COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

Lecture 11

Overview

— Different objective classes
— Ditferent strategies within each problem
— Different approaches based on

computational capabilities
— Different approaches based on constraints

min T ‘
2

s.t. x€C(C

And, always having in mind applications in machine learning,
AT and signal processing

The focus of this lecture

min f(x)

L

s.t. x€C(C

The focus of this lecture

min f(x)

The focus of this lecture

min f(x)

Zfz

The tocus of this lecture f

min f(x)

Zfz

Overview

— In this lecture, we will:
— Discuss how to distribute optimization in large—scale settings
— Study synchrony vs. asynchrony in gradient descent

— Provide some rough theoretical results on how asynchrony
attects performance

— Alternatives and state of the art

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:

Tiv1 = Ty — NV [, (T¢)

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
Ti1 = Ty — NV [i, (24)

— In words: i) we select a training sample,ii) we compute the gradient,
111) we update the model

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
L+l — Lt — V

’Lt\ t)

— In words: i) we select a training sample,ii) we compute the gradient,
111) we update the model

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
xt‘l_l — xt o rrs”vfit (xt)

— In words: i) we select a training sample,ii) we compute the gradient,
111) we update the model

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisfies:
Tip1 = Tt — NV fi, (T

— In words: 7) we select a training sample,ii) we compute the gradient,
111) we update the model

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
Ti1 = Ty — NV [i, (24)

— In words: i) we select a training sample,ii) we compute the gradient,

111) we update the model

— Properties: ¢) the current model x4 is used for the computation of V §; (-)

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
Ti1 = Ty — NV [i, (24)

— In words: i) we select a training sample,ii) we compute the gradient,

111) we update the model

— Properties: ¢) the current model x4 is used for the computation of V §; (-)

i1) when we update the model, the state of the system is as when
we read T

Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
Ti1 = Ty — NV [i, (24)

— In words: i) we select a training sample,ii) we compute the gradient,

111) we update the model

— Properties: ¢) the current model x4 is used for the computation of V §; (-)

i1) when we update the model, the state of the system is as when

- we read Ty
141) The whole process is sequential

Tip1 =z — NV fi, (@) = 2o — 0 (Vi (@) + Vi, (31)) = =20 —n) _ V[()

How to run SGD on multiple processing units

— SGD (as presented above) operates on a single machine
(single CPU, single memory, single communication bus line)

How to run SGD on multiple processing units

— SGD (as presented above) operates on a single machine
(single CPU, single memory, single communication bus line)

— Can we identify where computation/communication happens in:

Tii1 =Xt — NV fi, (T4) ?

How to run SGD on multiple processing units

— SGD (as presented above) operates on a single machine
(single CPU, single memory, single communication bus line)

— Can we identify where computation/communication happens in:
Tiy1 = Tt — NV fi, (T4) ?

— ¢)model X+ needs to be “transferred” where computation of V f;, () happens
i3) data point f;, () needs to be transferred where V f;, (-) happens

i11) the update = —nV f;, (z¢) overwrites (usually) the current model

How to run SGD on multiple processing units

— SGD (as presented above) operates on a single machine
(single CPU, single memory, single communication bus line)

— Can we identify where computation/communication happens in:
Tiy1 = Tt — NV fi, (T4) ?

— ¢)model X+ needs to be “transferred” where computation of V f;, () happens
i3) data point f;, () needs to be transferred where V f;, (-) happens

i11) the update = —nV f;, (z¢) overwrites (usually) the current model

— But we have GPUs!": Limitation is its memory (model/data do not fit)
Not easy to parallelize on GPU

How to run SGD on multiple processing units

— SGD (as presented above) operates on a single machine
(single CPU, single memory, single communication bus line)

— Can we identify where computation/communication happens in:
Tiy1 = Tt — NV fi, (T4) ?

— ¢)model X+ needs to be “transferred” where computation of V f;, () happens
i3) data point f;, () needs to be transferred where V f;, (-) happens

i11) the update = —nV f;, (z¢) overwrites (usually) the current model

— But we have GPUs!": Limitation is its memory (model/data do not fit)
Not easy to parallelize on GPU

— How can we distribute this computation over multiple processing units?

