COMP 414/514: Optimization – Algorithms, Complexity and Approximations

Overview

s.t. $x \in C$

Overview

-Different objective classes -Different strategies within each problem -Different approaches based on computational capabilities —Different approaches based on constraints f(x) S.t.

Overview

And, always having in mind applications in machine learning, AI and signal processing

Provable efficiency

Provable efficiency

Lots of data

Provable efficiency Harder problems

Lots of data -

More complicated models Provable efficiency Harder problems Lots of data

Provable efficiency

"What shall we do?"

Provable efficiency

"What shall we do?"

Set up algo nicely

Use prior knowledge

Converge faster

Exploit resources

Topics

- Continuous optimization (in general)
 - See syllabus
 - Both theory and practice

Topics

- Continuous optimization (in general)
 - See syllabus
 - Both theory and practice
- Recent applications that drive research

Topics

- Continuous optimization (in general)
 - See syllabus
 - Both theory and practice
- Recent applications that drive research
- When no theory applies, some intuition

- (Mixed) integer programming

(See CMOR)

- (Mixed) integer programming

(See CMOR)

- Combinatorial optimization algorithms

(E.g., Graph algorithms)

- (Mixed) integer programming

(See CMOR)

- Combinatorial optimization algorithms

(E.g., Graph algorithms)

- Randomized algorithms

(See Anshu's course, Maryam's course)

- (Mixed) integer programming

(See CMOR)

- Combinatorial optimization algorithms

(E.g., Graph algorithms)

- Randomized algorithms

(See Anshu's course, Maryam's course)

- Online algorithms, bandits

(See Maryam's course)

- (Mixed) integer programming

(See CMOR)

- Combinatorial optimization algorithms

(E.g., Graph algorithms)

- Randomized algorithms

(See Anshu's course, Maryam's course)

- Online algorithms, bandits

(See Maryam's course)

- Bayesian algorithms

- (Mixed) integer programming

(See CMOR)

- Combinatorial optimization algorithms

(E.g., Graph algorithms)

- Randomized algorithms

(See Anshu's course, Maryam's course)

- Online algorithms, bandits

(See Maryam's course)

- Bayesian algorithms

- Deep learning architectures

(See Ankit's course)

- Least squares / linear regression

(No, we will not re-define it)

s.t.
$$x \in C$$

- Least squares / linear regression

(No, we will not re-define it)

$$\min_{x} f(x) \Rightarrow \min_{x} \frac{1}{n} \sum_{i=1}^{n} (y_i - a_i^{\top} x)^2$$
s.t. $x \in \mathcal{C}$

Quantum state tomography from limited samples

$$\min_{X} f(X)$$

s.t.
$$X \in \mathcal{C}$$

 Quantum state tomography from limited samples

$$\min_{X} \quad f(X) \\ \text{s.t.} \quad X \in \mathcal{C} \qquad \Longrightarrow \qquad \min_{X} \quad \sum_{i=1}^{n} \left(y_i - \text{Tr}(A_i^\top X) \right)^2 \\ \text{s.t.} \quad \text{Tr}(X) \leq 1 \\ X \geq 0$$

- Fleet management

$$\min_{X} f(X)$$

s.t.
$$X \in \mathcal{C}$$

- Fleet management

$$\min_{X} \quad f(X) \\ \text{s.t.} \quad X \in \mathcal{C} \qquad \Longrightarrow \qquad \min_{x \in \{0,1\}^m, y \in \{0,1\}} \quad f(y) = \sum_{i \in \mathcal{V}} \sum_{k=1}^r d_i (1-q) q^{k-1} y_{ik} \\ \sum_{j \in \mathcal{W}_i} x_j \geq \sum_{k=1}^p y_{ik}, i \in \mathcal{V} \\ \sum_{j \in \mathcal{W}} x_j \leq p_j$$

- Neural networks

Input Layer $\in \mathbb{R}^{20}$ Hidden Layer $\in \mathbb{R}^{12}$ Hidden Layer $\in \mathbb{R}^{10}$ Output Layer $\in \mathbb{R}^{10}$

- Neural networks

Any questions?

Who is this class for?

- Definitely, for PhD students

Who is this class for?

- Definitely, for PhD students

- Master or even undergraduates that want to start research

(but get in touch with me soon to assess your background)

Who is this class for?

- Definitely, for PhD students

- Master or even undergraduates that want to start research

(but get in touch with me soon to assess your background)

- Just auditing is fine by me

What is the vision for this course?

