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Provable compressed sensing quantum state tomography via
non-convex methods
Anastasios Kyrillidis 1,2, Amir Kalev3, Dohyung Park4, Srinadh Bhojanapalli5, Constantine Caramanis6 and Sujay Sanghavi6

With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for
high-dimensional systems. In this work, we describe such a computational tool, based on recent ideas from non-convex
optimization. The algorithm excels in the compressed sensing setting, where only a few data points are measured from a low-rank
or highly-pure quantum state of a high-dimensional system. We show that the algorithm can practically be used in quantum
tomography problems that are beyond the reach of convex solvers, and, moreover, is faster and more accurate than other state-of-
the-art non-convex approaches. Crucially, we prove that, despite being a non-convex program, under mild conditions, the
algorithm is guaranteed to converge to the global minimum of the quantum state tomography problem; thus, it constitutes a
provable quantum state tomography protocol.
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INTRODUCTION
Like any other processor, the behavior of a quantum information
processor must be characterized, verified, and certified. Quantum
state tomography (QST) is one of the main tools for that purpose.1

Yet, it is generally an inefficient procedure, since the number of
parameters that specify quantum states grows exponentially with
the number of sub-systems. This inefficiency has two practical
manifestations: (i) without any prior information, a vast number of
data points needs to be collected;1 (ii) once the data is gathered, a
numerical procedure should be executed on an exponentially
high-dimensional space, in order to infer the quantum state that is
most consistent with the observations. Thus, to perform QST on
steadily growing quantum processors,2,3 we must introduce novel
and efficient techniques for its completion.
Recent advances4–6 simplify QST by including the premise that,

often, our aim is to coherently manipulate pure quantum states
(i.e., states that can be equivalently described with rank-1, positive
semi-definite (PSD) density matrices). The use of such prior
information is the modus operandi toward making QST more
manageable, with respect to the amount of data required.
Compressed sensing (CS)7 – and its extension to low-rank

approximation8– has been applied to QST6,9,10 within this context.
Particularly, Gross et al.6 prove that convex programming
guarantees robust estimation of pure n-qubit states from much
less information than common approaches require, with over-
whelming probability.
These advances, however, leave open the question of how

efficiently one can estimate exponentially large-sized quantum
states, from a limited set of observations. Since convex program-
ming is susceptible of provable performance, typical QST protocols
rely on convex programs.4,6,9 Nevertheless, their weakness
remains the high computational and storage complexity. In

particular, due to the PSD nature of density matrices, a key step
in convex programs is the repetitive application of Hermitian
eigensolvers. Such solvers include the well-established family of
Lanczos methods,11–13 the Jacobi-Davinson SVD type of meth-
ods,14 as well as preconditioned hybrid schemes,15 among others.
Since – at least once per iteration – a full eigenvalue decomposi-
tion is required in most convex programs, eigensolvers contribute
a Oðð2nÞ3Þ computational complexity, where n is the number of
qubits of the quantum system. It is obvious that the recurrent
application of such eigensolvers makes convex programs imprac-
tical, even for quantum systems with a relatively small number n
of qubits.6,16

Ergo, to improve the efficiency of QST, and of CS QST in
particular, we need to complement it with numerical algorithms
that can handle large search spaces using limited amount of data,
while having rigorous performance guarantees. This is the
purpose of this work. Inspired by the recent advances on finding
the global minimum in non-convex problems,17–24 we propose
the application of alternating gradient descent for CS QST, that
operates directly on the assumed low-rank structure of the density
matrix. The algorithm – named Projected Factored Gradient
Decent (ProjFGD) – shows significant improvements in QST
problems (both in accuracy and efficiency), as compared with
state-of-the-art approaches; our numerical experiments justify
such behavior.
More crucially, we prove that, despite being a non-convex

program, under mild conditions, the algorithm is guaranteed to
converge to the global minimum of the QST problem. In general,
finding the global minimum in non-convex problems is a hard
problem. However, our approach assumes certain regularity
conditions – that are, however, satisfied by common CS-inspired
protocols in practice4,6,9 – and a good initialization – which we
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make explicit in the text; both lead to a fast and provable
estimation of the state of the system, even with limited amount of
data.