[nterlude: what we mean by “distributed™?

[nterlude: what we mean by “distributed™?

— Disclaimer: there are people in Rice CS with 1000x more expertise
on these topics (see John Mellor—Crummey)

[nterlude: what we mean by “distributed™?

— Disclaimer: there are people in Rice CS with 1000x more expertise
on these topics (see John Mellor—Crummey)

— Single node distributed computing:

- 1) Single machine, many cores (up to 100s)
i1) Shared memory (all processors have access to it)

i11) Communication to RAM is relatively cheap

[nterlude: what we mean by “distributed™?

— Disclaimer: there are people in Rice CS with 1000x more expertise
on these topics (see John Mellor—Crummey)

— Single node distributed computing:

- 1) Single machine, many cores (up to 100s)
i1) Shared memory (all processors have access to it)

i11) Communication to RAM is relatively cheap
— Multi—node distributed computing:

— 1) Many machines (up to 1000s), probably with many cores each
i1) Shared—nothing architecture (each machine has its own CPU, storage)

i11) Communication between nodes is much less cheap than single node

Distributing gradient computations

— Consider the full gradient descent case:

Lt41 — Lt — 772 sz‘(e??t)
i—=1

Distributing gradient computations

— Consider the full gradient descent case: /\

Lt41 — Lt — 772 sz‘(e??t)
i—=1

Distributing gradient computations

— Consider the full gradient descent case: , /\
Lit+1 = Lt — 1] Z sz‘(ft)
1=1

¢

u

Each contains distinct partition of data

Distributing gradient computations

— Consider the full gradient descent case: , /\
Li4+1 = Lt — 1] Z V fi(wt)
1=1

A8

» ‘ ' ;«

g9 0

Each contains distinct partition of data

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

Distributing gradient computations

— Consider the full gradient descent case: , /\
Li4+1 = Lt — 1] Z V fi(wt)
1=1

A8

Each contains distinct partition of data

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

Distributing gradient computations

— Consider the full gradient descent case: , /\
Li4+1 = Lt — 1] Z V fi(wt)
1=1

<

-l A

Vfit(wt)gl {l V. () {I V. ()

Each contains distinct partition of data

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

11) Worker nodes compute part of the full
oradient, based on the part of data they have

Distributing gradient computations

— Consider the full gradient descent case: /\
T

Lt41 — Lt — 772 Vfi(iﬁt)
i—=1

() {' v/ ¢) Parameter node keeps and distributes model
Vi, xt T+ at every cycle/iteration

g9 0

Each contains distinct partition of data

<

11) Worker nodes compute part of the full
oradient, based on the part of data they have

Distributing gradient computations

— Consider the full gradient descent case: /\
T

Lt41 — Lt — 772 Vfi(iﬁt)
i—=1

() {' v/ ¢) Parameter node keeps and distributes model
Vi, xt T+ at every cycle/iteration

g9 0

Each contains distinct partition of data

<

11) Worker nodes compute part of the full
oradient, based on the part of data they have

117) Parameter node waits for all gradient parts
to be collected to do the gradient step

Distributing gradient computations

— "Things are looking good so far.. What's wrong with this scheme?"

Distributing gradient computations

— "Things are looking good so far.. What's wrong with this scheme?"
— Well, it might be the case that we don't have all data at once™

Online learning: 1. Data samples arrive one—at—a—time, as we optimize

2. (For some reason), we don't have access to all data

Distributing gradient computations

— "Things are looking good so far.. What's wrong with this scheme?"
— Well, it might be the case that we don't have all data at once™

Online learning: 1. Data samples arrive one—at—a—time, as we optimize

2. (For some reason), we don't have access to all data

— But, there are cases where we have finite & fixed data — see neural networks™

Distributing gradient computations

— "Things are looking good so far.. What's wrong with this scheme?"
— Well, it might be the case that we don't have all data at once™

Online learning: 1. Data samples arrive one—at—a—time, as we optimize

2. (For some reason), we don't have access to all data

— But, there are cases where we have finite & fixed data — see neural networks"
— "Well, the problem here is that full gradient descent does not perform well

Generalization vs. training error :
1. If we care about only the training error, full GD could work well