- For starters, this will always be an evolving course

(Any feedback is more than welcome)

What is the vision for this course?

- For starters, this will always be an evolving course

(Any feedback is more than welcome)

- My purpose and vision is to introduce a series of optimization courses in the CS (and Duncan Hall's in general) curriculum

What is the vision for this course?

- For starters, this will always be an evolving course

(Any feedback is more than welcome)

- My purpose and vision is to introduce a series of optimization courses in the CS (and Duncan Hall's in general) curriculum
- The vision is for this course to be part of a sequence of courses that will focus on the theory+practice of methods

(I'm also teaching COMP182)

- Lectures (slides) + whiteboard + in-class code running

(Some lectures have presentations, others will be handwritten)

- Lectures (slides) + whiteboard + in-class code running

(Some lectures have presentations, others will be handwritten)

- Material broad enough to cover range of problems

(But definitely will not cover each individual's interest at 100%)

- Lectures (slides) + whiteboard + in-class code running

(Some lectures have presentations, others will be handwritten)

- Material broad enough to cover range of problems

(But definitely will not cover each individual's interest at 100%)

- Some material inspired from personal research

- Lectures (slides) + whiteboard + in-class code running

(Some lectures have presentations, others will be handwritten)

- Material broad enough to cover range of problems

(But definitely will not cover each individual's interest at 100%)

- Some material inspired from personal research
- "Interlude" lectures to provide some background (if needed)

- Lectures (slides) + whiteboard + in-class code running

(Some lectures have presentations, others will be handwritten)

- Material broad enough to cover range of problems

(But definitely will not cover each individual's interest at 100%)

- Some material inspired from personal research
- "Interlude" lectures to provide some background (if needed)
- Your workload:

```
Graduate – HWs, final project

Undergraduate – HWs, final exam

(Additional workload: possible midterm, scribing)
```

- Weekly assignments

- Weekly assignments
- Some questions are harder than others

- Weekly assignments
- Some questions are harder than others
- Some questions might not feel intuitive

("I'm a computer scientist! Why should I care about optimization?")

- Weekly assignments
- Some questions are harder than others
- Some questions might not feel intuitive

("I'm a computer scientist! Why should I care about optimization?")

- Try to do the best you can

(There will be a reweighing at the end of the course, only if necessary)

- Learn about research in related fields

- Learn about research in related fields

- Make connections between areas, understand how research advances in such areas..

- Learn about research in related fields
- Make connections between areas, understand how research advances in such areas...
- Consider possible extensions of these works (project)

- Learn about research in related fields
- Make connections between areas, understand how research advances in such areas...
- Consider possible extensions of these works (project)
- Comprehend how optimization is key in ML/AI/SP

- Learn about research in related fields
- Make connections between areas, understand how research advances in such areas...
- Consider possible extensions of these works (project)
- Comprehend how optimization is key in ML/AI/SP
- Read and review recent papers

My goals

- Not to judge you on small details in HWs

(But judge whether you have thought about solving the questions)

My goals

- Not to judge you on small details in HWs

(But judge whether you have thought about solving the questions)

- Spark your interest in research where math and practice are combined together

- If you have taken any ML class, you are good to go

- If you have taken any ML class, you are good to go
- Basics of calculus, linear algebra, basic knowledge of ML topics

- If you have taken any ML class, you are good to go
- Basics of calculus, linear algebra, basic knowledge of ML topics
- Programming skills are not necessary

(but might be required, depending on the project selected)

- If you have taken any ML class, you are good to go
- Basics of calculus, linear algebra, basic knowledge of ML topics
- Programming skills are not necessary

(but might be required, depending on the project selected)

A quiz was usually provided for self-assessment, but I decided to make it an additional HW

Grading policy

- 50% HWs
- 50% project/final exam

 (If there will be a midterm, this will change)
- 5%: scribing notes (bonus)

Grading policy

- 50% HWs
- 50% project/final exam

 (If there will be a midterm, this will change)
- 5%: scribing notes (bonus)

Usually there is scaling in final grades. For me, a good grade is given based on the overall performance of the students: I value self-motivation, being proactive and enthusiasm.

