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Overview

— In the previous lecture, we:

— Considered low—rank model selection in Data Science applications
— Followed the non—convex path, beyond hard thresholding methods

— Discussed some global convergence guarantees (under proper
initialization assumptions) and mentioned some open questions




Overview

— In the previous lecture, we:

— Considered low—rank model selection in Data Science applications

— Followed the non—convex path, beyond hard thresholding methods

— Discussed some global convergence guarantees (under proper

1nitia.

— For the

ization assumptions) and mentioned some open questions

next 2—3 lectures, we will worry about the landscape of such non-

convex scenaria:
— We will discuss about types of stationary points, focus on saddle points
and study some of their properties

— We will introduce conditions that allow escaping from saddle points

— We will study matrix sensing as a test case, and how to prove no
spurious local minima arguments



NP-hardness

— Non—convex continuous optimization = NP—hard in general



NP-hardness

— Non—convex continuous optimization = NP—hard in general

— Example: Homogeneous quartics

flz)= > Quaiz;

2,7=1



NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

-p=2, Q=0

p ><104 ‘
' §

f(m) — Z QZJZE?ZE? §-1.02\

2,7=1

T
TR
\\“\\\\\\\

7
A
i

)
DD iy
| e P
gy,
g 3 QLA
— 1.1 |
Q'\ 4




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

-p=2, Q=0

p ><104 ‘
' §

f(m) — Z QZJZE?ZE? §-1.02\

2,7=1

T
TR
\\“\\\\\\\

7
A
i

)
DD iy
| e P
gy,
g 3 QLA
— 1.1 |
Q'\ 4




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

flz)= ) Qijzia]

7/,_7:1 «10*

-p=2, Q=0

T
TR
T

7]
A
i

)
DD iy
| e P
gy,
g 3 QLA
— 1.1 |
Q'\ 4




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics
p
-p=2, Q=0
2 .2
flx) = E Qi3 7]

2,7=1

— Some observations:




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

- -p=2,Q*0
flz)= ) Qijzia]

Z 7.7 — 1 x10* A
R !
N
[ ] ° &
o SOmG ObS@l‘VatIOHS . SH e
& N
104 N
[ ] f~
— QS
if @ =0 then f(z)>0, Vx > o
| s L
/N odoo 00, []]]]]
ST R
~ 4




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

- -p=2,Q*0
flz)= ) Qijzia]

2,7=1

10* |
AN~ 1
— Some observations: . j
& \\\\\\\\\\\\\\\\\\\\\\
Tf -1.04 \N\\\\\\
[ ] .ﬁ'\
—if Q@ =0 ,then f(z) >0, Vx Y oo
)
W)
| o :‘2‘2‘,‘%%%%%%%5
Th a/; ' ‘ /8? ,:,:t,‘:,“l,,,'lllllll
— Thus, x = 0 1s global min Ol
) . .
Y~ 4




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

-p=2,Q >;; 0

: 3 : 3 950 -
J ( ) Q XL Nz} 200 i i
1 : — ° ) ° o N ™ \\‘\\\‘\ \
S g
1)1 ] S o4\ \&Q\Q\{\{\}}&}&}&}&}Q\\\\\\\\\\\\\\\

. o I 800 \\
7/,]:1 - 750

f
T
iy iy

Ity it
l""‘"'lll%%ﬁ%%%%lllllllll

AL
""""‘,””‘IIIIIIIII //




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

-p=2,Q >;; 0

: 3 : 3 950 -
J ( ) Q XL Nz} 200 i i
1 : — ° ) ° o N ™ \\‘\\\‘\ \
S g
1)1 ] S o4\ \&Q\Q\{\{\}}&}&}&}&}Q\\\\\\\\\\\\\\\

. o I 800 \\
7/,]:1 - 750

f
T
iy iy

Ity it
l""‘"'lll%%ﬁ%%%%lllllllll

AL
""""‘,””‘IIIIIIIII //




NP-hardness

— Non—c
onvex cont |
tinuous optimization = NP—hard 1
In general
(Specifi
pecifically can be polynomially solvable)

— Example:
ple: Homogeneous quartics

flz) = Z Qz'jivzivz
1]

