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Abstract. A rank-r matrix X ∈ Rm×n can be written as a product UV >, where U ∈ Rm×r and V ∈ Rn×r. One
could exploit this observation in optimization: e.g., consider the minimization of a convex function
f(X) over rank-r matrices, where the set of low-rank matrices is modeled via UV >. Though such
parameterization reduces the number of variables and is more computationally efficient (of particular
interest is the case r � min{m,n}), it comes at a cost: f(UV >) becomes a nonconvex function
w.r.t. U and V . We study such parameterization on generic convex objectives f and focus on first-
order, gradient descent algorithms. We propose the bifactored gradient descent (BFGD) algorithm,
an efficient first-order method that operates directly on the U, V factors. We show that when f is
(restricted) smooth, BFGD has local sublinear convergence; when f is both (restricted) smooth and
(restricted) strongly convex, it has local linear convergence. For several applications, we provide
simple and efficient initialization schemes that provide initial conditions, good enough for the above
convergence results to hold, globally. Extensive experimental results support our arguments that
BFGD is an efficient and accurate nonconvex method, compared to state-of-the-art approaches.
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1. Introduction. We study matrix problems of the form

(1) minimize
X∈Rm×n

f(X),

where the minimizer X? ∈ Rm×n is rank-r? (r? ≤ min{m,n}) or nearly low rank; i.e., ‖X? −
X?
r?‖F is sufficiently small, for X?

r? being the best rank-r? approximation of X?. In our
discussions, f is a differentiable convex function. Further assumptions on f will be described
later in the text.

Specific instances of (1) appear in several applications in diverse research fields. A non-
exhaustive list includes factorization-based recommender systems [88, 86, 35, 12, 63, 51, 59],
multilabel classification tasks [3, 13, 27, 76, 96, 101], dimensionality reduction techniques

∗Received by the editors October 2, 2017; accepted for publication (in revised form) July 13, 2018; published
electronically October 2, 2018. A preliminary version of this paper appeared in Proceedings of the 54th Annual
Allerton Conference on Communication, Control, and Computing, 2016. The present draft is an expanded version
containing additional results.

http://www.siam.org/journals/siims/11-4/M115018.html
†Facebook, Seattle, WA 98109 (dohyung22.park@gmail.com, http://dhpark22.github.io/).
‡IBM T.J. Watson Research Center, Yorktown Heights, NY 10548, and Rice University, Houston, TX 77005

(anastasios@rice.edu, http://akyrillidis.github.io/).
§Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712

(constantine@utexas.edu, sanghavi@mail.utexas.edu).

2165

D
ow

nl
oa

de
d 

05
/3

1/
19

 to
 1

28
.4

2.
16

7.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siims/11-4/M115018.html
mailto:dohyung22.park@gmail.com
http://dhpark22.github.io/
mailto:anastasios@rice.edu
http://akyrillidis.github.io/
mailto:constantine@utexas.edu
mailto:sanghavi@mail.utexas.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2166 D. PARK, A. KYRILLIDIS, C. CARAMANIS, AND S. SANGHAVI

[87, 31, 56, 94, 44, 74], density matrix estimation of quantum systems [1, 43, 58], phase
retrieval applications [24, 95], sensor localization [16, 100] and protein clustering [75] tasks,
image processing problems [5], as well as applications in system theory [41]. Thus, it is critical
to devise user-friendly, efficient, and provable algorithms for (1), taking into consideration the
(near) low-rank structure of X?.

In general, imposing a low-rank constraint could result in an NP-hard problem. However,
(1) with a rank constraint can be solved in polynomial time for applications where f has
specific structure. A prime example is the matrix sensing (MS) problem [26, 85, 51]; see section
1.1. There, X? can be recovered in polynomial time by solving (1) with a rank constraint [53,
11, 8, 69, 65, 90] or by solving its convex nuclear-norm relaxation, as in [72, 10, 23, 9, 28, 104].

Although algorithms operating on X space have attractive convergence rates, they simul-
taneously manipulate m × n variables in X. This is computationally expensive in the high-
dimensional regime: typically, each iteration requires computing at least the top-r singular
value/vectors of matrices. As {m,n} scale, the computational demands per iteration are pro-
hibitive.

Optimizing over factors. In this paper, we follow a different path: a rank-r matrix X ∈
Rm×n can be written as a product of two matrices UV >, where U ∈ Rm×r and V ∈ Rn×r.
Based on this, we are interested in (1) via the UV > parametrization:

(2) minimize
U∈Rm×r, V ∈Rn×r

f(UV >), where r ≤ rank(X?) ≤ {m, n}.

Note that characterizations (2) and (1) are equivalent in the case rank(X?) = r.1 Observe that
such parameterization leads to a very specific kind of nonconvexity in f . Proving convergence
for these settings becomes a harder task, due to the bilinearity of the variable space.

Motivation. When r is much smaller than min{m,n}, U ∈ Rm×r and V ∈ Rn×r contain
far fewer variables than X = UV >. Thus, by construction, such parametrization makes it
easier to update and store the iterates U, V .

Key is that UV > reformulation automatically encodes the rank constraint. Approaches
working on X require computing a truncated SVD2 per iteration, which can get cumbersome
in large-scale settings. In stark contrast, working with f(UV >) replaces singular value com-
putations with matrix-matrix multiplication operations. See section 7.1 for some empirical
evidence of the above.

Our contributions. Such bilinear reformulations X = UV >often lack theoretical guaran-
tees. Only recently, there have been attempts in providing answers to when and why such
nonconvex approaches perform well in theory; see [52, 4, 92, 107, 30, 14, 106, 89, 108, 55, 71,
97, 110, 98, 46, 45].

Our work is more general, supplements current state of the art, and further focuses on
the practical aspects of such nonconvex problems. We address important issues in practice:

1By equivalent, we mean that the set of global minima in (2) contains that of (1). It remains an open
question though whether the reformulation in (2) introduces spurious local minima in the factored space for
the majority of f cases.

2This holds in the best scenario; in the convex case, where the rank constraint is “relaxed” by the nuclear
norm, the projection onto the nuclear-norm ball often requires a full SVD calculation.
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how to select initial points, how to set the step size, etc. At the same time, we back up our
findings with theoretical results. Our contributions can be summarized as follows:

• We study gradient descent on (2) for nonsquare matrices. We call this bifactored gra-
dient descent (BFGD). The current literature relies on special cases of f for theoretical
results [89, 92, 108, 106]. In this work, we propose a more generic perspective of such
factorization techniques: under general assumptions such as smoothness and strong
convexity of f , our theory applies automatically and does not rely on any specific
structures in f .
• When f is only (restricted) smooth, we show that a simple lifting technique leads to a

local sublinear rate convergence guarantee, based on the positive semidefinite (PSD)
results in [14]. With a more careful analysis, we improve upon [14] with a weaker
initial condition.
• When f is both (restricted) strongly convex and smooth, results from the PSD case

do not readily apply. Of significant importance is the use of a regularizer that restricts
the geometry of the problem. Here, we improve upon [92, 108, 103]—where such
a regularizer was used only for the cases of matrix sensing/completion and robust
principal component analysis (PCA)—and solve a different formulation that leads to
local linear rate convergence guarantees. Our proof technique is a generalization to the
current known theory : using any smooth and strongly convex regularizer on the term
(U>U − V >V ), with optimum at zero, one can guarantee locally linear convergence.
• Our theory is backed up with extensive experiments, including affine rank minimization

(section 7.3), compressed noisy image reconstruction (section 7.4), and 1-bit matrix
completion tasks (section 7.5). Our proposed scheme shows superior performance,
as compared to state-of-the-art approaches, while being (i) simple to implement, (ii)
scalable in practice, and (iii) versatile to various applications.

Our work is a nontrivial generalization of the PSD case [14]. This is because, for any
UV >, we have UV > = (δU)(1

δV )> for δ > 0. This makes the analysis over the factors
ill-conditioned. Such cases break down the existing theory on PSD matrices [14] and make
necessary the utilization of balancing regularizers that ensure U, V estimates do not behave
differently w.r.t. their spectrum energy.

1.1. When such optimization criteria appear in practice. In this section, we briefly
describe applications that can be modeled as in (2).

1.1.1. Matrix sensing applications. MS [40, 85] involves the recovery of a low-rank X?

from a limited set of linear measurements, i.e.,

(3) minimize
X∈Rm×n

f(X) := 1
2 · ‖y −A(X)‖22 subject to rank(X) ≤ r,

where usually m 6= n and r � min{m, n}. Here, A : Rm×n → Rp is a sensing map and
y = A (X?) + ε ∈ Rp contains the noisy samples, where p� m · n. Critical assumption for A
that renders (3) a polynomially solvable problem is the restricted isometry property (RIP) for
low-rank matrices [25].

Definition 1.1 (restricted isometry property). A linear map A satisfies the r-RIP with
constant δr if
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(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F
is satisfied for all matrices X ∈ Rn×n such that rank(X) ≤ r.

Linear maps that satisfy Definition 1.1 also satisfy (restricted) smoothness and strong
convexity [81]; see Theorem 2 in [29] and section 2 for their definition.

State-of-the-art approaches. The most popularized approach for (3) is through convexifi-
cation [39, 85, 26]:

(4) minimize
X∈Rn×p

f(X) subject to ‖X‖∗ ≤ t,

where ‖X‖∗ denotes the nuclear norm of X. Efficient implementations can be found in [72, 10,
23, 9]. However, due to the nuclear norm, these methods require full SVDs per iteration, which
makes them impractical in large-scale settings. From a nonconvex perspective, algorithms
that solve (3) in a nonfactored form include SVP and randomized SVP [53, 11], the Riemannian
trust region matrix completion algorithm (RTRMC) [18], ADMiRA [69], and the Matrix ALPS

framework [65, 90].
In all cases, algorithms admit fast linear convergence rates. The majority of approaches

assumes a first-order oracle: information of f is provided through its gradient ∇f(X). For
MS,∇f(X) = −2A∗ (y −A(X)), which requires O(Tmap) complexity, where Tmap denotes the
time required to apply linear map (or its adjoint A∗) A. Formulations (3)–(4) require at least
one top-r SVD calculation per iteration; this translates into additional O(mnr) complexity.

Problem (3) can be factorized as follows:

(5) minimize
U∈Rn×r,V ∈Rp×r

f(UV >) := 1
2 · ‖y −A(UV >)‖22.

For this case, the gradient of f with respect to U and V can be computed respectively as
∇Uf(UV >) := ∇f(X)V and∇V f(UV >) := ∇f(X)>U . This translates into 2·O(Tmap+mnr)
time complexity. This excludes performing any SVD calculations per iteration. Thus, if there
exist linearly convergent algorithms for (5), intuition indicates that we could obtain lower
computational complexity.

1.1.2. Logistic PCA and low-rank estimation on binary data. Finding low-rank approx-
imations of binary matrices has gained a lot of interest recently, due to the wide appearance of
categorical responses in real-world applications [87, 31, 56, 94, 44, 74]. The authors of [91, 33]
propose logistic PCA, where each binary data vector is assumed to follow the multivariate
Bernoulli distribution, parametrized by the principal components that live in an r-dimensional
subspace.

To formulate the problem, let Y ∈ {0, 1}m×n be the observed binary matrix, where each
of the m rows stores an n-dimensional binary feature vector. Further, assume that each
entry Yij is drawn from a Bernoulli distribution with mean qij , according to P [Yij | qij ] =

q
Yij
ij · (1− qij)1−Yij . Define the log-odds parameter Xij = log(

qij
1−qij ) and the logistic function

σ(Xij) =
(
1 + e−Xij

)−1
. Then, we equivalently have P [Yij | Xij ] = σ(Xij)

Yij · σ(−Xij)
1−Yij ,

or in matrix form, P [Y | X] =
∏
ij σ(Xij)

Yij · σ(−Xij)
1−Yij , where we assume independence

among entries of Y . The negative log-likelihood for log-odds parameter X is given by
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f(X) := −
∑
ij

(Yij · log σ(Xij) + (1− Yij) · log σ(−Xij)) .