2. In ML tasks, we often care about the generalization error, 1.e., the
performance of the model on unseen data

Training vs. generalization error and GD

— Gradient descent converges to the first—seen stationary point; SGD explores
a bit the landscape before converging

Training vs. generalization error and GD

— Gradient descent converges to the first—seen stationary point; SGD explores
a bit the landscape before converging

— Gradient descent overtits the landscape of training data; however the
performance deteriorates on unseen data (different landscape)

Whiteboard

Training vs. generalization error and GD

— Gradient descent converges to the first—seen stationary point; SGD explores
a bit the landscape before converging

— Gradient descent overtits the landscape of training data; however the
performance deteriorates on unseen data (different landscape)

Whiteboard

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(iﬁt)

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(iﬁt)

N

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

=

¢

u

Each contains all data

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

=

A8

‘ ‘) :‘g

g9 0

Each contains all data

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

=

0

e

xr+ + Indices indices ™2+ + indices

- Ei oL

Each contains all data

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

Vi (20)] {' v f% z)) t) Parameter node kegps apd distributes model
Vi, (a0) T+ at every cycle/iteration

g9 0

Each contains all data

<

1t) Worker nodes compute part of (stochastic)
oradient, based on the coordinates they are
asked by the parameter node

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

Vi (20)] {' v f% z)) t) Parameter node kegps apd distributes model
Vi, (a0) T+ at every cycle/iteration

g9 0

Each contains all data

<

1t) Worker nodes compute part of (stochastic)
oradient, based on the coordinates they are
asked by the parameter node

i11) Parameter node waits for all gradient parts
to be collected to do the gradient step

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

i) Relates to coordinate descent algorithms

=

¢

u

Each contains all data

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

i) Relates to coordinate descent algorithms

=

<

-l A

Each contains all data

i1) Could be part of a large—scale
implementation, where part of the model
1s too large to be computed in a centralized
tashion

Distributing gradient computations

— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

i) Relates to coordinate descent algorithms

=

<

-l A

Each contains all data

i1) Could be part of a large—scale
implementation, where part of the model
1s too large to be computed in a centralized
tashion

111) Could be an overkill to only compute
updates for a subset of entries

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(ﬂft)

1€1L4

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

¢

u

Each contains distinct partition of data

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

A8

‘ ‘) :‘g

g9 0

Each contains distinct partition of data

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

A8

“ 11) Worker nodes compute part of mini—batch

ﬁi ﬁi B ﬁi oradient

Each contains distinct partition of data

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

t) Parameter node keeps and distributes model
T+ at every cycle/iteration

<

- L 11) Worker nodes compute part of mini—batch

Ai oradient

Each contains distinct partition of data

117) Parameter node waits for all gradient parts
to be collected to do the mini—batch step

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

A8

‘ ‘) :‘g

g9 0

Each contains distinct partition of data

1) Still requires synchronization: each worker
has less work to do

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

1) Still requires synchronization: each worker
has less work to do

<

A 11) Introduces a tradeoff between statistical

{ { { efficiency, computations efficiency (in

terms of convergence) and communication
Each contains distinct partition of data

etficiency

Distributing gradient computations

— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

1) Still requires synchronization: each worker
has less work to do

<

A 11) Introduces a tradeoff between statistical

{ { { efficiency, computations efficiency (in

terms of convergence) and communication
Each contains distinct partition of data

etficiency

111) Usually computing V fi, (z:)is cheap per node

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(ﬂft)

1€1L4

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

¢

u

Each contains distinct partition of data

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

A8

‘ ‘) :‘g

g9 0

Each contains distinct partition of data

¢) Parameter node does.. nothing until the end

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

y i1) Worker nodes do mini—batch SGD as if
i e there 1s no distributed computation

Each contains distinct partition of data

¢) Parameter node does.. nothing until the end

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

¢) Parameter node does.. nothing until the end

it) Worker nodes do mini—batch SGD as if
there 1s no distributed computation

Each contains distinct partition of data

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€14
1 (P) . . .
w%)ﬂjg ¢) Parameter node does.. nothing until the end
T
¢ 1) Worker nodes do mini—batch SGD as if
i e there 1s no distributed computation

