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Abstract. Many scientific and engineering applications feature large-scale non-smooth convex
minimization problems over convex sets. In this paper, we address an important instance of this
broad class where we assume that the non-smooth objective is equipped with a tractable proxim-
ity operator and that the convex constraints a↵ord a self-concordant barrier. We provide a new
joint treatment of proximal and self-concordant barrier concepts and illustrate that such problems
can be e�ciently solved without lifting problem dimensions. We propose an inexact path-following
algorithmic framework and theoretically characterize the worst case convergence as well as computa-
tional complexity of this framework, and also analyze its behavior when the proximal subproblems are
solved inexactly. To illustrate our framework, we apply its instances to both synthetic and real-world
applications and illustrate their accuracy and scalability in large-scale settings. As an added bonus,
we describe how our framework can obtain points on the Pareto frontier of regularized problems with
self-concordant objectives in a tuning free fashion.
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1. Problem statement and motivation. We consider the following constrained
convex minimization problem, which has myriad applications in diverse disciplines,
including machine learning, signal processing, statistics, and control [10, 17, 18, 32]:

(1.1) g

⇤ := min
x2⌦

g(x).

Here, ⌦ ✓ Rn is a nonempty, closed and convex set and g is a (possibly) non-smooth
convex function from Rn ! R [ {+1}.

Several powerful methods have been developed to solve structural instances of
(1.1). Perhaps, the most famous one is the class of interior point methods (IPM) that
solves standard conic programming problems in polynomial time; an non-exhaustive
list includes linear programming, quadratic programming, second order cone pro-
gramming, and semidefinite programming [7, 25]. The key structure exploited in
conventional IPMs is the existence of a barrier function for ⌦ (cf., Section 2), while
g is a linear or convex quadratic function. In such cases, one considers the penalized
family of parametric composite convex optimization problems:

(1.2) min
x2R

n

⇢

F (x; t) := f(x) +
1

t

g(x)

�

,

where t > 0 is referred to as a penalty parameter. By solving (1.2) for a sequence of
decreasing t values, i.e., t # 0+, we can trace the central path of solutions x⇤

t

of (1.2)
as it converges to the solution x⇤ of (1.1).

To this end, we transform the constrained problem (1.1) into a family of uncon-
strained minimization problems depending on t and hence potentially easier to solve
these problems, i.e., (1.2), than (1.1). Unfortunately, assuming no further structure of
f , the resulting path-following scheme is not guaranteed to converge, and solving (1.2)
becomes harder as t # 0+, see, e.g., [22]. Fortunately, Nesterov [23] introduced the
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self-concordance concept (cf., Section 2 for definitions), which characterizes a broad
collection of penalty functions f and guarantees the polynomial-solvability of (1.2),
by sequentially using Newton methods.

In addition to the constraints, the non-smooth objectives g also have a direct im-
pact on the computational e↵ort. Such problems do occur frequently in applications:
Examples include but are not limited to sparse concentration matrix estimation with
`

1

-norm (eq. (11) in [28]), data clustering with `
1

-norm (SDP reformulation in Section
4.1 of [19]), spectral line estimation with atomic norms (eq. (2.6) in [34] and eq. (3.4)
in [9]), etc. Since o↵-the-shelf IPMs usually approximate g

⇤ by solving a sequence
of smooth problems [22, 23], g in (1.2) must allow a reformulation where standard
smooth solvers can be applied (i.e., disciplined convex optimization (DCO) [14]).

Unfortunately, the DCO approach can inflate the problem dimensions, and suf-
fers from the curse-of-dimensionality. For instance, when the problem (1.1) can be
formulated into a semidefinite program, the scaling factors (e.g., the Nesterov-Todd
scaling factor [26]) can create memory bottlenecks by destroying the sparsity of the
underlying problem (e.g., by leading to dense KKT matrices in Newton systems).

As a concrete example, we consider max-norm clustering [19], where we seek a
clustering matrix K that minimizes disagreement with a given a�nity matrix A

(1.3)

min
L,R,K2Rp⇥p

kvec (K�A)k
1

s.t.



L K
KT R

�

� 0, L
ii

 1, R
ii

 1, i = 1, . . . , p.

This non-smooth formulation a↵ords rigorous theoretical guarantees for its solution
quality and can be formulated as a standard conic program. Unfortunately, we need
to add O(p2) slack variables to smooth the `

1

-norm term and process the linear
constraints. Consequently, the e�ciency of conventional IPM’s significantly degrade.

1.1. Our approach. In general, when the penalty function f has a Lipschitz
continuous gradient [23] and g has a computable proximity operator (cf., Section 2 for
definitions), several well-characterized solutions to (1.2) exist [4, 5, 23, 24]. However,
to the best of our knowledge, there is no unified framework for path-following schemes
of (1.2) where f is a self-concordant barrier (hence, non-globally Lipschitz continuous

gradient) and g is a non-smooth term with proximal tractability.
To this end, we address (1.1) with a new proximal path-following scheme, which

solves (1.2) for a sequence of adaptively selected parameters t
k

. Our scheme guarantees
the following: If xk is an approximate solution of x⇤

t

k

for t  t

k

(i.e., within �

accuracy), then our method produces an approximate solution xk+1 of x⇤
t

k+1

for t 
t

k+1

within the same accuracy � via applying only one proximal-Newton (PN) step:

xk+1 :⇡argmin
x2dom(F )

n

rf(xk)T (x�xk)+
1

2
(x�xk)Tr2

f(xk)(x�xk) +
1

t

k+1

g(x)
o

,(1.4)

where dom (F ) := dom (f) \ dom (g). This is the workhorse of our framework in
a manner similar to the Newton schemes for standard path-following interior point
methods [23, 25].

We now highlight the two salient features of our scheme that set us apart from
existing approaches: First, solving the proximal-Newton problem (1.4) has been a
major research area over the last decade, broadly known as composite optimization,
where many accurate and scalable algorithms are customized for di↵erent g functions
[5, 6, 24]. Our path following scheme leverages such “fast” algorithms as a black-box,
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while approximating (1.1). These methods are theoretically as fast as the advanced
“Hessian-free” IPM techniques, which use conjugate gradients, since r2

f(x) � 0 for
self concordant-barriers. In contrast, as we handle the non-smooth term g directly
with proximity operators, we retain the original problem structure (i.e., we do not
inflate problem dimensions or add additional constraints).

Second, adaptively updating the regularization parameter in composite optimiza-
tion problems has itself attracted a great deal of interest; cf., the class of homotopy and
continuation methods [16]. Many of these approaches lose their theoretical guaran-
tees (if any) when the composite minimization problem has a self-concordant smooth
term instead of a Lipschitz continuous gradient smooth term. In contrast, our scheme
provides a rigorous way of updating regularizer weights and can be easily adapted for
applications with self-concordant data terms [17, 32, 28], where none of these methods
apply.

Our contributions: Our specific contributions in this paper are as follows:
(a) We extend the notion of path-following to handle composite forms in order

to approximately track the solution trajectory of (1.2). As a consequence, we
obtain an approximate solution of (1.1) by controlling the parameter t to 0+.

(b) We provide an explicit formula to adaptively update the parameter t with
convergence guarantees, without any manual tuning strategy.

(c) We provide a theoretical analysis of the worst-case complexity of our scheme
to obtain a sequence of �-accurate solutions, as t varies, while allows one to
solve the subproblem (1.4) inexactly up to a given accuracy. The worst-case
complexity of our method remains the same as in conventional path-following
interior point methods [23].

Paper outline. Section 2 recalls the definitions of self-concordant functions and
barriers and sets up optimization preliminaries. Section 3 deals with the inexact
proximal-Newton iteration scheme for solving (1.2) at a fixed value of the parameter
t. Section 4 presents the path-following framework with inexact proximal-Newton
iterations and analyzes its convergence and worst-case compexity. Section 5 specifies
our framework to solve constrained convex minimization problems of the form (1.1).
Section 6 presents numerical experiments that highlight the strengths and weaknesses
of our framework. Technical proofs are given in the appendix.

2. Preliminaries. In this section, we set up the necessary notation and defini-
tions revolving around self-concordance. We provide a fixed-point characterization of
the optimality condition for (1.2) and then describe key technical results in deriving
our framework.

2.1. Basic definitions. Given x,y 2 Rn, we use either xTy or hx,yi to denote
the inner product in Rn. For a proper, lower semicontinuous convex function f ,
we denote its domain by dom (f) (i.e., dom (f) := {x 2 Rn | f(x) < +1} and its
subdi↵erential at x by @f(x) := {v 2 Rn | f(y) � f(x) + hv,y � xi, 8y 2 dom (f)}
[29]. We also define Dom(f) := cl(dom (f)) the closure of dom (f).

For a given twice di↵erentiable function f such that r2

f(x) � 0 at x 2 dom (f),
we define the local norm kuk

x

:= hr2

f(x)u, ui1/2 for any u 2 Rn while the dual

norm is given by kvk⇤
x

:= maxkuk
x

1

uTv = h�r2

f(x)
��1

v, vi1/2, 8v 2 Rn. It is

clear that the Cauchy-Schwarz inequality holds, i.e., hu,vi  kvk
x

kvk⇤
x

. For our
analysis, we also use two simple convex functions !(t) := t � ln(1 + t) for t � 0 and
!⇤(t) := �t� ln(1� t) for t 2 [0, 1), which are strictly increasing in their domain.
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An important concept in this paper is the self-concordance property [23, 25].
Definition 2.1. A convex function ' : R! R is called standard self-concordant

if |'000(⌧)|  2'00(⌧)3/2, 8⌧ 2 R. A function f : Rn ! R is self-concordant if, for

any ⌧ 2 R, the function '(⌧) := f(x+ ⌧v) is self-concordant for all x 2 dom (f) and
v 2 Rn

such that x+ ⌧v 2 dom (f).
Definition 2.2. A standard self-concordant function f is a ⌫-self-concordant

barrier for the set Dom(f) with parameter ⌫ > 0, if sup
u2Rn

�

2rf(x)Tu� kuk2
x

 
⌫ for all x 2 dom (f).