Assuming a compact, i.e., low-rank, representation for the latent variable X, we end up with
the following optimization problem:

(6)
minimize
X∈Rm×n

f(X) := −
∑
ij

(Yij · log σ(Xij) + (1− Yij) · log σ(−Xij))

subject to rank(X) ≤ r.

As we see later in the text, the objective criterion is just a smooth convex loss function.
State-of-the-art approaches. In [31], the authors consider the problem of sign prediction of

edges in a signed network and cast it as a low-rank matrix completion problem: The proposed
algorithmic solution follows (stochastic) gradient descent motions; however, no guarantees are
provided. Johnson [56] utilizes logistic PCA for collaborative filtering on implicit feedback
data (page clicks and views, purchases, etc.): to find a local minimum, an alternating gradient
descent procedure is used, with no guarantees. A similar alternating gradient descent approach
is followed in [87], with no known theoretical guarantees.

Parameterization by the latent factors U, V leads to the following optimization criterion:

(7) minimize
U∈Rm×r, V ∈Rn×r

f(UV >) := −
∑
ij

(
Yij · log σ(UiV

>
j ) + (1− Yij) · log σ(−UiV >j )

)
,

where Ui, Vj represent the ith and jth rows of U and V , respectively.

2. Preliminaries. For matrices X,Y ∈ Rm×n, 〈X,Y 〉 = Tr
(
X>Y

)
represents their

inner product. We use ‖X‖F and σ1(X) for the Frobenius and spectral norms of a ma-
trix, respectively; also ‖X‖2 denotes the spectral norm. σi(X) is the ith singular value
of X. For a rank-r matrix X = UV >, the gradient of f w.r.t. U and V is ∇f(UV >)V
and ∇f(UV >)>U , respectively. We will also use the terms ∇Uf(UV >) := ∇f(UV >)V and
∇V f(UV >) := ∇f(UV >)>U .

Given a matrix X, we denote its best rank-r approximation with Xr. We denote the
optimum point as X?

r , both (i) in the case where we intentionally restrict our search to obtain
a rank-r approximation of X?—while rank(X?) > r—and (ii) in the case where X? ≡ X?

r ,
i.e., by default, the optimum point is of rank r.

An important issue in optimizing f over the factored space is the existence of nonunique
possible factorizations for a given X. Our analysis requires a notion of distance to the low-
rank solution X?

r over the factors. Among infinitely many possible decompositions of X?
r , we

focus on the set of “equally footed” factorizations [92, 50]:

X ?r =
{

(U?, V ?) : U? ∈ Rm×r, V ? ∈ Rn×r,

U?V ?> = X?
r , σi(U

?) = σi(V
?) = σi(X

?
r )1/2 ∀i ∈ [r]

}
.(8)

Note that (U?, V ?) ∈ X ?r if and only if U? = A?Σ?1/2R, V ? = B?Σ?1/2R, where A?Σ?B? is the
SVD of X?

r , and R ∈ Rr×r is an orthogonal matrix.
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Given a pair (U, V ), we define the distance to X?
r as

Dist (U, V ;X?
r ) = min

(U?,V ?)∈X ?
r

∥∥∥∥[UV
]
−
[
U?

V ?

]∥∥∥∥
F

.

Assumptions. We consider applications that can be described either (i) by (restricted)
strongly convex functions f with gradient Lipschitz continuity or (ii) by convex functions f
that have only (restricted) Lipschitz continuous gradients. We state these standard definitions
below.

Definition 2.1. Let f : Rm×n → R be a convex differentiable function. Then, f is gradient
Lipschitz continuous with parameter L (or L-smooth) if

(9) ‖∇f (X)−∇f (Y )‖F ≤ L · ‖X − Y ‖F ∀X,Y ∈ Rm×n.

The function is restricted smooth if the above holds only for all rank-r X, Y .

Definition 2.2. Let f : Rm×n → R be convex and differentiable. Then, f is µ-strongly
convex if

(10) f(Y ) ≥ f(X) + 〈∇f (X) , Y −X〉+ µ
2 ‖Y −X‖

2
F ∀X,Y ∈ Rm×n.

The function is restricted strongly convex if the above holds only for all rank-r X, Y .

The factored gradient descent algorithm. Part of our contribution is inspired by [14], where
the factored gradient descent (FGD) algorithm is proposed. For completeness, we describe here
the problem they consider and the proposed algorithm. They [14] consider the problem

minimize
X∈Rn×n

f(X) subject to X � 0

and propose the following first-order recursion for its solution:

Ut+1 = Ut − η · ∇f(UtU
>
t ) · Ut.

A key property in their analysis is the positive semidefiniteness of the feasible space. For a
proper initialization and step size, [14] shows sublinear and linear convergence rates toward
optimum, depending on the nature of f .

3. The BFGD algorithm. We provide an overview of the BFGD algorithm for two problem
settings in (1): (i) f being an L-smooth convex function and (ii) f being L-smooth and µ-
strongly convex; the results for restricted assumptions naturally generalize. For both cases,
we assume a good initialization point X0 = U0V

>
0 ; see section 5.

BFGD is built upon nonconvex gradient descent over U and V , written as

Ut+1 = Ut − η · ∇Uf(UtV
>
t ), Vt+1 = Vt − η · ∇V f(UtV

>
t ).(11)

When f is convex and smooth, BFGD follows exactly the motions in (11); in the case where
f is also strongly convex, BFGD is based on a different set of recursions, which we discuss in
more detail later in the text.
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3.1. Reduction to FGD: When f is convex and L-smooth. In [51], the authors describe a
simple technique to transform (1) into problems where we look for a square and PSD solution.
The key idea is to lift the problem and introduce a stacked matrix of the two factors:

W =

[
U
V

]
∈ R(m+n)×r.

Then, we optimize over a new function f̂ : R(m+n)×(m+n) → R defined as

f̂
(
WW>

)
= f̂

([
UU> UV >

V U> V V >

])
= f(UV >).

Following this idea, we utilize algorithms designed only to work on square and PSD-based
instances, where f is just L-smooth. Here, we use the FGD algorithm of [14] on the W -space,
as follows:

Wt+1 = Wt − η · ∇W f̂(WtW
>
t ).(12)

It is easy to verify the following remark.

Remark 1. Define f̂([ A B
C D ]) = 1

2f(B) + 1
2f(C>) for A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m,

D ∈ Rn×n. Then FGD for minimizing f̂(WW>) with the stacked matrix W = [U>, V >]> ∈
R(m+n)×r is equivalent to (11).

A natural question is whether this reduction gives a desirable convergence behavior. To
answer this, we need to characterize the properties of f̂ .

Proposition 3.1. If f is convex and L-smooth, then f̂ is convex and L
2 -smooth.

Proof. For any Z1 = [A1 B1
C1 D1

], Z2 = [A2 B2
C2 D2

] ∈ R(m+n)×(m+n), we have∥∥∥∇f̂(Z1)−∇f̂(Z2)
∥∥∥
F

= 1
2 ·
√
‖∇f(B1)−∇f(B2)‖2F +

∥∥∇f(C>1 )−∇f(C>2 )
∥∥2

F

≤ L
2 ·
√
‖B1 −B2‖2F + ‖C1 − C2‖2F

≤ L
2 · ‖Z1 − Z2‖F ,

where the first inequality follows from the L-smoothness of f .

Based on the above proposition, we use FGD to solve (2) with f̂ : its procedure is exactly
(11), with a different step size than [14], due to tighter analysis:

η ≤ 1

20L

∥∥∥∥[U0

V0

]∥∥∥∥2

2

+ 3‖∇f(U0V >0 )‖2

.(13)

While one can rely on the sublinear convergence analysis from [14], we provide a new guarantee
with a weaker initial condition; see section 4.
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3.2. Using BFGD when f is L-smooth and strongly convex. Assume f satisfies both
properties in Definitions 2.1 and 2.2. In this case, we cannot simply rely on the lifting tech-
nique as above since f̂ is clearly not strongly convex.3 Here, we consider a slight variation,
where we appropriately regularize the objective and force the solution pair (Û , V̂ ) to be “bal-
anced.” This regularization is based on the set of optimal pairs (U?, V ?) in X ?r , as defined in
(8). Given X ?r , the equivalent optimization problem that “forces” convergence to balanced
(U?, V ?) is

(14) minimize
U∈Rm×r, V ∈Rn×r

f(UV >) + λ · g(U>U − V >V ),

where g : Rr×r → R is an additional convex regularizer. We require the following:
• g is convex and minimized at zero point, i.e., ∇g(0) = 0.
• The gradient, ∇g(U>U − V >V ) ∈ Rr×r, is symmetric for any such pair.
• g is µg-strongly convex and Lg-smooth.

Under such assumptions, the addition of g in the objective just restricts the set of optimum
points to be “balanced”, i.e., the minimizer of (14) minimizes also (2).4

The necessity of the regularizer. The theoretical guarantees of BFGD heavily depend on
the condition number of the pair (U?, V ?) the algorithm converges to. In particular, one
of the requirements of BFGD is that every estimate Ut (resp., Vt) be “relatively close” to
the convergent point U? (resp., V ?), such that their distance ‖Ut − U?‖F is bounded by a
function of σr(U

?), for all t. Though, for arbitrarily ill-conditioned (U?, V ?) /∈ X ?r , such a
condition might not be easily satisfied by BFGD per iteration5, unless we “force” the sequence
of estimates (Ut, Vt) for all t to converge to a better conditioned pair (U?, V ?). This is the key
role of regularizer g: it guarantees putative estimates Ut and Vt are not too ill-conditioned,
per iteration.

An example of g is the Frobenius norm (weighted by µ/2), as proposed in [92]. Other
examples are sums of elementwise (at least) µg-strongly convex and (at most) Lg-gradient
Lipschitz functions (of the form g(X) =

∑
i,j gij(Xij)) with the optimum at zero. Any such

regularizer results provably in convergence; see section 7.2 for a toy example where the addition
of g leads to faster convergence rate in practice.

The BFGD algorithm. BFGD is a first-order, gradient descent algorithm for (14) that operates
on the factored space (U, V ) in an alternating fashion. Principal components of BFGD is a
proper step size selection and a “decent” initialization point. BFGD can be considered as the
nonsquared extension of the FGD algorithm in [14], which is specifically designed to solve
problems as in (2), for U = V and m = n. The key differences with FGD, though, other than
the necessity of a regularizer g, are as follows:

• Our analysis leads to provable convergence results in the nonsquare case. Such a result
cannot be trivially obtained from [14].

3To see this, observe that f̂ selects only the off-block diagonal elements and neglects UU> and V V >.
Computing the Hessian of f̂ function, it is easy to observe that it has zero eigenvalues (due to the elements on
the diagonal that are not selected). Thus, f̂ is not strongly convex.

4In particular, for any rank-r solution UV > in (2), there is a factorization (Ũ , Ṽ ) minimizing g with the

same function value f(Ũ Ṽ >) = f(UV >), which are Ũ = AΣ
1
2 , Ṽ = BΣ

1
2 , where UV > = AΣB> is the SVD.

5Even if UV > is close to U?V ?>, the condition numbers of U, V can be larger than that of UV >.

D
ow

nl
oa

de
d 

05
/3

1/
19

 to
 1

28
.4

2.
16

7.
11

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINDING LOW-RANK SOLUTIONS BY MATRIX FACTORIZATION 2173

Algorithm 1. BFGD for smooth and strongly convex f .

1: Input: Function f , target rank r, # iterations T .
2: Set initial values for U0, V0

3: Set step size η as in (15).
4: for t = 0 to T − 1 do
5: Ut+1 = Ut − η

(
∇Uf(UtV

>
t )− λ · ∇Ug(U>t Ut − V >t Vt)

)
6: Vt+1 = Vt − η

(
∇V f(UtV

>
t )− λ · ∇V g(U>t Ut − V >t Vt)

)
7: end for
8: Output: X = UTV

>
T .