RESULTS
QST setup
We begin by describing the problem of QST. We are focusing here
on QST of a low-rank n-qubit state, ρ∗, from measuring
expectation values of n-qubit Pauli observables Pif gmi¼1. We
denote by y 2 Rm the measurement vector with elements
yi ¼ 2nffiffiffi

m
p Tr Pi � ρ?ð Þ þ ei ; i ¼ 1; ¼ ;m, for some measurement error

ei. The normalization 2nffiffiffi
m

p is chosen to follow the results of Liu.25 For

brevity, we denote M : C2n ´ 2n ! Rm as the linear “sensing” map,
such that M ρð Þð Þi¼ 2nffiffiffi

m
p Tr Pi � ρð Þ, for i ¼ 1; ¼ ;m.

An n-qubit Pauli observable is given by P ¼ �n
j¼1sj where

sj 2 1; σx ; σy ; σz
� �

. There are 4n such observables in total. In
general, one needs to have the expectation values of all 4n Pauli
observables to uniquely reconstruct ρ∗. However, since according
to our assumption ρ∗ is a low-rank quantum state, we can apply
the CS result,6,25 that guarantees a robust estimation, with high
probability, from the measurement of the expectation values of
just m ¼ O r2nn6ð Þ randomly chosen Pauli observables, where r �
2n is the rank of ρ∗.
Key property to achieve this is the restricted isometry property:25

Definition 1 (Restricted Isometry Property (RIP) for Pauli
measurements). Let M : C2n ´ 2n ! Rm be a linear map, such that
M ρð Þð Þi¼ 2nffiffiffi

m
p Tr Pi � ρð Þ, for i ¼ 1; ¼ ;m. Then, with high prob-

ability over the choice of m ¼ c
δ2r
� r2nn6ð Þ Pauli observables Pi,

where c > 0 is an absolute constant, M satisfies the r-RIP with
constant δr, 0 ≤ δr < 1; i.e.,

1� δrð Þ ρk k2F� M ρð Þk k22� 1þ δrð Þ ρk k2F ;
where �k kF denote the Frobenius norm, is satisfied 8ρ 2 C2n ´ 2n such
that rank ρð Þ � r.

An accurate estimation of ρ∗ is obtained by solving, essentially,
a convex optimization problem constrained to the set of quantum
states,9 consistent with the measured data. Among the various
problem formulations for QST, two convex program examples are
the trace-minimization program that is typically studied in the
context of CS QST:

minimize

ρ 2 C2n ´ 2n Tr ρð Þ
subject to ρk0;

jy �M ρð Þj jj2 � ε;

(1)

and the least-squares program,

minimize

ρ 2 C2n ´ 2n
1
2 � y �M ρð Þk k22
ρk0;

subject to Tr ρð Þ � 1;

(2)

which is closely related to the (negative) log-likelihood minimiza-
tion under Gaussian noise assumption. The constraint ρk0
captures the positive semi-definite assumption, �k k2 is the vector
Euclidean ‘2-norm, and ε > 0 is a parameter related to the error
level in the model. Key in both programs is the combination of the
PSD constraint and the trace object: combined, they constitute the
tightest convex relaxation to the low-rank, PSD structure of the
unknown ρ∗; see also Recht et al.26. The constraint Tr ρð Þ ¼ 1 is
relaxed in Eq. (2) to allow more robustness to noise, following
Kalev et al.9. The solutions of these programs should be

normalized to have unit trace to represent quantum states. We
note that if M corresponds to a positive-operator valued measure
(POVM), or includes the identity operator, then the explicit trace
constraint is redundant.
As was discussed in the introduction, the problem with convex

programs, such as Eqs. (1) and (2), is their inefficiency when applied
in high-dimensional systems: most practical solvers for Eqs. (1) and
(2) are iterative and handling PSD constraints adds an immense
complexity overhead per iteration, especially when n is large.
In this work, we propose to use non-convex programming for

QST of low-rank density matrices; we show in practice that it leads
to higher efficiency than typical convex programs. We achieve this
by restricting the optimization over the intrinsic non-convex
structure of rank-r PSD matrices. This allow us to “describe” an
2n × 2n PSD matrix with only Oð2nrÞ space, as opposed to the
Oðð2nÞ2Þ ambient space. Even more substantially, our program
has theoretical guarantees of global convergence, similar to the
guarantees of convex programming, while maintaining faster
performance than the latter. These properties make our scheme
ideal to complement the CS methodology for QST in practice.