We note that when r2

f is non-degenerate (particularly, dom (f) contains no
straight line [23, Theorem 4.1.3.]), a ⌫-self-concordant function f satisfies

krf(x)k⇤
x

 p⌫.(2.1)

In addition, for any sequence
�

xk

 ⇢ dom (f), if xk ! x̄ 2 @(dom (f)), where
@(dom (f)) is the boundary of dom (f), then f(xk)! +1. For more details on self-
concordant functions and self-concordant barriers, we refer the reader to Chapter 4
of [23]. Several simple sets are equipped with a self-concordant barrier. For instance,
fRn

+

(x) := �Pn

i=1

log(x
i

) is an n-self-concordant barrier of the orthogonal cone Rn

+

,

f(x) = � log(t2 � kxk2
2

) is a 2-self-concordant barrier of the Lorentz cone L
n+1

:=
{(x, t) 2 Rn ⇥ R

+

| kxk
2

 t}, and the semidefinite cone Sn

+

is endowed with an n-
self-concordant barrier fSn

+

(X) := � log det(X).
Given these definitions, we are now ready to state our main assumption used

throughout this paper.
Assumption A. 1. The function f in (1.2) is a ⌫-self-concordant barrier with

⌫ > 0. The function g : Rn ! R [ {+1} is proper, lower semi-continuous, convex

and possibly nonsmooth.

2.2. Optimality condition of (1.2). Given t > 0, we assume that problem
(1.2) has a solution x⇤

t

. Since f is strictly convex, this solution is also unique. The
optimality condition of (1.2) can be written as

(2.2) 0 2 rf(x⇤
t

) +
1

t

@g(x⇤
t

).

The formula (2.2) expresses a monotone generalized equation, which has widely been
studied in convex optimization; e.g., see [12]. If g is smooth, (2.2) reduces to rf(x⇤

t

)+
1

t

rg(x⇤
t

) = 0, a system of nonlinear equations. Any x⇤
t

satisfying (2.2) is called a
stationary point of (1.2), which is also the global optimum of (1.2), for given t.

Definition 2.3. Let x 2 dom (F ) such that r2

f(x) � 0 and let s 2 Rn

be an

arbitrary given point. We define the operator P

g

x

(·; t) with an input s and a parameter

t > 0 as follows:

(2.3) P

g

x

(s; t) = argmin
y2Rn

⇢

1

t

g(y) +
1

2
yTr2

f(x)y � sTy

�

.

Since r2

f(x) � 0, we can write (2.3) as

P

g

x

(s; t) = argmin
y2Rn

⇢

g(y) +
t

2

�

�y �r2

f(x)�1s
�

�

2

r2

f(x)

�

,

which is the standard proximal operator of r2

f(x)�1s with respect to the weighted
norm k·kr2

f(x)

. Given x and s as defined above, we define the following mapping:

(2.4) S

x

(s; t) := r2

f(x)s�rf(s).
4



The optimality condition in (2.2) implies the following fixed-point characterization of
the mapping P

g

x

(·; t). The proof can be found in [36].
Lemma 2.4. Let t > 0 be fixed. Then, the mapping P

g

x

(·; t) defined in (2.3) is

co-coercive and therefore nonexpansive w.r.t. the local norms, i.e.:

[co-coercive] : hP g

x

(u; t)� P

g

x

(v; t),u� vi � kP g

x

(u; t)� P

g

x

(v; t)k2
x

,(2.5)

[nonexpansive] : kP g

x

(u; t)� P

g

x

(v; t)k
x

 ku� vk⇤
x

, 8u,v 2 Rn

.(2.6)

Furthermore, the following fixed-point characterization holds:

(2.7) x⇤
t

= P

g

x

⇤
t

�

S

x

⇤
t

(x⇤
t

; t); t
�

,

where x⇤
t

2 dom (F ) is the minimizer of (1.2), i.e., x⇤
t

= argmin
x2Rn

F (x; t).

For our convergence analysis, we also need the following result.
Lemma 2.5. For fixed t > 0, let x⇤

t

be the unique solution of (1.2). Then, for

any x 2 dom (F ), the following estimate holds:

(2.8) !

⇣

kx� x⇤
t

k
x

⇤
t

⌘

 F (x; t)� F (x⇤
t

; t).

Proof. By the self-concordance property of f for any x 2 dom (F ), the convexity
of g and (2.2) it follows that

F (x)� F (x⇤
t

) = f(x)� f(x⇤
t

) +
1

t

(g(x)� g(x⇤
t

))

�
⌧

rf(x⇤
t

) +
1

t

v⇤
t

,x� x⇤
t

�

+ !

⇣

kx� x⇤
t

k
x

⇤
t

⌘

, 8v⇤
t

2 @g(x⇤
t

),

(2.2)

= !

⇣

kx� x⇤
t

k
x

⇤
t

⌘

,

which is indeed (2.8).

3. Proximal-Newton iterations for fixed t. Let us consider the unconstrained
problem (1.2) for a given fixed parameter value t > 0. Since f is self-concordant, we
can approximate it around xk 2 dom (F ) via the second order Taylor series expansion:

Q(x;xk) := f(xk)+rf(xk)T (x�xk)+
1

2
(x�xk)Tr2

f(xk)(x�xk).(3.1)

Given this quadratic surrogate of f , we can approximate F (x; t) around xk as:

F

k(x; t) := Q(x;xk) +
1

t

g(x).(3.2)

Starting from an arbitrary initial point x0 2 dom (F ) and given a fixed value t > 0,
the inexact full-step proximal-Newton method for solving (1.2) generates a sequence
�

xk

 

k�0

, by approximately minimizing the composite quadratic model (3.2) as

xk+1 ⇡ argmin
x2dom(F )

F

k(x; t).(3.3)

Here, the “approximation” sense (⇡) highlights the inability of numerical methods
to iteratively solve (3.3) with exact accuracy in all cases and will be made precise in
Definition 3.1 below.
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However, since r2

f(xk) � 0, argmin
x2dom(F )

F

k(x; t) is a strongly convex pro-
gram and it has the unique exact solution x̄k+1. Moreover, the following optimality
condition holds

(3.4) 0 2 rf(xk) +r2

f(xk)(x̄k+1 � xk) +
1

t

@g(x̄k+1).

Due to (2.2), it is obvious to show that if x̄k+1 ⌘ xk, then xk is the optimal solution
of (1.2) for fixed t.

3.1. Inexact solutions of (3.3). In practice, solving (3.3) exactly is infeasible.
Thus, we can only solve (3.3) up to a given accuracy � � 0, using algorithmic solutions
such as fast proximal-gradient methods [5, 23, 24].

Definition 3.1. Given t > 0 and a tolerance � � 0, a point xk+1 2 dom (F ) is

called a �-solution to (3.3) if

(3.5) F

k(xk+1; t)� F

k(x̄k+1; t)  �

2

2
,

where x̄k+1 := argmin
x2dom(F )

F

k(x; t) is the exact solution of (3.3).
A useful inequality for our subsequent developments is given in the next lemma.
Lemma 3.2. Given fixed t > 0, let xk

be the inexact solution of (3.3) at the

k-iteration and x̄k+1

be the exact solution of (3.3) at the (k + 1)-th iteration. Then,

8x 2 dom (F ), the following inequality holds:

(3.6)
1

2

�

�x� x̄k+1

�

�

2

x

k

 F

k

t

(x)� F

k

t

(x̄k+1), 8x 2 dom (F ) .

Proof. Since r2

f(xk) � 0, by definition of F (xk; t), the proof follows similar
motions with the proof of Lemma 2.5, based on the optimality condition (3.4) and
the convexity of the g term.

This lemma, in combination with Definition 3.1, indicates that, if we can find a
�-solution, then

(3.7)
�

�xk+1 � x̄k+1

�

�

x

k

 �.

3.2. Contraction property of inexact proximal-Newton iterations. In
this subsection, we provide a theoretical characterization of the per-iteration behavior
of the inexact full-step proximal-Newton scheme (3.3) for fixed t > 0. Let xk 2
dom (F ) be the �-solution of (3.3) and let x⇤

t

be the exact solution of (1.2). We define

(3.8) �

k

:=
�

�xk � x⇤
t

�

�

x

⇤
t

,

as the weighted distance between xk and x⇤
t

. The following theorem characterizes the
contraction properties of �

k

; the proof can be found in the appendix.
Theorem 3.3. Given xk 2 dom (F ), let xk+1

be a �-solution of (3.3) for a given

� � 0. Then, if �

k

2 [0, 1�
p
2

2

), we have

(3.9) �

k+1

 �

1� �
k

+

✓

3� 2�
k

1� 4�
k

+ 2�2
k

◆

�

2

k

.

Moreover, the right-hand side of (3.9) is nondecreasing w.r.t. �

k

and � � 0.
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To illustrate the contraction properties of �
k

, we assume that the accuracy �

can be chosen such that � := ⇠�

k

for a given ⇠ 2 (0, 1). Furthermore, let us define

'(�, ⇠) := ⇠

1�� + 3��2�

2

1�4�+2�

2

on [0, 1�
p
2

2

). Then, (3.9) can be rewritten as

(3.10) �

k+1

 '(�
k

, ⇠)�
k

.

