COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

[ecture 1
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And, always having in mind applications in machine learning,
ATl and signal processing
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Topics

— Continuous optimization (in general)
— See syllabus

— Both theory and practice

— Recent applications that drive research

— When no theory applies, some intuition
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Topics NOT covered in this course
— (Mixed) integer programming
— Combinatorial optimization algorithms
— Randomized algorithms

— Online algorithms, bandits

— Bayesian algorithms

— Deep learning architectures
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— Fleet management
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Examples

— Neural networks
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Examples

— Neural networks

n

min f(X> D%}ﬂ fWi, Wa) = = ;ﬁ@z,yz‘)-
A —> where
s.t. X el

A

y; = softmax (o (Ws -0 (W7 -x;)))
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What 1s the vision for this course?

— For starters, this will always be an evolving course

— My purpose and vision is to introduce a series of optimization
courses in the CS (and Duncan Hall's in general) curriculum

— The vision 1s for this course to be part of a sequence of
courses that will focus on the theory+practice of methods



Course format

— Lectures (slides) + whiteboard + in—class code running



Course format

— Lectures (slides) + whiteboard + in—class code running

— Material broad enough to cover range of problems



Course format

— Lectures (slides) + whiteboard + in—class code running

— Material broad enough to cover range of problems

— Some material inspired from personal research



Course format

— Lectures (slides) + whiteboard + in—class code running

— Material broad enough to cover range of problems

— Some material inspired from personal research

— “Interlude” lectures to provide some background (if needed)



Course format

— Lectures (slides) + whiteboard + in—class code running

— Material broad enough to cover range of problems

— Some material inspired from personal research

— “Interlude” lectures to provide some background (if needed)

— Your workload:
Graduate - HWs, final project

Undergraduate — HWs, tinal exam
(Additional workload: possible midterm, scribing)
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Regarding assignments

— Weekly assignments

— Some questions are harder than others

— Some questions might not feel intuitive

— Try to do the best you can
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Goals + outcomes

— Learn about research in related fields

— Make connections between areas,
understand how research advances in such areas..

— Consider possible extensions of these works (project)
— Comprehend how optimization is key in ML/AI/SP

— Read and review recent papers
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My goals

— Not to judge you on small details in HW:s

— Spark your interest in research
where math and practice are combined together
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Prerequisites

— If you have taken any ML class, you are good to go
— Basics of calculus, linear algebra, basic knowledge of ML topics

— Programming skills are not necessary

— A quiz was usually provided for selt—assessment, but I
decided to make it an additional HW
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Grading policy

- 50% HW:s

— 50% project/tinal exam
(If there will be a midterm, this will change)

— 5%: scribing notes (bonus)

Usually there 1s scaling in final grades.
For me, a good grade is given based
on the overall pertormance of the
students: [ value self—-motivation,
being proactive and enthusiasm.
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Reviews

— Select papers from a pile of .pdfs that will be provided

— Single page reviews, similar to NIPS/ICML standards:

— Comment on novelty, clarity, importance
— Strengths and weaknesses

— Main comments + your overall score
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Presentations (for final projects)

— How does a project report look like?

— Final exams: necessary for undergrads/optional for grads(?)

— There might be some discussions during the lectures
Take advantage by asking questions

— Presentation should be at most XX minutes

— Grading: slides quality, clarity of main i1deas
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Final Project

(Course website)

Please come find me the earliest to discuss projects

You should start reading papers soon, so that around mid—way
you have a good project proposal


https://akyrillidis.github.io/comp414-514/
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Communication

— I can handle emails in a very responsive way

— Course email: ricecomp414514@gmail.com
(please avoid sending emails to my personal account)

—e=Mailing list: We canvas + Piazza now

(So if you are not registered, you will not get updates)

— HWs: will be sent to you via Canvas every week.
(please do not distribute)
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Notes

— I have started preparing notes for this course

— Every week I will try to update every chapter; however
[ would appreciate any help with scribing throughout the semester

(Course website)


https://akyrillidis.github.io/comp414-514/
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Length of each session

— There will be longer or shorter sessions
— Each week represents a Chapter

— Any teedback i1s more than welcome
(e.g., too much material vs. too little material)

— In case I don't have the time to cover fully a session, I will decide
whether you will read it yourself, or I will teach it the next time.
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Vectors

— Notation convention: vectors = lowercase, matrices = uppercase

— Vector in p—dimensions: z € R

-
r = [xl,:vg,...,:(;p]

— Some properties of vectors:
r+y=y+x, x,y€eRP
(x+y)+x=x+(y+2), xy,z2€RP
O+zxz=x, x€RF

alr+y)=ar+ay, zyecRP
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Vectors

— Span of a set of vectors:

Spall {37173727 R 737/6} — {alajl T QLo + + - T ATk | Q; € R,Z — [17k]}

— Linear independence:

041$1—|—042282—|—”'—|—Oék$k20 — Oéi:O, \v
— How does k£ compare to p, the vector dimension?

— Inner product: .

vy = (r,y) = szyz

1=1
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Vectors

— Norms = notion of distance in multiple dimensions

X

X
Properties: o

|z + vy

x 'y

— Standard vector norms:

|22 = > a3
()

— Famous wanna—be norms:

> (0,Vx € RP
=0, iffx=0

A IA

Tl +
|||y

al |z

Va € R
||

[zl = ) |xil
1

|x||o = card(x)

|2]|oo = max ||
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Matrices

— Matrix in m, n dimensions: A € R™*"

_All A12 T Aln )
A21 A22 C A2n
A= | . .
_Aml AmZ C Amn_

— Names: Square, tall, fat, zero, identity, diagonal
— Properties:

A+ B=DB+ A, VA, B e R™*"
(A+ B)+C=A+ (B+0C), VA, B,C € R™*"
A+0=0+A4, VAec R™*"
(A+B)' =A" +B', VA, B € R™*"
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Matrices

— Matrix multiplication: C' = AB where C € R"™*P, A ¢ R™*" and B € R"*?