Projected factored gradient descent algorithm
Optimization criterion recast. At its basis, the Projected Factored
Gradient Descent (ProjFGD) algorithm transforms convex pro-
grams, such as in Eqs. (1)–(2), by enforcing the factorization of a
d × d PSD matrix ρ such that ρ ¼ AAy , where d= 2n. This
factorization, popularized by Burer and Monteiro27 for solving
semi-definite convex programming instances, naturally encodes
the PSD constraint, removing the expensive eigen-decomposition
projection step. For concreteness, we focus here on the convex
program (Eq. (2)). In order to encode the trace constraint, ProjFGD
enforces additional constraints on A. In particular, the requirement
that Tr(ρ) ≤ 1 is equivalently translated to the convex constraint
Ak k2F� 1, where �k kF is the Frobenius norm. The above recast the

program (Eq. (2)) as a non-convex program:

minimize

A 2 Cd ´ r f AAy� �
:¼ 1

2 � y �M AAy� ��� ���� ��2
2

subject to jAj jj2F � 1:

(3)

Given rank(ρ∗)= r, programs Eqs. (2) and (3) are equivalent in
the sense that the optimal value of Eq. (2) is identical to that of Eq.
(3), by the relation ρ ¼ AAy; however, program Eq. (3) might have
additional local solutions. Further, while the constraint set is
convex, the objective is no longer convex due to the bilinear
transformation of the parameter space ρ ¼ AAy. Such criteria have
been studied recently in machine learning and signal processing
applications.17–24 Here, the added twist is the inclusion of further
matrix norm constraints, that makes it proper for tasks such as
QST; as we show in the Supplementary information Section A,
such addition complicates the algorithmic analysis.

The ProjFGD algorithm and its guarantees. At heart, ProjFGD is a
projected gradient descent algorithm over the variable A; i.e.,

Atþ1 ¼ ΠC At � η∇f AtA
y
t

� 	
� At

� 	
;

where ΠC Bð Þ denotes the projection of a matrix B 2 Cd ´ r onto the
set C ¼ A : A 2 Cd ´ r ; Ak k2F� 1

� �
. ∇f ð�Þ : Rd ´ d ! Rd ´ d denotes

the gradient of the function f. Specific details of the ProjFGD
algorithm, along with a pseudocode implementation, are provided
in the Method Section and in the Supplementary information
Sections A and B. Here, we focus on the theoretical guarantees of
the ProjFGD. In summary, our theory dictates a specific constant
step-size selection, η, that guarantees convergence to the global
minimum, assuming a satisfactory initial point ρ0 is provided.
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An important issue in optimizing Eq. (3) over the factored space
is the existence of non-unique possible factorizations for a given ρ.
To see this, if ρ ¼ AAy, then for any unitary matrix R 2 Cr ´ r such
that RRy ¼ I, we have ρ ¼ bAbAy , where bA ¼ AR. Since we are
interested in obtaining a low-rank solution in the original space,
we need a notion of distance to ρ∗ over the factors. We use the
following unitary-invariant distance metric: Let matrices

Definition 2. Let matrices A;A?;2 Cd ´ r . Define:

DIST A;A?ð Þ :¼ min
R:R2U

A� A?Rk kF ;
where U is the set of r × r unitary matrices.
Let us first describe the local convergence rate guarantees of

ProjFGD.

Theorem 3 (Local convergence rate for QST). Let ρ∗ be a rank-r
quantum state density matrix of an n-qubit system with a non-
unique factorization ρ? ¼ A?Ay

?, for A? 2 C2n ´ r . Let y 2 Rm be the
measurement vector of m ¼ O rn62nð Þ random n-qubit Pauli
observables, and M be the corresponding sensing map, such that
yi ¼ M ρ?ð Þð Þiþei ; 8i ¼ 1; ¼ ;m. Let the step η in ProjFGD satisfy:

η � 1

128 bLσ1ðρ0Þþσ1ð∇f ðρ0ÞÞ
� �; (4)

where σ1ðρÞ denotes the leading singular value of ρ. Here, bL 2
1; 2ð Þ and ρ0 ¼ A0A

y
0 is the initial point such that:

DIST A0;A?ð Þ � γ0σr A?ð Þ;
for γ0 :¼ c � 1�δ4rð Þ

1þδ4rð Þ � σr ρ?ð Þ
σ1 ρ?ð Þ; c � 1

200, where δ4r is the RIP constant. Let
At be the estimate of ProjFGD at the t-th iteration; then, the new
estimate At+1 satisfies

DIST Atþ1;A?ð Þ2� α � DIST At;A?ð Þ2; (5)

where α :¼ 1� 1�δ4rð Þ�σr ρ?ð Þ
550 1þδ4rð Þσ1 ρ?ð Þþ ek k2ð Þ<1. Further, Atþ1 satisfies

DIST Atþ1;A?ð Þ � γ0σr A?ð Þ, 8t.
The proof of Theorem 3 is provided in the Supplementary

information Section A. The definitions of L and bL can be found in
the Methods Section; for our discussion, they can be assumed
constants. The above theorem provides a local convergence
guarantee: given an initialization point ρ0 ¼ A0A

y
0 close enough to

the optimal solution –in particular, where DIST A0; A?ð Þ � γ0σr A?ð Þ
is satisfied– our algorithm converges locally with linear rate. In

order to obtain AT ; A?ð Þ2� ε, ProjFGD requires T ¼ O logγ
0 �σr A?ð Þ

ε

� 	
number of iterations. We conjecture that this further translates
into linear convergence in the infidelity metric,

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρTρ

p
?

ffiffiffiffiffi
ρT

pp� �2
.

So far, we assumed ρ0 is provided such that
DIST A0;A?ð Þ � γ0σr A?ð Þ. The next theorem proposes an initializa-
tion procedure that could achieve this guarantee (under assump-
tions) and turns the above local guarantees to convergence to the
global minimum.

Lemma 4. Let A0 be such that ρ0 ¼ A0A
y
0 ¼ ΠC0 �1

L � ∇f 0ð Þ� �
, where

ΠC0 ð�Þ is the projection onto the set of PSD matrices ρ that satisfy
Tr ρð Þ � 1, and ∇f 0ð Þ denotes the gradient of f evaluated at the all
zero matrix. Consider the problem (3) where M satisfies the RIP
for some constant δ4r 2 0; 1ð Þ. Further, assume the optimum
point ρ? satisfies rank ρ?ð Þ ¼ r. Then, A0 satisfies:

DIST A0;A?ð Þ � γ0 � σr A?ð Þ;

where γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�1�δ4r

1þδ4r
2ð ffiffi

2
p �1Þ

s
� τ ρ?ð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

srank ρ?ð Þp
and srank ρð Þ ¼ ρk kF

σ1 ρð Þ.

The proof is provided in Supplementary information Section B.
This initialization introduces further restrictions on the condition
number of ρ?, τ ρ?ð Þ ¼ σ1 ρ?ð Þ

σr ρ?ð Þ, and the condition number of the

objective function, which is proportional to / 1þδ4r
1�δ4r

. The initializa-
tion assumptions in Theorem 3 are satisfied by Lemma 4 if M
satisfies RIP with a constant δ4r fulfilling the following condition:

1þ δ4r
1� δ4r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�δ4r

1þδ4r

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffi
2

p �1ð Þp
200 � 1ffiffi

r
p � τ2 ρ?ð Þ : (6)

In the special case of r= 1, τðρ?Þ ¼ 1 and, srank ρ?ð Þ ¼ 1, the
condition simplifies to δ4rt10�5. While these conditions are hard
to check a priori, Pauli observables satisfy them, with high
probability, as n increases, according to the results of Liu.25

In summary, we have shown that, with a proper initialization
and a constant step size, the ProjFGD algorithm converges to the
global minimum, if the sensing map satisfies the RIP with a small
constant, according to Eq. (6). This condition is satisfied, with high
probability, by a measurement of O rn62nð Þ random Pauli
observables.
We note that the conditions for global convergence are

sufficient but not necessary. As we shall see in the experiments
below, we obtain convergence to the global minimum (or to a
point very close to it) with milder conditions, such as random
initialization. Moreover, recent advances in machine learning22

have shown that, under RIP, random initialization guarantees
global convergence of a variant of our algorithm, where we
exclude the trace constraint in Eq. (2). This is the case where M
corresponds to a POVM, or includes the identity operator.