From (3.10), we observe that, if ' < 1, the distance of xk+1 from x⇤
t

becomes smaller
than that of xk, i.e., it ensures the convergence of the proximal-Newton scheme (3.3).
To this end, we need to find a range of �

k

values, 8k, (say ⇤), such that ' < 1.
Varying ⇠, we can choose this range ⇤: Since ' is non-decreasing, the larger ⇠ is, the
smaller the range of ⇤ becomes. This observation is illustrated in Figure 3.1. For

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

λ -axis

ϕ
(λ

,
ξ
)

 

 

ξ = 0.5

ξ = 0.1

ξ = 0.01

ξ = 0.0

Fig. 3.1. The behavior of the contraction factor function '(�, ⇠) at di↵erent values of ⇠

⇠ 2 [0, 0.5], the interval where ' < 1 varies from [0, 0.1] to [0, 0.15]. Moreover, when
⇠ = 0.001, the value of ' is very close to the case of ⇠ = 0. In practice, this suggests
that if we set the accuracy � < 10�3, the inexact scheme performs closely to the ideal
case (i.e., � = 0).

Theoretically, if we assume that the subproblem (3.3) is solved exactly, then the

estimate (3.9) reduces to �̄
k+1


⇣

3�2

¯

�

k

1�4

¯

�

k

+2

¯

�

2

k

⌘

�̄

2

k

, where �̄
k

:=
�

�x̄k � x⇤
t

�

�

x

⇤
t

. The

algorithms and the convergence theory corresponding to this case are studied in [36].
A important consequence of Theorem 3.3 is the following corollary.
Corollary 3.4. For a fixed t > 0 and a given constant c > 0, let

�

xk

 

k�0

be a

sequence of �-solutions, generated by solving (3.3) approximately.

(a) If we choose � and x0

such that �  0.15�
k

, 8k � 0, and �
0

 0.1427, then
�

xk

 

k�0

converges to x⇤
t

at a linear rate.

(b) If we choose � and x0

such that �  c�

2

k

, 8k � 0, and

�

0

2


0,min

⇢

0.15,
1

1.177c+ 6.068

��

,

then

�

xk

 

k�0

converges to x⇤
t

at a quadratic rate.

Proof. (a). For � := 0.15�
k

, we consider the function '̂(�) := 0.15

1�� + 3��2�

2

1�4�+2�

2

.
This function is increasing for � 2 ⇤ := [0, 0.1427] and '̂(�) < 1, 8� 2 ⇤. Therefore,
it follows from (3.9) that �

k+1

 max
�2⇤

{'̂(�)}·�
k

for k � 0, which implies {�
k

}
k�0

converges to zero at a linear rate.
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(b). For �
k

2 [0, 0.15], we can see that the weight factor of the second term in
the right hand side of (3.9), 3�2�

1�4�+2�

2

, is increasing and moreover, 3�2�

1�4�+2�

2

 6.068.

Thus, for �  c�

2

k

, we have

�

k+1


✓

c

1� �
k

+ 6.068

◆

�

2

k

 (1.177c+ 6.068)�2
k

.

From this inequality, we can easily check that, if �
0

 min
n

0.15, 1

1.177c+6.068

o

then

�

k+1

 �
k

. Moreover, {�
k

}
k�0

converges to zero at a quadratic rate.

4. A proximal path following framework. Our discussion so far focuses on
the case of minimizing (3.3) for a fixed t > 0. Nevertheless, in order to solve the
initial problem (1.1), one requires to trace the sequence of solutions {xk}

k�0

, as
t # 0+. For smooth self-concordant barrier function minimization problems, Nesterov
in [23] presented a path following strategy where a single Newton step per iteration is
used, for each well-chosen penalty parameter t

k

. Here, we adopt a similar strategy to
handle composite self-concordant barrier problems of the form (1.2) with a possibly
nonsmooth convex function g, mutatis mutandis.

Our contribution lies at the adaptive selection of t: given an approximate solution
of the proximal Newton step (1.4), we derive an update rule for the regularization
parameter t. In stark contrast, classical path-following (homotopy or continuation)
methods [13, 15] usually discretize the parameter t a priori and then solve (1.2) over
this grid.

Our proximal path following scheme goes through the following motions: Starting
from an initial value t t

0

, we solve (1.2) to obtain �-solution x0 to x⇤
t

0

; the selection
of t

0

is generally problem dependent. Section 4.3 describes a procedure on how to
compute a starting point x0. Then, at each k-th iteration, the scheme adaptively

updates t
k

and uses this new penalty parameter to perform a single proximal-Newton
(PN) iteration to approximately compute xk+1 which is provably close to x⇤

t

k+1

. This
strategy is illustrated in Figure 4.1.
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k
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[2] : kxk+1 � x

⇤
t

k+1

k
x

⇤
t

k+1

[3] : kx⇤
t

k+1

� x

⇤
t

k

k
x

⇤
t

k

[4] : �t

k

:= |t
k+1

� t

k

|
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⇤
t

k

Approximate solution sequence {xk}

one inexact PN iteration

?

Fig. 4.1. The approximate sequence {xk}k�0 along the solution trajectory x

⇤
t .

4.1. Quadratic convergence region. For our developments, we define �̃
k

:=
kxk�x⇤

t

k+1

k
x

⇤
t

k+1

; we bring to the attention of the reader the di↵erences with �
k+1

:=

kxk+1 � x⇤
t

k+1

k
x

⇤
t

k+1

. Given these definitions, for t ⌘ t

k+1

, (3.9) becomes

(4.1) �

k+1

 �

1� �̃
k

+

 

3� 2�̃
k

1� 4�̃
k

+ 2�̃2
k

!

�̃

2

k

,
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provided that 0  �̃

k

< 1 � p2/2. Let us define the weighted distance between two
solutions x⇤

t

k+1

and x⇤
t

k

w.r.t. two di↵erent values t
k+1

and t

k

of t as

(4.2) �
k

:= kx⇤
t

k+1

� x⇤
t

k

k
x

⇤
t

k+1

.

The following theorem shows that, for a range of values for �
k

and �, if �
k

 �, then
at the (k+1)-th iteration, we maintain the property �

k+1

 � for a given � > 0. The
proof can be found in the appendix.

Theorem 4.1. Let � 2 (0, 0.15] be fixed. Assume that � and �
k

satisfy � 
0.075� and �

k


p
��2.581�

2.581+

p
�

. Then, if �

k

 �, then our scheme guarantees that

�̃

k

 1

2.581

p
� and �

k+1

 �.
Let us define Qt

k

�

:=
�

xk 2 dom (F ) | �
k

 � . We refer to Qt

k

�

as the quadratic

convergence region of the inexact proximal-Newton iterations (3.3) for solving (1.2).
For fixed t

k

> 0, from Corollary 3.4, we can see that if the starting point x0 is chosen
such that �

0

2 Qt

k

�

, then the whole sequence
�

xk

 

generated by the proximal-Newton

scheme belongs to Qt

k

�

and converges to x⇤
t

k

, the solution of (1.2), at a quadratic

rate. In plain words, Theorem 4.1 indicates that if �-solution xk is in the quadratic
convergence region Qt

k

�

at x⇤
t

k

then, we can configure the proposed scheme such that

the next �-solution xk+1 remains in the quadratic convergence region Qt

k+1

�

at x⇤
t

k+1

.

4.2. An adaptive update rule for t. Next, we show how we can update the
penalty parameter t in our path-following scheme to ensure the condition on �

k

in
Theorem 4.1. The penalty parameter t is updated as

(4.3) t

k+1

:= t

k

+ d

k

,

where d

k

is a decrement or an increment over the current penalty parameter t
k

. The
following lemma shows how we can choose d

k

; the proof is provided in the Appendix.

Lemma 4.2. Let �
k

be defined by (4.2) such that �
k

< 1 and the penalty

parameter for the (k + 1)-th iteration be updated by (4.3). Then, we have

(4.4)
�

k

1 +�
k

 |d
k

|
t

k

kr2

f(x⇤
t

k+1

)k⇤
x

⇤
t

k+1

 |d
k

|
t

k

p
⌫.

Consequently, if we choose d

k

such that |d
k

|  t

kp
⌫

, then �
k

 |d
k

|
p
⌫

t

k

�|d
k

|
p
⌫

.

Now, we combine Lemma 4.2 and Theorem 4.1 to establish an update rule for t
k

.

The condition �
k


p
��2.581�

2.581+

p
�

=: C(�) in Theorem 4.1 holds if we force

|d
k

|p⌫
t

k

� |d
k

|p⌫  C(�),

which leads to |d
k

|  �
�

· t
k

, where �
�

:= C(�)

(1+C(�))

p
⌫

2 (0, 1). Then, based on Lemma

4.2, we can update t

k

as

(4.5) t

k+1

:= (1± �

�

)t
k

,

i.e., we can either increase t

k

or decrease t

k

by a factor 1 ± �

�

at each iteration
while preserving the properties of Lemma 4.2. For example, for � = 0.05, we have
C(�) ⇡ 0.033715 and �

�

⇡ 0.033715p
⌫

.
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4.3. Finding a starting point. In order to initialize the algorithm, we need to
find a point x0

t

0

2 dom (F ) such that �
0

:= kx0

t

0

� x⇤
t

0

k
x

⇤
t

0

 � for given � 2 (0, 0.15]
as indicated in Theorem 4.1. To achieve this goal, we apply the inexact damped

proximal-Newton method: Given t

0

> 0 and an initial point x0 2 dom (F ), we
generate a sequence

�

xj

 

j�0

, starting from x0, by computing

(4.6) xj+1 := xj + ↵

j

dj

, with dj := sj � xj

,

where ↵
j

2 (0, 1] is a given step size which will be defined later, dj is the approximate
proximal-Newton search direction, and sj is a trial point obtained by approximately
solving the following convex subproblem:

sj ⇡ s̄j := argmin
s2dom(F )

F

j(s; t
0

),(4.7)

Again, we denote with s̄j the exact solution of (4.7) and the approximation “⇡” is
defined as in Definition 3.1 with the accuracy � � 0.

It follows from (3.5) that

(4.8) F

j(s̄j ; t
0

)  F

j(sj ; t
0

)  F

j(s̄j ; t
0

) +
�

2

2
.