- "Παν μετρον αριστον"

(Moderation is key)

- "Παν μετρον αριστον"

(Moderation is key)

- Piazza is set up but also an email account is available

(I have set up an email for the course – see the syllabus)

- "Παν μετρον αριστον"

- (Moderation is key)
- Piazza is set up but also an email account is available
 - (I have set up an email for the course see the syllabus)
- A slack channel will be set up for those doing a project

- "Παν μετρον αριστον"

- (Moderation is key)
- Piazza is set up but also an email account is available
 - (I have set up an email for the course see the syllabus)
- A slack channel will be set up for those doing a project
- Scribing is useful for you to understand better the material

(or even get a better intuition than what was instructed)

- "Παν μετρον αριστον"

- (Moderation is key)
- Piazza is set up but also an email account is available
 - (I have set up an email for the course see the syllabus)
- A slack channel will be set up for those doing a project
- Scribing is useful for you to understand better the material (or even get a better intuition than what was instructed)
- Individuals or groups (2–3) of volunteers for each lecture (it will depend on the attendance)

- "Παν μετρον αριστον"

- (Moderation is key)
- Piazza is set up but also an email account is available
 - (I have set up an email for the course see the syllabus)
- A slack channel will be set up for those doing a project
- Scribing is useful for you to understand better the material (or even get a better intuition than what was instructed)
- Individuals or groups (2–3) of volunteers for each lecture (it will depend on the attendance)
- Deliverable in LaTEX

HWs

– Deliverable in LaTEX

Reviews (when applicable)

- Select papers from a pile of .pdfs that will be provided

(Reviews will be related to the topics currently taught)

Reviews (when applicable)

- Select papers from a pile of .pdfs that will be provided
 - (Reviews will be related to the topics currently taught)
- Single page reviews, similar to NIPS/ICML standards:

(but not random as it usually is now)

- Comment on novelty, clarity, importance
- Strengths and weaknesses
- Main comments + your overall score

- How does a project report look like?

- How does a project report look like?
- Final exams: necessary for undergrads/optional for grads(?)

- How does a project report look like?
- Final exams: necessary for undergrads/optional for grads(?)
- There might be some discussions during the lectures Take advantage by asking questions

(depending on the size of the class)

- How does a project report look like?
- Final exams: necessary for undergrads/optional for grads(?)
- There might be some discussions during the lectures Take advantage by asking questions

(depending on the size of the class)

- Presentation should be at most XX minutes

(tentative - depends on the class size)

Presentations (for final projects)

- How does a project report look like?
- Final exams: necessary for undergrads/optional for grads(?)
- There might be some discussions during the lectures Take advantage by asking questions

(depending on the size of the class)

- Presentation should be at most XX minutes

(tentative – depends on the class size)

- Grading: slides quality, clarity of main ideas

Presentations (for final projects) (not certain yet)

(Course website)

Final Project

(Course website)

Final Project

(Course website)

Please come find me the earliest to discuss projects

Final Project

(Course website)

Please come find me the earliest to discuss projects

You should start reading papers soon, so that around mid-way you have a good project proposal

- I can handle emails in a very responsive way

- I can handle emails in a very responsive way

- Course email: ricecomp414514@gmail.com (please avoid sending emails to my personal account)

- I can handle emails in a very responsive way
- Course email: ricecomp414514@gmail.com (please avoid sending emails to my personal account)
- = e-Mailing list: We canvas + Piazza now
 (So if you are not registered, you will not get updates)

- I can handle emails in a very responsive way
- Course email: ricecomp414514@gmail.com (please avoid sending emails to my personal account)
- e-Mailing list: We canvas + Piazza now
 (So if you are not registered, you will not get updates)
- HWs: will be sent to you via Canvas every week. (please do not distribute)

Notes

- I have started preparing notes for this course

Notes

- I have started preparing notes for this course

- Every week I will try to update every chapter; however I would appreciate any help with scribing throughout the semester

(Course website)

- There will be longer or shorter sessions

- There will be longer or shorter sessions

- Each week represents a Chapter

(This might be a optimistic/delusional; some chapters have more "meat" than others)

- There will be longer or shorter sessions
- Each week represents a Chapter (This might be a optimistic/delusional; some chapters have more "meat" than others)
- Any feedback is more than welcome
 (e.g., too much material vs. too little material)

- There will be longer or shorter sessions
- Each week represents a Chapter (This might be a optimistic/delusional; some chapters have more "meat" than others)
- Any feedback is more than welcome
 (e.g., too much material vs. too little material)
- In case I don't have the time to cover fully a session, I will decide whether you will read it yourself, or I will teach it the next time.