719) Parameter node waits for all the models to
be collected, and be averaged

Each contains distinct partition of data

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€,
~
1 i
P Z br . . .
=1 t) Parameter node does.. nothing until the end
¢ it) Worker nodes do mini—batch SGD as if

there 1s no distributed computation

719) Parameter node waits for all the models to
be collected, and be averaged

Each contains distinct partition of data

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:
Li4+1 = Lt — 1] Z V fi(wt)
1€14

¢) Minimal communication: every node
works on its own, and sends the model at
the end of its execution

=

A8

‘ ‘) :‘g

g9 0

Each contains distinct partition of data

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:
Li4+1 = Lt — 1] Z V fi(wt)
1€14

¢) Minimal communication: every node
works on its own, and sends the model at
the end of its execution

=

<

-l A

Each contains distinct partition of data

11) The model was designed for convex
problems — the idea 1s that each
subproblem has a solution close to the
global one — thus averaging does not hurt

Distributing gradient computations

— What if we run mini—batch SGD in parallel and combine at the end:

Lt4+1 — Lt — 1] Z qu;(iﬁt)

=

<

-l A

Each contains distinct partition of data

1€1L4

¢) Minimal communication: every node
works on its own, and sends the model at
the end of its execution

11) The model was designed for convex
problems — the idea 1s that each
subproblem has a solution close to the
global one — thus averaging does not hurt

111) Final decision is prediction averaging —
similar ideas hold for random forests

Using distributed computing in a different way

— Run code in parallel as a way for hyperparameter optimization

T =3 —m Y Vfilxe) * o o T =3 —1g Y Vfilxe)
1€L 1€l

Using distributed computing in a different way

— Run code in parallel as a way for hyperparameter optimization

Tt41 = Tt — 11 Z V fi(x) ¢ * ° T4l = Tt — g Z V fi(x)

1€714 1€14

- -

Each contains distinct partition of data Each contains distinct partition of data

Using distributed computing in a different way

— Run code in parallel as a way for hyperparameter optimization

Tt41 = Tt — 11 Z V fi(x) ¢ * ° T4l = Tt — g Z V fi(x)
i€Z i€T

- -

|n |. ‘« * o o ; ‘ :«

Each contains distinct partition of data Each contains distinct partition of data

(Tribute:Dimitris Papailiopoulos)

timeline

CPU

CPU2 T
-

CPU 3

Synchronization checkpoints

| | emmmmmme =T e e ne e g (Tribute: Dimitris Papailiopoulos)
timeline

CPU |
CPU 2
CPU 3

Synchronization checkpoints

il
.--""" "‘""-—'..

(Tribute:Dimitris Papailiopoulos)

-

timeline

CPU |
CPU 2
CPU 3

S~ \
~~\\ 7

Stragglers

CPU |
CPU 2
CPU 3

CPU |
CPU 2
CPU 3

timeline

Synchronization checkpoints

ey TR

(Tribute:Dimitris Papailiopoulos)

Faster

Easier to
Implement

Limitations of such distributed computing

Limitations of such distributed computing

— Synchronization:

— Must wait for the slowest worker to synchronize all workers, and
keep all nodes aware of each other’'s updates to the model.

Limitations of such distributed computing

— Synchronization:

— Must wait for the slowest worker to synchronize all workers, and
keep all nodes aware of each other’'s updates to the model.

— Synchronization is often quite expensive:

— Consider the tollowing setting: we have P workers, and P—1 of them
have already sent their updates to the parameter server. The whole system
has to wait for the last worker to complete and send his part, in order to
proceed.

Limitations of such distributed computing

— Synchronization:

— Must wait for the slowest worker to synchronize all workers, and
keep all nodes aware of each other’'s updates to the model.

— Synchronization is often quite expensive:

— Consider the tollowing setting: we have P workers, and P—1 of them
have already sent their updates to the parameter server. The whole system
has to wait for the last worker to complete and send his part, in order to
proceed.