Given the inexact proximal-Newton search direction dj , we define ⇣
j

:= kdjk
x

j as the
inexact proximal-Newton decrement [37]. The following lemma shows how to choose
the step size ↵

j

; the proof is given in the appendix.
Lemma 4.3. Let

�

xj

 

j�0

be a sequence generated by the inexact damped proximal-

Newton scheme (4.6). If we choose the accuracy �

j

such that �  ⇣

j

then, with

↵

j

:= ⇣

j

��
(1+⇣

j

��)⇣
j

2 [0, 1] we have

(4.9) F (xj+1; t
0

)� F (x⇤
t

0

; t
0

)  F (xj ; t
0

)� F (x⇤
t

0

; t
0

)� !(⇣
j

� �), 8j � 0.

Moreover, for fixed �  ⇣
j

, the above step size ↵

j

is optimal.

At each iteration, assume � := ⇣

j

where  2 (0, 1) (see Section 6). For a
given � 2 (0, 0.15], from Lemma 2.5 we deduce that �

0

:=
�

�x0

t

0

� x⇤
t

0

�

�

x

⇤
t

0

 � if

F (x0

t

0

; t
0

)� F (x⇤
t

0

; t
0

)  !(�). To achieve such bound, assume that we can estimate
an upper bound of the quantity �

0

� F (x0; t
0

)�F (x⇤
t

0

; t
0

) � 0. By using the estimate
(4.9), we deduce

F (xj+1; t
0

)� F (x⇤
t

0

; t
0

)  F (x0; t
0

)� F (x⇤
t

0

; t
0

)�
j

X

l=0

! ((1� )⇣
l

)

 �
0

�
j

X

l=0

! ((1� )⇣
l

) .(4.10)

We now define

(4.11) �
j

max

:=
j

max

X

l=0

! ((1� )⇣
l

) + !(�).

Then, we observe that, if �
j

max

� �

0

, then one can guarantee �
0

 �, where x0

t

0

:=
xj

max

+1. We note that for j  j

max

, we have ⇣
j

� �. Therefore, if we choose � := �

for some  2 (0, 1), we satisfy the assumption � < ⇣

j

.
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Algorithm 1: Inexact path following proximal Newton algorithm

Input: Choose t

0

> 0, � 2 (0, 0.15],  2 (0, 1) and x0 2 dom (F ). Compute
an upper bound �

0

> 0 for F (x0; t
0

)� F (x⇤
t

0

; t
0

).

Initialize: ��1

:= !(�), C(�) :=
p
��2.581�

2.581+

p
�

, �
�

:= C(�)

(1+C(�))

p
⌫

.

Phase I: Computing an initial point

for j = 0, · · · , j
max

1: Compute dj via (4.6) by solving (4.7) approximately up to � := �.
2: Compute ⇣

j

:= kdjk
x

j .
3: �

j

:= �
j�1

+ !((1� )⇣
j

).
if �

j

� �
0

then
4: x0

t

0

:= xj .
5: break

end if
6: xj+1 := xj + ↵

j

dj where ↵
j

:= (1� ) [1 + (1� )⇣
j

]�1.
end for

Phase II: Path following iteration

for k = 0, . . . , k
max

or while stopping criterion is not met
7: t

k+1

:= (1± �

�

) t
k

.
8: Given xk

t

k

, solve (1.4) approximately up to �
k

 0.075� to obtain xk+1

t

k+1

.
end

4.4. Our prototype scheme. The proposed algorithm is given in Algorithm 1.
The main steps are Step 1 and Step 7, where we need to solve two convex subproblems
of the form (3.3)-(4.7). For certain regularizers g such as the `

1

-norm, the nuclear
norm or the indicator of a simple convex set, there exist several e�cient algorithms
for this kind of optimization problems [5, 6, 23, 24]. The update rule for t

k

at Step 6
of Phase II is based on the worst-case estimate (4.4). In practice, we can adaptively
update t

k

as discussed later in Section 6.

4.5. Convergence analysis. In this subsection, we provide the full complexity
analysis for Phase I and Phase II of Algorithm 1 separately. Since we consider the
case t # 0+, we assume t

k+1

= (1 � �
�

)t
k

and t

0

� 0+. The worst-case complexity
estimate of Algorithm 1 is given in the following theorem.

Theorem 4.4. The number of iterations required in Phase I to find x0

t

0

2 dom (F )
such that �

0

 � is at most

(4.12) j

max

:=

�

F (x0; t
0

)� F (x⇤
t

0

; t
0

)

!((1� )�)
⌫

+ 1.

The number of iterations required in Phase II to reach the approximate solution xk

max

of x⇤
t

f

, where t

f

is a user-defined value, close to 0+ and �

k

max

 �, is at most

(4.13) k

max

:=

�

ln(t
0

/t

f

)

� ln(1� �
�

)

⌫

+ 1,

where �

�

is given by (4.5). The worst-case complexity of Phase II is O
⇣p

⌫ ln
�

t

0

t

f

�

⌘

.
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Proof. From Lemma 4.3 and the choice of � we have

F (xj+1; t
0

)� F (x⇤
t

0

; t
0

)  F (xj ; t
0

)� F (x⇤
t

0

; t
0

)� ! ((1� )⇣
j

) , 8j � 0.

Moreover,

0  F (xj ; t
0

)� F (x⇤
t

0

; t
0

)  F (x0; t
0

)� F (x⇤
t

0

; t
0

)�
j�1

X

l=0

! ((1� )⇣
l

)

 F (xj ; t
0

)� F (x⇤
t

0

; t
0

)� j!((1� )�).

This implies

j  F (x0; t
0

)� F (x⇤
t

0

; t
0

)

!((1� )�) ,

which shows that the number of iterations to obtain �
0

 � is at most j
max

.
For Phase II, by induction, we have t

k

= t

0

(1 � �
�

)k. Since we desire t

k

 t

f

,

which leads to k � ln(t

0

/t

f

)

� ln(1��
�

)

.

Finally, note that ln(1 � �
�

) ⇡ �

�

. By the definition of �
�

= C(�)

(C(�)+1)

p
⌫

, we

obtain that the worst-case complexity of Phase II, which is O
⇣p

⌫ ln
�

t

0

t

f

�

⌘

.

5. Application to constrained convex optimization. We now specify Al-
gorithm 1 to solve the constrained convex programming problem of the form (1.1).
We assume that f is the ⌫ - self-concordant barrier associated with ⌦ such that
Dom(f) ⌘ ⌦. First, we show the relation between the solution of the constrained
problem (1.1) and the parametric problem (1.2) in the following lemma, whose proof
can be found in the appendix.

Lemma 5.1. Let x⇤
be a solution of (1.1) and x⇤

t

be the solution of (1.2) at a

given t > 0, i.e., x⇤
t

2 int(⌦). Then, for any t > 0, x⇤
t

is strictly feasible to (1.2) and

(5.1) 0  g(x⇤
t

)� g(x⇤)  t⌫.

Let xk+1

be the point generated by Algorithm 1 at the iteration k+1 and x⇤
t

k+1

be the

solution of (1.2) at t = t

k+1

. Then

(5.2) � ⌫t
k+1

 g(xk+1)�g(x⇤
t

k+1

)  t

k+1

 

p
⌫

�

k+1

1��̃
k

+
�̃

k

(1��̃
k

)2

⇣

�

k+1

+�̃
k

+�
⌘

+
�

2

2

!

.

provided that �̃

k

< 1. Consequently, it holds that

(5.3) � ⌫t
k+1

 g(xk+1)� g(x⇤)  t

k+1

 (⌫, �̃
k

,�

k+1

, �),

where  (⌫, �̃
k

,�

k+1

, �) := ⌫ +
p
⌫

�

k+1

1�˜

�

k

+
˜

�

k

(1�˜

�

k

)

2

⇣

�

k+1

+ �̃

k

+ �

⌘

+ �

2

2

and �̃

k

< 1.

The estimate (5.1) in Lemma 5.1 shows that for su�ciently small t > 0, the
solution x⇤

t

of (1.2) approximates the solution x⇤ of (1.1), i.e. g(x⇤
t

) ! g(x⇤) as
t # 0+. The estimate (5.3) in Lemma 5.1 suggests that if a sequence

�

(xk

, t

k

)
 

k�0

is

generated by Algorithm 1 for t
f

 " then �xk

 

k�0

converges to x⇤ provided that the

parameter t
k

is updated as t
k+1

:= (1� �
�

)t
k

and �  �̄ (See Theorem 4.1).
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If we apply Algorithm 1 to solve the constrained optimization problem (1.1), then
we need to change the stopping criterion as t

f

 " for a given accuracy " > 0. Then
the convergence of Algorithm 1 for solving (1.1) is given in the following theorem.

Theorem 5.2. Let

�

(xk

, t

k

)
 

k�0

be a sequence generated by Algorithm 1 for

solving (1.1). Then, after k

max

iterations in Phase II, we have the following bound

(5.4)
�

�

g(xk

max)� g(x⇤)
�

�   (�, ⌫)t
k

max

,

where  (�, ⌫) := ⌫+
p
⌫

�

1�0.4

p
�

+ 0.4

p
�

(1�0.4

p
�)

2

�

1.075� + 0.4
p
�

�

+0.003�2

is a constant.

Consequently, the worst-case analytical complexity of Phase II in Algorithm 1 to

achieve an "-optimal solution, i.e.,

�

�

g(xk

max)� g(x⇤)
�

�  ", is O
⇣p

⌫ log( t0 (�,⌫)
"

)
⌘

.

Proof. By the definition of  in Lemma 5.1 we can easily show that  (�, ⌫) � ⌫.
On one hand, using this relation and (5.3), we have

�

�

g(xk+1)� g(x⇤)
�

�   (�, ⌫)t
k+1

.
On the other hand, by induction, we have t

k

= (1��
�

)kt
0

after k iterations. Therefore,
if (1��

�

)kt
0

 (�, ⌫)  ", we can conclude that
�

�

g(xk)� g(x⇤)
�

�  ". The last condition
leads to k � log

⇣
t

0

 (�,⌫)

"

⌘

� log(1��
�

)

. Since log(1� �
�

) ⇡ ��
�

, we conclude that the worst-case

complexity of Phase II in Algorithm 1 is O
⇣p

⌫ log( t0 (�,⌫)
"

)
⌘

.