Numerical experiments evaluation
Our experiments follow the discussion above. We find that our
initialization, as well as random initialization, works well in
practice, and this behavior has been observed repeatedly in all
the experiments we conducted. Thus, the method returns the
exact solution of the convex programming problem, while being
orders of magnitude faster than state-of-the-art optimization
programs.
In all the experiments, the error is reported in the Frobenius

metric, bρ� ρ?k kF= ρ?k kF , where bρ is the estimation of the true
state ρ?. Note that for a pure state ρ, ρk kF¼ 1. For some
experiments we also report the infidelity metric

1� Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ?

p bρ ffiffiffiffiffi
ρ?

pq� 	2
. We model the additive noise in our

experiments, e 2 Rm, according to a circularly-symmetric normal
distribution with variance σ for each measurement,
e � CN 0; σ � Ið Þ.

Comparison of ProjFGD with second-order methods. As a first set
of experiments, we compare the efficiency of ProjFGD with
second-order cone convex programs. State-of-the-art solvers
within this class of solvers are the SeDuMi and SDPT3 methods;
for their use, we rely on the off-the-shelf Matlab wrapper CVX.28 In
our experiments, we observed that SDPT3 was faster and we
select it for our comparison. The setting is as described in the
Results Section, where additive noise has variance σ, i.e.,
� CN 0; σ � Ið Þ. We consider both convex formulations Eqs. (1)–
(2) and compare it to the ProjFGD estimator with r= 1; in figures
we use the notation CVX 1 and CVX 2 for simplicity.
We consider two cases: (i) n= 7, and (ii) n= 13. Table 1 shows

median values of ten independent experimental realizations for
m ¼ 7

3 rd log d; this selection of m was made so that all algorithms
return a solution close to the optimum ρ? . Empirically, we have
observed that ProjFgD succeeds even for cases m ¼ O rdð Þ. We
consider both noiseless σ= 0 and noisy σ= 0.05 settings.
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Figures 1 and 2 show graphically how second-order convex vs.
our first-order non-convex schemes scale. In Fig. 1, we observe
that, while in the ProjFGD more observations lead to faster
convergence,29 the same does not hold for the second-order cone
programs. In Fig. 2, it is obvious that the convex solvers do not
scale easily beyond n= 7, whereas our method handles cases up
to n= 13, within reasonable time. We note that, as n increases, a
significant amount of time in our algorithm is spent forming the
Pauli measurement vectors Pi; i.e., assuming that the application of

Pi’s takes the same amount of time as in CVX solvers, ProjFGD
requires much less additional computational power per iteration,
compared with CVX 1 and CVX 2.

Comparison of ProjFGD with first-order methods. We compare our
method with more efficient first-order methods, both convex
(AccUniPDGrad30) and non-convex (SparseApproxSDP31 and
RSVP32); we briefly describe these methods in the Discussion
Section.
We consider two settings: ρ? is (i) a pure state (i.e., rank ρ?ð Þ ¼ 1)

and, (ii) a nearly low-rank state. In the latter case, we construct
ρ? ¼ ρ?;r þ ζ , where ρ?;r is a rank-deficient PSD satisfying
rank ρ?;r

� � ¼ r, and ζ 2 Cd ´ d is a full-rank PSD noise term with
a fast decaying eigen-spectrum, significantly smaller than the
leading eigen values of ρ?;r . In other words, we can well-
approximate ρ? with ρ?;r . For all cases, the noise is such that
ek k ¼ 10�3. The number of data points m satisfy m ¼ Csam � rd, for
various values of Csam>0.
Table 2 contains recovery error and execution time results for

the case n= 13 (d= 8192); in this case, we solve a d2 ¼
67; 108; 864 dimensional problem. For this case, RSVP and
SparseApproxSDP algorithms were excluded from the comparison,
due to excessive execution time. Supplementary information
Section C provides extensive results, where similar performance is
observed for other values of d= 2n and Csam.
Table 3 considers the more general case where ρ? is nearly low-

rank: i.e., it can be well-approximated by a density matrix ρ?;r
where r= 20 (low-rank density matrix). In this case, n= 12 (d=
4096), m= 245,760 for Csam= 3. As the rank in the model, r,
increases, algorithms that utilize an SVD routine spend more CPU
time on singular value/vector calculations. Certainly, the same
applies for matrix-matrix multiplications; however, in the latter
case, the complexity scale is milder than that of the SVD
calculations. For completeness, in Supplementary information
Section C we provide results that illustrate the effect of random
initialization: Similar to above, ProjFGD shows competitive
behavior by finding a better solution faster, irrespective of
initialization point.
Overall, ProjFGD shows a substantial improvement in perfor-