• The main recursion is different in the two schemes: in the nonsquared case, we update
the left and right factors (U, V ) with a different rule, according to which

Ut+1 = Ut − η
(
∇Uf(UtV

>
t ) + λ · ∇Ug(U>t Ut − V >t Vt)

)
,

Vt+1 = Vt − η
(
∇V f(UtV

>
t ) + λ · ∇V g(U>t Ut − V >t Vt)

)
.

The parameter λ > 0 is arbitrarily chosen.
• Due to this new rule, a slightly different and proper step size selection is required for
BFGD. Our step size is selected as follows:

η ≤ 1

12 ·max {L, Lg} ·
∥∥∥∥[U0

V0

]∥∥∥∥2

2

.(15)

Compared to the step size proposed in [14] (which is of the same form with (13)), our
analysis drops the dependence to ‖∇f(·)‖2 at the denominator. This leads to a faster
computed η and highlights the nonnecessity of this term for proof of convergence, i.e.,
the ‖∇f(·)‖2 term is sufficient but not necessary.

The scheme is described in Algorithm 1. As we show next, constant η (15) is sufficient to lead
to attractive convergence rates for BFGD, for f L-smooth and µ-strongly convex.

4. Local convergence for BFGD. To provide local convergence results, we assume that
there is a known “good” initialization which ensures the following.

Assumption 1. Define κ =
max{L,Lg}
min{µ,µg} , where µg and Lg are the strong convexity and

smoothness parameters of g, respectively. Then, we assume we are provided with a “good”
initialization point X0 = U0V

>
0 such that

Dist(U0, V0;X?
r ) ≤

√
2·σr(X?

r )1/2

10
√
κ

(strongly convex and smooth f).

For the case where f is just smooth, we assume

Dist(U0, V0;X?
r ) ≤

√
2·σr(X?

r )1/2

10 (smooth f).

For our analysis, we will use the following step size assumptions:
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η̂ ≤ 1

8 max{L,Lg} ·
∥∥∥∥[UtVt

]∥∥∥∥2

2

(strongly convex and smooth f),(16)

η̂ ≤ 1

15L

∥∥∥∥[UtVt
]∥∥∥∥2

2

+ 3‖∇f(UtV >t )‖2

(smooth f).(17)

While these step sizes are different from the ones we use in practice, there is a constant-fraction
connection between η̂ and η.

Lemma 4.1. Let (U0, V0) be such that Assumption 1 is satisfied. Then, (16) holds if (15)
is satisfied, and (17) holds if (13) is satisfied.

The proof is provided in Appendix A. By this lemma, our analysis below is equivalent—up
to constants—to that if we were using the original step size η of the algorithm. However, for
clarity reasons and ease of exposition, we use η̂ below.

For the case of strongly convex f , both Assumption 1 and the step size depend on the
strong convexity and smoothness parameters of g. When µ and L are known a priori, this
dependency can be removed since one can choose g such that at least µ-restricted strongly
convex and at most L-smooth. Then, κ becomes the condition number of f , and the step size
depends only on L.

4.1. Linear local convergence rate for f L-smooth and µ-strongly convex. The follow-
ing theorem proves that, under proper initialization, BFGD admits a linear convergence rate,
when f is both L-smooth and µ-restricted strongly convex.

Theorem 4.2. Suppose that f is L-smooth and µ-strongly convex, and the regularizer g
is Lg-smooth and µg-strongly convex. Define µmin := min {µ, µg} and Lmax := max {L,Lg}.
Denote the unique minimizer of f as X? ∈ Rm×n and assume that X? is of arbitrary rank.
Let η̂ be defined as in (16). If the initial point (U0, V0) satisfies Assumption 1, then the BFGD

algorithm in Algorithm 1 converges linearly to X?
r , within error O(

√
κ

σr(X?
r ) ‖X

? −X?
r ‖F ),

according to the recursion

Dist(Ut+1, Vt+1;X?
r )2 ≤ γt ·Dist(Ut, Vt;X

?
r )2 + η̂L ‖X? −X?

r ‖
2
F(18)

for every t ≥ 0, where the contraction parameter γt satisfies

γt = 1− η̂ · µmin·σr(X?
r )

5 ≥ 1− µmin
65·Lmax

· σr(X?
r )

σ1(X?
r ) > 0.

The proof is provided in Appendix B. The theorem states that if X? is (nearly) low rank,
the iterates converge to a close neighborhood of X?

r . The above result can also be expressed
w.r.t. the function value f(UV >), as follows.

Corollary 4.3. Under the same initial condition with Theorem 4.2, Algorithm 1 satisfies the
following recursion w.r.t. the distance of function values:

f(UtV
>
t )− f(X?) ≤ γt · σ1(X?) ·

(
f(U0V

>
0 )− f(X?)

)
+

√
µL

σr(X?)
‖X? −X?

r ‖
2
F .
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4.2. Local sublinear convergence. In section 3.1, we showed that a lifting technique can
reduce our problem (2) to a rank-constrained semidefinite program, and applying FGD from
[14] is exactly BFGD (11). While the sublinear convergence guarantee of FGD can also be applied
to our problem, we provide an improved result.

Theorem 4.4. Suppose that f is L-smooth with a minimizer X? ∈ Rm×n. Let X̂r be any
target rank-r matrix, and let η̂ be defined as in (17). If the initial point X0 = U0V

>
0 , U0 ∈

Rm×r and V0 ∈ Rn×r, satisfies Assumption 1, then FGD converges with rate O(1/T ) to a
tolerance value according to

f(UTV
>
T )− f(U?V ?>) = f̂(WTW

>
T )− f̂(W ?W ?>) ≤ 10 ·Dist(U0, V0;X?

r )2

ηT
.

Theorem 4.4 guarantees a local sublinear convergence with a looser initial condition. While

[14] requires minR∈O(r) ‖W −W ?R‖F ≤
σ2
r(W ?)

100σ2
1(W ?)

·σr(W ?), our result requires that the initial

distance to the W ? is merely a constant factor of σr(W
?).

5. Initialization. Our main theorem guarantees linear convergence in the factored space
given that the initial point (U0, V0) is within a ball around the closest target factors, with radius
O(κ−1/2σr(X

?
r )1/2). To find such a solution, we propose an extension of the initialization

in [14].

Lemma 5.1. Consider U0V
>

0 which is the best rank-r approximation of

X0 = − 1
L∇f(0).(19)

Then we have
∥∥U0V

>
0 −X?

r

∥∥
F
≤ 2
√

2(1− 1
κ) ‖X?‖F + 2 ‖X? −X?

r ‖F .

The proof can be found in Appendix D. Combined with Lemma 5.14 in [92], which trans-
forms a good initial solution from the original space to the factored space, the following
corollary gives one sufficient condition for global convergence of BFGD with the SVD of (19) as
initialization.

Corollary 5.2. If ‖X? −X?
r ‖F ≤

σr(X?)
100
√
κ
, κ ≤ 1 + σr(X?

r )2

4608·‖X?
r ‖

2
F

, then the initial solution U0 =

A0Σ
1/2
0 , V0 = B0Σ

1/2
0 , where A0Σ0B0 is the SVD of − 1

L∇f(0) satisfies the initial condition
of Theorem 4.2.

The proof is easily derived by substituting its assumptions in Lemma 5.1. Corollary 5.2
requires weaker conditions than [14] in order for Theorem 4.2 to be transformed to global
guarantees. While our theoretical results can only guarantee global convergence for a well-
conditioned problem (κ close to one), we show in the experiments that the algorithm performs
well in practice, even when conditions are unverifiable a priori.

6. Related work. This is not the first time such transformations have been considered
in practice. Burer and Monteiro [21, 22] popularized these ideas for solving SDPs: their
approach embeds the PSD and linear constraints into the objective and applies low-rank
variable reparameterization. While the constraint considered here is of a different nature—
i.e., rank constraint versus PSD constraint—the motivation is similar. See also [19] for a more
recent result on SDPs.
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Table 1
Summary of selected nonconvex solvers for low-rank inference problems. X, UU>, and UV > denote the

setting the algorithm works at; X means that no factorization is considered. “Rate” describes the convergence
rate; “(Sub)linear” denotes that both sublinear and linear rates are proved, depending on the nature of f .
“Function f” denotes the problem cases covered by each algorithm: “MS” and “MC” stand for matrix sensing
and completion, respectively; “Convex f” corresponds to standard smooth and strongly convex functions f . For
the case of [30], “Generic f†” corresponds to a specific class of functions that can be even concave but should
satisfy specific conditions; see [30].

Algorithm X UU> UV > Rate Function f

[54] 3 7 7 Linear MS
[90] 3 7 7 Linear MS
[65] 3 7 7 Linear MS
[49] 7 3 7 Sublinear MS
[68] 7 3 7 Sublinear Convex f

[30] 7 3 7 (Sub)linear Generic f†

[14] 7 3 7 (Sub)linear Convex f
[51] 7 3 3 Sublinear Convex f
[92] 7 3 3 Linear MS
[107] 7 3 3 Linear MS
[48] 7 3 3 Linear MC
[54] 7 3 3 Linear MC, MS
[89] 7 3 3 Linear MC
[106] 7 3 3 Linear Strongly convex f

This work 7 3 3 (Sub)linear Convex f

We provide an overview of algorithms that solve instances of (2). For discussions on
methods that operate on X directly, we refer the reader to [2, 51, 65] for more details; see also
Table 1 for an overview of the discussion below. We divide our discussion into two problem
settings: (i) X? is square and PSD and (ii) X? is nonsquare.

Square and PSD X?. A rank-r X ∈ Rn×n is PSD if and only if it can be factored as
X = UU> for U ∈ Rn×r. This is a special case of our problem, where m = n and (1) includes
a PSD constraint. Thus, (2) takes the form

(20) minimize
U∈Rn×r

f(UU>), where r = rank(X?) ≤ n.

Several recent works have studied (20). For the special case where f is a least-squares
objective for an underlying linear system, [92] and [107] propose gradient descent schemes that
function on the factor U . Both studies employ careful initialization (performing few iterations
of SVP [53] for the former and using a spectral initialization procedure for the latter) and
step size selection, in order to prove convergence.6 However, their analysis is designed only
for least-squares instances of f . Further discussion on their step size selection/initialization
is provided in section 7.

6Recently, [42] and [15] proved that UU> factorization introduces no spurious local minima for the cases
of matrix completion and sensing, respectively: random initialization eventually leads to convergence to the
optimal X? (or close to X? in the nearly low-rank case).
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The work of [30] proposes a first-order algorithm for (20), where f is more generic. The
algorithmic solution proposed can handle additional constraints on the factors U ; the nature
of these constraints depends on the problem at hand.7 For each problem, a set of assumptions
needs to be satisfied, i.e., faithfulness, local descent, local Lipschitz, and local smoothness
conditions. Under such assumptions and with proper initialization, one can prove convergence
with an O(1/ε) or O(log(1/ε)) rate, depending on the nature of f , and for problems that even
fail to be locally convex. Our work provides similar convergence results but for a set of
assumptions used more in practice.

Bhojanapalli, Kyrillidis, and Sanghavi [14] propose the FGD algorithm for (20). FGD is also
a first-order scheme; a key ingredient for convergence is a novel step size selection that can be
used for any f , as long as it is (restricted) gradient Lipschitz continuous; when f is further
(restricted) strongly convex, their analysis leads to faster convergence rates. An extension of
these ideas to some constrained cases can be found in [83].

Nonsquare X?. Jain, Netrapalli, and Sanghavi [54] propose AltMinSense, an alternating
minimization algorithm for matrix sensing and matrix completion problems. This is one of the
first works to prove linear convergence in solving (2) for the MS model. Hardt and Wooders
[48] improve upon [54] for the case of reasonably well-conditioned matrices. Their algorithm
handles problem cases with bad condition number and gaps in their spectrum [102]. Recently,
[92] extended the Procrustes Flow algorithm to the nonsquare case, where gradient descent,
instead of exact alternating minimization, is utilized. Zheng and Lafferty [108] extended the
first-order method of [30] for matrix completion to the rectangular case. All the studies above
focus on the case of least-squares objective f .

