ADMiRA with δ4k < 0.04 for ρ = 1/2.

6 Complexity Analysis

In each iteration, computational requirements of the pro-
posed hard thresholding methods mainly depend on the total
number of linear mapping operations A, gradient descent
steps, least-squares optimizations, projection operations and
matrix decompositions for low rank approximation. Differ-
ent algorithmic configurations (e.g. removing steps 6 and
7 in Algorithm 1) lead to hard thresholding variants with
less computational complexity per iteration and better R-
RIP conditions for convergence but a degraded performance
in terms of stability and convergence speed is observed in
practice. On the other hand, these additional processing steps
increase the required time-complexity per iteration; hence,
low iteration counts are desired to tradeoff these operations.

A non-exhaustive list of linear map examples includes
the identity operator (Principal component analysis (PCA)
problem), Fourier/Wavelets/Noiselets tranformations and the
famous Matrix Completion problem whereA is a mask op-
erator such that only a fraction of elements in X is ob-
served. Assuming the most demanding case where A and
A∗ are dense linear maps with no structure, the compu-
tation of the gradient ∇f(X(i)) at each iteration requires
O(pkmn) arithmetic operations.

Given a set S of orthonormal, rank-1 matrices, the pro-
jection PSX for any matrixX ∈ Rm×n requires time com-
plexityO(max{m2n,mn2}) as a sequence of matrix-matrix
multiplication operations.5 In MATRIX ALPS I, the adap-
tive step size selection steps require O(max{pkmn,m2n})
time complexity for the calculation of µi and ξi quantities. In

5 While such operation hasO(max{m2n, mn2}) complexity, each
application of PSX requires three matrix-matrix multiplications. To
reduce such computational cost, we relax this operation in Section 10
where in practice we use only PU that needs one matrix-matrix multi-
plication.
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ADMiRA solving a least-squares system restricted on rank-
2k and rank-k subspaces requires O(pk2) complexity; ac-
cording to [32], [21], the complexity of this step can be fur-
ther reduced using iterative techniques such as the Richard-
son method or conjugate gradients algorithm.

Using the Lanczos method, we require O(kmn) arith-
metic operations to compute a rank-k matrix approximation
for a given constant accuracy; a prohibitive time-complexity
that does not scale well for many practical applications. Sec-
tions 8 and 9 describe approximate low rank matrix projec-
tions and how they affect the convergence guarantees of the
proposed algorithms.

Overall, the operation that dominates per iteration re-
quires O(max{pkmn,m2n,mn2}) time complexity in the
proposed schemes.

7 Memory-based Acceleration

Iterative algorithms can use memory to gain momentum in
convergence. Based on Nesterov’s optimal gradient methods
[42], we propose a hard thresholding variant, described in
Algorithm 3 where an additional update on X(i + 1) with
momentum step size τi is performed using previous matrix
estimates.

Similar to µi strategies, τi can be preset as constant or
adaptively computed at each iteration. Constant momentum
step size selection has no additional computational cost but
convergence rate acceleration is not guaranteed for some
problem formulations in practice. On the other hand, em-
pirical evidence has shown that adaptive τi selection strate-
gies result in faster convergence compared to zero-memory
methods with similar complexity.

For the case of strongly convex objective functions, Nes-
terov [43] proposed the following constant momentum step
size selection scheme: τi = αi(1−αi)

α2
i+αi+1

, where α0 ∈ (0, 1)

and αi+1 is computed as the root ∈ (0, 1) of

α2
i+1 = (1− αi+1)α

2
i + qαi+1, for q ,

1

κ2(A)
, (25)

where κ(A) denotes the condition number of A. In this
scheme, exact calculation of q parameter is computationally
expensive for large-scale data problems and approximation
schemes are leveraged to compensate this complexity bot-
tleneck.

Based upon adaptive µi selection, we propose to select
τi as the minimizer of the objective function:

τi = argmin
τ

‖y −AQ(i+ 1)‖22

=
〈y −AX(i),AX(i)−AX(i− 1)〉

‖AX(i)−AX(i− 1)‖22
, (26)

whereAX(i),AX(i−1) are already pre-computed at each
iteration. According to (26), τi is dominated by the calcula-
tion of a vector inner product, a computationally cheaper
process than q calculation.

Theorem 3 characterizes Algorithm 3 for constant mo-
mentum step size selection. To keep the main ideas simple,
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Matrix ALPS I I - τi = opt. [48.15]

Matrix ALPS I I - τi = 1/4 [71.6347]

Matrix ALPS I I - τi = 1/8 [107.7316]

Matrix ALPS I I - τi = 1/16 [116.4127]

Fig. 3 Median error per iteration for various momentum step size poli-
cies and 10 Monte-Carlo repetitions. Here, n = 1024, m = 256,
p = 0.25n2, and rank k = 40. We use permuted and subsampled
noiselets for the linear map A. In brackets, we present the median time
for convergence in seconds.

we ignore the additional gradient updates in Algorithm 3.
In addition, we only consider the noiseless case for clarity.
The convergence rate proof for these cases is provided in the
appendix.

Theorem 3 [Iteration invariant for MATRIX ALPS II] Let
y = AX∗ be a noiseless set of observations. To recover
X∗ from y andA, the (i+ 1)-th matrix estimate X(i+ 1)
of MATRIX ALPS II satisfies the following recursion:∥∥X(i+ 1)−X∗

∥∥
F
≤ α(1 + τi)

∥∥X(i)−X∗
∥∥
F

+ ατi
∥∥X(i− 1)−X∗

∥∥
F
, (27)

where α := 4δ3k
1−δ3k +(2δ3k+2δ4k)

2δ3k
1−δ3k . Moreover, solving

the above second-order recurrence, the following inequality
holds true:∥∥X(i+ 1)−X∗

∥∥
F
≤ ρi+1

∥∥X(0)−X∗
∥∥
F
, (28)

for ρ :=
α(1+τi)+

√
α2(1+τi)2+4ατi
2 .

Theorem 3 provides convergence rate behaviour proof
for the case where τi is constant ∀i. The more elaborate case
where τi follows the policy described in (26) is left as an
open question for future work. To provide some insight for
(28), for τi = 1/4, ∀i and τi = 1/2, ∀i, δ4k < 0.1187
and δ4k < 0.095 guarantee convergence in Algorithm 3, re-
spectively. While the RIP requirements for memory-based
MATRIX ALPS II are more stringent than the schemes pro-
posed in the previous section, it outperforms Algorithms 1
and 2. Figure 2 shows the acceleration achieved in MATRIX
ALPS II by using inexact projections PU . Using the proper
projections (6)-(7), Figure 3 shows acceleration in practice
when using the adaptive momentum step size strategy: while
a wide range of constant momentum step sizes leads to con-
vergence, providing flexibility to select an appropriate τi,
adaptive τi avoids this arbitrary τi selection while further
decreases the number of iterations needed for convergence
in most cases.
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Input: y, A, k, Tolerance η, MaxIterations
Initialize:X(0)← 0, X0 ← {∅},Q(0)← 0, Q0 ← {∅}, τi ∀i, i← 0
repeat

1: Di ← Pk
(
PQ⊥i ∇f(Q(i))

)
(Best rank-k subspace orthogonal to Qi)

2: Si ← Di ∪Qi (Active subspace expansion)

3: µi ← argminµ
∥∥y −A

(
Q(i)− µ

2
PSi∇f(Q(i))

)∥∥2
2
=
‖PSi∇f(Q(i))‖2F
‖APSi∇f(Q(i))‖22

(Step size selection)

4: V (i)← Q(i)− µi
2
PSi∇f(Q(i)) (Error norm reduction via gradient descent)

5: {Xi+1, X(i+ 1)} ← Pk(V (i)) (Best rank-k subspace selection)
6: Q(i+ 1)←X(i+ 1) + τi(X(i+ 1)−X(i)) (Momentum update)
7: Qi+1 ← ortho(Xi ∪ Xi+1)

i← i+ 1
until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Algorithm 3: MATRIX ALPS II

8 Accelerating MATRIX ALPS: ε-Approximation of
SVD via Column Subset Selection

A time-complexity bottleneck in the proposed schemes is
the computation of the singular value decomposition to find
subspaces that describe the unexplored information in ma-
trix X∗. Unfortunately, the computational cost of regular
SVD for best subspace tracking is prohibitive for many ap-
plications.

Based on [44, 45], we can obtain randomized SVD ap-
proximations of a matrix X using column subset selection
ideas: we compute a leverage score for each column that
represents its “significance”. In particular, we define a prob-
ability distribution that weights each column depending on
the amount of information they contain; usually, the distri-
bution is related to the `2-norm of the columns. The main
idea of this approach is to compute a surrogate rank-k ma-
trix Pεk(X) by subsampling the columns according to this
distribution. It turns out that the total number of sampled
columns is a function of the parameter ε. Moreover, [46,47]
proved that, given a target rank k and an approximation pa-
rameter ε, we can compute an ε-approximate rank-k matrix
Pεk(X) according to the following defintion.

Definition 4 [ε-approximate low-rank projection] LetX be
an arbitrary matrix. Then,Pεk(X) projection provides a rank-
k matrix approximation toX such that:∥∥Pεk(X)−X

∥∥2
F
≤ (1 + ε)

∥∥Pk(X)−X
∥∥2
F
, (29)

where Pk(X) ∈ argminY :rank(Y )≤k ‖X − Y ‖F .

For the following theoretical results, we assume the fol-
lowing condition on the sensing operator A :

∥∥A∗β∥∥
F
≤

λ, ∀β ∈ Rp where λ > 0. Using ε-approximation schemes
to perform the Active subspace selection step, the following
upper bound holds. The proof is provided in the Appendix:

Lemma 7 [ε-approximate active subspace expansion] Let
X(i) be the matrix estimate at the i-th iteration and let Xi
be a set of orthonormal, rank-1 matrices in Rm×n such that
Xi ← Pk(X(i)). Furthermore, let

Dεi ← Pεk
(
PX⊥i ∇f(X(i))

)
,

be a set of orthonormal, rank-1 matrices that span rank-k
subspace such that (29) is satisfied forX := PX⊥i ∇f(X(i)).
Then, at each iteration, the Active Subspace Expansion step
in Algorithms 1 and 2 captures information contained in the
true matrixX∗, such that:∥∥PX∗PS⊥i X∗∥∥F
≤
(
2δ2k + 2δ3k

)∥∥X(i)−X∗
∥∥
F
+
√
2(1 + δ2k)

∥∥ε∥∥
2

+ 2λ
√
ε, (30)

where Si ← Xi ∪ Dεi and X ∗ ← Pk(X∗).

Furthermore, to prove the following theorems, we ex-
tend Lemma 10, provided in the Appendix, as follows. The
proof easily follows from the proof of Lemma 10, using Def-
inition 4:

Lemma 8 [ε-approximation rank-k subspace selection] Let
V (i) be a rank-2k proxy matrix in the subspace spanned by
Si and let Ŵ (i)← Pεk(V (i)) denote the rank-k ε-approxi-
mation to V (i), according to (5). Then:∥∥Ŵ (i)− V (i)

∥∥2
F
≤ (1 + ε)

∥∥W (i)− V (i)
∥∥
F

≤ (1 + ε)
∥∥PSi(V (i)−X∗)

∥∥
F

≤ (1 + ε)
∥∥V (i)−X∗

∥∥
F

(31)

whereW (i)← Pk(V (i)).