mance, as compared to the state-of-the-art algorithms; we would
like to emphasize that projected gradient descent schemes, such
as in Becker et al.,32 are also efficient in small- to medium-sized
problems, due to their fast convergence rate. Further, convex
approaches might show better sampling complexity performance
(i.e., as Csam decreases). Nevertheless, one can perform accurate

Table 1. All values are median values over ten independent Monte Carlo iterations. “N/A” indicates that the corresponding algorithms did not return
a solution within the selected wall-time T. We set T= 86400 s (1 day)

Algorithm d= 27 d= 213

σ= 0 σ= 0.05 σ= 0 σ= 0.05

Time [s] p̂�ρ?k kF
ρ?k kF Time [s] p̂�ρ?k kF

ρ?k kF Infidelity Time [s] p̂�ρ?k kF
ρ?k kF Time [s] p̂�ρ?k kF

ρ?k kF Infidelity

(1) 46.01 5.3538e-07 58.48 6.0405e-02 3.0394e-02 N/A N/A N/A N/A N/A

(2) 77.12 3.0645e-04 65.53 6.1407e-02 3.0559e-02 N/A N/A N/A N/A N/A

ProjFGD 0.28 3.2224e-08 0.30 2.3540e-02 1.3820e-04 1314.01 6.8469e-08 1487.22 3.1104e-02 1.9831e-03

Fig. 1 Dimension fixed to d= 27 with rank(ρ∗)= 1. The figure
depicts the noiseless setting. Numbers within figure are the error in
Frobenius norm achieved (median values)

Fig. 2 Number of data points set to m ¼ 7
3 rd log d. Rank of optimum

point is set to rank(ρ∗)= 1. The figure depicts the noiseless setting

Table 2. Median results for reconstruction and efficiency, for n= 13
qubits and Csam= 3

Algorithm p̂�ρ?k kF
ρ?k kF Time [s]

AccUniPDGrad 7.4151e-02 2354.4552

ProjFGD 8.6309e-03 1214.0654
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maximum-likelihood estimation for larger systems in the same
amount of time using our methods for such small- to medium-
sized problems. We defer the reader to Supplementary informa-
tion Section C, due to space restrictions.

DISCUSSION
In this work, we propose a non-convex algorithm, dubbed as
ProjFGD, for estimating a highly-pure quantum state, in a high-
dimensional Hilbert space, from relatively small number of data
points. We showed empirically that ProjFGD is orders of
magnitude faster than state-of-the-art convex and non-convex
programs, such as Yurtsever et al.,30 Hazan,31 and Becker et al.32.
More importantly, we prove that under proper initialization and
step size, the ProjFGD is guaranteed to converge to the global
minimum of the problem, thus ensuring a provable tomography
procedure; see Theorem 3 and Lemma 4.
Our techniques and proofs can be applied to scenaria beyond

the ones considered in this work. We conjecture that our results
apply for other “sensing” settings, that are informationally
complete for low-rank states; see e.g., Baldwin et al.4. The results
presented here are independent of the noise model and could be
applied for non-Gaussian noise models, such as those stemming
from finite counting statistics. Lastly, while here we focus on state
tomography, it would be interesting to explore similar techniques
for the problem of process tomography.

Related work
In order to place our work in the literature, we focus on several
efficient methods for QST; for a broader set of citations that go
beyond QST, see Park et al.21