C11 Ci2 -+ Cpp Ay A - A | [Bir B - By
Cop Caa -+ Oy Aor Ao - Agy Ba1 Baa -+ Ba,
. , . | =C=AB=| . A I , .
_le Cm2 T Cmp_ _Aml AmQ T Amn_ _Bnl Bn2 T Bnp_

— Special cases: vector inner product, matrix—vector mult., outer product
— Properties:
(AB)C = A(BC), YA, B,C
a(AB) = (aA)B, VA, B
A(B+C) = AB + AC, YA, B,C
(AB)' =B'A', V,A,B
AB + BA
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Matrices

— Inner product:

Ay

A21

(A, B) = Tr(A
— Example:
Ay oo Apy By Bia -
Ao -+ Aap By Bagy .-
. B=1 .
Ay B Buy -

Am1 Apma -+

A),VA, B € Rmx"



Matrices

— Inner product:

Ay

A21

(A, B) = Tr(A
— Example:
Alg Aln_ _Bll 312
AQQ Agn BQl B22
. B=1 .
v By B -

Am1 Apma -+

A),VA, B € Rmx"

S0 A Bi
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Matrices

— Inner product:

— Example:
Ay A - Agy ' By1 Bia -
Ao Aoy - Aoy Bay  Boy -
. . B=1 .
Aml Am2 T Amn_ _Bml Bn2 T

(A,B) =Tr(A' B) =Tr(B' A),VA,B € R™*"

TI’(ATB) — Z Ail

1=1

By, 2ici A B
B., TR D i—1 iz Bio
.
an
144 144
‘Bi1‘|‘§ AiQ'Bi2+“‘+§ Ain - Bin
=1 1=1




Matrices

— Inner product:

— Example:
A A o Agy ' Bi1 B2 -+ Bin
Aoy Aga - Agy Bo1 Bz -+ Bay ATp
Aml Am2 T Amn_ _Bml Bn2 R an_

(A,B) =Tr(A' B) =Tr(B' A),VA,B € R™*"

Tr(A' B) = vec(A) ' vec(B)

S0 A Bi

(vec(A),vec(B))

221 Ao B ---
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Matrices

— Inner product:

(A,B) =Tr(A' B) =Tr(B' A),VA,B € R™*"

— Rank of a matrix: maximum # of independent columns or rows

— Nullspace of a matrix: {z | Az = 0}

— Positive semi—definite matrices: A > O

1. AeR""

2. A is symmetric

3.2 Ax >0, Ve € R", = #0
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Matrices

- Matrix singular value decomposition: A € R™*"

A=UsV" = o], UeR™ " T eR™"V € R™ r < {m,n}
1=1

— rank(A) = r < min{m,n}
- u; € R™ v; € R™ are the leftt and right singular vectors

— Y =diag(o1,...,0.) contains singular values where o1 > 02 > --- > 0o,

— Lett and right singular vectors are orthogonal: UTU=Tand V'V =1



Matrices

— Norms.

T
|Alr = |} A |All. =) o |Al|2 = max o,
T )
17 i

(Frobenius norm) (Nuclear norm) (Spectral norm)
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Matrices

— Matrix inverses are defined on square matrices

— Matrix inverse definition as a collection of properties:
— A 1s tull rank
— A has empty nullspace

— The equation Az = 0 has only the trivial solution x = 0

— The linear system Ax = b has a unique solution

— The columns and rows of A are linearly independent

— There exists a square matrix, A~' such that A™*A=A4"1 =1
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Overview

— The set ot points that satisty the constraint

mln f ( ZC) is called the feasible set

X — Finding the point(s) that satisfies the
constraint and minimizes the objective
1s the task of optimization

Unconstrained optimization



Disclaimer

Optimization is generally unsolvable..



This course focuses on iterative methods

(..or what is the difference to specific, deterministic algorithms)

— General procedure

min f(x)

X

p—t

. otart from an initial point x.
. Given an oracle O, make queries to O. S.T. T C
. Obtain oracle’s answer and exploit such a knowledge to
reach to a new point as a putative solution.
4. Repeat steps 2.-3. until we get to a point where we are
satisfied, according to a stopping criterion.
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This course focuses on iterative methods

(..or what is the difference to specific, deterministic algorithms)

— General procedure
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. otart from an initial point x.

. Given an oracle O, make queries to O.

Obtain oracle’s answer and exploit such a knowledge to
reach to a new point as a putative solution.

Repeat steps 2.-3. until we get to a point where we are
satisfied, according to a stopping criterion.

— Key points that need to be addressed?
— The notion of the Black—Box model

min f(x)

X

s.t. x€C

Common types of oracles. Some common types of oracles are:

Zeroth-order oracle: GGiven a query point z, the oracle only
returns f(x).

First-order oracle: Given a query point z, the oracle re-
turns f(z), and its gradient at z, V f(z) (assuming differ-
entiability).

Second-order oracle: Given a query point z, the oracle
returns f(z), its gradient V f(z), and the Hessian at z,
V? f(z) (assuming twice-differentiability).
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Next lecture

— Brief introduction to convex optimization and related topics



Demo