Sun and Luo [89] generalize the results in [54, 48]: the authors show that, under common
incoherence conditions and sampling assumptions, most first-order variants indeed converge
to the low-rank ground truth X?. Both the theory and the algorithm proposed are restricted
to the matrix completion objective.

Recently, [106]—based on the inexact first-order oracle, previously used in [7]—proved
that linear convergence is guaranteed if f(UV >) is strongly convex over either U and V ,
when the other is fixed. While the technique applies for generic f and for nonsquare X, the
authors provide algorithmic solutions only for matrix completion/matrix sensing settings.8

Their algorithm requires QR-decompositions after each U, V update; this is required in order
to control the notion of inexact first-order oracle.

Finally, we mention relevant optimization methods that operate over manifolds and admit
tailored solvers [38]; see [60, 17, 20, 105, 93] and references therein for applications in ma-
trix completion. Among the most established work on the field, [57] presents a second-order
method for (1), based on manifold optimization over the set of an orthonormal equivalence
class of matrices. The proposed algorithm can accommodate constraints and enjoys mono-
tonic decrease of the objective function (in contrast to [21, 22]), featuring quadratic local
convergence. In practice, the per iteration complexity is dominated by the extraction of the

7Any additional constraints should satisfy the faithfulness property: a constraint set C is faithful if for each
U ∈ C, within some bounded radius from optimal point, we are guaranteed that the closest (in the Euclidean
sense) rotation of optimal U? lies within U .

8For example, in the gradient descent case, the step size proposed depends on RIP [85] constants and it is
not clear what a good step size would be in other problem settings.
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eigenvector, corresponding to the smallest eigenvalue, of a n× n matrix—and only when the
current estimate of rank satisfies some conditions. See also [62].

Mishra et al. [79] focus on low-rank matrix approximations and propose a gradient descent
algorithm that resembles ours (using manifold notation and techniques). In contrast to [79],
our work provides theoretical guarantees on the performance of such first-order algorithms.
See also [80, 78]. Kressner, Steinlechner, and Vandereycken [64] focus on tensor matrix com-
pletion.9 As above, that work focuses on describing the notation and operations performed by
manifold algorithms, without presenting any convergence (or convergence rates) results of the
algorithm. Finally, [109] provides convergence results for a first-order manifold scheme with
an asymptotic flavor, i.e., assumes the number of iterates converges to infinity. Contrarily, we
provide nonasymptotic results of simple gradient descent to the optimal point, after proper
initialization. Zhou et al. [109] consider a problem criterion similar to ours but under dif-
ferent assumptions: in our case, the assumptions appear in many signal processing/machine
learning tasks (smoothness, strong convexity), while [109] assumes that f admits a differential
extension fF on a neighborhood of a manifold space.

7. Experiments.

7.1. The complexity of SVD and matrix-matrix multiplication. To provide an idea of
how matrix-matrix multiplication scales, in comparison with truncated SVD,10 we compare it
with some state-of-the-art SVD subroutines: (i) the MATLAB svds subroutine, based on the
ARPACK software package [70], (ii) a collection of implicitly restarted Lanczos methods for fast
truncated SVD and symmetric eigenvalue decompositions (irlba, irlbablk, irblsvds) [6],11

(iii) the limited memory block Krylov subspace optimization for computing dominant SVDs
(LMSVD) [73], and (iv) the PROPACK software package [67]. We consider random realizations
of matrices in Rm×n (without loss of generality, assume m = n) for varying values of m. For
SVD computations, we look for the best rank-r approximation for varying values of r. In
the case of matrix-matrix multiplication, we record the time required for the computation of
two matrix-matrix multiplications of matrices Rm×m and Rm×r, which is equivalent to the
computational complexity required in our scheme.

Figure 1, left panel, shows execution time results for the algorithms under comparison,
as a function of the dimension m. Rank r is fixed to r = 100. While both SVD and matrix
multiplication procedures are known to have O(m2r) complexity, it is obvious that the latter
on dense matrices is at least two orders of magnitude faster than the former. In Table 2,
we also report the approximation guarantees of some faster SVD subroutines, as compared
to svds: while irblablk seems to be faster, it returns a very rough approximation of the
singular values, when r is relatively large. Similar findings are depicted in Figure 1, middle
and right panels.

9From a theoretical standpoint, matrix completion is outside the scope of this paper, as it does not sat-
isfy strong convexity; here, we focus on problems that satisfy (restricted) smoothness and (restricted) strong
convexity, while matrix completion problems require other regulatory conditions such as incoherence.

10Here, we consider algorithmic solutions where both SVD and matrix-matrix multiplication computations
are performed with high accuracy. One might consider approximate SVD—see the excellent monograph [47]—
and matrix-matrix multiplication approximations—see [36, 37, 66, 32]; we believe that studying such alterna-
tives is an interesting direction to follow for future work.

11IRLBA stands for implicitly restarted Lanczos bidiagonalization algorithms.D
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Figure 1. Comparison of SVD procedures versus matrix-matrix (MM) multiplication. Left panel: Varying
dimension m and constant rank r = 100. Middle panel: Similar to left panel where m scales larger and we focus
on a subset of SVD algorithms that can scale up. Right panel: Varying rank values and constant dimension
m = 5 · 103.

Table 2
Approximation errors of singular values, in the form ‖Σ̂−Σ?‖F

‖Σ?‖F
. Here, Σ̂ denotes the diagonal matrix,

returned by SVD subroutines, containing r top singular values; we use svds to compute the reference matrix Σ?

that contains top-r singular values of the input matrix. Observe that some algorithms deviate significantly from
the “ground-truth”: this is due to either early stopping (only a subset of singular values could be computed) or
accumulating approximation error.

Algorithm Error ‖Σ̂−Σ?‖F
‖Σ?‖F

, where Σ? is diagonal matrix with top r singular values from svds

m = 2 · 103 m = 4 · 103 m = 6 · 103 m = 8 · 103 m = 104

irblsvds 3.63e-15 4.33e-09 8.11e-11 4.79e-12 5.82e-10

irbla 6.00e-15 9.01e-07 1.05e-04 2.99e-04 7.29e-04

irblablk 1.48e+03 1.67e+03 1.24e+03 1.45e+03 7.91e+11

LMSVD 2.14e-14 4.49e-12 3.94e-11 1.33e-10 7.30e-10

PROPACK 4.10e-12 2.46e-10 1.63e-12 7.90e-12 3.55e-11

7.2. The role of regularizer g. As discussed in section 3.2, g forces our algorithm to
converge to a well-conditioned factorization of X?. This regularizer not only enables us to
control and guarantee convergence of BFGD but also provides a better convergence rate, as we
know next.

Figure 2, left panel, shows the convergence behavior of BFGD, when f and f + g are
used, with an ill-conditioned initial point (U0, V0). It is obvious from the convergence plot
that adding the regularizer results in faster convergence to an optimum. This difference in
convergence rate is due to dependency on the condition numbers of U? and V ? that the
algorithm converges to. As shown in Figure 2, right panel, the algorithm converges to a well-
conditioned factorization of X?, while the condition number is not forced to decrease when
there is no regularizer.

7.3. Affine rank minimization using noiselet linear maps. In this task, we consider the
problem of affine rank minimization, as described in section 1.1.1. We use permuted andD

ow
nl

oa
de

d 
05

/3
1/

19
 to

 1
28

.4
2.

16
7.

11
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2180 D. PARK, A. KYRILLIDIS, C. CARAMANIS, AND S. SANGHAVI
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Figure 2. f(UV >) =
∥∥UV > −X?

∥∥2

F
, where X? = U?V ?> ∈ R100×100, and U?, V ? ∈ R100×10 are or-

thonormal. The initial point is an ill-conditioned pair (σ1(U0)/σr(U0) = σ1(V0)/σr(V0) = 102) near X?. Left

panel: Convergence behaviors of BFGD with a regularizer g = 1
4

∥∥U>U − V >V ∥∥2

F
and without any regularizer.

Right panel: The ratios σ1(U)/σr(U) over iterations.

subsampled noiselets for the linear operator A, due to their efficient implementation [99];
similar results can be obtained for A being a subsampled Fourier linear operator or, even, a
random Gaussian linear operator. For the purposes of this experiment, the ground truth X? is
synthetically generated as the multiplication of two tall matrices, U? ∈ Rm×r and V ? ∈ Rn×r,
such that X? = U?V ?> and ‖X?‖F = 1. Both U? and V ? contain random, independent and
identically distributed (i.i.d.) Gaussian entries, with zero mean and unit variance.

List of algorithms. We compare the following state-of-the-art algorithms: (i) the singular
value projection (SVP) algorithm [53] constant step size selection µ = 1/3, as it is the one that
showed the best performance in our experiments, (ii) the SparseApproxSDP extension to
nonsquare cases for (4) in [51], based on [49], (iii) the matrix completion algorithm in [89],
which we call GuaranteedMC12, (iv) the Procrustes Flow algorithm in [92], and (v) the BFGD

algorithm.13

Implementation details. In all experiments, we fix the number of observations in y to
p = C · n · r, where n ≥ m in our cases, and for varying values of C. We use a MATLAB
environment, where no mex-ified parts present, apart from those used in SVD calculations; see
below.

We fix the maximum number of iterations to T = 4000, unless otherwise stated. We use
the same stopping criteria for the majority of algorithms as ‖Xt−Xt−1‖F

‖Xt‖F ≤ tol, where Xt, Xt−1

denote the current and the previous estimates in the X space and tol := 5 · 10−6. For SVD
calculations, we use the lansvd implementation in PROPACK package [67]. For fairness,
we modified all the algorithms so that they exploit the true rank r; however, we observed

12We note that the original algorithm in [89] is designed for the matrix completion problem, not the matrix
sensing problem here.

13The algorithm in [106] assumes a step size that depends on RIP constants, which are NP-hard to compute;
since no heuristic is proposed, we do not include this algorithm in the comparison list.
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Figure 3. Convergence performance of algorithms under comparison w.r.t. ‖X̂−X?‖F
‖X?‖F

versus the total
execution time. Top row corresponds to dimensions m = n = 1024; bottom row corresponds to dimensions
m = 2048, n = 4096. Details on problem configuration are given on plots’ title. For all cases, we used A as
noiselets and r = 50.

that small deviations from the true rank result in relatively small degradation in terms of the
reconstruction performance.14

In the implementation of BFGD, we set g to be 1
16 · ‖U

>U − V >V ‖2F . Moreover, for our
implementation of Procrustes Flow, we set the constant step size as µ := 2

187 · {
1

‖U0‖2F
, 1
‖V0‖2F ‖

},
as suggested in [92]. We use the implementation of [89], with random initialization (unless
otherwise stated) and regularization type soft, as suggested by their implementation. In [51],
we require an upper bound on the nuclear norm of X?; in our experiments we assume we know
‖X?‖∗, which requires a full SVD calculation. Moreover, we set the curvature constant for
the SparseApproxSDP implementation to its true value Cf = 1.