8.1 MATRIX ALPS I using ε-approximate low-rank
projection via column subset selection

Using ε-approximate SVD in MATRIX ALPS I, the follow-
ing iteration invariant theorem holds:

Theorem 4 [Iteration invariant with ε-approximate projec-
tions for MATRIX ALPS I] The (i + 1)-th matrix estimate
X(i + 1) of MATRIX ALPS I with ε-approximate projec-
tions Dεi ← Pεk

(
PX⊥i ∇f(X(i))

)
and Ŵ (i) ← Pεk(V (i))

in Algorithm 1 satisfies the following recursion:∥∥X(i+ 1)−X∗
∥∥
F
≤ ρ
∥∥X(i)−X∗

∥∥
F
+ γ‖ε‖2 + βλ,

(32)
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where ρ :=
(
1 + 3δk

1−δk

)
(2 + ε)

[
(1+ δ3k

1−δ2k )4δ3k+
2δ2k
1−δ2k

]
,

β :=
(
1 + 3δk

1−δk

)
(2 + ε)

(
1 + δ3k

1−δ2k

)
2
√
ε, and

γ :=
(
1 + 3δk

1−δk

) (
2 + ε

)[(
1 + δ3k

1−δ2k

)√
2(1 + δ2k)+

2
√
1+δ2k
1−δ2k

]
.
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Fig. 4 Performance comparison using ε-approximation SVD [47] in
MATRIX ALPS II. m = n = 256, p = 0.4n2, rank of X∗ equals 2
and A constituted by permuted noiselets. The non-smoothness in the
error curves is due to the extreme low rankness ofX∗ for this setting.

Similar analysis can be conducted for the ADMiRA al-
gorithm. To illustrate the impact of SVD ε-approximation on
the signal reconstruction performance of the proposed meth-
ods, we replace the best rank-k projections in steps 1 and
5 of Algorithm 1 by the ε-approximation SVD algorithm,
presented in [47]. In this paper, the column subset selection
algorithm satisfies the following theorem:

Theorem 5 Let X ∈ Rm×n be a signal of interest with ar-
bitrary rank < min{m,n} and let Xk represent the best
rank-k approximation ofX . After 2(k+1)(log(k+1)+ 1)
passes over the data, the Linear Time Low-Rank Matrix Ap-
proximation algorithm in [47] computes a rank-k approxi-
mation Pεk(X) ∈ Rm×n such that Definition 4 is satisfied
with probability at least 3/4.

The proof is provided in [47]. In total, Linear Time Low-
Rank Matrix Approximation algorithm [47] requires O(mn
(k/ε+k2 log k)+(m+n)(k2/ε2+k3 log k/ε+k4 log2 k))
and O(min{m,n}(k/ε + k2 log k)) time and space com-
plexity, respectively. However, while column subset selec-
tion methods such as [47] reduce the overall complexity of
low-rank projections in theory, in practice this applies only
in very high-dimensional settings. To strengthen this argu-
ment, in Figure 4 we compare SVD-based MATRIX ALPS
II with MATRIX ALPS II using the ε-approximate column
subset selection method in [47]. We observe that the to-
tal number of iterations for convergence increases due to

ε-approximate low-rank projections, as expected. Neverthe-
less, we observe that, on average, the column subset selec-
tion process [47] is computationally prohibitive compared
to regular SVD due to the time overhead in the column se-
lection procedure—fewer passes over the data are desirable
in practice to tradeoff the increased number of iterations
for convergence. In the next section, we present alternatives
based on recent trends in randomized matrix decompositions
and how we can use them in low-rank recovery.

9 Accelerating MATRIX ALPS: SVD Approximation
using Randomized Matrix Decompositions

Finding low-cost SVD approximations to tackle the above
complexity issues is a challenging task. Recent works on
probabilistic methods for matrix approximation [26] provide
a family of efficient approximate projections on the set of
rank-deficient matrices with clear computational advantages
over regular SVD computation in practice and attractive the-
oretical guarantees. In this work, we build on the low-cost,
power-iteration subspace tracking scheme, described in Al-
gorithms 4.3 and 4.4 in [26]. Our proposed algorithm is de-
scribed in Algorithm 4.

The convergence guarantees of Algorithm 4 follow the
same motions described in Section 8, where ε is a function
of m, n, k and q.

10 Experiments

10.1 List of algorithms

In the following experiments, we compare the following al-
gorithms: (i) the Singular Value Projection (SVP) algorithm
[3], a non-convex first-order projected gradient descent al-
gorithm with constant step size selection (we study the case
where µ = 1), (ii) the inexact ALM algorithm [18] based on
augmented Langrance multiplier method, (iii) the OptSpace
algorithm [48], a gradient descent algorithm on the Grass-
mann manifold, (iv) the Grassmannian Rank-One Update
Subspace Estimation (GROUSE) and the Grassmannian Ro-
bust Adaptive Subspace Tracking methods (GRASTA) [49,
50], two stochastic gradient descent algorithms that operate
on the Grassmannian—moreover, to allay the impact of out-
liers in the subspace selection step, GRASTA incorporates
the augmented Lagrangian of `1-norm loss function into the
Grassmannian optimization framework, (v) the Riemannian
Trust Region Matrix Completion algorithm (RTRMC) [51],
a matrix completion method using first- and second-order
Riemannian trust-region approaches, (vi) the Low rank Ma-
trix Fitting algorithm (LMatFit) [52], a nonlinear succes-
sive over-relaxation algorithm and (vii) the algorithms MA-
TRIX ALPS I, ADMiRA [21], MATRIX ALPS II and Ran-
domized MATRIX ALPS II with QR Factorization (referred
shortly as MATRIX ALPS II with QR) presented in this pa-
per.
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Input: y, A, k, q, Tolerance η, MaxIterations
Initialize:X(0)← 0, X0 ← {∅},Q(0)← 0, Q0 ← {∅}, τi ∀i, i← 0
repeat

1: Di ← RANDOMIZEDPOWERITERATION
(
PQ⊥i ∇f(Q(i)), k, q

)
(Rank-k subspace via Randomized Power Iteration)

2: Si ← Di ∪Qi (Active subspace expansion)

3: µi ← argminµ
∥∥y −A

(
Q(i)− µ

2
PSi∇f(Q(i))

)∥∥2
2
=
‖PSi∇f(Q(i))‖2F
‖APSi∇f(Q(i))‖22

(Step size selection)

4: V (i)← Q(i)− µi
2
PSi∇f(Q(i)) (Error norm reduction via gradient descent)

5: W ← RANDOMIZEDPOWERITERATION
(
V(i), k, q

)
(Rank-k subspace via Randomized Power Iteration)

6: X(i+ 1)← PWV(i) (Best rank-k subspace selection)
7: Q(i+ 1)←X(i+ 1) + τi(X(i+ 1)−X(i)) (Momentum update)
8: Qi+1 ← ortho(Xi ∪ Xi+1)

i← i+ 1
until ‖X(i)−X(i− 1)‖2 ≤ η‖X(i)‖2 or MaxIterations.

Algorithm 4: Randomized MATRIX ALPS II with QR Factorization
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Fig. 5 Median error per iteration for MATRIX ALPS II variants over 10 Monte-Carlo repetitions. In brackets, we present the mean time consumed
for convergene in seconds. (a) n = 1024,m = 256, p = 0.25n2, and rank k = 20. (b) n = 2048,m = 512, p = 0.25n2, and rank k = 60. (c)
n = 1000, m = 500, p = 0.25n2, and rank k = 50.

10.2 Implementation details

To properly compare the algorithms in the above list, we pre-
set a set of parameters that are common. We denote the ratio
between the number of observed samples and the number of
variables inX∗ as SR := p/(m·n) (sampling ratio). Furthe-
more, we reserve FR to represent the degree of freedom in
a rank-k matrix to the number of observations—this corre-
sponds to the following definition FR := (k(m+n−k))/p.
In most of the experiments, we fix the number of observable
data p = 0.3mn and vary the dimensions and the rank k of
the matrixX∗. This way, we create a wide range of different
problem configurations with variable FR.

Most of the algorithms in comparison as well as the pro-
posed schemes are implemented in MATLAB. We note that
the LMaFit software package contains parts implemented in
C that reduce the per iteration computational time. This pro-
vides insights for further time savings in our schemes; we
leave a fully optimized implementation of our algorithms as
future work. In this paper, we mostly test cases where m�
n. Such settings can be easily found in real-world problems
such as recommender systems (e.g. Netflix, Amazon, etc.)
where the number of products, movies, etc. is much greater
than the number of active users.

In all algorithms, we fix the maximum number of itera-
tions to 500, unless otherwise stated. To solve a least squares

problem over a restricted low-rank subspace, we use con-
jugate gradients with maximum number of iterations given
by cg maxiter := 500 and tolerance parameter cg tol :=
10−10. We use the same stopping criteria for the majority of
algorithms under consideration:∥∥X(i)−X(i− 1)

∥∥
F∥∥X(i)

∥∥
F

≤ tol, (33)

where X(i), X(i − 1) denote the current and the previous
estimate ofX∗ and tol := 5 ·10−5. If this is not the case, we
tweak the algorithms to minimize the total execution time
and achieve similar reconstruction performance as the rest
of the algorithms. For SVD calculations, we use the lansvd
implementation in PROPACK package [53]—moreover, all
the algorithms in comparison use the same linear operators
A andA∗ for gradient and SVD calculations and conjugate-
gradient least-squares minimizations. For fairness, we mod-
ified all the algorithms so that they exploit the true rank.
Small deviations from the true rank result in relatively small
degradation in terms of the reconstruction performance. In
case the rank of X∗ is unknown, one has to predict the di-
mension of the principal singular space. The authors in [3],
based on ideas in [48], propose to compute singular values
incrementally until a significant gap between singular val-
ues is found. Similar strategies can be found in [18] for the
convex case.
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In MATRIX ALPS II and MATRIX ALPS II with QR,
we performQi ← ortho(Xi ∪Xi+1) to construct a set of or-
thonormal rank-1 matrices that span the subspace, spanned
by Xi ∪ Xi+1. While such operation can be implemented
using factorization procedures (such as SVD or QR decom-
positions), in practice this degrades the time complexity of
the algorithm substantially as the rank k and the problem
dimensionality increase. In our implementations, we simply
union the set of orthonormal rank-1 matrices, without fur-
ther orthogonalization. Thus, we employ inexact projections
for computational efficiency which results in faster conver-
gence. Figure 5 shows the time overhead due to the addi-
tional orthogonalization process. We compare three algo-
rithms: MATRIX ALPS II (no orthogonalization step), MA-
TRIX ALPS II using SVD for orthogonalization and, MA-
TRIX ALPS II using QR for orthogonalization. In Figures
5(a)-(b), we use subsampled and permuted noiselets for lin-
ear map A and in Figure 5(c), we test the MC problem. In
all the experimental cases considered in this work, we ob-
served identical performace in terms of reconstruction accu-
racy for the three variants, as can be also seen in Figure 5.
To this end, for the rest of the paper, we use MATRIX ALPS
II where Qi ← Xi ∪ Xi+1.