Any questions?

Setting up the background

- Notation convention: vectors = lowercase, matrices = uppercase

- Notation convention: vectors = lowercase, matrices = uppercase
- Vector in p-dimensions: $x \in \mathbb{R}^p$

$$x = [x_1, x_2, \dots, x_p]^\top$$

- Notation convention: vectors = lowercase, matrices = uppercase
- Vector in p-dimensions: $x \in \mathbb{R}^p$

$$x = \left[x_1, x_2, \dots, x_p\right]^\top$$

$$x + y = y + x, \quad x, y \in \mathbb{R}^p$$
 (Commutative)

- Notation convention: vectors = lowercase, matrices = uppercase
- Vector in p-dimensions: $x \in \mathbb{R}^p$

$$x = [x_1, x_2, \dots, x_p]^\top$$

$$x+y=y+x, \quad x,y\in\mathbb{R}^p$$
 (Commutative)
$$(x+y)+x=x+(y+z), \quad x,y,z\in\mathbb{R}^p$$
 (Associative)

- Notation convention: vectors = lowercase, matrices = uppercase
- Vector in p-dimensions: $x \in \mathbb{R}^p$

$$x = [x_1, x_2, \dots, x_p]^\top$$

$$x+y=y+x, \quad x,y\in\mathbb{R}^p$$
 (Commutative)
$$(x+y)+x=x+(y+z), \quad x,y,z\in\mathbb{R}^p$$
 (Associative)
$$0+x=x, \quad x\in\mathbb{R}^p$$

- Notation convention: vectors = lowercase, matrices = uppercase
- Vector in p-dimensions: $x \in \mathbb{R}^p$

$$x = [x_1, x_2, \dots, x_p]^\top$$

$$x+y=y+x, \quad x,y\in\mathbb{R}^p$$
 (Commutative)
$$(x+y)+x=x+(y+z), \quad x,y,z\in\mathbb{R}^p$$
 (Associative)
$$0+x=x, \quad x\in\mathbb{R}^p$$

$$\alpha(x+y)=\alpha x+\alpha y, \quad x,y\in\mathbb{R}^p$$
 (Distributive)

- Span of a set of vectors:

$$span \{x_1, x_2, \dots, x_k\} = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k \mid \alpha_i \in \mathbb{R}, i = [1, k]\}$$

- Span of a set of vectors:

$$span \{x_1, x_2, \dots, x_k\} = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k \mid \alpha_i \in \mathbb{R}, i = [1, k]\}$$

- Linear independence:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k = 0 \quad \Rightarrow \quad \alpha_i = 0, \ \forall i$$

- Span of a set of vectors:

$$span \{x_1, x_2, \dots, x_k\} = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k \mid \alpha_i \in \mathbb{R}, i = [1, k]\}$$

- Linear independence:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k = 0 \quad \Rightarrow \quad \alpha_i = 0, \ \forall i$$

- How does k compare to p, the vector dimension?

- Span of a set of vectors:

$$span \{x_1, x_2, \dots, x_k\} = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k \mid \alpha_i \in \mathbb{R}, i = [1, k]\}$$

- Linear independence:

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k = 0 \quad \Rightarrow \quad \alpha_i = 0, \ \forall i$$

- How does k compare to p, the vector dimension?
- Inner product:

$$x^{\mathsf{T}}y = \langle x, y \rangle = \sum_{i=1}^{p} x_i \cdot y_i$$

$$\langle x, y \rangle = ||x|| \cdot ||y|| \cdot \cos \theta$$

$$\langle x, y \rangle = ||x|| \cdot ||y|| \cdot \cos \theta$$

$$\langle x, y \rangle = ||x|| \cdot ||y|| \cdot \cos \theta$$

$$\langle x, y \rangle = ||x|| \cdot ||y|| \cdot \cos \theta$$

- Norms = notion of distance in multiple dimensions

$$||x|| \ge 0, \forall x \in \mathbb{R}^p$$

$$||x|| = 0, \text{ iff } x = 0$$

$$||\alpha x|| = |\alpha| ||x||, \forall \alpha \in \mathbb{R}$$

$$||x + y|| \le ||x|| + ||y||$$

$$||x^\top y| \le ||x|| ||y||$$

(Triangle inequality)

(Cauchy-Schwarz)