6. Numerical experiments. In this section, we first discuss the implementa-
tion aspects of Algorithm 1. Next, we show how to customize this algorithm to solve
a standard convex programming problem. Then, we provide three numerical exam-
ples: The first example is a synthetic low-rank approximation problem with additional
constraints to highlight the ine�ciency of o↵-the-self solvers. The second one is an ap-
plication to clustering using max-norm as a concrete example for constrained convex
optimization. The third example is an application to graph learning where we track
the approximate solution of this problem along the regularization parameter horizon.

6.1. Implementation issues. Some fundamental implementation issues in Al-
gorithm 1 are the following:

Methods for subproblems (3.3) and (4.7) and warm-start. The main ingredient in
Algorithm 1 is the solution of (3.3) and (4.7). The more e�ciently this problem is
solved, the faster Algorithm 1 becomes. For certain classes of g, e.g., `

1

-norm, nuclear
norm, atomic norm or simple projections, this problem is well-studied.

Subproblems (3.3) and (4.7) have the same structure over the iterations. This
observation can be exploited a priori by using the similarity between rf(xk�1),
r2

f(xk�1) and rf(xk), r2

f(xk), for each k. Since evaluating rf and r2

f is the
most costly part in the subsolvers, exploiting properly the problem structure for com-
puting these quantities can accelerate the algorithm (see the examples below).

Second, (3.3) and (4.7) is strongly convex. Several first order methods can be
applied and yield a linear convergence [5, 23, 24]. When g is the indicator of a polytope
or a convex quadratic set (e.g., Euclidian balls), it turns out to be a quadratic program
or a quadratically constrained quadratic program. E�ciency of solving this problem
is well-understood.

Finally, warm-start strategies is key for e�ciently solving (3.3) and (4.7). Given
that the information from the previous iteration is available, the distance bewteen xk

and xk+1 is usually small. This observation suggests us to initialize the subsolvers
with the solution provided by the previous iteration. Note that warm-start is very
important in active-set methods [27], which can be used as a workhorse for (3.3) and
(4.7).
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Adaptive parameter update. Since the update rule t

k+1

:= (1± �

�

)t
k

is based on
the worst-case estimate of �

�

, it is better to replace it by an adaptive factor �
k

for
acceleration. In fact, from the proof of Lemma 4.2 we can derive

(6.1) t

k+1

(1 +�
k

)�1�
k

 |d
k

| ��rf(x⇤
t

k

)
�

�

⇤
x

⇤
t

k+1

.

First, one can show that krf(x⇤
t

k

)k⇤
x

⇤
t

k+1

 (1 � �̃
k

)�1krf(x⇤
t

k

)k⇤
x

k

. Second, by the

triangle inequality, we have krf(x⇤
t

k

)k⇤
x

k

 krf(x⇤
t

k

) � rf(xk)k⇤
x

k

+ krf(xk)k⇤
x

k

.
However, since krf(x⇤

t

k

) � rf(xk)k⇤
x

k

 (1 � �
k

)�1

�

k

, the last inequality leads to
krf(x⇤

t

k

)k⇤
x

k

 (1 � �

k

)�1

�

k

+ krf(xk)k⇤
x

k

. Combining all these derivations, we
eventually get

(6.2) krf(x⇤
t

k

)k⇤
x

⇤
t

k+1

 (1� �̃
k

)�1

�

(1� �
k

)�1

�

k

+ krf(xk)k⇤
x

k

�

.

From Theorem 4.1, we have �
k

 � and �̃
k

 0.3874
p
�. Then, if we define

R

k

(�) := (1� 0.3874
p

�)�1

⇣

(1� �)�1

� +
�

�rf(xk)
�

�

⇤
x

k

⌘

 (1� 0.3874
p

�)�1

�

(1� �)�1

� +
p
⌫

�

,(6.3)

then, we can derive the update rule for t
k

as t
k+1

= (1± �

k

)t
k

, where �
k

is given as

(6.4) �

k

:= max

⇢

C(�)

C(�) + (1� C(�))R
k

(�)
,�

�

�

2 (0, 1),

and C(�) and �
�

are given in the previous section. A similar strategy for updating t

in the case f(x) is replaced by f(x) + cTx can be derived by using the same trick, as
used in the third numerical example below.

6.2. Instances of Algorithm 1. Algorithm 1 can be customized to solve a
broad class of constrained convex problems of the form:

(6.5)
min
x2R

n

h(x)

s.t x 2 C \ ⌦,

where h is a proper, lower semicontinuous and convex function, C is a nonempty,
closed and convex set, ⌦ is also a nonempty, closed and convex endowed with a ⌫-self-
concordant barrier f . Let g(x) := h(x) + �C(x), where �C is the indicator function of
C. Then, problem (6.5) can equivalently be converted into (1.1).

As a concrete example, we show that Algorithm 1 can be customized to solve
the constrained problems of the form (1.1) with additional linear equality constraints
Ax = b. For simplicity of discussion, let us consider the following standard quadratic
conic programming problem:

(6.6)
min
x2K

1

2

xTQx+ qTx

s.t. Ax = b,

where Q is a symmetric positive semidefinite and K is a proper, closed, self-dual
cone in Rn (including positive semidefinite cone), which is endowed with a ⌫-self-
concordant barrier f . It is also possible to include inequality constraints Bx  c.
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In order to customize Algorithm 1 for solving (6.6), we define g(x) := 1

2

xTQx+
qTx + �C(x), where �C is the indicator function of C := {x 2 Rn | Ax = b}. Then,
problem (6.6) can be cast into (1.1). In principle, we can apply Algorithm 1 to solve
the resulting problem. Now, let us consider the corresponding convex subproblem
(3.3) associated with (6.6) as follows

(6.7) min

x2int(K)

n

1

2

x

T
⇣

tr2f(xk
) +Q

⌘

x+

⇣

q+trf(xk
)�tr2f(xk

)x

k
⌘T

x+ �C(x)
o

.

The optimality condition for this problem becomes

(6.8)

(

�

Q+ tr2

f(xk)
�

x+ q+ trf(xk)� tr2

f(xk)xk +ATy = 0,

Ax� b = 0.

Here, y is the Lagrange multiplier associated with the equality constraintsAx�b = 0.
Let us define d := x� xk, then we can write (6.8) as follows

(6.9)

✓

Q+ tr2

f(xk) AT

A 0

◆✓

d
y

◆

=

✓�q�Qxk � trf(xk)
b�Axk

◆

.

Solving this linear system provides us a Newton search direction for Algorithm 1. In
fact, this linear system (6.9) coincides with the system of computing Newton direction
in standard primal interior-point methods for solving (6.6) directly, see, e.g., [7, 25,
30, 39].

6.3. Low-rank SDP matrix approximation. To illustrate the scalability and
accuracy of the proposed path-following scheme, we consider the following matrix
approximation problem:

(6.10)
min
X

⇢ kvec (X�M)k
1

+ (1� ⇢)tr (X)

s.t. X ⌫ 0, L
ij

 X
ij

 U
ij

, i, j = 1, . . . , n.

Here M 2 Rn⇥n is a given matrix (not necessarily positive definite); ⇢ 2 [0, 1] is a
given regularization parameter and L and U are the element-wise lower and upper
bound of M. Problem (6.10) is a convex relaxation of the problem of approximating
M by a low-rank and positive semidefinite matrix X. Here, the trace-norm is used to
approximate the rank of X and k·k

1

is used to measure the distance from X to M.
Let ⌦ := Sn

++

the cone of symmetric positive semidefinite matrices, and g(X) :=
⇢ kvec (X�M)k

1

+ (1 � ⇢)tr (X) + �

[L,U]

(X), where �
[L,U]

is the indicator function
of the interval

[L,U] := {X 2 Sn | L
ij

 X
ij

 U
ij

, i, j = 1, · · · , n} .
Since f(X) := � log det(X) is the standard barrier function of ⌦, we can reformulate
(6.10) in the form of (1.1).

In this example, we test Algorithm 1 and compare it with two standard interior
point solvers, called SDPT3 [38] and SeDuMi [33]. The parameters are configured as
follows. We choose t

0

:= 10�2 and terminate the algorithm if t
k

 10�7. The starting
point X0 is set to X0 := 0.1I, where I is the identity matrix. We tackle (1.4) and
(4.7) by applying the FISTA algorithm [5], where the accuracy is controlled at each
iteration.

The data is generated as follows. First, we generate a sparse Gaussian random
matrix R ⇠ N (0, 1) of the size n ⇥ k, where k = b0.25nc is the rank of R, and the
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sparsity is 25%. Then, we generate matrix M := RTR+ 10�4E, where E ⇠ N (0, I).
The lower bound L and the upper bound U are given as L := (m

l

� 0.1 |m
l

|)I and
U := (m

u

+ 0.1 |m
u

|)I, where m

l

:= min
i,j

M
ij

and m

u

:= max
i,j

M
ij

.
We test three algorithms on five problems of size n 2 {80, 100, . . . , 160} w.r.t.

⇢ = 0.2. Table 6.1 reports the results and the performance of these three algorithms.
Our platform is Matlab 2011b on a PC Intel Xeon X5690 at 3.47GHz per core with
94Gb RAM.