10.3 Limitations of
∥∥ · ∥∥∗-based algorithms: a toy example

While nucluear norm heuristic is widely used in solving the
low-rank minimization problem, [54] presents simple prob-
lem cases where convex, nuclear norm-based, algorithms
fail in practice. Using the

∥∥ · ∥∥∗-norm in the objective func-
tion as the convex surrogate of the rank(·) metric might lead
to a candidate set with multiple solutions, introducing am-
biguity in the selection process. Borrowing the example in
[54], we test the list of algorithms above on a toy problem
setting that does not satisfy the rank-RIP. To this end, we
design the following problem: letX∗ ∈ R5×4 be the matrix
of interest with rank(X∗) = 2, as shown in Figure 6(a). We
consider the case where we have access toX∗ only through
a subset of its entries, as shown in Figure 6(b).


2 2 1 1
2 2 1 1
2 2 1 1
2 2 1 1
1 1 2 1


(a)


2 2 1 1
2 2 1 1
? ? ? 1
2 ? ? 1
1 1 2 1


(b)

Fig. 6 Matrix Completion toy example forX∗ ∈ R5×4. We use ‘?’ to
denote the unobserved entried.

In Figure 7, we present the reconstruction performance
of various matrix completion solvers after 300 iterations. Al-
though there are multiple solutions that induce the recovered
matrix and have the same rank as X∗, most of the algo-
rithms in comparison reconstruct X∗ successfully. We note
that, in some cases, the inadequancy of an algorithm to re-

constructX∗ is not because of the (relaxed) problem formu-
lation but due to its fast—but inaccurate—implementation
(fast convergence versus reconstruction accuracy tradeoff).

10.4 Synthetic data

General affine rank minimization using noiselets: In this
experiment, the set of observations y ∈ Rp satisfy:

y = AX∗ + ε (34)

Here, we use permuted and subsampled noiselets for the
linear operator A [12]. The signal X∗ is generated as the
multiplication of two low-rank matrices, L ∈ Rm×k and
R ∈ Rn×k, such thatX∗ = LRT and

∥∥X∗∥∥
F
= 1. Both L

and R have random independent and identically distributed
(iid) Gaussian entries with zero mean and unit variance. In
the noisy case, the additive noise term ε ∈ Rp contains
entries drawn from a zero mean Gaussian distribution with∥∥ε∥∥

2
∈ {10−3, 10−4}.

We compare the following algorithms: SVP, ADMiRA,
MATRIX ALPS I, MATRIX ALPS II and MATRIX ALPS
II with QR for various problem configurations, as depicted
in Table 1 (there is no available code with arbitrary sens-
ing operators for the rest algorithms). In Table 1, we show
the median values of reconstruction error, number of iter-
ations and execution time over 50 Monte Carlo iterations.
For all cases, we assume SR = 0.3 and we set the maximum
number of iterations to 500. Bold font denotes the fastest
execution time. Furthermore, Figure 8 illustrates the effec-
tiveness of the algorithms for some representative problem
configurations.

In Table 1, MATRIX ALPS II and MATRIX ALPS II
with QR obtain accurate low-rank solutions much faster than
the rest of the algorithms in comparison. In high dimen-
sional settings, MATRIX ALPS II with QR scales better as
the problem dimensions increase, leading to faster conver-
gence. Moreover, its execution time is at least a few orders
of magnitude smaller compared to SVP, ADMiRA and MA-
TRIX ALPS I implementations.

Robust matrix completion: We design matrix comple-
tion problems in the following way. The signal of interest
X∗ ∈ Rm×n is synthesized as a rank-k matrix, factorized
as X∗ := LRT with

∥∥X∗∥∥
F

= 1 where L ∈ Rm×k and
R ∈ Rn×k as defined above. In sequence, we subsample
X∗ by observing p = 0.3mn entries, drawn uniformly at
random. We denote the set of ordered pairs that represent
the coordinates of the observable entries as Ω = {(i, j) :
[X∗]ij is known} ⊆ {1, . . . ,m} × {1, . . . , n} and let AΩ
denote the linear operator (mask) that samples a matrix ac-
cording to Ω. Then, the set of observations satisfies:

y = AΩX∗ + ε, (35)

i.e., the known entries of X∗ are structured as a vector y ∈
Rp, disturbed by a dense noise vector ε ∈ Rp with fixed-
energy, which is populated by iid zero-mean Gaussians.

To demonstrate the reconstruction accuracy and the con-
vergence speeds, we generate various problem configura-
tions (both noisy and noiseless settings), according to (35).
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2 2 1 1
2 2 1 1
1 1 2 1
2 2 1 1
1 1 2 1


(a) SVT


2 2 1 1
2 2 1 1
1 1 1 1
2 2 1 1
1 1 2 1


(b) FPC


2 2 1 1
2 2 1 1
2 2 1 1
2 2 1 1
1 1 2 1


(c) SVP (µ = 1)


2 2 1 1
2 2 1 1
2 2 1 1
2 2 1 1
1 1 2 1


(d) ALM


2 2 1 1
2 2 1 1
2 2 1 1
2 2 0 1
1 1 2 1


(e) OptSpace


2 2 1 1
2 2 1 1
1 1 2 1
2 2 1 1
1 1 2 1


(f) SET


2 2 1 1
2 2 1 1
2 2 1 1
2 2 1 1
1 1 2 1


(g) ADMiRA


2 2 1 1
2 2 1 1
1 1 2 1
2 2 1 1
1 1 2 1


(h) GRASTA


2 2 1 1
2 2 1 1
1 1 2 1
2 2 1 1
1 1 2 1


(i) LMatFit


2 2 1 1
2 2 1 1
2 2 1 1
2 2 1 1
1 1 2 1


(j) MATRIX ALPS II

Fig. 7 Toy example reconstruction performance for various algorithms. We observe that X∗ is an integer matrix—since the algorithms under
consideration return real matrices as solutions, we round the solution elementwise.

Table 1 General ARM using Noiselets.

Configuration FR SVP ADMiRA MATRIX ALPS I
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
256 512 5 0 0.097 38 2.2 · 10−4 0.78 27 4.4 · 10−5 2.26 13.5 1 · 10−5 0.7
256 512 5 10−3 0.097 38 6 · 10−4 0.91 700 2 · 10−3 65.94 16 7 · 10−4 0.92
256 512 5 10−4 0.097 38 2.1 · 10−4 0.94 700 4.1 · 10−4 69.03 11.5 7.9 · 10−5 0.72
256 512 10 0 0.193 50 3.4 · 10−4 1.44 38 5 · 10−5 4.42 13 3.9 · 10−5 0.92
256 512 10 10−3 0.193 50 9 · 10−4 1.39 700 1.7 · 10−3 56.94 29 1.2 · 10−3 1.78
256 512 10 10−4 0.193 50 3.5 · 10−4 1.38 700 9.3 · 10−5 64.69 14 1.4 · 10−4 0.93
256 512 20 0 0.38 86 7 · 10−4 3.32 700 4.1 · 10−5 81.93 45 2 · 10−4 4.09
256 512 20 10−3 0.38 86 1.5 · 10−3 3.45 700 4.2 · 10−2 77.35 69 2.3 · 10−3 5.05
256 512 20 10−4 0.38 86 7 · 10−4 3.26 700 4 · 10−2 79.47 46 4 · 10−4 4.1
512 1024 30 0 0.287 66 4.9 · 10−4 8.79 295 5.4 · 10−5 143.53 24 1 · 10−4 8.01
512 1024 40 0 0.38 86 7 · 10−4 10.09 700 4.3 · 10−2 251.27 45 2 · 10−4 11.08
1024 2048 50 0 0.24 57 4.3 · 10−4 42.88 103 5.2 · 10−5 312.62 18 5.7 · 10−5 35.86

MATRIX ALPS II MATRIX ALPS II with QR
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time
256 512 5 0 0.097 8 7.1 · 10−6 0.42 10 9.1 · 10−6 0.39
256 512 5 10−3 0.097 9 7 · 10−4 0.56 20 7 · 10−4 0.93
256 512 5 10−4 0.097 8 7 · 10−5 0.5 10 7.8 · 10−5 0.46
256 512 10 0 0.193 10 2.3 · 10−5 0.68 13 2.4 · 10−5 0.64
256 512 10 10−3 0.193 19 1 · 10−3 1.29 27 1 · 10−3 1.35
256 512 10 10−4 0.193 10 1.1 · 10−4 0.68 13 1.1 · 10−4 0.62
256 512 20 0 0.38 21 1 · 10−4 1.92 24 1 · 10−4 1.26
256 512 20 10−3 0.38 36 1.5 · 10−3 2.67 39 1.5 · 10−3 1.69
256 512 20 10−4 0.38 21 2 · 10−4 1.87 24 2 · 10−4 1.22
512 1024 30 0 0.287 14 4.5 · 10−5 4.7 18 3.3 · 10−5 4.15
512 1024 40 0 0.38 21 1 · 10−4 6.01 24 1 · 10−4 4.53
1024 2048 50 0 0.24 12 2.5 · 10−5 22.76 15 3.3 · 10−5 17.94

The energy of the additive noise takes values
∥∥ε∥∥

2
∈ {10−3,

10−4}. All the algorithms are tested for the same signal-
matrix-noise realizations. A summary of the results can be
found in Tables 2, 3 and, 4 where we present the median
values of reconstruction error, number of iterations and exe-
cution time over 50 Monte Carlo iterations. For all cases, we
assume SR = 0.3 and set the maximum number of iterations
to 700. Bold font denotes the fastest execution time. Some
convergence error curves for specific cases are illustrated in
Figures 9 and 10.

In Table 2, LMaFit [52] implementation has the fastest
convergence for small scale problem configuration where
m = 300 and n = 600. We note that part of LMaFit im-

plementation uses C code for acceleration. GROUSE [49]
is a competitive low-rank recovery method with attractive
execution times for the extreme low rank problem settings
due to stochastic gradient descent techniques. Nevertheless,
its execution time performance degrades significantly as we
increase the rank of X∗. Moreover, we observe how ran-
domized low rank projections accelerate the convergence
speed where MATRIX ALPS II with QR converges faster
than MATRIX ALPS II. In Tables 3 and 4, we increase the
problem dimensions. Here, MATRIX ALPS II with QR has
faster convergence for most of the cases and scales well as
the problem size increases. We note that we do not exploit
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Fig. 8 Low rank signal reconstruction using noiselet linear operator. The error curves are the median values across 50 Monte-Carlo realizations
over each iteration. For all cases, we assume p = 0.3mn. (a) m = 256, n = 512, k = 10 and

∥∥ε∥∥
2
= 10−3. (b) m = 256, n = 512, k = 10

and
∥∥ε∥∥

2
= 10−4. (c) m = 256, n = 512, k = 20 and

∥∥ε∥∥
2
= 0. (d) m = 512, n = 1024, k = 30 and

∥∥ε∥∥
2
= 0. (e) m = 512, n = 1024,

k = 40 and
∥∥ε∥∥

2
= 0. (f) m = 1024, n = 2048, k = 50 and

∥∥ε∥∥
2
= 0.