- Norms = notion of distance in multiple dimensions

$$||x|| \geq 0, \forall x \in \mathbb{R}^p$$

$$||x|| = 0, \text{ iff } x = 0$$
 Properties:
$$||\alpha x|| = |\alpha| ||x||, \forall \alpha \in \mathbb{R}$$

$$||x + y|| \leq ||x|| + ||y||$$
 (Triangle inequality)
$$|x^\top y| \leq ||x|| ||y||$$
 (Cauchy-Schwarz)

- Standard vector norms:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$
 $||x||_1 = \sum_i |x_i|$ $||x||_\infty = \max_i |x_i|$

- Norms = notion of distance in multiple dimensions

$$||x|| \geq 0, \forall x \in \mathbb{R}^p$$

$$||x|| = 0, \text{ iff } x = 0$$
 Properties:
$$||\alpha x|| = |\alpha| ||x||, \forall \alpha \in \mathbb{R}$$

$$||x + y|| \leq ||x|| + ||y||$$
 (Triangle inequality)
$$|x^\top y| \leq ||x|| ||y||$$
 (Cauchy-Schwarz)

- Standard vector norms:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$
 $||x||_1 = \sum_i |x_i|$ $||x||_\infty = \max_i |x_i|$

- Famous wanna-be norms: $||x||_0 = \operatorname{card}(x)$

Matrices

– Matrix in m, n dimensions: $A \in \mathbb{R}^{m \times n}$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}$$

Matrices

– Matrix in m, n dimensions: $A \in \mathbb{R}^{m \times n}$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}$$

- Names: Square, tall, fat, zero, identity, diagonal

– Matrix in m, n dimensions: $A \in \mathbb{R}^{m \times n}$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}$$

- Names: Square, tall, fat, zero, identity, diagonal
- Properties:

$$A + B = B + A, \ \forall A, B \in \mathbb{R}^{m \times n}$$
$$(A + B) + C = A + (B + C), \ \forall A, B, C \in \mathbb{R}^{m \times n}$$
$$A + 0 = 0 + A, \ \forall A \in \mathbb{R}^{m \times n}$$
$$(A + B)^{\top} = A^{\top} + B^{\top}, \ \forall A, B \in \mathbb{R}^{m \times n}$$

- Matrix multiplication: C = AB where $C \in \mathbb{R}^{m \times p}$, $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1p} \\ C_{21} & C_{22} & \cdots & C_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{mp} \end{bmatrix} = C = AB = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{np} \end{bmatrix}$$

- Matrix multiplication: C = AB where $C \in \mathbb{R}^{m \times p}$, $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1p} \\ C_{21} & C_{22} & \cdots & C_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{mp} \end{bmatrix} = C = AB = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{np} \end{bmatrix}$$

- Special cases: vector inner product, matrix-vector mult., outer product

- Matrix multiplication: C = AB where $C \in \mathbb{R}^{m \times p}$, $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$

$$\begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1p} \\ C_{21} & C_{22} & \cdots & C_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{mp} \end{bmatrix} = C = AB = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{n1} & B_{n2} & \cdots & B_{np} \end{bmatrix}$$

- Special cases: vector inner product, matrix-vector mult., outer product
- Properties:

$$(AB)C = A(BC), \ \forall A, B, C$$

$$\alpha(AB) = (\alpha A)B, \ \forall A, B$$

$$A(B+C) = AB + AC, \ \forall A, B, C$$

$$(AB)^{\top} = B^{\top}A^{\top}, \ \forall, A, B$$

$$AB \neq BA$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & \ddots & \vdots \\ B_{m1} & B_{n2} & \cdots & B_{mn} \end{bmatrix}$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & & \ddots & \vdots \\ B_{m1} & B_{n2} & \cdots & B_{mn} \end{bmatrix} \longrightarrow A^{\top}B = \begin{bmatrix} \sum_{i=1}^{m} A_{i1} \cdot B_{i1} & \cdots & \cdots & \cdots & \cdots \\ \vdots & & \sum_{i=1}^{m} A_{i2} \cdot B_{i2} & \cdots & \cdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & &$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & & \ddots & \vdots \\ B_{m1} & B_{n2} & \cdots & B_{mn} \end{bmatrix} \longrightarrow A^{\top}B = \begin{bmatrix} \sum_{i=1}^{m} A_{i1} \cdot B_{i1} & \cdots & \cdots & \cdots & \cdots \\ \vdots & & \sum_{i=1}^{m} A_{i2} \cdot B_{i2} & \cdots & \cdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots \\ B_{m1} & B_{n2} & \cdots & B_{mn} \end{bmatrix}$$