For initialization, we consider the following settings: (i) random initialization, where
X0 = U0V

>
0 for some randomly selected U0 and V0 such that ‖X0‖F = 1, and (ii) specific

initialization, as suggested in each of the papers above. Our specific initialization is based on
the discussion in section 5, where X0 = Pr(− 1

L∇f(0)). Algorithms SVP and SparseApprox-
SDP and the solver in [89] work with random initialization. For the initialization phase of
[92], we consider two cases: (i) the condition number κ is known, where according to Theorem
3.3 in [92], we require Tinit := d3 log(

√
r ·κ)+5e SVP iterations, and (ii) the condition number

κ is unknown, where we use Lemma 3.4 in [92].
Results using random initialization. Figure 3 depicts the convergence performance of the

above algorithms w.r.t. total execution time. BFGD shows the best performance, compared to

14In case the rank of X? is unknown, one has to predict the dimension of the principal singular space. The
authors in [53], based on ideas in [61, 59], propose to compute singular values incrementally until a significant
gap between singular values is found.
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Table 3
Summary of results for reconstruction and efficiency. Here, m = n = 1024, resulting in 1,048,576 variables

to optimize, and A is a noiselet-based subsampled linear map. The number of samples p satisfies p = C · n · r
for various values of constant C. Time reported is in seconds.

r = 50, C = 10 r = 50, C = 5 r = 50, C = 3

Algorithm ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time

[53] 6.86e-07 29.05 3.75e-06 115.90 5.73e-04 517.56

[92] 8.65e-03 291.04 5.44e-01 236.44 1.08e+00 223.24

[51] 1.56e-02 223.15 4.92e-02 158.54 3.84e-01 141.59

[89] 9.25e-01 95.51 9.31e-01 260.84 9.39e-01 59.42

BFGD 7.08e-07 16.28 2.31e-06 35.39 1.15e-05 157.66

Table 4
Summary of results for reconstruction and efficiency. Here, m = 2048, n = 4096, resulting in 8,388,608

variables to optimize, and A is a noiselet-based subsampled linear map. The number of samples p satisfies
p = C · n · r for various values of constant C. Time reported is in seconds.

r = 50, C = 10 r = 50, C = 5 r = 50, C = 3

Algorithm ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time

[53] 1.41e-06 349.70 5.69e-06 1144.74 1.41e-04 4703.20

[92] 2.11e-01 1909.47 8.79e-01 1653.70 1.10e+00 1692.74

[51] 1.42e-02 1484.22 2.88e-02 1187.52 1.75e-01 1165.42

[89] 1.01e+00 69.22 1.04e+00 53.16 1.11e+00 78.23

BFGD 6.97e-07 103.83 1.79e-06 195.51 6.67e-06 561.82

the rest of the algorithms. It is notable that BFGD performs better than SVP, by avoiding
SVD calculations and employing a better step size selection.15 For this setting, GuaranteedMC
converges to a local minimum, while SparseApproxSDP and Procrustes Flow show a close
to sublinear convergence rate.

To further show how the performance of each algorithm scales as dimension increases,
we provide aggregated results in Tables 3–5. Observe that BFGD is one order of magnitude
faster than the rest of the nonconvex factorization algorithms. Observe that SVP requires one
order of magnitude more time to complete one iteration, mostly due to the SVD step. In stark
contrast, all factorization-based approaches spend less time per iteration, as was expected by
the discussion in section 7.1.

Results using specific initialization.16 In this case, we study the effect of initialization in
the convergence performance of each algorithm. To do so, we focus only on the factorization-
based algorithms: Procrustes Flow, GuaranteedMC, and BFGD. We consider two problem cases:

15If our step size is used in SVP, we get slightly better performance, but not in a universal manner.
16Bhojanapalli, Neyshabur, and Srebro [15] recently proved that random initialization is sufficient to lead to

the optimum X? for MS problems, while operating on the factors for X? � 0. For the nonsquare case, see [84].
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Table 5
Median time per iteration. Time reported is in seconds.

m = n = 1024, C = 3 m = 2048, n = 4096, C = 3

Algorithm Median time per iter. Median time per iter.

[53] 1.60e-01 1.04e+00

[92] 5.87e-02 4.52e-01

[51] 3.40e-02 3.00e-01

[89] 7.14e-02 4.05e-01

BFGD 5.33e-02 3.98e-01

Table 6
Summary of results of factorization algorithms using our proposed initialization.

m = n = 1024, C = 10, r = 50 m = n = 1024, C = 10, r = 5

Algorithm ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time

[92] 2.27e+01 281.20 4.04e+01 192.09

[89] 9.25e-01 96.85 4.76e-01 2.47

BFGD 3.70e-06 52.52 8.12e-06 65.49

Table 7
Summary of results of factorization algorithms using each algorithm’s proposed initialization.

m = n = 1024, C = 10, r = 50 m = n = 1024, C = 10, r = 5

Algorithm ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time

[92] 3.29e-05 390.68 8.57e-04 2017.79

[89] 9.25e-01 114.93 1.01e+00 68.17

BFGD 3.69e-06 64.26 3.14e-06 74.23

m = 2048, n = 4096, C = 10, r = 50 m = 2048, n = 4096, C = 10, r = 5

Algorithm ‖X̂−X?‖F
‖X?‖F

Time ‖X̂−X?‖F
‖X?‖F

Time

[92] 4.98e-02 265.27 4.22e-02 1497.68

[89] 4.76e-01 4.07 1.03e+00 35.05

BFGD 8.13e-06 83.34 5.84e-06 379.14

(i) all schemes use our initialization procedure, and (ii) each algorithm uses its own suggested
initialization procedure. The results are depicted in Tables 6 and 7, respectively.

Using our initialization procedure for all algorithms, we observe that both Procrustes Flow

and GuaranteedMC schemes can compute an approximation X̂ such that ‖X̂−X
?‖F

‖X?‖F > 10−1. In

contrast, our approach achieves a solution X̂ that is close to the stopping criterion, i.e.,
‖X̂−X?‖F
‖X?‖F ≈ 10−6.
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Using different initialization schemes per algorithm, the results are depicted in Table 7. We
recall that GuaranteedMC is designed for matrix completion tasks, where the linear operator
is a selection mask of the entries. Observe that Procrustes Flow’s performance improves
significantly by using their proposed initialization: the idea is to perform SVP iterations to
get to a good initial point; then switch to nonconvex factored gradient descent for low per-
iteration complexity. However, this initialization is computationally expensive, as Table 7
indicates.

7.4. Image denoising as matrix completion problem. In this example, we consider the
matrix completion setting for an image denoising task. In particular, we observe a limited
number of pixels from the original image and perform a low-rank approximation based only
on the set of measurements. We use real data images: while the true underlying image might
not be low-rank, we apply our solvers to obtain low-rank approximations.

Figures 4–6 depict the reconstruction results for three image cases. In all cases, we compute
the best 100-rank approximation of each image (see, e.g., the top middle image in Figure 4,
where the full set of pixels is observed) and we observe only the 35% of the total number of
pixels, randomly selected.

Our algorithm shows competitive performance compared to simple gradient descent
schemes as SVP and Procrustes Flow, while being a fast and scalable solver. Table 8 con-
tains timing results from 10 Monte Carlo random realizations for all image cases.

7.5. 1-bit matrix completion. For this task, we repeat the experiments in [34] and com-
pare BFGD with their proposed schemes. We assume X? ∈ Rm×n is an unknown low-rank
matrix, satisfying ‖X?‖∞ ≤ α, α > 0, from which we observe only a subset of indices
Ω ⊂ [m]× [n], according to the following rule:

Figure 4. Reconstruction performance in image denoising settings. The image size is 2845 × 4266
(12,136,770 pixels) and the approximation rank is preset to r = 100. We observe 35% of the pixels of the
true image. We depict the median reconstruction error with respect to the true image in dB over 10 Monte
Carlo realizations.D
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Figure 5. Reconstruction performance in image denoising settings. The image size is 3309 × 4963
(16,422,567 pixels) and the approximation rank is preset to r = 100. We observe 30% of the pixels of the
true image. We depict the median reconstruction error with respect to the true image in dB over 10 Monte
Carlo realizations.

Figure 6. Reconstruction performance in image denoising settings. The image size is 4862 × 9725
(47,282,950 pixels) and the approximation rank is preset to r = 100. We observe 30% of the pixels of the
true image. We depict the median reconstruction error with respect to the true image in dB over 10 Monte
Carlo realizations.

Yi,j =

{
+1 with probability σ(X?

i,j)

−1 with probability 1− σ(X?
i,j)

for (i, j) ∈ Ω.(21)

We assume Ω is chosen uniformly at random. Two natural choices for σ function are (i) the
logistic regression model, where σ(x) = ex

1+ex , and (ii) the probit regression model, where
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Table 8
Summary of execution time results for the problem of image denoising. Timings correspond to median

values on 10 Monte Carlo random instantiations.

Time (sec.)

Algorithm UT campus Graffiti Milky Way

[53] 5224.1 4154.9 7921.4

[92] 5383.4 6501.4 12806.3

BFGD 4062.4 3155.9 9119.6

σ(x) = 1 − Φ(−x/σ) for Φ being the cumulative Gaussian distribution function. Under this
model, [34] propose two convex relaxation algorithmic solutions to recover X?: (i) the convex
maximum log-likelihood estimator under nuclear norm and infinity norm constraints:

(22)
minimize
X∈Rm×n

f(X),

subject to ‖X‖∗ ≤ α
√
rmn, ‖X‖∞ ≤ α,

and (ii) the convex maximum log-likelihood estimator under only nuclear norm constraints.
In both cases, f(X) satisfies the expression in (6). Davenport et al. [34] propose a spectral
projected-gradient descent method for both these criteria; in the case where only nuclear norm
constraints are present, SVD routines compute the convex projection onto norm balls, while
in the case where both nuclear and infinity norm constraints are present, [34] propose an
alternating-direction method of multipliers solution.

Synthetic experiments. We synthetically construct X? ∈ Rm×n, where m = n = 100, such
that X? = U?V ?>, where U? ∈ Rm×r, V ? ∈ Rn×r for r = 1. The entries of U?, V ? are drawn
i.i.d. from Uni[−1

2 ,
1
2 ]. According to [34], we scale X? such that ‖X?‖∞ = 1. Then, we

observe Y ∈ Rm×n according to (21), where |Ω| = 1
4 ·mn. We consider the probit regression

model with additive Gaussian noise, with variance σ2.
Figure 7 depicts the recovery performance of BFGD, as compared to variants of (22) in [34].

As noted in [34], the performance of all algorithms is poor when σ is too small or too large,
while in between, for moderate noise levels, we observe better performance for all approaches.

By default, in all problem settings, we observe that the estimate of (22) is not of low
rank : to compute the closest rank-r approximation to that, we further perform a debias step
via truncated SVD. The effect of the debias step is better illustrated in Figure 7, focusing
on the differences between the left and right plots: without such a step, BFGD has a better
performance within the “sweet” range of noise levels, compared to the convex analogue in
(22). Applying the debias step, both approaches have comparable performance, with that of
(22) being slightly better.

Perhaps somewhat surprisingly, the performance of BFGD, in terms of estimating the correct
sign pattern of the entries, is better than that of [34], even with the debias step. Figure 8, left
panel, illustrates the performances for various noise levels.

Finally, we study the performance of the algorithms under consideration as a function of
the number of measurements for fixed settings of dimensions m = n = 200 and noise level
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Figure 7. Comparison of 1-bit matrix procedures. Left panel: Output of (22) is not projected onto rank-r
set. Right panel: Output of (22) is projected onto rank-r set.
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Figure 8. Left panel: Comparison of 1-bit matrix procedures w.r.t. sign pattern estimation. Right panel:
Recovery of X? from p = C · n2 measurements. X? is designed to be low rank: r = 3, 5, and 10. x-axis
represents C for various values.

σ = 0.244. By the discussion above, such a noise level leads to good performance from all
schemes. We considered matrices X? with rank r ∈ {3, 5, 10} and generate p = C · n2, over
a wide range of 0 < C < 1. Figure 8, right panel, shows the performance of BFGD and the
approach for (22) in [34], in terms of the relative Frobenius norm of the error. All approaches
do poorly when there are only p < 0.35 · n2 measurements, since this is near the noiseless
information-theoretic limit. For higher numbers of measurements, the nonconvex approach in
BFGD returns more reasonable solutions and outperforms convex approaches, taking advantage
of the prior knowledge on low-rankness of the solution.