Asynchronous distributed computing

Asynchronous distributed computing

— Multicore systems can host large—scale problems:

— Instead of using clusters of processing nodes, one can use a single
inexpensive work station that can host problems that, after preprocessing,
involve a few terabytes of data

Asynchronous distributed computing

— Multicore systems can host large—scale problems:

— Instead of using clusters of processing nodes, one can use a single
inexpensive work station that can host problems that, after preprocessing,
involve a few terabytes of data

— Advantages of multicore systems:

— Low latency + high throughput shared main memory
— High bandwidth of multiple disks
— Fast multithread processors

Asynchronous distributed computing

— Multicore systems can host large—scale problems:

— Instead of using clusters of processing nodes, one can use a single
inexpensive work station that can host problems that, after preprocessing,
involve a few terabytes of data

— Advantages of multicore systems:

— Low latency + high throughput shared main memory
— High bandwidth of multiple disks
— Fast multithread processors

— Main bottleneck:

— Synchronization (locking) amongst processors

Asynchrony in SGD Google

— Run SGD in parallel without locks! s Microsoft

Asynchrony in SGD Google

— Run SGD in parallel without locks! s Microsoft
Shared memory ~ — All threads have access to shared memory

(Slight abuse of {'

representation)
4

qada g

Thread 1 Thread 2 Thread P

Each has access to all data

Asynchrony in SGD Google

Microsoft

— Run SGD in parallel without locks!

=

i -.
e LG ’

&k,
dag o

Each has access to all data

— All threads have access to shared memory

— Each thread can independently ask for
the current model in memory

Asynchrony in SGD Google

Microsoft

— Run SGD in parallel without locks!

— All threads have access to shared memory

— Each thread can independently ask for
Y\ fa. (1)

the current model in memory

¥ - — Each thread computes an update (=gradient)

7 r and then updates shared memory
‘\ "

g9 9

Each has access to all data

Asynchrony in SGD

— Run SGD in parallel without locks!

Google

== Microsoft

— All threads have access to shared memory

— Each thread can independently ask for
Y\ fa. (1)

the current model in memory

vj]t (xt)

— Each thread computes an update (=gradient)

, l l f’ and then updates shared memory

Each has access to all data

— The controller 1

n shared memory updates

the model 1n a :

rst—in—first—served fashion

Asynchrony in SGD Google

— Run SGD in parallel without locks! as Microsoft

— All threads have access to shared memory

— Each thread can independently ask for
Y\ fa. (1)

the current model in memory

Vi (@) — Each thread computes an update (=gradient)

" - f and then updates shared memory

L

Each has access to all data

— The controller in shared memory updates
the model in a first—in—first—served fashion

— Assuming all threads have collected ¢
Tiv1 =2 — N (Vi (xe) + VI, (xe) + -+ Vg (11))

Asynchrony in SGD Google

— Run SGD in parallel without locks! s Microsoft

Shared memory
(Slight abuse of H'
representation)

4

TR

Thread 1 Thread 2 Thread P

Tiv1 =2 — N (Vi (1) + V[(xe) + -+ Vg (z1))

Each has access to all data

Asynchrony in SGD Google

: : mE
— Run SGD in parallel without locks! ma Microsoft
Shared memory Tip1 = — 0 (Vi () + Vi () + -+ Vi, ()
(Slight abuse of {l (..and this might be an straightforward case)
representation)

J

- -

Thread 1 Thread 2 Thread P

Each has access to all data

Asynchrony in SGD Google

o . | NVF
— Run SGD in parallel without locks! mn Microsoft
Shared memory Tip1 = — 0 (Vi () + Vi () + -+ Vi, ()
(Slight abuse of H' | (..and this might be an straightforwa.rd case)
representation) — Threads might process an older model version

4

Lt—10 ’ |
g9
Thread 1 Thread 2 Thread P

Each has access to all data

Asynchrony in SGD Google

. . Bl n\;
— Run SGD in parallel without locks! mn Microsoft
Shared memory Li4+1 = Lt — 7] (vf’bt (xt) T vfjt (xt) T T vat (wt))
(Slight abuse of {' | (..and this might be an straightforwa.rd case)
representation) Vfi.(z:) — Threads might process an older model version

V fq. (Tt—10) V fj(xi-3)

Thread 1 Thread 2 Thread P

— Threads might complete the job " in an arbitrary
order.