1,7=1

-p=2,Q >;; 0

i
it
i

i
\ \%&%ﬁ“&t&t&%&\“\\\\\\\\\\\\

|
N
Lj 750
700
| | 2l il
— il [[IIIIIII”I il
6 gl il
ol """'"“"""”"""'
0":"l"'lIIZ’IIIIIIIIIIIIIIIIIIlllll




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

fz)= ) Qizia;

1,7=1

N 950
. "5 900 1
— Same observations apply gy —
Q}Q\\\\\\\\\\\\\\\\\\\\\\
71 800 | W
53 il
< 750 7
i
U] it
700 :“llz“'llllllllllllllllll%ﬂ%ﬁ%%ﬂlll”’
I ,':,,‘l:,,,%lllllllll%%mmml
= 650 ""‘,"‘l,””lllllllll
> 600 .|
4




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

- p =2, () arbitrary

2 2
- Z (Qij ;T

2,7=1

AARIRRANN

\S{Q{\\\\\\\\\\

AW\
§§\\




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

- p =2, () arbitrary

2 2
- Z (Qij ;T

2,7=1

AARIRRANN

\S{Q{\\\\\\\\\\

AW\
§§\\




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

2 2
— Z Qijrix;

1,7=1

- p =2, () arbitrary

AARIRRANN

\S{Q{\\\\\\\\\\

AW\
§§\\




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics

2 2
- Z QijTi @]

i j=1

S 2800 -

- p =2, () arbitrary

2700 -

s
[ PY . N o‘:‘:“ = SSoSoSosoS
= == 3
S —— eSS : SSSsososoS SO <
— S = e e SIS .”0““‘:0“““‘
IR = I I S SIS IK XS
() QLR ] === eSS S S SO OSS TS S S X

2600 S === RSSO

~ " 275 ll',“‘l,l’,llllf’,’lllfl, S esoasos S S SOSSSOSS SO :“““: STaehetietie!

— (LT AL L7 7 e SO SOSos S “‘ S S8 \‘ O
' 2, S S S S N et

— (QGradient at zero 1s zero AP

2300

AARIRRANN
\S{Q{\\\\\\\\\\

WY
§§\\




NP-hardness

— Non—convex continuous optimization = NP—hard in general
(Specifically can be polynomially solvable)

— Example: Homogeneous quartics
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— Some observations:

— (QGradient at zero 1s zero

— Thus, zero is a minimum,
maximum or saddle poin
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NP-hardness

— Non—convex continuous optimization = NP—hard in general

— Example: Homogeneous quartics
p
fl)= ) Qijziz]
i =1

— How can we check what holds at zero point?

— Change of variables: u; =27 — f(u) = u' Qu
~ 0 is not a global minimizer if there exists non—negative u such that v ' Qu < 0

— This is equivalent to checking if () is not co—positive: NP—hard!
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NP-hardness

— Non—convex continuous optimization = NP—hard in general

— Example: Homogeneous quartics

f(@)= > Quuix

1,7=1

— What makes this case difficult? Let's compute the Hessian at zero:
2
V7f(0) = Opxp

— Not the only example: QCQP, matrix completion/matrix sensing, etc.
tensor (matrix) decompositions
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Flash back: GD and types of critical points

— Gradient descent for generic smooth functions:

_ 1
Lt — Lt — fo($t>
— Ciritical point convergence guarantee:

f(zee1) < f@e) — 5l V()3

— No guarantees on the type of critical point we converge to
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What's the deal with local minima?

— The loss surfaces of multilinear networks", Chromanska et al., 2014

“We conjecture that both simulated annealing and SGD converge to the
band of low critical points, and that all critical points found there are local
minima of high quality measured by the test error. This emphasizes a major
difference between large- and small-size networks where for the latter poor
quality local minima have non-zero probability of being recovered.™

— For larger models, a local minima is "good enough’, since its loss value is
roughly similar.

— Why would this be true in practice?