MovieLens data set. We compare 1-bit matrix completion solvers on the 100k MovieLens
data set. To do so, we repeat the experiment in section 4.3 of [34]: we use the MovieLens 100k,
which consists of 100K movie ratings, from 1000 users on 1700 movies. Each user entry de-
notes the movie rating, ranging from 1 to 5. To convert this data set into 1-bit measurements,
we convert these ratings to binary observations by comparing each rating to the average rat-
ing for the entire data set (which is approximately 3.5), according to [34]. To evaluate the
performance of the algorithms, we assume part of the observed ratings as unobserved (5K of
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Table 9
Summary of results for the problem of 1-bit matrix completion on MovieLens data set. Individual and

overall ratings correspond to percentages of signs correctly estimated (+1 corresponds to original rating above
3.5, −1 corresponds to original rating below 3.5). Timings correspond to median values on 10 Monte Carlo
random instantiations.

Ratings (%) Overall (%) Time

Algorithm 1 2 3 4 5

SPG (α
√
r = 0.32) 73.7 68.4 52.5 74.9 91.0 71.3 79.5

SPG (α
√
r = 4.64) 77.2 71.0 58.5 72.5 86.9 71.8 213.4

SPG (α
√
r = 10.00) 76.2 71.3 58.3 71.0 85.7 71.0 491.8

TFOCS 70.4 69.4 59.2 39.1 59.4 64.8 42.3

BFGD (r = 3) 79.4 74.5 56.9 72.5 88.2 72.2 25.4

BFGD (r = 5) 79.0 72.4 56.8 71.6 86.2 71.2 27.5

BFGD (r = 10) 77.6 75.0 57.5 70.5 84.1 70.9 30.3

them) and check if the estimate of X?, X̂, predicts the sign of these ratings. We perform
machine learning estimation using logistic function σ(x) = ex

1+ex in f .
We compare the following algorithms: (i) the SPG of (22) in [34] for 1-bit matrix com-

pletion, (ii) TFOCS [10], where we observe the unquantized data set (actual values), and (iii)
BFGD for various values of rank parameter r. The results are shown Table 9 over 10 Monte
Carlo realizations (i.e., we randomly selected 5K ratings as test sets 10 times and solved the
problem). BFGD shows competitive performance, compared to convex approaches. Moreover,
setting the parameter r is an “easier” and more intuitive task: our algorithm administers
precise control on the rankness of the solution, which might lead to further interpretation of
the results. Convex approaches lack this property: the mapping between the regularization
parameters and the number of rank-1 components in the extracted solution is highly nonlin-
ear. At the same time, BFGD shows faster convergence to a good solution, which makes it a
preferable algorithmic solution for large-scale applications.

Appendix A. Connection of η and η̂.
Proof of (16)⇒(15). Let R?t be the r × r orthogonal matrix such that

Dist(Ut, Vt;X
?
r ) = ‖Wt −W ?R?t ‖F .

By the triangle inequality, we have

‖Wt‖2 = ‖Wt −W ?R?t +W ?R?t ‖2
(i)

≤ ‖W ?R?t ‖2 + ‖Wt −W ?R?t ‖2
(ii)

≤ ‖W ?‖2 +
√

2σr(X?
r )

1/2

10

(iii)

≤ ‖W ?‖2 + σr(W ?)
10 ≤ 11

10 · ‖W
?‖2,(23)

where (i) is due to the triangle inequality, (ii) is due to Assumption 1, and (iii) is due to the
fact that

√
2 · σr(X?

r )1/2 = σr(W
?) and κ ≥ 1. The above bound holds for every t.
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On the other hand, we have:

‖W0‖2 = ‖W0 −W ?R?t +W ?R?‖2
(i)

≥ ‖W ?R?t ‖2 − ‖W0 −W ?R?t ‖2
≥ ‖W ?‖2 −

√
2σr(X?

r )
1/2

10 ≥ ‖W ?‖2 − σ1(W ?)
10 ≥ 9

10 · ‖W
?‖2.(24)

Combining (23) and (24), we obtain

‖Wt‖2 ≤ 11
10 · ‖W

?‖2 ≤ 11
9 ‖W0‖2 =⇒ 81

121 · ‖Wt‖22 ≤ ‖W0‖22

and finally 1
8·max{L, Lg}·‖Wt‖22

= 1

8·121
81 ·max{L, Lg}· 81

121 ·‖Wt‖22
≥ 1

12·max{L, Lg}·‖W0‖22
. �

Proof of (17)⇒(13). We have

‖∇f(UtV
>
t )‖2 ≤ ‖∇f(U0V

>
0 )‖2 + ‖∇f(UtV

>
t )−∇f(U0V

>
0 )‖2

(i)

≤ ‖∇f(U0V
>

0 )‖2 + L‖UtV >t − U0V
>

0 ‖F
(ii)

≤ ‖∇f(U0V
>

0 )‖2 + L‖UtV >t − U?V ?>‖F + L‖U0V
>

0 − U?V ?>‖F ,(25)

where (i) is due to the fact that f is L-smooth and (ii) holds by adding and subtracting U?V ?>

and then applying the triangle inequality. To bound the last two terms on the right-hand side,
we observe

‖UtV >t − U?V ?>‖F = ‖UtV >t − U?RV >t + U?RV >t − U?RR>V ?>‖F
(i)

≤ ‖U?R‖2 · ‖Vt − V
?R‖F + ‖Vt‖2 · ‖Ut − U

?R‖F
≤ (‖U?‖2 + ‖Vt‖2) ·Dist(Ut, Vt;X

?
r )

(ii)

≤ 21

10
· ‖W ?‖2 ·

σr(W
?)

10
≤ 7

10
· ‖W0‖22 ,

where (i) is due to the triangle and Cauchy–Schwarz inequalities, and (ii) is by Assumption 1
and (23). Similarly, one can show that ‖U0V

>
0 −U?V ?>‖F ≤ 7

10 · ‖W0‖22. Thus, (25) becomes

‖∇f(U0V
>

0 )‖2 ≥ ‖∇f(UtV
>
t )‖2 −

3L

2
‖W0‖22 .(26)

Applying (23), (24), and the above bound, we obtain the desired result. �

Appendix B. Proof of Theorem 4.2. For clarity, we omit the subscript t and use
(U, V ) to denote the current estimate and (U+, V +) the next estimate. Further, we denote
∇g , ∇g(U>U − V >V ), where the gradient is taken over both U and V . We denote the
stacked matrices of (U, V ) and their variants as follows:

W =

[
U
V

]
, W+ =

[
U+

V +

]
, W ? =

[
U?

V ?

]
.
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Observe that W,W+,W ? ∈ R(m+n)×r. Then, the main recursion of BFGD in Algorithm 1 can
be succinctly written as

W+ = W − η̂∇W (f + 1
2g),

where

∇W (f + 1
2g) =

[
∇Uf(UV >) + 1

2∇Ug
∇V f(UV >) + 1

2∇V g

]
=

[
∇f(UV >)V + 1

2U∇g
∇f(UV >)>U − 1

2V∇g

]
.

In the above formulation, we use as regularization parameter λ of the g function, λ = 1
2 .

Our discussion below is based on Assumption 1, where

Dist(U, V ;X?
r ) ≤

√
2 · σr(X?

r )1/2

10
√
κ

=
σr(W

?)

10
√
κ

(27)

holds for the current iterate. The last equality is due to the fact that σr(W
?) =

√
2 ·σr(X?

r )1/2

for (U?, V ?) with “equal footing.” For the initial point (U0, V0), (27) holds by the assumption
of the theorem. Since the right-hand side is fixed, (27) holds for every iterate, as long as
Dist(U, V ;X?

r ) decreases.
To show this, let R ∈ Or be the minimizing orthogonal matrix such that

Dist(U, V ;X?
r ) = ‖W −W ?R‖F ;

here, Or denotes the set of r× r orthogonal matrices such that R>R = I. Then, the decrease
in distance can be lower bounded by

Dist(U, V ;X?
r )2 −Dist(U+, V +;X?

r )2

= ‖W −W ?R‖2F − min
Q∈Or

∥∥W+ −W ?Q
∥∥2

F

≥ ‖W −W ?R‖2F −
∥∥W+ −W ?R

∥∥2

F

= 2η̂ ·
〈
∇W (f + 1

2g),W −W ?R
〉
− η̂2 ·

∥∥∇W (f + 1
2g)
∥∥2

F
,(28)

where the last equality is obtaining by substituting W+, according to its definition above. To
bound the first term on the right-hand side, we use the following lemma; the proof is provided
in section B.1.

Lemma B.1 (descent lemma). Let (27) hold for W . Let µmin = min {µ, µg} and Lmax =
max {L,Lg} for (µ,L) and (µg, Lg) the strong convexity and smoothness parameters pairs for
f and g, respectively. Then, the following inequality holds:

〈
∇W (f + 1

2g),W −W ?R
〉
≥ µmin·σr(W ?)2

20 ‖W −W ?R‖2F + 1
4Lmax

∥∥∥∇f(UV >)
∥∥∥2

F

+ 1
16Lmax

‖∇g‖2F −
L
2 ‖X

? −X?
r ‖

2
F .(29)
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For the second term on the right-hand side of (28), we obtain the following upper bound:

∥∥∇W (f + 1
2g)
∥∥2

F
=

∥∥∥∥[ ∇f(UV >)V + 1
2U∇g

∇f(UV >)>U − 1
2V∇g

]∥∥∥∥2

F

=
∥∥∥∇f(UV >)V + 1

2U∇g
∥∥∥2

F
+
∥∥∥∇f(UV >)>U − 1

2V∇g
∥∥∥2

F

(a)

≤ 2
∥∥∥∇f(UV >)V

∥∥∥2

F
+ 1

2 ‖U∇g‖
2
F +2

∥∥∥∇f(UV >)>U
∥∥∥2

F
+ 1

2 ‖V∇g‖
2
F

= 2
∥∥∥∇f(UV >)V

∥∥∥2

F
+ 2

∥∥∥∇f(UV >)>U
∥∥∥2

F
+ 1

2 ‖W∇g‖
2
F

(b)

≤ 2
∥∥∥∇f(UV >)

∥∥∥2

F
·
(
‖U‖22 + ‖V ‖22

)
+ 1

2 ‖W‖
2
2 ‖∇g‖

2
F

(c)

≤
(

4
∥∥∥∇f(UV >)

∥∥∥2

F
+ 1

2 ‖∇g‖
2
F

)
· ‖W‖22 ,(30)

where (a) follows from the fact ‖A+B‖2F ≤ 2 ‖A‖2F +2 ‖B‖2F , (b) is due to the fact ‖AB‖F ≤
‖A‖F · ‖B‖2, and (c) follows from the observation that ‖U‖2 , ‖V ‖2 ≤ ‖W‖2.

Plugging (29) and (30) into (28), we get

Dist(U, V ;X?
r )2 −Dist(U+, V +;X?

r )2

≥ 2η̂ ·
〈
∇W (f + 1

2g),W −W ?R
〉
− η̂2 ·

∥∥∇W (f + 1
2g)
∥∥2

F

≥ η̂·µmin·σr(W ?)2

10 Dist(U, V ;X?
r )2 − η̂L ‖X? −X?

r ‖
2
F

= η̂·µmin·σr(X?
r )

5 Dist(U, V ;X?
r )2 − η̂L ‖X? −X?

r ‖
2
F ,

where we use the fact that σr(W
?) =

√
2 · σr(X?

r )1/2.
The above lead to the following recursion:

Dist(U+, V +;X?
r )2 ≤ γt ·Dist(U, V ;X?

r )2 + η̂L ‖X? −X?
r ‖

2
F ,

where γt = 1− η̂·µmin·σr(X?
r )

5 . By the definition of η̂ in (16), we further have

γt = 1− µmin·σr(X?
r )

40·Lmax·‖W‖22

(i)

≥ 1− µmin·σr(X?
r )

40·Lmax· 81
100 ·‖W

?‖22

(ii)

≥ 1− µmin
65·Lmax

· σr(X?
r )

σ1(X?
r ) ,

where (i) is by using (24) that connects ‖W‖2 with ‖W ?‖2 as ‖W‖2 ≥ 9
10‖W

?‖2 and (ii) is

due to the fact ‖W ?‖2 =
√

2 · σ1(X?
r )1/2. �

B.1. Proof of Lemma B.1. Before we step into the proof, we require some more notation
for simpler presentation of our ideas. We use another set of stacked matrices Y = [ U

−V ], Y ? =
[ U?