$$\operatorname{Tr}(A^{\top}B) = \sum_{i=1}^{m} A_{i1} \cdot B_{i1} + \sum_{i=1}^{m} A_{i2} \cdot B_{i2} + \dots + \sum_{i=1}^{m} A_{in} \cdot B_{in}$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1n} \\ B_{21} & B_{22} & \cdots & B_{2n} \\ \vdots & & \ddots & \vdots \\ B_{m1} & B_{n2} & \cdots & B_{mn} \end{bmatrix} \longrightarrow A^{\top}B = \begin{bmatrix} \sum_{i=1}^{m} A_{i1} \cdot B_{i1} & \cdots & \cdots & \cdots & \cdots \\ \vdots & & \sum_{i=1}^{m} A_{i2} \cdot B_{i2} & \cdots & \cdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \vdots \\ B_{m1} & B_{n2} & \cdots & B_{mn} \end{bmatrix}$$

$$\operatorname{Tr}(A^{\top}B) = \operatorname{vec}(A)^{\top}\operatorname{vec}(B) = \langle \operatorname{vec}(A), \operatorname{vec}(B) \rangle$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

- Rank of a matrix: maximum # of independent columns or rows

- Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

- Rank of a matrix: maximum # of independent columns or rows
- Nullspace of a matrix: $\{x \mid Ax = 0\}$

Inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^{\top}B) = \operatorname{Tr}(B^{\top}A), \forall A, B \in \mathbb{R}^{m \times n}$$

- Rank of a matrix: maximum # of independent columns or rows
- Nullspace of a matrix: $\{x \mid Ax = 0\}$
- Positive semi-definite matrices: $A \succeq 0$
 - $1. A \in \mathbb{R}^{n \times n}$
 - 2. A is symmetric
 - $3. x^{\mathsf{T}} Ax \geq 0, \ \forall x \in \mathbb{R}^n, \ x \neq 0$

$$A = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}, \ U \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r} \qquad r \leq \{m, n\}$$

– Matrix singular value decomposition: $A \in \mathbb{R}^{m \times n}$

$$A = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}, \ U \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r} \qquad r \leq \{m, n\}$$

 $- \operatorname{rank}(A) = r \le \min\{m, n\}$

$$A = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}, \ U \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r} \qquad r \leq \{m, n\}$$

- $\operatorname{rank}(A) = r \le \min\{m, n\}$
- $-u_i \in \mathbb{R}^m, v_i \in \mathbb{R}^n$ are the left and right singular vectors

$$A = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}, \ U \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r} \qquad r \leq \{m, n\}$$

- $\operatorname{rank}(A) = r \le \min\{m, n\}$
- $-u_i \in \mathbb{R}^m, v_i \in \mathbb{R}^n$ are the left and right singular vectors
- $-\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r)$ contains singular values where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r$

$$A = U\Sigma V^{\top} = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}, \ U \in \mathbb{R}^{m \times r}, \Sigma \in \mathbb{R}^{r \times r}, V \in \mathbb{R}^{n \times r} \qquad r \leq \{m, n\}$$

- $\operatorname{rank}(A) = r \le \min\{m, n\}$
- $-u_i \in \mathbb{R}^m, v_i \in \mathbb{R}^n$ are the left and right singular vectors
- $-\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r)$ contains singular values where $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r$
- Left and right singular vectors are orthogonal: $U^{T}U = I$ and $V^{T}V = I$

- Norms:

$$||A||_F = \sqrt{\sum_{ij} A_{ij}^2}$$
 $||A||_* = \sum_i^r \sigma_i$ $||A||_2 = \max_i \sigma_i$ (Frobenius norm) (Nuclear norm)

- Matrix inverses are defined on square matrices

- Matrix inverses are defined on square matrices
- Matrix inverse definition as a collection of properties:
 - A is full rank

- Matrix inverses are defined on square matrices
- Matrix inverse definition as a collection of properties:
 - A is full rank
 - A has empty nullspace

- Matrix inverses are defined on square matrices
- Matrix inverse definition as a collection of properties:
 - A is full rank
 - A has empty nullspace
 - The equation Ax = 0 has only the trivial solution x = 0