— Difterent random seeds lead to different models with similar pertormance



Flash back: GD and types of critical points

— Global minima/global maxima:

Vf(x*) =0 and all directions go upwards (min.) or downwards (max.)
and  f(27) < f(z), Vo (f(z7) = f(z), Vo)

— Local minima/local maxima:
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— Identitying and attacking the saddle point problem in high—dimensional non-
convex optimization. , Dauphin et al., 2014

“A deeper and more profound difficulty originates from the proliferation of
saddle points, not local minima, especially in high dimensional problems of
practical interest. Such saddle points are surrounded by high error plateaus
that can dramatically slow down learning, and give the illusory impression of
the existence of a local minimum.™



Saﬂipoint

RN,
RN

) ) 00000 Y &

b‘ ’%" ‘ =

Local minimum

n/o
N
i
S
@
@F
L
O
O
™
N
e
=
=
T
QO
O
Q
e
1
7p
T
Q!
%




Saﬂipoint

RN,
RN

) ) 00000 Y &

b‘ ’%" ‘ =

Local minimum

n/o
N
i
S
@
@F
L
O
O
™
N
e
=
=
T
QO
O
Q
e
1
7p
T
Q!
%




What's the deal with saddle points?

— Identitying and attacking the saddle point problem in high—dimensional non-
convex optimization. , Dauphin et al., 2014

“A deeper and more profound difficulty originates from the proliferation of
saddle points, not local minima, especially in high dimensional problems of
practical interest. Such saddle points are surrounded by high error plateaus
that can dramatically slow down learning, and give the illusory impression of
the existence of a local minimum.™

— Saddle points can be large plateaus/flat regions or (approximately) regions
with very slow slope.




What's the deal with saddle points?

— Identitying and attacking the saddle point problem in high—dimensional non-
convex optimization. , Dauphin et al., 2014

“A deeper and more profound difficulty originates from the proliferation of
saddle points, not local minima, especially in high dimensional problems of
practical interest. Such saddle points are surrounded by high error plateaus
that can dramatically slow down learning, and give the illusory impression of
the existence of a local minimum.™

— Saddle points can be large plateaus/flat regions or (approximately) regions
with very slow slope.

— How many saddle points be there?



How many saddle points could be there?

- Toy example #1: f(x) = (1‘2 — 2)2

9

8_

| _
|
: |
|
6 ‘ '
I
: I
: I
-~y
\ RN ’
\ / \
I
/
\ \
/ |
\ \
/ /
\ \
/ /
.\, \
L - | | | | \ |/
2.5 2 -1.5 -1 0.5 0) 0.5 1 1.5 2



How many saddle points could be there?

- Toy example #1: f(x) = (372 — 2)2

— Find:
— Global min/max

— Local min/max

— Saddle points

9

8_




How many saddle points could be there?

- Toy example #1: f(x) = (372 — 2)2

— Find:
— Global min/max

— Local min/max

— Saddle points

9

8_




How many saddle points could be there?

- Toy example #1: f(x) = (372 — 2)2

— Find:
— Global min/max

— Local min/max

— Saddle points

9

8_




How many saddle points could be there?

o'
N
N
N
|
N
~ 20 \
N—"

T

I
N_I_ 15 i
N
N
| 10

i

! 2 i
—~ it
>
3
N—"
)
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How many saddle points could be there?

— Toy example #2: g(x,y) = f(x) + f(y) + 8
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Yes! From 2D to 3D, we get 4 local _
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How many saddle points could be there?

— Another example: see papers at the Review section at the end of the lecture.

— In general, saddle points may emerge and their numbers increase (even
exponentially) with increasing dimensionality.

— Does this mean that the situation is helpless? Not necessarily!
1. Can we identify saddle points?
2. How does methods such as gradient descent behave in practice?

3. Are there conditions that indicate that always there is a way—out of
saddle points?
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Second—order derivative test

- : - , )
— Consider the Hessian at a critical point £ : V f(CL‘) c RP*P

— The Hessian is square and symmetric; we compute its eigenvalue decomp.:
V2f(x) =UAU"
— General rules:

1. Only positive eigenvalues: local minimum
Why? Positive eigenvalues mean positive definite Hessian. Thus:

<V2f(a:)u,u> >0, Yu#0€RP

By second—order Taylor's expansion:

flz+nu) ~ fz) + L (V2 (@)u,u) > f(z)
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Second—order derivative test

- : - , )
— Consider the Hessian at a critical point £ : V f(CL‘) c RP*P

— The Hessian is square and symmetric: we compute its eigenvalue decomp.:
V2f(x)=UAU"
— General rules:
1. Only positive eigenvalues: local minimum

2. Only negative eigenvalues: local maximum

3. Only positive and negative eigenvalues: (strict) saddle point

4. Positive, negative and zero eigenvalues: general saddle point
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What can we hope for at saddle points?