Each has access to all data

Asynchrony in SGD Google

Microsoft

— Run SGD in parallel without locks!

Tiv1 =2 — N (Vfi,(2e) + V[(xe) + -+ Vg (21))

{I Vfi.(z:) — Threads might process an older model version

Ve (@i10) |V (@=s) . W A .
4 m — Threads might complete the job in an arbitrary

P\ order.
“

g' {, {l — And 1t can get more complex:

Each has access to all data

Asynchrony in SGD Google

— Run SGD in parallel without locks! m= Microsoft

Tiv1 =2 — N (Vfi,(2e) + V[(xe) + -+ Vg (21))

{I Vfi.(z:) — Threads might process an older model version

Vg (@i—10) | VFi(@e-s) . We 1A .
a4l — Threads might complete the job in an arbitrary
e

|’ ‘. : < order.

{l g' gl — And 1t can get more complex:

Each has access to all data

"Threads can read a model state that
only stayed in memory for a short t1me
and between other memory writes

Asynchrony in SGD

— Does it work?

Asynchrony in SGD

— Does it work? Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@Rgoogle.com

Google Inc., Mountain View, CA

AsynChrOny 11’] SGD (..a bit more involved set up)

— Does it work? Large Scale Distributed Deep Networks
“. . asynchronous SGD, rarely Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
. Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
apphed to nonconvex pr oblems, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
M {jeff, gcorrado}@Qgoogle.com
works very We!l for training deep Goodle s Mo oo L ea
networks, particularly when
combined with Adagrad

adaptive learning rates..”

AsynChrOﬂy 11’] SGD (..a bit more involved set up)

— Does it work? Large Scale Distributed Deep Networks
o asynchrgnous SGD, rarely Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
. Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
applied to nonconvex problems, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
. {jeff, gcorrado}@Rgoogle.com
works very We!l for training deep -l - Vi
networks, particularly when

combined with Adagrad
adaptive learning rates..”

"..There is little theoretical
grounding for the safety of these
operations for nonconvex
problems, but in practice we
found relaxing consistency
requirements to be remarkably
effective...”

AsynChrOny 11’] SGD (..a bit more involved set up)

— Does it work? Large Scale Distributed Deep Networks
o asynchronous SGD rarely Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
. ’ Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
applied to nonconvex problems, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
Tt jeff, rrado @ le.com
works very We!l for training deep {jéoogle%ff, yadofigoogle oo
networks, particularly when e
Combined Wlth Adagr ad —&— Speech: 42M parameters
. o \ -o - : 80M t
adaptlve learnmg rates.. N -v- ﬂ:gzzf 330MpS::;nr§eetres;s R — Comm' bOttleneck
= —O— Images: 1.7B parameters v -
é 10} e
A\ . . . O ’ .
.. There is little theoretical 7] — We can increase batch
: o .
grounc.hng for the safety of the £ | B size — but, we deal
operations for nonconvex s 51 - 1 i
problems, but in practice we = with worse generall
found relaxing consistency nation error
requirements to be remarkably o———— '
“ 1 16 32 64 128

effective... Machines per model instance

Asynchrony in SGD

— Can we prove anything about asynchrony in SGD?

HOGWILD!: "..an update scheme that allows processors accesss shared
memory with the possibility of overwriting each other’s work

Asynchrony in SGD

— Can we prove anything about asynchrony in SGD?

HOGWILD!: "..an update scheme that allows processors accesss shared
memory with the possibility of overwriting each other’s work

— Setting: mlnf Z fe(ze)

ec
where: x € R"™ F is a collection of items, say samples

e C |n| (each element e is a collection of indices in [n]
but also an index from a set of samples E)

Asynchrony in SGD

— Can we prove anything about asynchrony in SGD?