5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

# of iterations

‖X
(i
)-

X
∗
‖ F

 

 

SVP
ALM
OptSpace
RTRMC
LMaFit
Matrix ALPS I
ADMiRA
Matrix ALPS II
Matrix ALPS II with QR

(a)

5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

# of iterations

‖X
(i
)-

X
∗
‖ F

‖ε‖2 = 0.0001
 

 

SVP
ALM
OptSpace
RTRMC
LMaFit
Matrix ALPS I
ADMiRA
Matrix ALPS II
Matrix ALPS II with QR

(b)

Fig. 9 Low rank matrix recovery for the matrix completion problem. The error curves are the median values across 50 Monte-Carlo realizations
over each iteration. For all cases, we assume p = 0.3mn. (a) m = 300, n = 600, k = 5 and

∥∥ε∥∥
2
= 0. (b) m = 300, n = 600, k = 20 and∥∥ε∥∥

2
= 10−4.
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Table 2 Matrix Completion problem for m = 300 and n = 600. “−” depicts no information or not applicable due to time overhead.

Configuration FR SVP GROUSE TFOCS
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
300 600 5 0 0.083 43 2.9 · 10−4 0.59 − 1.52 · 10−4 0.08 − 8.69 · 10−5 3.36
300 600 5 10−3 0.083 42 6 · 10−4 0.65 − 2 · 10−4 0.082 − 5 · 10−4 3.85
300 600 5 10−4 0.083 43 3 · 10−4 0.64 − 2 · 10−4 0.079 − 1 · 10−4 3.5
300 600 10 0 0.165 54 4 · 10−4 0.9 − 4.5 · 10−6 0.22 − 2 · 10−4 6.43
300 600 10 10−3 0.165 54 9 · 10−4 0.89 − 2 · 10−4 0.16 − 8 · 10−4 7.83
300 600 10 10−4 0.165 54 4 · 10−4 0.91 − 2 · 10−4 0.16 − 1 · 10−4 6.75
300 600 20 0 0.326 85 8 · 10−4 2.04 − 1 · 10−4 0.81 − 2 · 10−4 30.04
300 600 40 0 0.637 241 3.4 · 10−3 11.1 − 3.1 · 10−3 13.94 − − −

Inexact ALM OptSpace GRASTA
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
300 600 5 0 0.083 24 6.7 · 10−5 0.47 31 2.8 · 10−6 2.41 − 2.2 · 10−4 2.07
300 600 5 10−3 0.083 24 6 · 10−4 0.49 297 5 · 10−4 22.82 − 1 · 10−4 2.07
300 600 5 10−4 0.083 24 1 · 10−4 0.49 267 1 · 10−4 21.56 − 8 · 10−5 2.1
300 600 10 0 0.165 26 1 · 10−4 0.6 37 2.3 · 10−6 8.42 − 8.6 · 10−6 4.5
300 600 10 10−3 0.165 26 8 · 10−4 0.59 304 8 · 10−4 66.02 − 5.5 · 10−3 3.43
300 600 10 10−4 0.165 26 1 · 10−4 0.61 304 1 · 10−4 65.56 − 5.3 · 10−3 3.44
300 600 20 0 0.326 44 3 · 10−4 1.37 − − − − 5 · 10−4 10.51
300 600 40 0 0.637 134 1.6 · 10−3 7.08 − − − − 5.2 · 10−3 251.34

RTRMC LMaFit MATRIX ALPS I
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
300 600 5 0 0.083 13 1.2 · 10−4 0.59 20 2.2 · 10−4 0.054 22 1.8 · 10−5 0.76
300 600 5 10−3 0.083 13 1 · 10−4 0.59 19 5 · 10−4 0.049 37 7 · 10−4 1.34
300 600 5 10−4 0.083 13 2 · 10−4 0.59 21 1 · 10−4 0.052 18 1 · 10−4 0.61
300 600 10 0 0.165 16 1.1 · 10−3 1.03 23 1 · 10−4 0.064 16 1 · 10−4 0.65
300 600 10 10−3 0.165 17 1 · 10−4 1.09 26 8 · 10−4 0.077 30 1.1 · 10−3 1.16
300 600 10 10−4 0.165 17 2 · 10−4 1.09 32 1 · 10−4 0.097 16 1 · 10−4 0.63
300 600 20 0 0.326 22 4 · 10−4 2.99 37 2 · 10−4 0.12 37 2 · 10−4 2.05
300 600 40 0 0.637 35 3 · 10−5 11.83 233 4.9 · 10−4 2.52 500 6.5 · 10−2 45.67

ADMiRA MATRIX ALPS II MATRIX ALPS II with QR
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
300 600 5 0 0.083 59 5.2 · 10−5 2.86 10 1.7 · 10−5 0.34 14 3.2 · 10−5 0.45
300 600 5 10−3 0.083 700 4 · 10−3 30.96 12 6 · 10−4 0.44 24 6 · 10−4 0.81
300 600 5 10−4 0.083 700 4.5 · 10−3 31.45 10 1 · 10−4 0.36 14 1 · 10−4 0.47
300 600 10 0 0.165 47 1 · 10−3 2.56 12 3 · 10−5 0.48 16 3.4 · 10−5 0.49
300 600 10 10−3 0.165 700 1.5 · 10−3 28.49 19 9 · 10−4 0.74 29 9 · 10−4 0.95
300 600 10 10−4 0.165 700 1 · 10−4 31.99 12 1 · 10−4 0.49 16 1 · 10−4 0.54
300 600 20 0 0.326 700 1.2 · 10−3 41.86 20 1 · 10−4 1.16 23 1 · 10−4 0.79
300 600 20 0 0.326 − − − 72 2 · 10−4 7.21 68 2 · 10−4 2.6

stochastic gradient descent techniques in the recovery pro-
cess to accelerate convergence which is left for future work.

10.5 Real data

We use real data images to highlight the reconstruction per-
formance of the proposed schemes. To this end, we perform
grayscale image denoising from an incomplete set of ob-
served pixels—similar experiments can be found in [52].
Based on the matrix completion setting, we observe a lim-
ited number of pixels from the original image and perform
a low rank approximation based only on the set of measure-
ments. While the true underlying image might not be low-
rank, we apply our solvers to obtain low-rank approxima-
tions.

Figures 11 and 12 depict the reconstruction results. In
the first test case, we use a 512 × 512 grayscale image as

shown in the top left corner of Figure 11. For this case, we
observe only the 35% of the total number of pixels, ran-
domly selected—a realization is depicted in the top right
plot in Figure 11. In sequel, we fix the desired rank to k =
40. The best rank-40 approximation using SVD is shown
in the top middle of Figure 11 where the full set of pixels
is observed. Given a fixed common tolerance and the same
stopping criteria, Figure 11 shows the recovery performance
achieved by a range of algorithms under consideration for
10 Monte-Carlo realizations. We repeat the same experiment
for the second image in Figure 12. Here, the size of the im-
age is 256 × 256, the desired rank is set to k = 30 and
we observe the 33% of the image pixels. In constrast to the
image denoising procedure above, we measure the recon-
struction error of the computed solutions with respect to the
best rank-30 approximation of the true image. In both cases,
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Table 3 Matrix Completion problem for m = 700 and n = 1000. “−” depicts no information or not applicable due to time overhead.

Configuration FR SVP Inexact ALM GROUSE
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
700 1000 5 0 0.04 34 1.9 · 10−4 1.77 23 6.5 · 10−5 1.69 − 3.5 · 10−5 0.23
700 1000 5 10−3 0.04 34 4.2 · 10−4 1.92 23 3.7 · 10−4 1.87 − 3.1 · 10−4 0.24
700 1000 30 0 0.239 61 4.6 · 10−4 6.39 29 1.2 · 10−4 3.91 − 3.2 · 10−5 3.15
700 1000 30 10−3 0.239 61 1.1 · 10−3 6.33 29 1 · 10−3 3.87 − 8 · 10−4 3.14
700 1000 50 0 0.393 95 8.5 · 10−4 14.47 49 3.2 · 10−4 9.02 − 1.3 · 10−5 10.31
700 1000 50 10−3 0.393 95 1.6 · 10−3 15.15 49 1.4 · 10−3 9.11 − 8 · 10−4 10.34
700 1000 110 0 0.833 683 1.2 · 10−2 253.1 374 5.8 · 10−3 152.61 − 1.2 · 10−1 110.93
700 1000 110 10−3 0.833 682 1.3 · 10−2 256.21 374 6.8 · 10−3 154.34 − 1.05 · 10−1 111.05

LMaFit MATRIX ALPS II MATRIX ALPS II with QR
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
700 1000 5 0 0.04 24 7.2 · 10−6 0.67 8 1.5 · 10−5 1.15 15 8.3 · 10−5 1.05
700 1000 5 10−3 0.04 17 3.7 · 10−4 0.5 10 4.5 · 10−4 1.38 15 3.8 · 10−4 1.1
700 1000 30 0 0.239 34 9.2 · 10−6 1.95 14 4.5 · 10−5 3.69 35 1.1 · 10−4 2.6
700 1000 30 10−3 0.239 30 1 · 10−3 1.71 25 1.1 · 10−3 6.1 35 1 · 10−3 2.61
700 1000 50 0 0.393 53 2.7 · 10−5 4.59 25 8.6 · 10−5 8.87 57 1.6 · 10−5 4.47
700 1000 50 10−3 0.393 52 1.4 · 10−3 4.53 40 1.6 · 10−3 14.38 57 1.4 · 10−3 4.49
700 1000 110 0 0.833 584 9 · 10−4 101.95 280 8 · 10−4 214.93 553 7 · 10−4 51.72
700 1000 110 10−3 0.833 584 3.7 · 10−3 102.15 336 4.7 · 10−3 261.98 551 3.7 · 10−3 51.62

Table 4 Matrix Completion problem for m = 500 and n = 2000. “−” depicts no information or not applicable due to time overhead.