- Matrix inverses are defined on square matrices
- Matrix inverse definition as a collection of properties:
 - A is full rank
 - A has empty nullspace
 - The equation Ax = 0 has only the trivial solution x = 0
 - The linear system Ax = b has a unique solution

- Matrix inverses are defined on square matrices
- Matrix inverse definition as a collection of properties:
 - A is full rank
 - A has empty nullspace
 - The equation Ax = 0 has only the trivial solution x = 0
 - The linear system Ax = b has a unique solution
 - The columns and rows of A are linearly independent

- Matrix inverses are defined on square matrices
- Matrix inverse definition as a collection of properties:
 - A is full rank
 - A has empty nullspace
 - The equation Ax = 0 has only the trivial solution x = 0
 - The linear system Ax = b has a unique solution
 - The columns and rows of A are linearly independent
 - There exists a square matrix, A^{-1} such that $A^{-1}A = AA^{-1} = I$

$$\min_{x} f(x)$$

s.t.
$$x \in C$$

$$\min_{x} f(x)$$
s.t. $x \in C$

- The set of points that satisfy the constraint is called the feasible set

s.t. $x \in C$

- The set of points that satisfy the constraint is called the feasible set
- Finding the point(s) that satisfies the constraint and minimizes the objective is the task of optimization

- The set of points that satisfy the constraint is called the feasible set
- Finding the point(s) that satisfies the constraint and minimizes the objective is the task of optimization

Unconstrained optimization

Disclaimer

Optimization is generally unsolvable..

(Closed form expressions vs. Iterative methods)

(Naive solvers that work well on specific cases)

(..or what is the difference to specific, deterministic algorithms)

- General procedure

- 1. Start from an initial point x_0 .
- 2. Given an oracle \mathcal{O} , make queries to \mathcal{O} .
- 3. Obtain oracle's answer and exploit such a knowledge to reach to a new point as a putative solution.
- 4. Repeat steps 2.-3. until we get to a point where we are satisfied, according to a stopping criterion.

$$\min_{x} f(x)$$

$$x$$
s.t. $x \in C$

(..or what is the difference to specific, deterministic algorithms)

- General procedure

- 1. Start from an initial point x_0 .
- 2. Given an oracle \mathcal{O} , make queries to \mathcal{O} .
- 3. Obtain oracle's answer and exploit such a knowledge to reach to a new point as a putative solution.
- 4. Repeat steps 2.-3. until we get to a point where we are satisfied, according to a stopping criterion.

- Key points that need to be addressed?

$$\min_{x} f(x)$$

s.t.
$$x \in \mathcal{C}$$

(..or what is the difference to specific, deterministic algorithms)

- General procedure

- 1. Start from an initial point x_0 .
- 2. Given an oracle \mathcal{O} , make queries to \mathcal{O} .
- Obtain oracle's answer and exploit such a knowledge to reach to a new point as a putative solution.
- 4. Repeat steps 2.-3. until we get to a point where we are satisfied, according to a stopping criterion.

- Key points that need to be addressed?
- The notion of the Black-Box model

$$\min_{x} f(x)$$

$$x$$
s.t. $x \in C$

(..or what is the difference to specific, deterministic algorithms)

- General procedure

$$\min_{x} f(x)$$

- 1. Start from an initial point x_0 .
- 2. Given an oracle \mathcal{O} , make queries to \mathcal{O} .
- 3. Obtain oracle's answer and exploit such a knowledge to reach to a new point as a putative solution.
- 4. Repeat steps 2.-3. until we get to a point where we are satisfied, according to a stopping criterion.

- s.t. $x \in \mathcal{C}$

- Key points that need to be addressed?
- The notion of the Black-Box model

Common types of oracles. Some common types of oracles are:

- $Zeroth-order\ oracle$: Given a query point x, the oracle only returns f(x).
- First-order oracle: Given a query point x, the oracle returns f(x), and its gradient at x, $\nabla f(x)$ (assuming differentiability).
- Second-order oracle: Given a query point x, the oracle returns f(x), its gradient $\nabla f(x)$, and the Hessian at x, $\nabla^2 f(x)$ (assuming twice-differentiability).

Conclusion

- We have set up background and notation w.r.t. linear algebra
- We saw a toy example where non-convex operations happen

Conclusion

- We have set up background and notation w.r.t. linear algebra
- We saw a toy example where non-convex operations happen

Next lecture

- Brief introduction to convex optimization and related topics

Demo