−V ? ]. The error of the current estimate from the closest optimal point is denoted by the
following ∆× matrix structures:

∆U = U − U?R, ∆V = V − V ?R, ∆W = W −W ?R, ∆Y = Y − Y ?R.
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For our proof, we can write〈
∇W (f + 1

2g),W −W ?R
〉

=
〈
∇f(UV >)V,U − U?R

〉
+
〈
∇f(UV >)>U, V − V ?R

〉︸ ︷︷ ︸
(A)

+ 1
2 ·

〈U∇g, U − U?R〉 − 〈V∇g, V − V ?R〉︸ ︷︷ ︸
(B)

 .

For (A), we have

(A) =
〈
∇f(UV >)V,U − U?R

〉
+
〈
∇f(UV >)>U, V − V ?R

〉
=
〈
∇f(UV >), UV > − U?V ?>

〉
+
〈
∇f(UV >),∆U∆>

V

〉
(31)

≥ µ

2

∥∥∥UV > − U?V ?>
∥∥∥2
F︸ ︷︷ ︸

(A1)

+
1

2L

∥∥∇f(UV >)
∥∥2
F︸ ︷︷ ︸

(A2)

−L
2
‖X? −X?

r ‖
2
F︸ ︷︷ ︸

(A3)

−
∥∥∇f(UV >)

∥∥
2
· ‖∆W ‖2F︸ ︷︷ ︸

(A4)

,

where, for the second term in (31), we use the fact that〈
∇f(UV >),∆U∆>V

〉
≥ −

∣∣∣〈∇f(UV >),∆U∆>V

〉∣∣∣ = −
∣∣∣〈∇f(UV >)∆V ,∆U

〉∣∣∣ ,
the Cauchy–Schwarz inequality, and the fact that ‖∆U‖F , ‖∆V ‖F ≤ ‖∆W ‖F ; the first term
in (31) follows from〈

∇f(UV >), UV > − U?V ?>
〉 (i)

≥ f(UV >)− f(U?V ?>) +
µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F

(ii)
= (f(UV >)− f(X?))− (f(U?V ?>)− f(X?)) +

µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F

(iii)

≥ 1

2L

∥∥∥∇f(UV >)
∥∥∥2

F
− L

2

∥∥∥X? − U?V ?>
∥∥∥2

F
+
µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F
,

where (i) is due to the µ-strong convexity of f , and (ii) is by adding and subtracting f(X?);
observe that f(X?) = f(U?V ?>) if and only if rank(X?) = r, and (iii) is due to the L-
smoothness of f and the fact that ∇f(X?) = 0 (for the middle term) and due to the inequality
[82, equation (2.1.7)] (for the first term):

f(X) + 〈∇f(X), Y −X〉+ 1
2L · ‖∇f(X)−∇f(Y )‖2F ≤ f(Y ).(32)

For (B), we have

(B) = 〈Y∇g,W −W ?R〉 =
〈
∇g, Y >W − Y >W ?R

〉
= 1

2

〈
∇g, Y >W −R>Y ?>W ?R

〉
+ 1

2

〈
∇g, Y >W − 2Y >W ?R+R>Y ?>W ?R

〉
(a)
= 1

2

〈
∇g, Y >W

〉
+ 1

2

〈
∇g, Y >W − Y >W ?R−R>Y ?>W +R>Y ?>W ?R

〉
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=
1

2

〈
∇g, U>U − V >V

〉
+

1

2

〈
∇g,∆>Y ∆W

〉
(33)

(b)

≥ µg
4

∥∥∥U>U − V >V ∥∥∥2

F︸ ︷︷ ︸
(B1)

+
1

4Lg
‖∇g‖2F︸ ︷︷ ︸

(B2)

−1

2
‖∇g‖2 · ‖∆W ‖F · ‖∆Y ‖F︸ ︷︷ ︸

(B3)

,

where (a) follows from the “balance” assumption in X ?r ,

Y ?>W ? = U?>U? − V ?>V ? = 0,

for the first term, and the fact that ∇g is symmetric, and therefore〈
∇g, Y >W ?R

〉
=
〈
∇g,R>W ?>Y

〉
=
〈
∇g,R>Y ?>W

〉
for the second term; (b) follows from the fact〈

∇g,∆>Y ∆W

〉
≥ −

∣∣∣〈∇g,∆>Y ∆W

〉∣∣∣ = − |〈∆Y∇g,∆W 〉| ,

and the Cauchy–Schwarz inequality on the second term in (33), and〈
∇g,U>U − V >V

〉 (i)

≥ g(U>U − V >V )− g(0) +
µg
2

∥∥∥U>U − V >V ∥∥∥2

F

(ii)

≥
〈
∇g(0), U>U − V >V

〉
+ 1

2Lg
‖∇g −∇g(0)‖2F +

µg
2

∥∥∥U>U − V >V ∥∥∥2

F

(iii)
= 1

2Lg
‖∇g‖2F +

µg
2

∥∥∥U>U − V >V ∥∥∥2

F
,

where (i) follows from the strong convexity, (ii) is due to (32), and (iii) is by construction of
g where ∇g(0) = 0. Furthermore, (B1) can be bounded below as follows:

(B1) =
∥∥∥U>U − V >V ∥∥∥2

F
=
∥∥∥U>U∥∥∥2

F
+
∥∥∥V >V ∥∥∥2

F
− 2

〈
U>U, V >V

〉
=
∥∥∥UU>∥∥∥2

F
+
∥∥∥V V >∥∥∥2

F
− 2

〈
UV >, UV >

〉
=
〈
WW>, Y Y >

〉

=
〈
WW> −W ?W ?>, Y Y > − Y ?Y ?>

〉
+
〈
W ?W ?>, Y Y >

〉
+
〈
WW> −W ?W ?>, Y ?Y ?>

〉
(i)
=
〈
WW> −W ?W ?>, Y Y > − Y ?Y ?>

〉
+
〈
W ?W ?>, Y Y >

〉
+
〈
WW>, Y ?Y ?>

〉
≥
〈
WW> −W ?W ?>, Y Y > − Y ?Y ?>

〉
=
∥∥∥UU> − U?U?>∥∥∥2

F
+
∥∥∥V V > − V ?V ?>

∥∥∥2

F
− 2

∥∥∥UV > − U?V ?>
∥∥∥2

F
,
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where (i) is due to the fact that〈
W ?W ?>, Y ?Y ?>

〉
=
∥∥∥Y ?>W ?

∥∥∥2

F
=
∥∥∥U?>U? − V ?>V ?

∥∥∥2

F
= 0

and the first inequality holds by the fact that the inner product of two PSD matrices is
nonnegative.

At this point, we have all the required components to compute the desired lower bound.
Combining (A1) and (B1), we get

4(A1) + (B1) =
∥∥∥UU> − U?U?>∥∥∥2

F
+
∥∥∥V V > − V ?V ?>

∥∥∥2

F
+ 2

∥∥∥UV > − U?V ?>
∥∥∥2

F

=
∥∥∥WW> −W ?W ?>

∥∥∥2

F
≥ 4σr(W

?)2

5
‖∆W ‖2F ,

where, in order to obtain the last inequality, we borrow the following lemma by [92].

Lemma B.2. For any W,W ? ∈ R(m+n)×r, with ∆W = W − W ?R for some orthogonal
matrix R ∈ Rr×r, we have∥∥∥WW> −W ?W ?>

∥∥∥2

F
≥ 2 ·

(√
2− 1

)
· σr(W ?)2 · ‖∆W ‖2F .

For convenience, we further lower bound the right-hand side of this lemma by 2 · (
√

2 − 1) ·
σr(W

?)2 · ‖∆W ‖2F ≥
4σr(W ?)2

5 ‖∆W ‖2F .
Given the definitions of µmin and Lmax, we have

(A) + 1
2(B) ≥ µ

2 (A1) + 1
2L(A2)− L

2 (A3)− (A4) +
µg
8 (B1) + 1

8Lg
(B2)− 1

4(B3)

(i)

≥ µmin
8 (4(A1)+(B1))+ 1

2Lmax
(A2)+ 1

8Lmax
(B2)−(A4)− 1

4(B3)− L
2 (A3)

≥ µmin·σr(W ?)2

10 ‖∆W ‖2F + 1
2Lmax

∥∥∥∇f(UV >)
∥∥∥2

F
+ 1

8Lmax
‖∇g‖2F

−
∥∥∥∇f(UV >)

∥∥∥
2
‖∆W ‖2F −

1
4 ‖∇g‖F ‖∆W ‖F ‖∆Y ‖F

− L
2 ‖X

? −X?
r ‖

2
F ,(34)

where in (i) we used the definitions of µmin and Lmax. Note that we have not used the condition
(27). It follows from (27) that∥∥∥∇f(UV >)

∥∥∥
2
· ‖∆W ‖2F ≤

σr(W ?)
10
√
κ

∥∥∥∇f(UV >)
∥∥∥

2
· ‖∆W ‖F

≤ µmin·σr(W ?)2

25 ‖∆W ‖2F + 1
4Lmax

∥∥∥∇f(UV >)
∥∥∥2

2
(35)

and

1
4 ‖∇g‖2 · ‖∆W ‖F · ‖∆Y ‖F = 1

4 ‖∇g‖2 · ‖∆W ‖2F
≤ σr(W ?)

40
√
κ
‖∇g‖2 · ‖∆W ‖F

≤ µmin·σr(W ?)2

100 ‖∆W ‖2F + 1
16Lmax

‖∇g‖22 ,(36)
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where we use the arithmetic mean-geometric mean inequality. Plugging (35) and (36) into
(34), it is easy to obtain

(A) + 1
2(B) ≥ µmin·σr(W ?)2

20 ‖∆W ‖2F + 1
4Lmax

∥∥∥∇f(UV >)
∥∥∥2

F

+ 1
16Lmax

‖∇g‖2F −
L
2 ‖X

? −X?
r ‖

2
F . �

Appendix C. Proof of Theorem 4.4. The proof follows the same framework of the
sublinear convergence proof in [14]. We use the following general lemma to prove the sublinear
converegence.

Lemma C.1. Suppose that a sequence of iterates {Wt}Tt=0 satisfies the following conditions:

f(WtW
>
t )− f(Wt+1W

>
t+1) ≥ α ·

∥∥∥∇W f(WtW
>
t )
∥∥∥2

F
,(37)

f(WtW
>
t )− f(W ?W ?>) ≤ β ·

∥∥∥∇W f(WtW
>
t )
∥∥∥
F

(38)

for all t = 0, . . . , T − 1 and some values α, β > 0 independent of the iterates. Then it is
guaranteed that

f(WTW
>
T )− f(W ?W ?>) ≤ β2

α · T
.

Proof. Define δt = f(WtW
>
t )−f(W ?W ?>). If we get δT0 ≤ 0 at some T0 < T , the desired

inequality holds because the first hypothesis guarantees {δt}Tt=0 to be nonincreasing. Hence,
we can only consider the time t, where δt, δt+1 ≥ 0. We have

δt+1

(a)

≤ δt − α ·
∥∥∥∇W f(WtW

>
t )
∥∥∥2

F

(b)

≤ δt −
α

β2
· δ2
t

(c)

≤ δt −
α

β2
· δt · δt+1,

where (a) follows from the first hypothesis, (b) follows from the second hypothesis, and (c)
follows from that δt+1 ≤ δt by the first hypothesis. Dividing by δt · δt+1, we obtain

1

δt+1
− 1

δt
≥ α

β2
.

Then we obtain the desired result by telescoping the above inequality.

Now it suffices to show BFGD provides a sequence {Wt}Tt=0 satisfying the hypotheses of
Lemma C.1.