Configuration FR SVP Inexact ALM GROUSE
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
500 2000 30 0 0.083 64 5.3 · 10−4 10.18 32 1.9 · 10−4 6.47 − 1.6 · 10−4 2.46
500 2000 30 10−3 0.083 64 1.1 · 10−3 6.69 32 1 · 10−3 4.51 − 6 · 10−4 1.94
500 2000 30 10−4 0.083 64 5.4 · 10−4 10.14 32 2.2 · 10−4 6.51 − 1.6 · 10−4 2.46
500 2000 50 0 0.408 103 1.1 · 10−4 15.74 54 5 · 10−4 10.8 − 8 · 10−5 7.32
500 2000 50 10−3 0.408 103 1.8 · 10−3 24.97 54 1.55 · 10−3 16.14 − 9 · 10−4 8.6
500 2000 50 10−4 0.408 102 1.1 · 10−3 24.85 54 5 · 10−4 16.17 − 7 · 10−5 8.59
500 2000 80 0 0.645 239 3.5 · 10−3 92.91 134 1.7 · 10−3 59.33 − 1 · 10−4 79.64
500 2000 80 10−3 0.645 239 4.2 · 10−3 94.86 134 2.8 · 10−3 60.68 − 1 · 10−4 79.98
500 2000 80 10−4 0.645 239 3.6 · 10−3 93.95 134 1.8 · 10−3 60.76 − 1 · 10−4 79.48
500 2000 100 0 0.8 523 1.1 · 10−2 259.13 307 6 · 10−3 173.14 − 4.5 · 10−2 143.41
500 2000 100 10−3 0.8 525 1.2 · 10−2 262.19 308 7 · 10−3 176.04 − 5.2 · 10−2 142.85
500 2000 100 10−4 0.8 523 1.1 · 10−2 262.11 307 6 · 10−3 170.47 − 5.1 · 10−2 144.78

LMaFit MATRIX ALPS II MATRIX ALPS II with QR
m n k

∥∥ε∥∥
2

iter. err. time iter. err. time iter. err. time
500 2000 30 0 0.083 37 1.3 · 10−5 3.05 13 3.1 · 10−5 4.84 37 1.2 · 10−5 4.04
500 2000 30 10−3 0.083 37 1 · 10−3 2.52 22 1.1 · 10−3 5.35 37 1 · 10−3 3.32
500 2000 30 10−4 0.083 35 1 · 10−4 2.86 13 1.3 · 10−4 4.85 37 1.6 · 10−4 4.05
500 2000 50 0 0.408 60 6 · 10−5 6.06 22 1 · 10−4 7.6 60 2 · 10−4 5.67
500 2000 50 10−3 0.408 60 1.4 · 10−3 7.26 36 1.6 · 10−3 19.64 59 1.6 · 10−3 6.91
500 2000 50 10−4 0.408 60 2 · 10−4 7.29 22 2 · 10−4 11.87 59 2 · 10−4 6.75
500 2000 80 0 0.645 183 3 · 10−4 33.65 61 2 · 10−4 49.53 151 3 · 10−4 18.66
500 2000 80 10−3 0.645 183 2.3 · 10−3 33.48 92 2.4 · 10−3 75.51 151 2.3 · 10−3 18.87
500 2000 80 10−4 0.645 183 3 · 10−4 33.47 61 4 · 10−4 49.52 151 3 · 10−4 18.92
500 2000 100 0 0.8 519 1.5 · 10−3 115.11 148 4 · 10−4 153.74 429 7 · 10−4 55.1
500 2000 100 10−3 0.8 529 3.6 · 10−3 117.7 228 3.7 · 10−3 239.92 427 3.4 · 10−3 55.7
500 2000 100 10−3 0.8 520 1.6 · 10−3 116.66 148 6 · 10−4 154.46 428 8 · 10−4 55.07

we note that MATRIX ALPS II has a better phase transition
performance as compared to the rest of the algorithms.

11 Discussion

In this paper, we present new strategies and review existing
ones for hard thresholding methods to recover low-rank ma-

trices from dimensionality reducing, linear projections. Our
discussion revolves around four basic building blocks that
exploit the problem structure to reduce computational com-
plexity without sacrificing stability.

In theory, constant µi selection schemes are accompa-
nied with strong RIP constant conditions but empirical evi-
dence reveal signal reconstruction vulnerabilities. While con-
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Fig. 10 Low rank matrix recovery for the matrix completion problem. The error curves are the median values across 50 Monte-Carlo realizations
over each iteration. For all cases, we assume p = 0.3mn. (a) m = 700, n = 1000, k = 30 and

∥∥ε∥∥
2
= 0. (b) m = 700, n = 1000, k = 50 and∥∥ε∥∥

2
= 10−3. (c) m = 700, n = 1000, k = 110 and

∥∥ε∥∥
2
= 0. (d) m = 500, n = 2000, k = 10 and

∥∥ε∥∥
2
= 0. (e) m = 500, n = 2000,

k = 50 and
∥∥ε∥∥

2
= 10−3. (f) m = 500, n = 2000, k = 80 and

∥∥ε∥∥
2
= 10−4.

vergence derivations of adaptive schemes are characterized
by weaker bounds, the performance gained by this choice
in terms of convergence rate, is quite significant. Memory-
based methods lead to convergence speed with (almost) no
extra cost on the complexity of hard thresholding methods—
we provide theoretical evidence for convergence for simple
cases but more theoretical justification is needed to general-
ize this part as future work. Lastly, further estimate refine-
ment over low rank subspaces using gradient update steps or
pseudoinversion optimization techniques provides signal re-
construction efficacy, but more computational power is needed
per iteration.

We connect ε-approximation low-rank revealing schemes
with first-order gradient descent algorithms to solve gen-
eral affine rank minimization problems; to the best of our
knowledge, this is the first attempt to theoretically charac-
terize the performance of iterative greedy algorithms with
ε-approximation schemes. In all cases, experimental results
illustrate the effectiveness of the proposed schemes on dif-
ferent problem configurations.
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A Appendix

Remark 1 Let X ∈ Rm×n with SVD: X = UΣV T , and Y ∈
Rm×n with SVD: Y = ŨΣ̃Ṽ

T
. Assume two sets: i) S1 = {uiuTi :

i ∈ I1} where ui is the i-th singular vector of X and I1 ⊆ {1, . . . ,
rank(X)} and, ii) S2 = {uiuTi , ũjũj

T : i ∈ I2, j ∈ I3} where
ũi is the i-th singular vector of Y , I1 ⊆ I2 ⊆ {1, . . . , rank(X)}
and, I3 ⊆ {1, . . . , rank(Y )}. We observe that the subspaces defined
by uiuTi and ũjũjT are not necessarily orthogonal.

To this end, let Ŝ2 = ortho(S2); this operation can be easily com-
puted via SVD. Then, the following commutativity property holds true
for any matrixW ∈ Rm×n:

PS1
PŜ2

W = PŜ2
PS1

W . (36)

A.1 Proof of Lemma 6

Given X ∗ ← Pk(X∗) using SVD factorization, we define the follow-
ing quantities: Si ← Xi ∪ Di, S∗i ← ortho (Xi ∪ X ∗). Then, given
the structure of the sets Si and S∗i

PSiP(S∗i )
⊥ = PDiP(X∗∪Xi)⊥ , . (37)
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Fig. 11 Reconstruction performance in image denoising settings. The image size is 512 × 512 and the desired rank is preset to k = 40. We
observe 35% of the pixels of the true image. We depict the median reconstruction error with respect to the true image in dB over 10 Monte Carlo
realizations.

and

PS∗i PS⊥i = PX∗P(Di∪Xi)⊥ (38)

Since the subspace defined in Di is the best rank-k subspace, orthogo-
nal to the subspace spanned by Xi, the following holds true:∥∥PDiPX⊥i ∇f(X(i))

∥∥2
F
≥
∥∥PX∗PX⊥i ∇f(X(i))

∥∥2
F
⇒∥∥PSi∇f(X(i))

∥∥2
F
≥
∥∥PS∗i ∇f(X(i))

∥∥2
F

Removing the common subspaces in Si and S∗i by the commutativity
property of the projection operation and using the shortcut PA\B ≡
PAPB⊥ for sets A, B, we get:∥∥PSi\S∗i ∇f(X(i))

∥∥2
F
≥
∥∥PS∗i \Si∇f(X(i))

∥∥2
F
⇒∥∥PSi\S∗i A∗A(X∗ −X(i)) + PSi\S∗i A

∗ε
∥∥
F
≥∥∥PS∗i \SiA∗A(X∗ −X(i)) + PS∗i \SiA

∗ε
∥∥
F

(39)

Next, we assume that P(A\B)⊥ denotes the orthogonal projection onto
the subspace spanned by PAPB⊥ . Then, on the left hand side of (39),
we have:∥∥PSi\S∗i A∗A(X∗ −X(i)) + PSi\S∗i A

∗ε
∥∥
F

(i)

≤
∥∥PSi\S∗i A∗A(X∗ −X(i))

∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F

(ii)
=
∥∥PSi\S∗i (X∗ −X(i)) + PSi\S∗i A

∗A(X∗ −X(i))
∥∥
F

+
∥∥PSi\S∗i A∗ε∥∥F

(iii)
=
∥∥(I− PSi\S∗i A∗APSi\S∗i )(X∗ −X(i))

+ PSi\S∗i A
∗AP(Si\S∗i )

⊥(X∗ −X(i))
∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F

≤
∥∥(I− PSi\S∗i A∗APSi\S∗i )(X∗ −X(i))

∥∥
F

+
∥∥PSi\S∗i A∗AP(Si\S∗i )

⊥(X∗ −X(i))
∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F
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Fig. 12 Reconstruction performance in image denoising settings. The image size is 256 × 256 and the desired rank is preset to k = 30. We
observe 33% of the pixels of the best rank-30 approximation of the image. We depict the median reconstruction with respect to the best rank-30
approximation in dB over 10 Monte Carlo realizations

(iv)

≤ δ3k
∥∥X∗ −X(i)

∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F

+
∥∥PSi\S∗i A∗AP(Si\S∗i )

⊥(X∗ −X(i))
∥∥
F

(v)

≤ δ3k
∥∥X∗ −X(i)

∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F

+ δ3k
∥∥P(Si\S∗i )

⊥(X∗ −X(i))
∥∥
F

(vi)

≤ 2δ3k
∥∥X∗ −X(i)

∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F (40)

where (i) due to triangle inequality over Frobenius metric norm, (ii)
since PSi\S∗i (X(i) −X∗) = 0, (iii) by using the fact that X(i) −
X∗ := PSi\S∗i (X(i) −X∗) + P(Si\S∗i )

⊥(X(i) −X∗), (iv) due

to Lemma 4, (v) due to Lemma 5 and (vi) since
∥∥P(Si\S∗i )

⊥(X∗ −
X(i))

∥∥
F
≤
∥∥X(i)−X∗

∥∥
F

.

For the right hand side of (39), we calculate:∥∥PS∗i \SiA∗A(X∗ −X(i)) + PS∗i \SiA
∗ε
∥∥
F

≥
∥∥PS∗i \Si(X∗ −X(i))

∥∥
F

−
∥∥PS∗i \SiA∗AP(S∗i \Si)

⊥(X∗ −X(i))
∥∥
F

−
∥∥(PS∗i \SiA∗APS∗i \Si − I)(X∗ −X(i))

∥∥
F
−
∥∥PS∗i \SiA∗ε∥∥F

≥
∥∥PS∗i \Si(X∗ −X(i))

∥∥
F
− 2δ2k

∥∥X(i)−X∗
∥∥
F

−
∥∥PS∗i \SiA∗ε∥∥F (41)

by using Lemmas 4 and 5. Combining (40) and (41) in (39), we get:∥∥PX∗\SiX∗∥∥F ≤ (2δ2k + 2δ3k)
∥∥X(i)−X∗

∥∥
F

+
√

2(1 + δ2k)
∥∥ε∥∥

2
.
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A.2 Proof of Theorem 1

Let X ∗ ← Pk(X∗) be a set of orthonormal, rank-1 matrices that span
the range ofX∗. In Algorithm 1,W (i)← Pk(V (i)). Thus:∥∥W (i)− V (i)

∥∥2
F
≤
∥∥X∗ − V (i)

∥∥2
F
⇒∥∥W (i)−X∗ +X∗ − V (i)

∥∥2
F
≤
∥∥X∗ − V (i)

∥∥2
F
⇒∥∥W (i)−X∗

∥∥2
F
≤ 2〈W (i)−X∗,V (i)−X∗〉

(42)

From Algorithm 1, i) V (i) ∈ span(Si), ii) X(i) ∈ span(Si)
and iii) W (i) ∈ span(Si). We define E ← ortho(Si ∪ X ∗) where
rank(span(E)) ≤ 3k and let PE be the orthogonal projection onto the
subspace defined by E .