Table 6.1
Comparison of Algorithm 1, SDPT3 and SeDuMi

Solver\n 80 100 120 140 160

Size [n

v

;n

c

] [16,200; 9,720] [25,250; 15,150] [36,300; 21,780] [49,350; 29,610] [64,400; 38,640]

Time (sec)
PFPN 15.738 24.046 24.817 25.326 36.531
SDPT3 156.340 508.418 881.398 1742.502 2948.441
SeDuMi 231.530 970.390 3820.828 9258.429 17096.580

g(X⇤)
PFPN 306.9159 497.6706 635.4304 842.4626 1096.6516
SDPT3 306.9153 497.6754 635.4306 842.4644 1096.6540
SeDuMi 306.9176 497.6821 635.4384 842.4776 1096.6695

[rank, sparsity]
PFPN [20, 30.53%] [26, 27.37%] [30, 25.27%] [35, 23.64%] [40, 21.54%]
SDPT3 [20, 41.02%] [25, 36.99%] [30, 51.61%] [35, 45.03%] [40, 49.07%]
SeDuMi [20, 45.23%] [25, 64.20%] [30, 54.83%] [35, 60.87%] [40, 59.24%]

From Table 6.1 we can see that if we reformulate problem (6.10) into a standard
SDP problem where SDPT3 and SeDuMi can solved, then the number of variables
n

v

and the number of constraints n

c

increase rapidly (highlighted with red color).
Consequently, the computational time in SDPT3 and SeDuMi also increase significantly
compared to Algorithm 1. Moreover, SeDuMi is much slower than SDPT3 in this
particular example. Since Algorithm 1 does not require to transform problem (6.10)
into a standard SDP problem, we can clearly see the computational advantage of
this algorithm to standard interior-point solvers, e.g., SDPT3 and SeDuMi, for solving
problem (6.10). We note that the implementation of the proposed scheme is still a
prototype, coded in Matlab without any preconditioning strategy.

6.4. Max-norm and `

1

-norm optimization in clustering. In this example,
we show an application of Algorithm 1 to solve a constrained SDP problem arising
from the correlation clustering [3], where the number of clusters is unknown. Briefly,
the problem statement is as follows: Given a graph with p vertices, let A be its
a�nity matrix (cf., [3] for the definition). The clustering goal here is to partition the
set of vertices such that the total disagreement with the edge labels is minimized in
A, which is an explicitly combinatorial problem. The work in [19] proposes a tight
convex relaxation (1.3), poses significant di�culties to the IPM methods in large-scale.
The approach is called max-norm constrained clustering, and if solved correctly, has
rigorous theoretical guarantees of correctness for its solution.

In this example, we demonstrate that Algorithm 1 can obtain medium accuracy
solutions in a scalable fashion as compared to a state-of-the-art IPM. Here, we use the
adaptive update rule (4.5). The algorithm terminates if t

k

 10�3 and �

k

 10�8.
We also solve (1.4) and (4.7) by applying FISTA.

We compare our algorithm with the o↵-the-self, IPM implementation SDPT3 [38],
both in terms of time- and memory-complexity. Since the curse-of-dimensionality
renders the execution of SDPT3 impossible in large dimensions, we use the low precision
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Table 6.2
Average values over 10 Monte Carlo iterations for each dimension p. The variable K

⇤ refers
to the respective solution at convergence as returned by the algorithms under comparison.

p 50 75 100 150 200

Time (sec)

PF 62.450 109.426 202.600 416.044 1573.881
SDPT3 4.396 21.282 64.939 522.021 2588.721

[19] 102.217 236.366 354.444 778.904 1420.844

g(K⇤
)

PF 549.1567 1293.6727 2232.5897 5396.0485 9809.6066
SDPT3 549.1860 1293.7890 2233.0747 5396.7305 9809.6934

[19] 597.8825 1387.1379 2496.6535 5583.8605 9958.0974

mode in SDPT3 (i.e., " ⇡ 1.5 ⇥ 10�8) in order to execute larger problems within
a reasonable time frame. We compare these two schemes based on synthetic data,
generated as described in [19].
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Dimension p
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l
ex

ec
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ti
o
n
ti
m
e
(s
ec
)

 

 

SDPT3
Path follow ing scheme

O(p5.5 )

O(p3)

SDPT3 PF scheme

p variables constraints variables

50 15.1 2.6 10

75 33.9 5.8 22.5

100 60.2 10.2 40

150 135.3 22.8 90

200 240.4 40.4 160

Fig. 6.1. (Left) Execution times. (Right) Number of variables and equality constraints in
thousands.

In terms of solution accuracy, our scheme with the aforementioned parameter
settings is comparable to the low-precision mode of SDPT3, and can often obtain
accurate solutions (cf., Table 6.2). However, Figure 6.1(Left) illustrates that our path
following scheme has a rather dramatic scaling advantage as compared to SDPT3:
O(p3) for ours vs. O(p5.5) for SDPT3. Because of this scaling, SDPT3 cannot handle
problems instances where p > 200 in our computer.

Reasons for our scalability are twofold. First, our path following scheme avoids
“lifting” the problem into higher dimensions. Hence, as the problem dimensions grow
(cf., Fig. 6.1(Right); numbers are in thousands), our memory requirement scales in a
better fashion. Moreover, we do not have to handle additional (in)equality constraints.
Second, the subproblem solver has linear convergence rate due to its construction (i.e.,
r2

f � 0). Hence, our fast solver (FISTA) obtains medium accuracy solutions quickly
since the proximal operator is e�cient and has a closed form.

We also compare the proposed scheme with the scalable Factorization Method
(FM), presented in [19]: a state-of-the-art, non-convex implementation of (1.3), based
on splitting techniques. The code is publicly available at http://www.ali-jalali.
com/. We modified this code to include a stopping criterion at a tolerance of

�

�Kk+1 �Kk

�

�

F

 10�8 max
�

�

�Kk

�

�

F

, 1
 

.
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In Table 6.2, we report the average results of 10 Monte-Carlo realizations for di↵erent
p’s. While the non-convex approach exhibits lower computational complexity em-
pirically,1 its solution quality su↵ers as compared to the convex solution, which has
theoretical guarantees. It is clear that the non-convex approach is rather susceptible
to local minima.

6.5. Sparse Pareto frontier in sparse graph learning. Many machine learn-
ing and signal processing problems naturally feature composite minimization prob-
lems where f is directly self-concordant, such as sparse regression with unknown noise
variance [32], Poisson imaging [17], one-bit compressive sensing, and graph learning
[28, 20]. Here, we consider the graph learning problem: Let ⌃ be the covariance
matrix of a Gaussian Markov random field (GMRF) and let X = ⌃�1. To satisfy
the conditional dependencies with respect to the GMRF, X must have zero in X

ij

corresponding to the absence of an edge between node i and node j [11]. Hence, given

the empirical covariance b⌃ ⌫ 0, which is possibly rank deficient, we would like to
learn the underlying GMRF.

It turns out that we can still learn GMRF’s with theoretical consistency guaran-
tees from a number of data samples as few as m = O(d2 log p) [28], where d is the
graph node degree, via

(6.11) min
X2Rp⇥p

: X�0

n

� log det(X) + tr
⇣

b⌃X
⌘

+ ⇢ kvec (X)k
1

o

,

where ⇢ > 0 is a regularization parameter. We easily observe that (6.11) satisfies the
P(t) formulation for t = 1/⇢. Unfortunately, the theoretical results only indicate the
existence of a regularization parameter for consistent estimates and we have to tune
to obtain the best ⇢⇤ in practice. We note that the function f(X) := � log det(X)
is a self-concordant barrier of Sp

+

. As discussed in Subsection 6.1, we can modify
the update rule for ⇢

k

, we can still apply Algorithm 1 to track the Pareto frontier of
problem (6.11) for the case f(·) + hc, ·i.

To the best of our knowledge, the selection of ⇢⇤ with respect to a general-purpose
objective, such as P(⇢), still remains widely open. For GMRF learning, a homotopy
approach is proposed in [31, 21], where ⇢ is updated by a non-adaptive multiplicative
factor such that ⇢

k+1

= c⇢

k

for 0 < c < 1. This approach is usually time consuming
in practice, and may skip solutions with sparsity close to the desired sparsity level.
Traditionally, (6.11) is addressed by IPM’s. Other than [37] exploited here, we do
not know any scalable method that has rigorous global convergence guarantees for
(6.11) as it has a globally non-Lipschitz continuous gradient. The authors in [1] use a
probabilistic heuristic to select ⇢: as the number of samples go to infinity, this heuristic
leads to the maximum likelihood (unregularized) estimator. In practice though, the
proposed ⇢ values are quite large and do not consistently lead to good solutions.

To this end, our scheme provides an adaptive strategy on how to update the
regularization parameter. For instance, we can pick a range ⇢ 2 [⇢

min

, ⇢

0

] and apply
our path-following scheme, starting from ⇢

0

until we either achieve the desired solution
sparsity or we reach the lower bound ⇢

min

. To illustrate the approach, we choose two
real data examples from http://ima.umn.edu/

~

maxxa007/send_SICS/: Lymph and
Leukemia, where the GMRF sizes are p = 587 and 1255, respectively. Figure 6.2
shows the solution sparsity vs. the penalty parameter curve (not to be confused with
f vs. g curve, which is a convex Pareto curve) as obtained in a tuning-free fashion by
our scheme.

1Theoretically, FM’s computational cost is proportional to the cost of p⇥p matrix multiplications.
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Fig. 6.2. Impact of the regularization parameter to the solution sparsity.

Table 6.3
The relative error and the number of nonzero elements of two approximate solutions

⇢ 0.1 0.2 0.3 0.4 0.5

Lymph (n = 587)

Relative error ek 0.0011 0.0013 0.0018 0.0018 7.5342⇥ 10�6

n.n.z. (eX(⇢k)/Xk) 37587/37561 20275/20269 14901/14875 9869/9871 4615/4615

Leukemia (n = 1255)

Relative error ek 6.1643⇥ 10�4 5.5701⇥ 10�4 6.2124⇥ 10�4 5.6060⇥ 10�4 3.6497⇥ 10�6

n.n.z. (eX(⇢k)/Xk) 102313/102253 56451/56421 45051/45055 41613/41609 34761/34761

In order to verify the obtained Pareto curve
�

Xk

 

well approximates the true
solution trajectory X⇤(⇢) of the problem (6.11), we apply the proximal-Newton algo-

rithm in [36] to compute the approximate solution eX(⇢
k

) to X⇤(⇢
k

) at five di↵erent

points of ⇢. The relative errors e

k

:=
�

�

�

Xk � eX(⇢
k

)
�

�

�

F

/max
n

eX(⇢
k

)
o

as well as the

number of nonzero elements n.n.z. are shown in Table 6.3. We can see from this
table that both solutions are relatively close to each other both in terms of relative
error and the sparsity.