— Setting: mlnf Z fe(ze)

ec
where: x € R"™ F is a collection of items, say samples

e C |n| (each element e is a collection of indices in [n]
but also an index from a set of samples E)

— Slight abuse of notation:
f e(')I denotes a component of sum of functions, indexed by sample €

T e - corresponds to sub—vector, indexed by an index set € (connected to
sample €)

Asynchrony in SGD

— Key observation: n & |E| are large, while individual fe(:) act on a
small number of components of x € R"

Asynchrony in SGD

— Key observation: n & |E| are large, while individual fe(:) act on a
small number of components of x € R"

— Example: Sparse SVM

Given data E = {(z1,v1),- .-, (25, g } where y; labels and z; € R"
are features, we solve:

mxin Z IMnax (1 — Yo - wTZOM O) T)\HxH%
ack

Asynchrony in SGD

— Key observation: n & |E| are large, while individual fe(:) act on a
small number of components of x € R"

— Example: Sparse SVM

Given data E = {(z1,v1),- .-, (25, g } where y; labels and z; € R"
are features, we solve:

mxin Z IMnax (1 — Yo - wTZOM O) T)\HxH%
ack

— Observe that, if 2z is very sparse (which happens in reality often), then

1 1

T Zo = T, 2a Main objective depends on a subset

of entries

Asynchrony in SGD

— Some quantities:
() : maximum number of features involved over all samples

A © maximum frequency of features that can appear in samples

P : approaches 1 it features are very common across examples

Asynchrony in SGD

— Some quantities:
() : maximum number of features involved over all samples

A © maximum frequency of features that can appear in samples

P : approaches 1 it features are very common across examples

— Configuration:

P : number of processors

Each processor can read model x and contribute an update to @

Asynchrony in SGD

Algorithm 1 HoGgwiLD! update for individual processors

1: loop
2: Sample e uniformly at random from F
3: Read current state x. and evaluate G¢(x)

4: forveedoz, — x, — Vb Ge(x) o
5: end loop

— Notation:
Ge(z) € R" ! gradient with non—zeros indexed by e, and scaled such that

L |Ge(we)| = Vf(x)
Observe that [Ge(ze)] .. =0

Asynchrony in SGD

Algorithm 1 HoGgwiLD! update for individual processors

1: loop
2: Sample e uniformly at random from F
3: Read current state x. and evaluate G¢(x)

4: forveedoz, — x, — Vb Ge(z) o
5: end loop

— In words:
1. Each processor samples € unitormly at random
2. Each processor computes the gradient fe at z.

3. Each processor applies update on each coordinate in e

Asynchrony in SGD

— Asynchrony: x; denotes the variable after j updates. Generally updated with
stale gradients

Tk(;) denotes the state of the variable when was read

Whiteboard

Asynchrony in SGD

— Asynchrony: x; denotes the variable after j updates. Generally updated with
stale gradients

Tk(;) denotes the state of the variable when was read

Whiteboard

No Demo (no resources)

Asynchrony in SGD

— Properties of asynchronous HOGWILD! algorithm:

Asynchrony in SGD

— Properties of asynchronous HOGWILD! algorithm:

— When the data access is sparse (i.e., SGD modifies a portion of
the variables per step), memory overwrites could be rare

Asynchrony in SGD

— Properties of asynchronous HOGWILD! algorithm:

— When the data access is sparse (i.e., SGD modifies a portion of
the variables per step), memory overwrites could be rare

— This further indicates that asynchrony introduces barely any
error in the computations

Asynchrony in SGD

— Properties of asynchronous HOGWILD! algorithm:

— When the data access is sparse (i.e., SGD modifies a portion of
the variables per step), memory overwrites could be rare

— This further indicates that asynchrony introduces barely any
error in the computations

— The authors show (theoretically and experimentally) a near—linear
speedup, with the number of processors used

Asynchrony in SGD

— Properties of asynchronous HOGWILD! algorithm:

— When the data access is sparse (i.e., SGD modifies a portion of
the variables per step), memory overwrites could be rare

— This further indicates that asynchrony introduces barely any
error in the computations

— The authors show (theoretically and experimentally) a near—linear
speedup, with the number of processors used

— In practice, lock—free SGD exceeds even theoretical guarantees

Alternatives to avoid asynchrony

— Standard SGD: each entry of the gradient is represented as a float number

O(32 - p) bits : the size of each gradient sent over network

Alternatives to avoid asynchrony

— Standard SGD: each entry of the gradient is represented as a float number

O(32 - p) bits : the size of each gradient sent over network

— Quantized SGD: each entry of the gradient is quantized to some levels

O(¢ - p) bits : where ¢ <« 32 is the levels of quantization

Alternatives to avoid asynchrony

(in other words, how we can decrease communication burden?)