Since W (i) − X∗ ∈ span(E) and V (i) − X∗ ∈ span(E), the
following hold true:

W (i)−X∗ = PE(W (i)−X∗) and

V (i)−X∗ = PE(V (i)−X∗).

Then, (42) can be written as:∥∥W (i)−X∗
∥∥2
F
≤ 2〈PE(W (i)−X∗),PE(V (i)−X∗)〉 ⇒

= 2〈PE(W (i)−X∗),PE(X(i)−X∗ − µiPSiA
∗A(X(i)−X∗))〉︸ ︷︷ ︸

.
=A

+ 2µi〈PE(W (i)−X∗),PEPSi(A
∗ε)〉︸ ︷︷ ︸

.
=B

(43)

In B, we observe:

B := 2µi〈PE(W (i)−X∗),PEPSi(A
∗ε)〉

(i)
= 2µi〈W (i)−X∗,PSi(A

∗ε)〉
(ii)

≤ 2µi
∥∥W (i)−X∗

∥∥
F

∥∥PSi(A∗ε)∥∥F
(iii)

≤ 2µi
√

1 + δ2k
∥∥W (i)−X∗

∥∥
F

∥∥ε∥∥
2

(44)

where (i) holds since PSiPE = PEPSi = PSi for span(Si) ∈
span(E), (ii) is due to Cauchy-Schwarz inequality and, (iii) is eas-
ily derived using Lemma 2.

In A, we perform the following motions:

A := 2〈W (i)−X∗,PE(X(i)−X∗)− µiPSiA
∗APE(X(i)−X∗)〉

(i)
= 2〈W (i)−X∗,PE(X(i)−X∗)

− µiPSiA
∗A
[
PSi + PS⊥i

]
PE(X(i)−X∗)〉

= 2〈W (i)−X∗, (I− µiPSiA
∗APSi)PE(X(i)−X∗)〉

− 2µi〈W (i)−X∗,PSiA
∗APS⊥i PE(X(i)−X∗)〉

(ii)

≤ 2
∥∥W (i)−X∗

∥∥
F

∥∥(I− µiPSiA∗APSi)PE(X(i)−X∗)
∥∥
F

+ 2µi
∥∥W (i)−X∗

∥∥
F

∥∥PSiA∗APS⊥i PE(X(i)−X∗)
∥∥
F

(45)

where (i) is due to PE(X(i) − X∗) := PSiPE(X(i) − X∗) +
PS⊥i PE(X(i)−X∗) and (ii) follows from Cauchy-Schwarz inequal-

ity. Since 1
1+δ2k

≤ µi ≤ 1
1−δ2k

, Lemma 4 implies:

λ(I− µiPSiA
∗APSi) ∈

[
1−

1− δ2k
1 + δ2k

,
1 + δ2k

1− δ2k
− 1

]

≤
2δ2k

1− δ2k
.

and thus:∥∥(I− µiPSiA∗APSi)PE(X(i)−X∗)
∥∥
F

≤
2δ2k

1− δ2k

∥∥PE(X(i)−X∗)
∥∥
F
.

Furthermore, according to Lemma 5:∥∥PSiA∗APS⊥i PE(X(i)−X∗)
∥∥
F
≤ δ3k

∥∥PS⊥i PE(X(i)−X∗)
∥∥
F

since rank(PKX) ≤ 3k, ∀X ∈ Rm×n for K ← ortho(E ∪Si). Since
PS⊥i PE(X(i)−X∗) = PX∗\(Di∪Xi)X

∗ where

Di ← Pk
(
PX⊥i ∇f(X(i))

)
,

then:∥∥PS⊥i PE(X(i)−X∗)
∥∥
F
=
∥∥PX∗\(Di∪Xi)X∗∥∥F

≤ (2δ2k + 2δ3k)
∥∥X(i)−X∗

∥∥
F
+
√

2(1 + δ2k)
∥∥ε∥∥

2
,

using Lemma 6. Combining the above in (45), we compute:

A ≤
( 4δ2k
1− δ2k

+ (2δ2k + 2δ3k)
2δ3k

1− δ2k

)∥∥W (i)−X∗
∥∥
F
·∥∥X(i)−X∗

∥∥
F
+

2δ3k
1− δ2k

∥∥W (i)−X∗
∥∥
F

√
2(1 + δ2k)

∥∥ε∥∥
2

(46)

Combining (44) and (46) in (43), we get:∥∥W (i)−X∗
∥∥
F

≤
( 4δ2k
1− δ2k

+ (2δ2k + 2δ3k)
2δ3k

1− δ2k

)∥∥X(i)−X∗
∥∥
F

+
(2√1 + δ2k

1− δ2k
+

2δ3k
1− δ2k

√
2(1 + δ2k)

)∥∥ε∥∥
2

(47)

Focusing on steps 5 and 6 of Algorithm 1, we perform similar
motions to obtain:∥∥X(i+ 1)−X∗

∥∥
F
≤
(1 + 2δ2k

1− δ2k

)∥∥W (i)−X∗
∥∥
F

+

√
1 + δk

1− δk

∥∥ε∥∥
2

(48)

Combining the recursions in (47) and (48), we finally compute:∥∥X(i+ 1)−X∗
∥∥
F
≤ ρ
∥∥X(i)−X∗

∥∥
F
+ γ
∥∥ε∥∥

2
,

for ρ :=
(

1+2δ2k
1−δ2k

)(
4δ2k
1−δ2k

+ (2δ2k + 2δ3k)
2δ3k
1−δ2k

)
and

γ :=

((1 + 2δ2k
1− δ2k

)(2√1 + δ2k

1− δ2k
+

2δ3k
1− δ2k

√
2(1 + δ2k)

)
+

√
1 + δk

1− δk

)

For the convergence parameter ρ, further compute:(1 + 2δ2k
1− δ2k

)( 4δ2k
1− δ2k

+ (2δ2k + 2δ3k)
2δ3k

1− δ2k

)
≤

1 + 2δ3k
(1− δ3k)2

(
4δ3k + 8δ23k

)
=: ρ̂. (49)

for δk ≤ δ2k ≤ δ3k. Calculating the roots of this expression, we easily
observe that ρ < ρ̂ < 1 for δ3k < 0.1235.
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A.3 Proof of Theorem 2

Before we present the proof of Theorem 2, we list a series of lemmas
that correspond to the motions Algorithm 2 performs.

Lemma 9 [Error norm reduction via least-squares optimization] Let
Si be a set of orthonormal, rank-1 matrices that span a rank-2k sub-
space in Rm×n. Then, the least squares solution V (i) given by:

V (i)← argmin
V :V ∈span(Si)

∥∥y −AV
∥∥2
2
, (50)

satisfies:

∥∥V (i)−X∗
∥∥
F
≤

1√
1− δ23k(A)

∥∥PS⊥i (V (i)−X∗)
∥∥
F

+

√
1 + δ2k

1− δ3k

∥∥ε∥∥
2
. (51)

Proof We observe that
∥∥V (i)−X∗

∥∥2
F

is decomposed as follows:

∥∥V (i)−X∗
∥∥2
F
=
∥∥PSi(V (i)−X∗)

∥∥2
F
+
∥∥PS⊥i (V (i)−X∗)

∥∥2
F
.

(52)

In (50), V (i) is the minimizer over the low-rank subspace spanned by
Si with rank(span(Si)) ≤ 2k. Using the optimality condition (Lemma
1) over the convex set Θ = {X : span(X) ∈ Si}, we have:

〈∇f(V (i)),PSi(X
∗ − V (i))〉 ≥ 0⇒

〈AV (i)− y,APSi(V (i)−X∗)〉 ≤ 0. (53)

for PSiX
∗ ∈ span(Si). Given condition (53), the first term on the

right hand side of (52) becomes:

∥∥PSi(V (i)−X∗)
∥∥2
F

= 〈V (i)−X∗,PSi(V (i)−X∗)〉
(53)

≤ 〈V (i)−X∗,PSi(V (i)−X∗)〉
− 〈AV (i)− y,APSi(V (i)−X∗)〉
≤ |〈V (i)−X∗, (I−A∗A)PSi(V (i)−X∗)〉|
+ 〈ε,APSi(V (i)−X∗)〉 (54)

Focusing on the term |〈V (i) −X∗, (I −A∗A)PSi(V (i) −X∗)〉|,
we derive the following:

|〈V (i)−X∗, (I−A∗A)PSi(V (i)−X∗)〉|
= |〈V (i)−X∗,PSi(V (i)−X∗)〉
− 〈V (i)−X∗,A∗APSi(V (i)−X∗)〉|
(i)
= |〈PSi∪X∗(V (i)−X∗),PSi(V (i)−X∗)〉
− 〈APSi∪X∗(V (i)−X∗),APSi(V (i)−X∗)〉|
(ii)
= |〈PSi∪X∗(V (i)−X∗),PSi∪X∗PSi(V (i)−X∗)〉
− 〈APSi∪X∗(V (i)−X∗),APSi∪X∗PSi(V (i)−X∗)〉|
= |〈V (i)−X∗, (I− PSi∪X∗A

∗APSi∪X∗)PSi(V (i)−X∗)〉|

where (i) follows from the facts that V (i) −X∗ ∈ span(ortho(Si ∪
X ∗)) and thus PSi∪X∗(V (i)−X∗) = V (i)−X∗ and (ii) is due to
PSi∪X∗PSi = PSi since span(Si) ⊆ span(ortho(Si ∪ X ∗)). Then,

(54) becomes:∥∥PSi(V (i)−X∗)
∥∥2
F

≤ |〈V (i)−X∗, (I− PSi∪X∗A
∗APSi∪X∗)PSi(V (i)−X∗)〉|

+ 〈ε,APSi(V (i)−X∗)〉
(i)

≤
∥∥V (i)−X∗

∥∥
F

∥∥(I− PSi∪X∗A∗APSi∪X∗)PSi(V (i)−X∗)
∥∥
F

+
∥∥PSiA∗ε∥∥F ∥∥PSi(V (i)−X∗)

∥∥
F

(ii)

≤ δ3k
∥∥PSi(V (i)−X∗)

∥∥
F

∥∥V (i)−X∗
∥∥
F

+
√

1 + δ2k
∥∥PSi(V (i)−X∗)

∥∥
F

∥∥ε∥∥
2
, (55)

where (i) comes from Cauchy-Swartz inequality and (ii) is due to
Lemmas 2 and 4. Simplifying the above quadratic expression, we ob-
tain:∥∥PSi(V (i)−X∗)

∥∥
F
≤ δ3k

∥∥V (i)−X∗
∥∥
F
+
√

1 + δ2k
∥∥ε∥∥

2
.