7. Concluding remarks. We have proposed a new inexact path-following frame-
work for minimizing (possibly) non-smooth and non-Lipschitz gradient objectives un-
der constraints that admit a self-concordant barrier. We have shown how to solve
such problems scalably without inflating problem dimensions or introducing additional
slack variables and constraints. Our method is quite modular: custom implementa-
tions only require the corresponding custom solver for the composite subproblem (1.4)
with a strongly convex quadratic smooth term and a tractable proximity of the sec-
ond term g. We have provided a rigorous analysis that establish the worse complexity
of our approach via a new joint treatment of proximal methods and self-concordant
optimization schemes. While our scheme maintains the original problem structure,
its worst-case complexity remains the same as in standard path-following interior
point methods [23]. We have also shown how the new scheme can obtain points on
the Pareto frontier of regularized problems (with globally non-Lipschitz gradient of
the smooth part). We have numerically illustrated our method on three examples
involving the nonsmooth constrained convex programming problems of matrix vari-
ables. Numerical results have shown that the new path-following scheme is superior
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to some o↵-the-self solvers that require to transform the problem into standard conic
programs.
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Appendix A. Technical proofs. We provide in this appendix the full proofs
of two theorems: Theorem 3.3 and Theorem 4.1, and three technical lemmas: Lemma
4.2, Lemma 4.3 and Lemma 5.1.

A.1. The proof of Theorem 3.3. We define the restricted approximate gap
between r2

f(x⇤
t

) and r2

f(xk) along the direction x̄k+1 � xk as r̄k := (r2

f(x⇤
t

) �
r2

f(xk))(x̄k+1 � xk). Then, by using the definition (2.3) of P g

x

and (2.4) of S
x

, we
can write (3.4) equivalently to

(A.1) x̄k+1 = P

g

x

⇤
t

�

S

x

⇤
t

(xk) + r̄k
�

.

Now, we can estimate �̄
k+1

:=
�

�x̄k+1 � x⇤
t

�

�

x

⇤
t

as follows

�̄

k+1

:=
�

�x̄k+1 � x⇤
t

�

�

x

⇤
t

(A.1)+(2.7)

=
�

�

�

P

g

x

⇤
t

�

S

x

⇤
t

(xk) + r̄k
�� P

g

x

⇤
t

�

S

x

⇤
t

(x⇤
t

)
�

�

�

�

x

⇤
t

(2.6)

 �

�

S

x

⇤
t

(xk)� S

x

⇤
t

(x⇤
t

) + r̄k
�

�

⇤
x

⇤
t

 ��S
x

⇤
t

(xk)� S

x

⇤
t

(x⇤
t

)
�

�

⇤
x

⇤
t

+
�

�r̄k
�

�

⇤
x

⇤
t

.(A.2)

Similarly to the proof of [36, Theorem 5], we show that

(A.3)
�

�

S

x

⇤
t

(xk)� S

x

⇤
t

(x⇤
t

)
�

�

⇤
x

⇤
t

 �

2

k

1� �
k

,

provided that �
k

< 1.
Next, we estimate

�

�r̄k
�

�

⇤
x

⇤
t

. We have

�

�r̄k
�

�

⇤
x

⇤
t

=
�

�

�r2

f(x⇤
t

)�r2

f(xk)
�

(x̄k+1 � xk)
�

�

⇤
x

⇤
t


�

�

�

r2

f(x⇤
t

)�1/2

�r2

f(x⇤
t

)�r2

f(xk)
�r2

f(x⇤
t

)�1/2

�

�

�

2!2

�

�x̄k+1 � xk

�

�

x

⇤
t

=
�

�

�

I�r2

f(x⇤
t

)�1/2r2

f(xk)r2

f(x⇤
t

)�1/2

�

�

�

2!2

�

�x̄k+1 � xk

�

�

x

⇤
t

.(A.4)

By applying [23, Theorem 4.1.6], we can show that
�

�

�

I�r2

f(x⇤
t

)�1/2r2

f(xk)r2

f(x⇤
t

)�1/2

�

�

�

2!2

 max
�

1� (1� �
k

)2, (1� �
k

)�2 � 1
 

=
2�

k

� �2
k

(1� �
k

)2
.

Substituting this estimate into (A.4) and then using the triangle inequality, we obtain

(A.5)
�

�r̄k
�

�

x

⇤
t


✓

2�
k

� �2
k

(1� �
k

)2

◆

�

�x̄k+1 � xk

�

�

x

⇤
t


✓

2�
k

� �2
k

(1� �
k

)2

◆

�

�̄

k+1

+ �

k

�

,
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provided that �
k

< 1.
Substituting (A.3) and (A.5) into (A.2) and then rearranging the result, we deduce

(A.6) �̄

k+1


✓

3� 2�
k

1� 4�
k

+ 2�2
k

◆

�

2

k

,

provided that 1�4�
k

+2�2
k

> 0. We can easily show that the condition 1�4�
k

+2�2
k

>

0 holds if �
k

2 [0, 1�
p
2

2

).
Note that 0 � r2

f(x⇤
t

) � (1��
k

)�2r2

f(xk) due to [23, Theorem 4.1.6]. For any
u, we have kuk

x

⇤
t

 (1��
k

)�1 kuk
x

k

. By using this inequality, (3.7) and the triangle
inequality, it is easy to show that

�

k+1

=
�

�xk+1 � x⇤
t

�

�

x

⇤
t

 ��xk+1 � x̄k+1

�

�

x

⇤
t

+
�

�x̄k+1 � x⇤
t

�

�

x

⇤
t

(3.7)

 (1� �
k

)�1

� + �̄

k+1

.

By substituting (A.6) into this inequality, we obtain

�

k+1

 �

1� �
k

+

✓

3� 2�
k

1� 4�
k

+ 2�2
k

◆

�

2

k

.(A.7)

Since �
k

2 [0, 1 �
p
2

2

), the right-hand side of (A.7) is well-defined. Moreover, it is
obvious to check that the right-hand side of (A.7) is increasing w.r.t. � � 0 and

�

k

2 [0, 1�
p
2

2

). ⇤
A.2. The proof of Theorem 4.1. We define the function  (�) := 3�2�

1�4�+2�

2

.

It is easy to check that  is increasing in [0, 1 � p2/2). Let us limit the range of
� 2 [0, 0.15]. Then, one can show that max { (�) | � 2 [0, 0.15]}  6.5. Hence, we
can upper estimate (4.1) as

(A.8) �

k+1

 1.18� + 6.07�̃2
k

.

Now, we recall the following estimate from [35, Lemma A.1.(c)] as

�̃

k

 �

k

+�
k

1��
k

,(A.9)

provided that �
k

< 1.
Let us fix some � 2 (0, 1.5]. By the assumption �

k

 �, it follows from (A.9) that

(A.10) �̃

k

 �

k

+�
k

1��
k

 � +�
k

1��
k

.

Substituting (A.10) into (A.8) we obtain

(A.11) �

k+1

 1.18� + 6.07

✓

� +�
k

1��
k

◆

2

.

Since we desire �
k+1

 �, by using (A.11), we require
⇣

�+�

k

1��

k

⌘

2

 ��1.18�

6.07

provided

that � < �/1.18. Since �  0.075�, the last condition leads to

0  �
k


p
� � 2.581�

2.581 +
p
�

< 1,(A.12)

for any � 2 (0, 0.15]. Finally, we can easy check that �̃
k

 1

2.581

p
� due to (A.8). ⇤
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A.3. The proof of Lemma 4.2. Since x⇤
t

k

and x⇤
t

k+1

are the solutions of (1.2)
at t = t

k

and t = t

k+1

, respectively, they satisfy the following optimality conditions:

0 2 t

k

rf(x⇤
t

k

) + @g(x⇤
t

k

),

0 2 t

k+1

rf(x⇤
t

k+1

) + @g(x⇤
t

k+1

).

Hence, there exist v
k

2 @g(x⇤
t

k

) and v
k+1

2 @g(x⇤
t

k+1

) such that v
k

= �t
k

rf(x⇤
t

k

)
and v

k+1

= �t
k+1

rf(x⇤
t

k+1

). Then, we have

v
k+1

� v
k

= t

k

rf(x⇤
t

k

)� t

k+1

rf(x⇤
t

k+1

)

(4.3)

= t

k

⇣

rf(x⇤
t

k

)�rf(x⇤
t

k+1

)
⌘

� d

k

rf(x⇤
t

k+1

).