— Standard SGD: each entry of the gradient is represented as a float number

O(32 - p) bits : the size of each gradient sent over network

— Quantized SGD: each entry of the gradient is quantized to some levels

O({ - p) bits : where ¢ < 32 is the levels of quantization
VGGI9

o o . = 2 GPUs 1 4 GPUs [1 8 GPUs [1 16 GPUs
QSGD: Communication-Efficient SGD 20} : .
via Gradient Quantization and Encoding w
-
= 15¢
c
@,
Dan Alistarh Demjan Grubic Jerry Z. Li 8
IST Austria & ETH Zurich ETH Zurich & Google MIT v 1 O -
dan.alistarh@ist.ac.at demjangrubic@gmail.com jerryzli@mit.edu E
O
)
Ryota Tomioka Milan Vojnovic - 5
Microsoft Research London School of Economics — i
ryoto@microsoft.com M.Vojnovic@lse.ac.uk
0

SGD QSGD 4bit (d=512)

Alternatives to avoid asynchrony

(in other words, can we make synchronization not be a big problem?)

é
e
4
fen
fo
(e
—

R Rdots dtzcs dads et

— Right learner can slow down the performance of synchronized SGD

Alternatives to avoid asynchrony

(in other words, can we make synchronization not be a big problem?)

&)
(>
(o
fd
(o
f; .
bt tats datneh ety et

Vf]t T vfkt Lt V fe, (x
V fi, (z¢) \ [/ fe. (1)

— Right learner can slow down the performance of synchronized SGD

~

L

Alternatives to avoid asynchrony

(in other words, can we make synchronization not be a big problem?)

Rt oy sy s et bt oy et sy Aty et bt oty et sy s et bt lads et sy Aty et Rt lads et sy Aty et

bt ettt datich s e o

— Right learner can slow down the performance of synchronized SGD

Alternatives to avoid asynchrony

REVISITING DISTRIBUTED SYNCHRONOUS SGD

Jianmin Chen; Xinghao Pan* Rajat Monga, Samy Bengio Rafal Jozefowicz
Google Brain OpenAl
Mountain View, CA, USA San Francisco, CA, USA

{jmchen, xinghao, rajatmonga, bengio}@google.com rafallRopenai.com

ABSTRACT

Distributed training of deep learning models on large-scale training data is typi-
cally conducted with asynchronous stochastic optimization to maximize the rate
of updates, at the cost of additional noise introduced from asynchrony. In con-
trast, the synchronous approach 1s often thought to be impractical due to 1dle time
wasted on waiting for straggling workers. We revisit these conventional beliefs
in this paper, and examine the weaknesses of both approaches. We demonstrate
that a third approach, synchronous optimization with backup workers, can avoid
asynchronous noise while mitigating for the worst stragglers. Our approach 1s
empirically validated and shown to converge faster and to better test accuracies.

Alternatives to avoid asynchrony

Alternatives to avoid asynchrony

— Sparsification of gradients: instead of quantizing all entries, keep the
MOosSt important ones

Alternatives to avoid asynchrony

— Sparsification of gradients: instead of quantizing all entries, keep the
MOosSt important ones

— Large batch training: give more work to workers by increasing the
batch size. However it needs careful parameter tuning to make it work

Alternatives to avoid asynchrony

— Sparsification of gradients: instead of quantizing all entries, keep the
MOosSt important ones

— Large batch training: give more work to workers by increasing the
batch size. However it needs careful parameter tuning to make it work

— Variants of HOGWILD! that minimize communication conflicts: some
computation is performed to distribute examples to different cores
so that examples do not conflict .

Conclusion

— Distributed computing is at the heart of developments in modern ML

— There are different ways to exploit distributed computing: hyper parameter
optimization, coordinate descent, mini—batch synchronous SGD,
asynchronous SGD

— Which contfiguration to use depends on the problem and the resources
at hand

— These topics are highly attractive (research—wise): they define the notion
of systems + machine learning (look for SysML conference)