(56)

As a consequence, (52) can be upper bounded by:∥∥V (i)−X∗
∥∥2
F
≤
(
δ3k
∥∥V (i)−X∗

∥∥
F
+
√

1 + δ2k
∥∥ε∥∥

2

)2
+
∥∥PS⊥i (V (i)−X∗)

∥∥2
F
. (57)

We form the quadratic polynomial for this inequality assuming
as unknown variable the quantity

∥∥V (i) −X∗
∥∥
F

. Bounding by the
largest root of the resulting polynomial, we get:

∥∥V (i)−X∗
∥∥
F
≤

1√
1− δ23k(A)

∥∥PS⊥i (V (i)−X∗)
∥∥
F

+

√
1 + δ2k

1− δ3k

∥∥ε∥∥
2
. (58)

The following Lemma characterizes how subspace pruning affects
the recovered energy:

Lemma 10 [Best rank-k subspace selection] Let V (i) ∈ Rm×n be
a rank-2k proxy matrix in the subspace spanned by Si and let X(i+
1) ← Pk(V (i)) denote the best rank-k approximation to V (i), ac-
cording to (5). Then:∥∥X(i+ 1)− V (i)

∥∥
F
≤
∥∥PSi(V (i)−X∗)

∥∥
F
≤
∥∥V (i)−X∗

∥∥
F
.

(59)

Proof SinceX(i+1) denotes the best rank-k approximation to V (i),
the following inequality holds for any rank-k matrix X ∈ Rm×n in
the subspace spanned by Si, i.e. ∀X ∈ span(Si):∥∥X(i+ 1)− V (i)

∥∥
F
≤
∥∥X − V (i)

∥∥
F
. (60)

Since PSiV (i) = V (i), the left inequality in (59) is satisfied for
X := PSiX

∗ in (60).

Lemma 11 Let V (i) be the least squares solution in Step 2 of the
ADMiRA algorithm and letX(i+1) be a proxy, rank-k matrix to V (i)
according to:X(i+1)← Pk(V (i)). Then,

∥∥X(i+1)−X∗
∥∥
F

can
be expressed in terms of the distance from V (i) toX∗ as follows:

∥∥X(i+ 1)−X∗
∥∥
F
≤
√

1 + 3δ23k
∥∥V (i)−X∗

∥∥
F

+
√

1 + 3δ23k

√
3(1 + δ2k)

1 + 3δ23k

∥∥ε∥∥
2
. (61)
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Proof We observe the following∥∥X(i+ 1)−X∗
∥∥2
F
=
∥∥X(i+ 1)− V (i) + V (i)−X∗

∥∥2
F

=
∥∥V (i)−X∗

∥∥2
F
+
∥∥V (i)−X(i+ 1)

∥∥2
F

− 2〈V (i)−X∗,V (i)−X(i+ 1)〉. (62)

Focusing on the right hand side of expression (62), 〈V (i)−X∗,V (i)−
X(i+ 1)〉 = 〈V (i)−X∗,PSi(V (i)−X(i+ 1))〉 can be similarly
analysed as in Lemma 10 where we obtain the following expression:

|〈V (i)−X∗,PSi(V (i)−X(i+ 1))〉|

≤ δ3k
∥∥V (i)−X∗

∥∥
F

∥∥V (i)−X(i+ 1)
∥∥
F

+
√

1 + δ2k
∥∥V (i)−X(i+ 1)

∥∥
F

∥∥ε∥∥
2
. (63)

Now, expression (62) can be further transformed as:

∥∥X(i+ 1)−X∗
∥∥2
F

(i)

≤
∥∥V (i)−X∗

∥∥2
F
+
∥∥V (i)−X(i+ 1)

∥∥2
F

+ 2(δ3k
∥∥V (i)−X∗

∥∥
F

∥∥V (i)−X(i+ 1)
∥∥
F

+
√

1 + δ2k
∥∥V (i)−X(i+ 1)

∥∥
F

∥∥ε∥∥
2
) (64)

where (i) is due to (63). Using Lemma 10, we further have:∥∥X(i+ 1)−X∗
∥∥2
F
≤
∥∥V (i)−X∗

∥∥2
F
+
∥∥PSi(V (i)−X∗)

∥∥2
F

+ 2
(
δ3k
∥∥V (i)−X∗

∥∥
F

∥∥PSi(V (i)−X∗)
∥∥
F

+
√

1 + δ2k
∥∥PSi(V (i)−X∗)

∥∥
F

∥∥ε∥∥
2

)
(65)

Furthermore, replacing
∥∥PSi(X∗ − V (i))

∥∥
F

with its upper bound
defined in (56), we get:∥∥X(i+ 1)−X∗

∥∥2
2

(i)

≤
(
1 + 3δ23k

)(∥∥V (i)−X∗
∥∥
2
+

√
3(1 + δ2k)

1 + 3δ23k

∥∥ε∥∥)2

(66)

where (i) is obtained by completing the squares and eliminating nega-
tive terms.

Applying basic algebra tools in (61) and (51), we get:

∥∥X(i+ 1)−X∗
∥∥
F
≤

√
1 + 3δ23k
1− δ23k

∥∥PS⊥i (V (i)−X∗)
∥∥
F

+
(√1 + 3δ23k

1− δ3k
+
√
3
)√

1 + δ2k
∥∥ε∥∥

2
.

SinceV (i) ∈ span(Si), we observePS⊥i (V (i)−X∗) = −PS⊥i X
∗ =

−PX∗\(Di∪Xi)X
∗. Then, using Lemma 6, we obtain:∥∥X(i+ 1)−X∗
∥∥
F

≤
(
2δ2k + 2δ3k

)√1 + 3δ23k
1− δ23k

∥∥X∗ −X(i)
∥∥
F

+

[√
1 + 3δ23k
1− δ23k

√
2(1 + δ3k)

+
(√1 + 3δ23k

1− δ3k
+
√
3
)√

1 + δ2k

]∥∥ε∥∥
2

(67)

Given δ2k ≤ δ3k, ρ is upper bounded by ρ < 4δ3k
√

1+3δ3k
1−δ2

3k
.

Then, 4δ3k
√

1+3δ3k
1−δ2

3k
< 1⇔ δ3k < 0.2267.

A.4 Proof of Theorem 3

Let X ∗ ← Pk(X∗) be a set of orthonormal, rank-1 matrices that span
the range of X∗. In Algorithm 3, X(i+ 1) is the best rank-k approx-
imation of V (i). Thus:∥∥X(i+ 1)− V (i)

∥∥2
F
≤
∥∥X∗ − V (i)

∥∥2
F
⇒∥∥X(i+ 1)−X∗

∥∥2
F
≤ 2〈X(i+ 1)−X∗,V (i)−X∗〉 (68)

From Algorithm 3, i) V (i) ∈ span(Si), ii) Qi ∈ span(Si) and
iii) W (i) ∈ span(Si). We define E ← ortho(Si ∪ X ∗) where we
observe rank(span(E)) ≤ 4k and let PE be the orthogonal projection
onto the subspace defined by E .

SinceX(i+1)−X∗ ∈ span(E) and V (i)−X∗ ∈ span(E), the
following hold true:

X(i+ 1)−X∗ = PE(X(i+ 1)−X∗),

and,

V (i)−X∗ = PE(V (i)−X∗).

Then, (68) can be written as:∥∥X(i+ 1)−X∗
∥∥2
F

≤ 2〈PE(X(i+ 1)−X∗),PE(V (i)−X∗)〉
= 2〈PE(X(i+ 1)−X∗),PE (Qi + µiPSiA

∗A(X∗ −Qi)−X∗)〉
(i)
= 2〈X(i+ 1)−X∗,PE(Qi −X∗)

− µiPSiA
∗A
[
PSi + PS⊥i

]
PE(Qi −X∗)〉

= 2〈X(i+ 1)−X∗, (I− µiPSiA
∗APSi)PE(Qi −X

∗)〉
− 2µi〈X(i+ 1)−X∗,PSiA

∗APS⊥i PE(Qi −X
∗)〉

(ii)

≤ 2
∥∥X(i+ 1)−X∗

∥∥
F

∥∥(I− µiPSiA∗APSi)PE(Qi −X∗)∥∥F
+ 2µi

∥∥X(i+ 1)−X∗
∥∥
F

∥∥PSiA∗APS⊥i PE(Qi −X∗)∥∥F (70)

where (i) is due toPE(Qi−X∗) := PSiPE(Qi−X
∗)+PS⊥i PE(Qi−

X∗) and (ii) follows from Cauchy-Schwarz inequality. Since 1
1+δ3k

≤
µi ≤ 1

1−δ3k
, Lemma 4 implies:

λ(I− µiPSiA
∗APSi) ∈

[
1−

1− δ3k
1 + δ3k

,
1 + δ3k

1− δ3k
− 1

]
≤

2δ3k
1− δ3k

.

and thus:∥∥(I− µiPSiA∗APSi)PE(Qi −X∗)∥∥F
≤

2δ3k
1− δ3k

∥∥PE(Qi −X∗)∥∥F .
Furthermore, according to Lemma 5:∥∥PSiA∗APS⊥i PE(Qi −X∗)∥∥F ≤ δ4k∥∥PS⊥i PE(Qi −X∗)∥∥F
since rank(PKQ) ≤ 4k, ∀Q ∈ Rm×n where K ← ortho(E ∪ Si).
Since PS⊥i PE(Qi −X

∗) = PX∗\(Di∪Xi)X
∗ where

Di ← Pk
(
PQ⊥i ∇f(Qi)

)
,

then:∥∥PS⊥i PE(Qi −X∗)∥∥F =
∥∥PX∗\(Di∪Xi)X∗∥∥F ≤ (2δ3k

+ 2δ4k)
∥∥Qi −X∗∥∥F , (71)
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g(i+ 1) ≤
[
b1

(α(1 + τi) +
√
∆

2

)i+1
+ b2

(α(1 + τi)−
√
∆

2

)i+1
]∥∥X(0)−X∗

∥∥
F

≤
[
(b1 + b2)

(α(1 + τi) +
√
∆

2

)i+1
]∥∥X(0)−X∗

∥∥
F

(69)

using Lemma 6. Using the above in (70), we compute:∥∥X(i+ 1)−X∗
∥∥
F

≤
( 4δ3k
1− δ3k

+ (2δ3k + 2δ4k)
2δ3k

1− δ3k

)∥∥Qi −X∗∥∥F
(72)

Furthermore:∥∥Qi −X∗∥∥F =
∥∥X(i) + τi(X(i)−X(i− 1))

∥∥
F

=
∥∥(1 + τi)(X(i)−X∗) + τi(X

∗ −X(i− 1))
∥∥
F

≤ (1 + τi)
∥∥X(i)−X∗

∥∥
F
+ τi

∥∥X(i− 1)−X∗
∥∥
F

(73)

Combining (72) and (73), we get:∥∥X(i+ 1)−X∗
∥∥
F

≤ (1 + τi)
( 4δ3k
1− δ3k

+ (2δ3k + 2δ4k)
2δ3k

1− δ3k

)∥∥X(i)−X∗
∥∥
F

+ τi

( 4δ3k
1− δ3k

+ (2δ3k + 2δ4k)
2δ3k

1− δ3k

)∥∥X(i− 1)−X∗
∥∥
F

(74)

Let α := 4δ3k
1−δ3k

+ (2δ3k + 2δ4k)
2δ3k
1−δ3k

and g(i) :=
∥∥X(i + 1) −

X∗
∥∥
F

. Then, (74) defines the following homogeneous recurrence:

g(i+ 1)− α(1 + τi)g(i) + ατig(i− 1) ≤ 0 (75)

Using the method of characteristic roots to solve the above recurrence,
we assume that the homogeneous linear recursion has solution of the
form g(i) = ri for r ∈ R. Thus, replacing g(i) = ri in (75) and
factoring out r(i−2), we form the following characteristic polynomial:

r2 − α(1 + τi)r − ατi ≤ 0 (76)

Focusing on the worst case where (76) is satisfied with equality, we
compute the roots r1,2 of the quadratic characteristic polynomial as:

r1,2 =
α(1 + τi)±

√
∆

2
, where ∆ := α2(1 + τi)

2 + 4ατi.