Obtaining (37). Although f is nonconvex over the factor space, it is reasonable to obtain
a new estimate (with a carefully chosen steplength) which is no worse than the current one,
because the algorithm takes a gradient step.

Lemma C.2. Let f be an L-smooth convex function. Let X = WW> and X+ = W+W+>

be two consecutive estimates of BFGD. Then

f(WW>)− f(W+W+>) ≥ 3η

5
·
∥∥∥∇W f(WW>)

∥∥∥2

F
.(39)
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Since we can fix the steplength η based on the initial solution so that it is independent of
the following iterates, we have obtained the first hypothesis of Lemma C.1.

Obtaining (38). Consider the following assumption:

(A) : Dist(U, V ;X?
r ) = min

R∈O(r)
‖W −W ?R‖F ≤

σr(W
?)

10
.

Trivially (A) holds for U0 and V0. Now we provide key lemmas, and then the convergence
proof will be presented.

Lemma C.3 (suboptimality bound). Assume that (A) holds for W . Then

f(WW>)− f(W ?W ?>) ≤ 7

3
·
∥∥∥∇W f(WW>)

∥∥∥
F
·Dist(U, V ;X?

r ).

Lemma C.4 (descent in distance). Assume that (A) holds for W . If

f(W+W+>) ≥ f(W ?W ?>), then Dist(U+, V +;X?
r ) ≤ Dist(U, V ;X?

r ).

Combining the above two lemmas, we obtain

f(WW>)− f(W ?W ?>) ≤ 7 ·Dist(U0, V0;X?
r )

3
·
∥∥∥∇W f(WW>)

∥∥∥
F
.(40)

Plugging (39) and (40) into Lemma C.1, we obtain the desired result. �

C.1. Proof of Lemma C.2. The L-smoothness gives

f(WW>)− f(W+W+>)

≥
〈
∇f(WW>),WW> −W+W+>

〉
− L

2

∥∥∥WW> −W+W+>
∥∥∥2

F

=
〈
∇f(WW>), (W −W+)W> +W (W −W+)>

〉
−
〈
∇f(WW>), (W −W+)(W −W+)>

〉
− L

2

∥∥∥WW> −W+W+>
∥∥∥2

F
.(41)

For the first term, we have〈
∇f(WW>), (W −W+)W> +W (W −W+)>

〉
= 2 ·

〈
∇f(WW>)W,W −W+

〉
= η ·

∥∥∥∇W f(WW>)
∥∥∥2

F
.(42)

Using the Cauchy–Schwarz inequality, the second term can be bounded as follows:〈
∇f(WW>), (W −W+)(W −W+)>

〉
= η2

〈
∇f(WW>),∇W f(WW>) · ∇W f(WW>)>

〉
= η2

〈
∇f(WW>) · ∇W f(WW>),∇W f(WW>)

〉
≤ η2

∥∥∥∇f(WW>) · ∇W f(WW>)
∥∥∥
F

∥∥∥∇W f(WW>)
∥∥∥
F

≤ η2
∥∥∥∇f(WW>)

∥∥∥
2

∥∥∥∇W f(WW>)
∥∥∥2

F
.(43)
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To bound the third term of (41), we have

‖WW> −W+W+>‖F ≤ ‖WW> −WW+>‖F + ‖WW+> −W+W+>‖F
≤ (‖W‖2 +

∥∥W+
∥∥

2
) · ‖W −W+‖F

≤ η ·
(

2 ‖W‖2 + η ·
∥∥∥∇f(WW>)

∥∥∥
2
· ‖W‖2

)
· ‖∇W f(WW>)‖F

≤ 7η

3
‖W‖2 · ‖∇W f(WW>)‖F .(44)

Plugging (42), (43), and (44) into (41), we obtain

f(WW>)− f(W+W+>) ≥ η ·
∥∥∥∇W f(UV >)

∥∥∥2

F
·
(

1−η17L‖W‖22 + 3‖∇f(WW>)‖2
3

)
≥ 3η

5
·
∥∥∥∇W f(UV >)

∥∥∥2

F
,

where the last inequality follows from the condition of the steplength η. This completes the
proof. �

C.2. Proof of Lemma C.3. We use the following lemma.

Lemma C.5 (error bound). Assume that (A) holds for W . Then〈
∇f(WW>),∆W∆>W

〉
≤ 1

3
·
∥∥∥∇W f(UV >)

∥∥∥
F
·Dist(U, V ;X?

r ).

Now the lemma is proved as follows:

f(WW>)− f(W ?W ?>)

(a)

≤ 〈∇f(WW>),WW> −W ?W ?>〉
= 〈∇f(WW>),∆WW

>〉+ 〈∇f(WW>),W∆>W 〉 − 〈∇f(WW>),∆W∆>W 〉
= 2〈∇f(WW>)W,∆W 〉 − 〈∇f(WW>),∆W∆>W 〉
(b)

≤ 2 ·
∥∥∥∇W f(WW>)

∥∥∥
F
· ‖∆W ‖F + |〈∇f(WW>),∆W∆>W 〉|

(c)

≤ 7

3
·
∥∥∥∇W f(WW>)

∥∥∥
F
· ‖∆W ‖F ,

where (a) follows from the convexity of f , (b) follows from the Cauchy–Schwarz inequality,
and (c) follows from Lemma C.5. �

C.3. Proof of Lemma C.5. Define QW , QW ? , and Q∆W
as the projection matrices of the

column spaces of W , W ?, and ∆W = W −W ?R, respectively. We have〈
∇f(WW>),∆W∆>W

〉
=
〈
∇f(WW>)Q∆W

,∆W∆>W

〉
(a)

≤
∥∥∥∇f(WW>)Q∆W

∥∥∥
2
· ‖∆W ‖2F

(b)

≤
(∥∥∥∇f(WW>)QW

∥∥∥
2

+
∥∥∥∇f(WW>)QW ?

∥∥∥
2

)
· ‖∆W ‖2F ,(45)
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where (a) follows from the Cauchy–Schwarz inequality and the fact ‖AB‖F ≤ ‖A‖2 · ‖B‖F ,
and (b) follows from that W −W ? lies on the column space spanned by W and W ?. To bound
the terms in (45), we obtain∥∥∥∇f(WW>)QW

∥∥∥
2

=
∥∥∥∇f(WW>)WW †

∥∥∥
2
≤ 1

σr(W )

∥∥∥∇f(WW>)W
∥∥∥

2

≤ 10

9σr(W ?)

∥∥∥∇f(WW>)W
∥∥∥

2
,∥∥∥∇f(WW>)QW ?

∥∥∥
2

=
∥∥∥∇f(WW>)W ?W ?†

∥∥∥
2
≤ 1

σr(W ?)

∥∥∥∇f(WW>)W ?
∥∥∥

2
,

‖∇f(WW>)W ?‖2 ≤ ‖∇f(WW>)W‖2 + ‖∇f(WW>)∆W ‖2
≤ ‖∇f(WW>)W‖2

+
(
‖∇f(WW>)QW ‖2 + ‖∇f(WW>)QW ?‖2

)
· ‖∆W ‖2

≤ 10

9
‖∇f(WW>)W‖2 +

1

10
· ‖∇f(WW>)W ?‖2,

‖∇f(WW>)QW ?‖2 ≤
1

σr(W ?)
‖∇f(WW>)W ?‖2 ≤

5

4σr(W ?)
‖∇f(WW>)W‖2,

where W † and W ?† are the Moore–Penrose pseudoinverses of W and W ?. Plugging the above
into (45), we get〈

∇f(WW>),∆W∆>W

〉
≤ 95

36σr(W ?)
·
∥∥∥∇f(WW>)W

∥∥∥
2
· ‖∆W ‖2F

(a)

≤ 1

3
·
∥∥∥∇f(WW>)W

∥∥∥
2
· ‖∆W ‖F ,

where (a) follows from (A). �

C.4. Proof of Lemma C.4. For this proof, we borrow a lemma from [14]. Although the
assumption for the lemma is stronger than assumption (A), a slight modification of the proof
leads to the following lemma from assumption (A).

Lemma C.6 (Lemma C.2 of [14]). Let assumption (A) hold and f(W+W+>) ≥ f(W ?W ?>).
Then the following lower bound holds:〈

∇f(WW>),∆W∆>W

〉
≥ −

√
2√

2− 1
10

· 1

10
·
∣∣∣〈∇f(WW>),WW> −W ?W ?>

〉∣∣∣ .
We have

Dist(U, V ;X?
r )2 −Dist(U+, V +;X?

r )2

≥ ‖W −W ?R‖2F −
∥∥W+ −W ?R

∥∥2

F

= 2η
〈
∇W f(WW>),∆W

〉
− η2

∥∥∥∇W f(WW>)
∥∥∥2

F

= 4η
〈
∇f(WW>)W,∆W

〉
− η2

∥∥∥∇W f(WW>)
∥∥∥2

F
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= 2η
〈
∇f(WW>),WW> −W ?W ?>

〉
+ 2η

〈
∇f(WW>),∆W∆>W

〉
− η2

∥∥∥∇W f(WW>)
∥∥∥2

F

(a)

≥ 17η

10

〈
∇f(WW>),WW> −W ?W ?>

〉
− η2

∥∥∥∇W f(WW>)
∥∥∥2

F

(b)

≥ 51η2

50

∥∥∥∇W f(WW>)
∥∥∥2

F
− η2

∥∥∥∇W f(WW>)
∥∥∥2

F
≥ 0,(46)

where (a) follows from Lemma C.6, (b) follows from the convexity of f , the hypothesis of the
lemma, and Lemma C.2 as follows:〈

∇f(WW>),WW> −W ?W ?>
〉
≥ f(WW>)− f(W ?W ?>)

≥ f(WW>)− f(W+W+>)

≥ 3η

5
·
∥∥∥∇W f(WW>)

∥∥∥2

F
.

This completes the proof. �

Appendix D. Initialization proofs. The triangle inequality gives that∥∥∥U0V
>

0 −X?
r

∥∥∥
F
≤
∥∥∥U0V

>
0 −X0

∥∥∥
F

+ ‖X0 −X?‖F + ‖X? −X?
r ‖F .(47)

Let us first obtain an upper bound on the first term. We have

∥∥∥X0 − U0V
>

0

∥∥∥
F

=

∥∥∥∥∥∥∥
 σr+1(X0)

...
σmin{m,n}(X0)


∥∥∥∥∥∥∥

(a)

≤

∥∥∥∥∥∥∥
 σr+1(X?)

...
σmin{m,n}(X

?)


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
 σr+1(X0)− σr+1(X?)

...
σmin{m,n}(X0)− σmin{m,n}(X

?)


∥∥∥∥∥∥∥

= ‖X? −X?
r ‖F +

√√√√min{m,n}∑
i=r+1

(σi(X0)− σi(X?))2

(b)

≤ ‖X? −X?
r ‖F + ‖X0 −X?‖F ,

where (a) follows from the triangle inequality, and (b) is due to Mirsky’s theorem [77]. Plugging
this bound into (47), we get∥∥∥U0V

>
0 −X?

r

∥∥∥
F
≤ 2 ‖X0 −X?‖F + 2 ‖X? −X?

r ‖F .(48)

Now we bound the first term of (48). We have
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‖X0‖F =
1

L
‖∇f(0)‖F =

1

L
‖∇f(0)−∇f(X?)‖F

(a)

≤ ‖0−X?‖F = ‖X?‖F ,

L 〈X0, X
?〉 = −〈∇f(0), X?〉

(b)

≥ f(0)− f(X?) +
µ

2
‖X?‖2F

(c)

≥ µ ‖X?‖2F ,

where (a) follows from the L-smoothness, and (b) and (c) follow from the µ-strong convexity.
Then it follows that

‖X0 −X?‖2F = ‖X0‖2F + ‖X?‖2F − 2 〈X0, X
?〉 ≤ 2

(
1− µ

L

)
‖X?‖2F .

Applying this inequality to (48), we get the desired inequality. �
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