The use of non-convex algorithms in QST is not new, and dates
before the introduction of the CS protocol in QST settings.6 Even
the use of the reparameterization ρ ¼ AAy is not new; see the
works.33–36 Albeit their success, there are no theoretical results on
the non-convex nature of the transformed objective (e.g., the
presence of spurious local minima), except for the case of
Goncalves et al..37 In that work, the authors consider the
informationally complete case, where the number of measure-
ments is of the order O d2ð Þ, and therefore, there is a unique
solution in Eqs. (1)–(2), without the requirement of the RIP. The
authors characterize the local vs. the global behavior of the
objective under the factorization ρ ¼ AAy and discuss how
existing methods fail due to improper stopping criteria or due
to the lack of algorithmic convergence results. Their work
highlights the lack of rigorous convergence results of algorithms
used in QST.
Shang et al.38 propose a hybrid algorithm that (i) starts with a

conjugate-gradient (CG) algorithm in the A space, in order to get
initial rapid descent, and (ii) switch over to accelerated first-order
methods in the original ρ space, provided one can determine the
switchover point cheaply. Under the multinomial maximum-
likelihood objective, in the initial CG phase, the Hessian of the
objective is computed per iteration (i.e., a d2 × d2 matrix), along

with its eigenvalue decomposition. Such an operation is costly,
even for moderate values of d, and heuristics are proposed for its
completion. From a theoretical perspective, Shang et al.38 provide
no convergence or convergence rate guarantees.
Goncalves et al.39 the authors study the QST problem in the

original parameter space, and propose a projected gradient
descent algorithm. The proposed algorithm applies both in
convex and non-convex objectives, and convergence only to
stationary points could be expected. Bolduc et al.40 extends the
work of Goncalves et al.39 with two first-order variants, using
momentum motions, similar to the techniques proposed by
Polyak and Nesterov for faster convergence in convex optimiza-
tion.41 The above algorithms operate in the informationally
complete case. Similar ideas in the informationally incomplete
case can be found in these works.32,42

Very recently, Riofrio et al.42 presented an experimental
implementation of CS tomography of a n= 7 qubit system, where
only 127 Pauli basis measurements are available. To achieve
recovery in practice, the authors proposed a computationally
efficient estimator, based on the factorization ρ ¼ AAy. The
resulting method resembles our gradient descent method on
the factors A. d: However, the authors focus only on the
experimental efficiency of the method and provide no specific
results on the optimization efficiency of the algorithm, what are its
theoretical guarantees, and how its components (such as
initialization and step size) affect its performance (e.g., the step
size is set to a sufficiently small constant). See also Schwemmer
et al.10 for a six-qubit implementation.
One of the first provable algorithmic solutions for the QST

problem was through convex approximations:26 this includes
nuclear norm minimization approaches,6 as well as proximal
variants, as the one that follows:

minimize
ρk0

jy �MðρÞj jj2F þ λTr ρð Þ: (7)

See Gross et al.6 for the theoretical analysis. Within this context,
we mention the work of Yurtsever et al.:30 there, the AccUniPD-
Grad algorithm is proposed – a universal primal-dual convex
framework with sharp operators, in lieu of proximal low-rank
operators – where QST is considered as an application.
AccUniPDGrad combines the flexibility of proximal primal-dual
methods with the computational advantages of conditional
gradient methods.
Hazan31 presents SparseApproxSDP algorithm that solves the

QST problem in Eq. (2), when the objective is a generic gradient
Lipschitz smooth function, by updating a putative low-rank
solution with rank-1 refinements, coming from the gradient. This
way, SparseApproxSDP avoids computationally expensive opera-
tions per iteration, such as full eigen-decompositions. In theory,
SparseApproxSDP achieves a sublinear O 1

ε

� �
convergence rate.

However, depending on ε, SparseApproxSDP might not return a
low-rank solution.
Finally, Becker et al.32 propose Randomized Singular Value

Projection (RSVP), a projected gradient descent algorithm for QST,
which merges gradient calculations with truncated eigen-decom-
positions, via randomized approximations for computational
efficiency.

Future directions. We conclude with a short list of interesting
future research directions. Our immediate goal is the application
of ProjFGD in real-world scenaria; this could be completed by
utilizing IBM quantum computers.3 This complements the results
found in Riofrio et al.43 for a different quantum system.
Beyond its use as point estimator, the maximum-likelihood

estimator is used as a basis for inference around the point
estimate, via confidence intervals44 and credible regions.45

However, there is still no rigorous analysis when the factorization
ρ ¼ AAy is used.