By using the convexity of g, the last expression implies

0  (v
k+1

� v
k

)T (x⇤
t

k+1

� x⇤
t

k

)

= t

k

⇣

rf(x⇤
t

k

)�rf(x⇤
t

k+1

)
⌘

T

(x⇤
t

k+1

� x⇤
t

k

)� d

k

rf(x⇤
t

k+1

)T (x⇤
t

k+1

� x⇤
t

k

)

 t

k

⇣

rf(x⇤
t

k

)�rf(x⇤
t

k+1

)
⌘

T

(x⇤
t

k+1

� x⇤
t

k

) + |d
k

| krf(x⇤
t

k+1

)k⇤
x

⇤
t

k+1

kx⇤
t

k+1

� x⇤
t

k

k
x

⇤
t

k+1

,

where the last inequality is due to the generalized Cauchy-Schwatz inequality. Since
t

k

> 0, we can deduce from the last inequality as

⇣

rf(x⇤
t

k+1

)�rf(x⇤
t

k

)
⌘

T

(x⇤
t

k+1

�x⇤
t

k

)  |d
k

|
t

k

krf(x⇤
t

k+1

)k⇤
x

⇤
t

k+1

kx⇤
t

k+1

�x⇤
t

k

k
x

⇤
t

k+1

.(A.13)

However, since f is standard self-concordant, by applying [23, Theorem 4.1.7], we
have

⇣

rf(x⇤
t

k+1

)�rf(x⇤
t

k

)
⌘

T

(x⇤
t

k+1

� x⇤
t

k

) �
kx⇤

t

k+1

� x⇤
t

k

k2
x

⇤
t

k+1

1 + kx⇤
t

k+1

� x⇤
t

k

k
x

⇤
t

k+1

.

Using this inequality together with (A.13) we obtain

kx⇤
t

k+1

� x⇤
t

k

k
x

⇤
t

k+1

1 + kx⇤
t

k+1

� x⇤
t

k

k
x

⇤
t

k+1

 |d
k

|
t

k

krf(x⇤
t

k+1

)k⇤
x

⇤
t

k+1

(2.1)

 |d
k

|
t

k

p
⌫.

where by the defintion of �
k

, this completes the proof of (4.4). The last statement
in Lemma 4.2 is a direct consequence of (4.4). ⇤

A.4. The proof of Lemma 4.3. Let g

0

(·) := t

�1

0

g(·). Similar to the proof of
[37, Lemma 3.3], we can estimate

(A.14) F (xj+1; t
0

)� F (xj ; t
0

)  �↵
j

rf(xj)Tdj + !⇤(↵j

⇣

j

) + ↵

j

�

g

0

(sj)� g

0

(xj)
�

,

where ↵
j

⇣

j

< 1 and !⇤(⌧) := �⌧ � ln(1 � ⌧). From the definition (3.2) of F j

t

0

and
(4.8) we have

g

0

(sj)� g

0

(xj)  g

0

(s̄j)� g

0

(xj) +
�

2

2
+rf(xj)T (s̄j � sj)

+
1

2

⇣

�

�s̄j � xj

�

�

2

x

j

� ��sj � xj

�

�

2

x

j

⌘

.(A.15)
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Since s̄j is the exact solution of (4.7), using the optimality condition (3.4) of this
problem, we have

(A.16) v̄j = �rf(xj)�r2

f(xj)(s̄j � xj), v̄j 2 @g
0

(s̄j).

By the convexity of g
0

, (A.16) implies

g

0

(s̄j)� g

0

(xj)  �rf(xj)T (s̄j � xj)� ��s̄j � xj

�

�

2

x

j

.

Substituting this inequality into (A.15) and rearranging the result by using ⇣

j

=
�

�dj

�

�

x

j

=
�

�sj � xj

�

�

x

j

, we obtain

g

0

(sj)� g

0

(xj)  �

2

2
�rf(xj)T (sj � xj)� 1

2

⇣

�

�s̄j � xj

�

�

2

x

j

+ ⇣

2

j

⌘

.(A.17)

By using the triangle inequality and (3.6) we deduce

�

�s̄j � xj

�

�

x

j

� ��sj � xj

�

�

x

j

� ��sj � s̄j
�

�

x

j

� ⇣
j

� �.

Hence, with �  ⇣
j

, this inequality implies

(A.18)
�

�s̄j � xj

�

�

2

x

j

� ⇣2
j

+ �

2 � 2⇣
j

�.

Combining (A.14), (A.17) and (A.18), we finally get

F (xj+1; t
0

)� F (xj ; t
0

)  !⇤(↵j

⇣

j

)� ⇣
j

(⇣
j

� �)↵
j

,(A.19)

provided that ↵
j

⇣

j

< 1 and �  ⇣
j

.
Now we consider the function '(↵) := ⇣

j

(⇣
j

� �)↵ � !⇤(⇣j↵). This function is

concave, it attains the maximum at ↵
j

:= ⇣

j

��
⇣

j

(1+⇣

j

��) provided that �  ⇣

j

. In this

case, we also have ↵
j

⇣

j

= ⇣

j

��
1+⇣

j

�� < 1 and '(↵
j

) = !(⇣
j

� �). Substituting this value

into (A.19) and then subtracting the result to F (x⇤
t

0

; t
0

) we obtain (4.9). ⇤

A.5. The proof of Lemma 5.1. Since f is the barrier function of ⌦ and x⇤
t

is
the solution of (1.2), it is obvious that x⇤

t

2 int(⌦) and g(x⇤)  g(x⇤
t

). We first prove
(5.1). From [23, Theorem 4.2.4] we have

(A.20) rf(x)T (y � x) < ⌫, 8x,y 2 dom (f) .

By using the convexity of g, the optimality condition (2.2) and the property (A.20)
of the barrier function f , for any x 2 dom (F ) ⌘ dom (f) \ dom (g), we have

g(x)� g(x⇤
t

) � (⇠⇤
t

)T (x� x⇤
t

), 8(⇠⇤
t

) 2 @g(x⇤
t

)
(2.2)

� �trf(x⇤
t

)T (x� x⇤
t

)(A.21)
(A.20)

� �t⌫.

By substituting x = x⇤ in (A.21) we obtain (5.1). Similarly, by letting t = t

k

and
x = xk in (A.21) we obtain the right-hand side of (5.2).
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Next, we prove the left-hand side of (5.2). By using (3.5) in Definition 3.1 we can
estimate

g(xk+1)  g(x̄k+1) + t

k+1

⇥

Q(x̄k+1;xk)�Q(xk+1;xk)
⇤

+ t

k+1

�

2

2

 g(x̄k+1) + t

k+1

rf(xk)T (x̄k+1 � xk+1) + t

k+1

�

2

2

+
t

k+1

2

h

�

�x̄k+1 � xk

�

�

2

x

k

� ��xk+1 � xk

�

�

2

x

k

i

,(A.22)

where x̄k+1 is the exact solution of (3.3) at t = t

k+1

. Moreover, from the optimality
condition (3.4), there exists v̄

k+1

2 @g(x̄k+1) such that

(A.23) v̄
k+1

= �t
k+1

rf(xk)� t

k

r2

f(xk)(x̄k+1 � xk).

By using the convexity of g we can estimate g(x⇤
t

k

)� g(xk+1) as

g(x⇤
t

k+1

)� g(x̄k+1) � v̄T

k+1

(x⇤
t

k+1

� x̄k+1)

(A.23)

= �t
k+1

rf(xk)T (x⇤
t

k+1

� x̄k+1)

� t

k+1

(x̄k+1 � xk)Tr2

f(xk)(x⇤
t

k+1

� x̄k+1).(A.24)

Now we sum up (A.22) and (A.24) and then rearrange the result by using the Cauchy-
Schwarz inequality to get

g(x⇤
t

k+1

)� g(xk+1) � �t
k+1

rf(xk)T (x⇤
t

k+1

� xk+1)� t

k+1

2
�

2

� t

k+1

2

h

kx̄k+1 � xkk2
x

k

� kxk+1 � xkk2
x

k

+ 2(x̄k+1 � xk)Tr2

f(xk)(x⇤
t

k+1

� x̄k+1)
i

[1]

.(A.25)

From [23, Theorem 4.1.6] we have

(A.26) (1� �̃
k

)2r2

f(x⇤
t

k+1

) � r2

f(xk) � (1� �̃
k

)�2r2

f(x⇤
t

k+1

),

where �̃
k

:= kxk � x⇤
t

k+1

k
x

⇤
t

k+1

defined as before. We can easily show that

�

�rf(xk)
�

�

⇤
x

⇤
t

k+1

 (1� �̃
k

)�1

�

�rf(xk)
�

�

⇤
x

k

(2.1)

 (1� �̃
k

)�1

p
⌫.

Using this inequality together with the Cauchy-Shwarz inequality, we can prove that

rf(xk)T (x⇤
t

k+1

� xk+1)  ��rf(xk)
�

�

⇤
x

⇤
t

k+1

�

�

�

xk+1 � x⇤
t

k+1

�

�

�

=
p
⌫(1� �̃

k

)�1

�

k+1

.(A.27)

Next, we estimate the last term [· · · ]
[1]

of (A.25) as follows

[· · · ]
[1]

:= kx̄k+1�xkk2
x

k

�kxk+1�xkk2
x

k

+2(x̄k+1�xk)Tr2

f(xk)(x⇤
t

k+1

�x̄k+1)

= � ��xk+1 � xk

�

�

2

x

k

���x̄k+1 � xk

�

�

2

x

k

+ 2(x̄k+1 � xk)Tr2

f(xk)(x⇤
t

k+1

� xk)

 �1

2

�

�x̄k+1 � xk+1

�

�

2

x

k

+ 2(x̄k+1 � xk)Tr2

f(xk)(x⇤
t

k+1

� xk)

(A.26)

 2(1� �̃
k

)�2

⇣

�

�x̄k+1 � xk+1

�

�

x

k

+ �

k+1

+ �̃

k

⌘

�̃

k

 2(1� �̃
k

)�2

⇣

� + �

k+1

+ �̃

k

⌘

�̃

k

.(A.28)
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Here, the two last inequalities are obtained by using the triangle inequality, the defi-
nition of �

k+1

, �̃
k

and (3.7). Now, we combine (A.24), (A.25) and (A.28) to derive

g(x⇤
t

k+1

)� g(xk+1) � �t
k+1

p
⌫

�

k+1

1� �̃
k

+ (1� �̃
k

)�2

�̃

k

⇣

�

k+1

+ �̃

k

+ �

⌘

+
�

2

2

�

,

which is the left-hand side of (5.2) provided that �̃
k

< 1. Finally, the estimate (5.3)
follows directly by summing up (5.1) and (5.2). ⇤
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