Then, as a general solution, we combine the above roots with unknown
coefficients b1, b2 to obtain (69). Using the initial condition g(0) :=∥∥X(0) −X∗

∥∥
F

X(0)=0
=

∥∥X∗∥∥
F

= 1, we get b1 + b2 = 1. Thus,
we conclude to the following recurrence:

∥∥X(i+ 1)−X∗
∥∥
F
≤
(α(1 + τi) +

√
∆

2

)i+1
.

A.5 Proof of Lemma 7

LetDεi ← Pεk(PX⊥i ∇f(X(i))) andDi ← Pk(PX⊥i ∇f(X(i))).Using
Definition 4, the following holds true:∥∥PDεi∇f(X(i))−∇f(X(i))

∥∥2
F

≤ (1 + ε)
∥∥PDi∇f(X(i))−∇f(X(i))

∥∥2
F
. (77)

Furthermore, we observe:

∥∥∇f(X(i))
∥∥2
F
=
∥∥∇f(X(i))

∥∥2
F
⇔∥∥PDεi∇f(X(i))

∥∥2
F
+
∥∥P(Dεi )

⊥∇f(X(i))
∥∥2
F
=∥∥PX∗\Xi∇f(X(i))

∥∥2
F
+
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F

(78)

Here, we use the notation defined in the proof of Lemma 6. Since
PDi∇f(X(i)) is the best rank-k approximation to ∇f(X(i)), we
have:∥∥PDi∇f(X(i))−∇f(X(i))

∥∥2
F
≤∥∥PX∗\Xi∇f(X(i))−∇f(X(i))
∥∥2
F
⇔∥∥PD⊥i ∇f(X(i))

∥∥2
F
≤
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F
⇔

(1 + ε)
∥∥PD⊥i ∇f(X(i))

∥∥2
F
≤ (1 + ε)

∥∥P(X∗\Xi)⊥∇f(X(i))
∥∥2
F

(79)

where rank(span(ortho(X ∗ \ Xi))) ≤ k. Using (77) in (79), the fol-
lowing series of inequalities are observed:

∥∥P(Dεi )
⊥∇f(X(i))

∥∥2
F
≤ (1 + ε)

∥∥PD⊥i ∇f(X(i))
∥∥2
F

≤ (1 + ε)
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F

(80)

Now, in (78), we compute the series of inequalities in (81)-(82). Fo-
cusing on

∥∥P⊥X∗\XiA∗(y −AX(i))
∥∥
F

, we observe:

∥∥P(X∗\Xi)⊥A
∗(y −AX(i))

∥∥
F
=∥∥P(X∗\Xi)⊥A

∗(AX∗ + ε−AX(i))
∥∥
F
≤∥∥P(X∗\Xi)⊥A

∗A(X∗ −X(i))
∥∥
F
+
∥∥P⊥X∗\XiA∗ε∥∥F ≤∥∥A∗A(X∗ −X(i))

∥∥
F
+
∥∥A∗ε∥∥

F
≤ 2λ (83)

Moreover, we know the following hold true from Lemma 6:∥∥PSi\S∗i A∗A(X∗ −X(i)) + PSi\S∗i A
∗ε
∥∥
F

≤ 2δ3k
∥∥X∗ −X(i)

∥∥
F
+
∥∥PSi\S∗i A∗ε∥∥F (84)

and∥∥PS∗i \SiA∗A(X∗ −X(i)) + PS∗i \SiA
∗ε
∥∥
F

≥
∥∥PS∗i \Si(X∗ −X(i))

∥∥
F
− 2δ2k

∥∥X(i)−X∗
∥∥
F

−
∥∥PS∗i \SiA∗ε∥∥F (85)

Combining (83)-(85) in (82), we obtain:∥∥PS∗i \SiX∗∥∥F =
∥∥PX∗\SiX∗∥∥F

≤
(
2δ2k + 2δ3k

)∥∥X(i)−X∗
∥∥
F
+
√

2(1 + δ2k)
∥∥ε∥∥

2

+ 2λ
√
ε
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∥∥PDεi∇f(X(i))
∥∥2
F
+
∥∥P(Dεi )

⊥∇f(X(i))
∥∥2
F
=
∥∥PX∗\Xi∇f(X(i))

∥∥2
F
+
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F

(79)⇔ (81)∥∥PDεi∇f(X(i))
∥∥2
F
+ (1 + ε)

∥∥P(X∗\Xi)⊥∇f(X(i))
∥∥2
F
≥
∥∥PX∗\Xi∇f(X(i))

∥∥2
F
+
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F
⇔∥∥PDεi∇f(X(i))

∥∥2
F
+ ε
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F
≥
∥∥PX∗\Xi∇f(X(i))

∥∥2
F
⇔∥∥PDεi∇f(X(i))

∥∥2
F
+
∥∥PXi∇f(X(i))

∥∥2
F
+ ε
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F
≥
∥∥PX∗\Xi∇f(X(i))

∥∥2
F
+
∥∥PXi∇f(X(i))

∥∥2
F
⇔∥∥PSi∇f(X(i))

∥∥2
F
+ ε
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F
≥
∥∥PS∗i ∇f(X(i))

∥∥2
F
⇔∥∥PSi\S∗i ∇f(X(i))

∥∥2
F
+ ε
∥∥P(X∗\Xi)⊥∇f(X(i))

∥∥2
F
≥
∥∥PS∗i \Si∇f(X(i))

∥∥2
F
⇔∥∥PSi\S∗i A∗(y −AX(i))

∥∥2
F
+ ε
∥∥P(X∗\Xi)⊥A

∗(y −AX(i))
∥∥2
F
≥
∥∥PS∗i \SiA∗(y −AX(i))

∥∥2
F
⇔∥∥PSi\S∗i A∗(y −AX(i))

∥∥
F
+
√
ε
∥∥P(X∗\Xi)⊥A

∗(y −AX(i))
∥∥
F
≥
∥∥PS∗i \SiA∗(y −AX(i))

∥∥
F

(82)

∥∥V (i)−X∗
∥∥
F
≤

[(
1 +

δ3k

1− δ2k

)(
2δ2k + 2δ3k + δk)

)
+

2δ2k
1− δ2k

]∥∥X(i)−X∗
∥∥
F

+
[(
1 +

δ3k

1− δ2k

)√
2(1 + δ2k) +

√
1 + δ2k

1− δ2k

]∥∥ε∥∥
2
+
(
1 +

δ3k

1− δ2k

)
2λ
√
ε. (86)

A.6 Proof of Theorem 4

To prove Theorem 4, we combine the following series of lemmas for
each step of Algorithm 1.

Lemma 12 [Error norm reduction via gradient descent] Let Si ←
ortho(Xi ∪ Dεi ) be a set of orthonormal, rank-1 matrices that span a
rank-2k subspace in Rm×n. Then (86) holds.

Proof We observe the following:∥∥V (i)−X∗
∥∥2
F
=
∥∥PSi(V (i)−X∗)

∥∥2
F
+
∥∥PS⊥i (V (i)−X∗)

∥∥2
F

(87)

The following equations hold true:∥∥PS⊥i (V (i)−X∗)
∥∥2
F
=
∥∥PS⊥i X∗∥∥2F =

∥∥PX∗\SiX∗∥∥2F
Furthermore, we compute:∥∥PSi(V (i)−X∗)

∥∥
F
=
∥∥PSi(X(i)−

µi

2
PSi∇f(X(i))−X∗)

∥∥
F

=
∥∥PSi(X(i)−X∗)− µiPSiA

∗A(X(i)−X∗) + µiPSiA
∗ε
∥∥
F

≤
∥∥(I− µiPSiA∗APSiPSi(X(i)−X∗)

∥∥
F

+ µi
∥∥PSiA∗APS⊥i (X(i)−X∗)

∥∥
F
+ µi

∥∥PSiA∗ε∥∥F
(i)

≤
2δ2k

1− δ2k

∥∥PSi(X(i)−X∗)
∥∥
F
+

δ3k

1− δ2k

∥∥PS⊥i (X(i)−X∗)
∥∥
F

+

√
1 + δ2k

1− δ2k

∥∥ε∥∥
2

(88)

where (i) is due to Lemmas 2, 4, 5 and 1
1+δ2k

≤ µi ≤ 1
1−δ2k

.
Using the subadditivity property of the square root in (87), (88),

Lemma 7 and the fact that
∥∥PSi(X(i)−X∗)

∥∥
F
≤
∥∥X(i)−X∗

∥∥
F

,
we obtain:∥∥V (i)−X∗

∥∥
F
≤
∥∥PSi(V (i)−X∗)

∥∥
F
+
∥∥PS⊥i (V (i)−X∗)

∥∥
F

≤ ρ̂
∥∥X(i)−X∗

∥∥
F
+
(
1 +

δ3k

1− δ2k

)√
ε
∥∥P⊥X∗\XiA∗ε∥∥F

+
[(
1 +

δ3k

1− δ2k

)√
2(1 + δ2k) +

√
1 + δ2k

1− δ2k

]∥∥ε∥∥
2

(89)

where ρ̂ :=
(
1 + δ3k

1−δ2k

)(
2δ2k + 2δ3k

)
+ 2δ2k

1−δ2k

We exploit Lemma 8 to obtain the following inequalities:∥∥Ŵ i −X∗
∥∥
F
=
∥∥Ŵ i − V (i) + V (i)−X∗

∥∥
F

≤
∥∥Ŵ i − V (i)

∥∥
F
+
∥∥V (i)−X∗

∥∥
F

≤ (1 + ε)
∥∥W (i)− V (i)

∥∥
F
+
∥∥V (i)−X∗

∥∥
F

≤ (2 + ε)
∥∥V (i)−X∗

∥∥
F

(90)

where the last inequality holds since W (i) is the best rank-k matrix
estimate of V (i) and, thus,

∥∥W (i)− V (i)
∥∥
F
≤
∥∥V (i)−X∗

∥∥
F

.
Following similar motions for steps 6 and 7 in Matrix ALPS I, we

obtain:∥∥X(i+ 1)−X∗
∥∥
F
≤
(
1 +

2δk
1− δk

+
δ2k

1− δk

)∥∥Ŵ i −X∗
∥∥
F

+

√
1 + δk

1− δk

∥∥ε∥∥
2

(91)

Combining (91), (90) and (89), we obtain the desired inequality.
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