Table 3. Median results for reconstruction and efficiency

Algorithm Setting: r= 5. Setting: r= 20.
p̂�ρ?;rk kF

ρ?;rk kF

Time [s]
p̂�ρ?;rk kF

ρ?;rk kF

Time [s]

SparseApproxSDP 1.65e-02 7029.15 4.08e-02 7514.13

RSVP 2.36e-01 6314.42 3.69e-02 7341.92

AccUniPDGrad 4.40e-02 231.10 5.23e-02 452.05

ProjFGD 4.23e-02 126.41 4.73e-03 220.71

Time reported is in seconds. Csam= 3 and n= 12.
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The work in refs. 38,40 considers accelerated gradient descent
methods for QST in the original parameter space ρ. It remains an
open question how our approach could exploit such techniques,
along with rigorous approximation and convergence guarantees.
Further, distributed/parallel implementations, like Hou et al.,46

remain widely open using our approach, in order to accelerate
further the execution of the algorithm. Research along these
directions is very interesting and is left for future work.
Finally, we identify two practical observations from our

experiments that need further theoretical justification. First, we
saw numerically that a random initialization in our settings works
well; a careful theoretical treatment for this case is an open
problem. Second, while we observed that the ProjFGD outpre-
forms convex solvers; it is an open question to understand its
behavior in the setting where r= d.

METHODS
Next follows a more detailed discussion on ProjFGD. The pseudocode is
provided in Algorithm 1; a real implementation is in Supplementary
information Section C.

Denote g Að Þ ¼ 1
2 � y �MðAAyÞ

 

2

2 and f ρð Þ ¼ 1
2 � y �MðρÞk k22. Due to

the symmetry of f, i.e., f ρð Þ ¼ f ρy
� �

, the gradient of g(A) w.r.t. A variable is
given by

∇g Að Þ ¼ ρð Þ þ ρð Þy
� 	

� A ¼ 2 ρð Þ � A;
where ∇f ρð Þ ¼ �2M� y �M ρð Þð Þ, and M� is the adjoint operator for M.
For the Pauli measurements case we consider in this paper, the adjoint
operator for an input vector b 2 Rm is M� bð Þ ¼ 2nffiffiffi

m
p

Pm
i¼1 biPi .

The prior knowledge rank ρ?ð Þ � r? is imposed by setting A 2 Cd ´ r? . In
real experiments, the state ρ? could be full rank, but often is highly-pure
with only few dominant eigenvalues.43 In this case, ρ? is well-approximated
by a low-rank matrix of rank r, which can be much smaller than r?. In the
ProjFGD protocol, we set A 2 Cd ´ r . In this form, A contains far fewer
variables to maintain and optimize than a d × d PSD matrix, and thus it is
easier to update and to store its iterates.
The per-iteration complexity of ProjFGD is dominated by the application

of the linear map M and by matrix–matrix multiplications. While both

eigenvalue decomposition and matrix multiplication have O 2nð Þ2r
� 	

complexity, the latter is at least two-orders of magnitude faster on dense
matrices.21

Due to the bilinear structure in Eq. (3), it is not clear whether the
factorization ρ ¼ AAy introduces spurious local minima, i.e., minima that do
not exist in Eqs. (1)–(2), but are “created” after the factorization. This
necessitates careful initialization to obtain the global minimum.
The initial point ρ0 is set as ρ0 :¼ 1=L̂ � ΠC0 �∇f 0ð Þð Þ ¼ 2=L̂ � ΠC0 M� yð Þð Þ,

where ΠC0 ð�Þ denotes the projection onto the set of PSD matrices ρ that
satisfy Tr ρð Þ � 1. Here, L̂ represents an approximation of L, where L is such
that for all rank-r matrices ρ; ζ :

∇f ρð Þ � ∇f ζð Þk kF� L � ρ� ζk kF : (8)

(This also means that f is restricted gradient Lipschitz continuous with
parameter L. We defer the reader to the Supplementary information
Sections A and B for more information). In practice, we set L̂ 2 1; 2ð Þ.
This is the only place where eigenvalue-type calculation is required. The

projection ΠC0 ð�Þ is given in ref. 39. In practice, we could just use a standard

projection onto the set of PSD matrices ρ0 :¼ 2=L̂ � Πþ M� yð Þð Þ; our
numerical experiments show that it is sufficient and can be implemented
by any off-the-shelf eigenvalue solver. In that case, the algorithm
generates A0 2 Cd ´ r by truncating the computed eigen-decomposition,
followed by a projection onto the convex set, C.

Data availability
The empirical results were obtained via synthetic experiments; the
algorithm’s implementation is available in the supplementary material.
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