— One can use intuition from second—order Taylor expansion:
f(y) = f(x) +(Vf(z),y —2) + 5(V f(@)(y —2),y — x)
— Even if Vf(z) =0, we hope we can find a direction (y — x) such that

(V2f(z)(y— ),y —x) <0

— Intuition suggests that saddle points with several directions that satisty

(V2f(@)(y —2),y —z) <0

means that we can find directions that decrease the function (and thus,
we escape saddle points)

— Thus, we need to characterize the # of steps we might require to escape
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— Tensor decomposition, dictionary learning, phase retrieval, matrix sensing..
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What can we do in practice?

— So far theory suggests that we should look at 2Znd—order information

— Methods such as trust—region methods, and cubic regularization
handle saddles points this way <«

— Can we escape such saddle points with tirst—order methods such as GD?
"Really.. can we? Gradient information at saddle points is null”

— Key observation: (strict) saddle points are quite unstable!

— What it we impute some noise in the gradient descent step?

LTiir1 — L — UVf(CCt) —+- e, &e~1- Sp_l
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What can we do in practice?

— So far theory suggests that we should look at 2Znd—order information

— Methods such as trust—region methods, and cubic regularization
handle saddles points this way <«

— Can we escape such saddle points with tirst—order methods such as GD?
"Really.. can we? Gradient information at saddle points is null”

— Key observation: (strict) saddle points are quite unstable!

— Or even easler, rely on stochastic gradient descent for noise imputation:

L1l — LTt — anzt (mt) — Tt — an(xt) -+ e, Where E =1 (Vf(il?t) — szt (ZEt))
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How does noisy gradient descent perform?

— Informal result:

“Noisy gradient descent finds a local minimum of a function that satisfies the
strict saddle property in polynomial time™

— Formal result:

“With probability 1 — ¢, after t > log % - log % iterations, noisy gradient de-
scent converges close to a local minimum x™ such that ||zy — x™||2 < €. Here,

: 62 U 52 1 °
1< min gty £ waE) T T

where p is the Hessian-Lipschitz constant.™

— Qverall, total runtime could be up to O(p®) — differently, 5(1 /€*) iters.
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Should we worry about saddle points?

A different perspective

— From previous plots, we can easily see that sadd.

e points can be unstable!

(Moving slightly from sadc

le points, we fall off the saddle)

- . 1.2 1,4 1 2
— Consider another toy example: f(z,y) = 52° + 7y~ — 5y
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ER leads to convergence to the saddle point
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= — But, any other initialization converges to

local minimizer!
(With random initialization, this happens with prob. 1)
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Should we worry about saddle points?
A ditferent perspective

— This idea was made more rigorous using ideas from dynamical systems

— The 1dea 1s that gradient descent satisties such a theorem, and the
set of saddle points (under the assumptions made by the theory so far)
has measure zero!

— In practice: if you pick any random initial point, you are safe not to
converge to a saddle point
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When we know more about our problem at hand

— We know how to escape saddle points; what about local minima?
Can we infer that local = global minima in non—convex settings?

— Example: Matrix sensing using RIP and PSD matrix factorization

Whiteboard

— Similar results have been proven for: phase retrieval, matrix completion,
dictionary recovery, semidefinite programming (SDPs), signal recovery
from quadratic measurements, ..
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[Landscape characterization with strict saddles

— Write down gradient and Hessian expressions

— Compute critical/stationary points condition:

— Consider all cases of stationary points:
— For local minima, we analyze the quadratic form
2'V?f(x)z >0, Vz, and given stationary point a
and compare with global minima (to show potential equivalence)

— For saddles, identify a (negative) upper bound for
)\min (VQf(x))



Conclusion

— We discussed about types of stationary points, focus on saddle points
and study some of their properties

— We introduced conditions that allow escaping from saddle points

— We studied (overview) matrix sensing as a test case, and how
to prove no spurious local minima ™ arguments



