COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

Lecture 11



Overview

— Different objective classes
— Ditferent strategies within each problem
— Different approaches based on

computational capabilities
— Different approaches based on constraints
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And, always having in mind applications in machine learning,
AT and signal processing
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Overview

— In this lecture, we will:
— Discuss how to distribute optimization in large—scale settings
— Study synchrony vs. asynchrony in gradient descent

— Provide some rough theoretical results on how asynchrony
attects performance

— Alternatives and state of the art
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Recall: Stochastic gradient descent

— SGD is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
Ti1 = Ty — NV [i, (24)

— In words: i) we select a training sample,ii) we compute the gradient,

111) we update the model

— Properties: ¢) the current model x4 is used for the computation of V §; (-)

i1) when we update the model, the state of the system is as when

- we read Ty
141) The whole process is sequential

Tip1 =z — NV fi, (@) = 2o — 0 (Vi (@) + Vi, (31)) = =20 —n ) _ V[ ()
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How to run SGD on multiple processing units

— SGD (as presented above) operates on a single machine
(single CPU, single memory, single communication bus line)

— Can we identify where computation/communication happens in:
Tiy1 = Tt — NV fi, (T4) ?

— ¢)model X+ needs to be “transferred” where computation of V f;, () happens
i3) data point f;, () needs to be transferred where V f;, (-) happens

i11) the update = —nV f;, (z¢) overwrites (usually) the current model

— But we have GPUs!": Limitation is its memory (model/data do not fit)
Not easy to parallelize on GPU

— How can we distribute this computation over multiple processing units?
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[nterlude: what we mean by “distributed™?

— Disclaimer: there are people in Rice CS with 1000x more expertise
on these topics (see John Mellor—Crummey)

— Single node distributed computing:

- 1) Single machine, many cores (up to 100s)
i1) Shared memory (all processors have access to it)

i11) Communication to RAM is relatively cheap
— Multi—node distributed computing:

— 1) Many machines (up to 1000s), probably with many cores each
i1) Shared—nothing architecture (each machine has its own CPU, storage)

i11) Communication between nodes is much less cheap than single node
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— Consider the full gradient descent case: /\
T

Lt41 — Lt — 772 Vfi(iﬁt)
i—=1

() {' v/ ¢) Parameter node keeps and distributes model
Vi, xt T+ at every cycle/iteration

g9 0

Each contains distinct partition of data

<

11) Worker nodes compute part of the full
oradient, based on the part of data they have

117) Parameter node waits for all gradient parts
to be collected to do the gradient step
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Distributing gradient computations

— "Things are looking good so far.. What's wrong with this scheme?"
— Well, it might be the case that we don't have all data at once™

Online learning: 1. Data samples arrive one—at—a—time, as we optimize

2. (For some reason), we don't have access to all data

— But, there are cases where we have finite & fixed data — see neural networks"
— "Well, the problem here is that full gradient descent does not perform well

Generalization vs. training error :
1. If we care about only the training error, full GD could work well

2. In ML tasks, we often care about the generalization error, 1.e., the
performance of the model on unseen data
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— Consider the case where even Vf;, (z:) € RP is expensive for a single node

Lt41 — Lt — ﬁvfi(ﬂft)

N

i) Relates to coordinate descent algorithms

=

<

-l A

Each contains all data

i1) Could be part of a large—scale
implementation, where part of the model
1s too large to be computed in a centralized
tashion

111) Could be an overkill to only compute
updates for a subset of entries
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— What about the setting in—between? Mini—batch SGD

Lt4+1 — Lt — 1] Z qu;(iﬁt)

1€1L4

=

1) Still requires synchronization: each worker
has less work to do

<

A 11) Introduces a tradeoff between statistical

{ { { efficiency, computations efficiency (in

terms of convergence) and communication
Each contains distinct partition of data

etficiency

111) Usually computing V fi, (z:)is cheap per node
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— What if we run mini—batch SGD in parallel and combine at the end:
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¢) Minimal communication: every node
works on its own, and sends the model at
the end of its execution

11) The model was designed for convex
problems — the idea 1s that each
subproblem has a solution close to the
global one — thus averaging does not hurt

111) Final decision is prediction averaging —
similar ideas hold for random forests
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Using distributed computing in a different way

— Run code in parallel as a way for hyperparameter optimization

Tt41 = Tt — 11 Z V fi(x) ¢ * ° T4l = Tt — g Z V fi(x)
i€Z i€T
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|n |. ‘« * o o ; ‘ :«

Each contains distinct partition of data Each contains distinct partition of data
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Asynchronous distributed computing

— Multicore systems can host large—scale problems:

— Instead of using clusters of processing nodes, one can use a single
inexpensive work station that can host problems that, after preprocessing,
involve a few terabytes of data

— Advantages of multicore systems:

— Low latency + high throughput shared main memory
— High bandwidth of multiple disks
— Fast multithread processors

— Main bottleneck:

— Synchronization (locking) amongst processors
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Asynchrony in SGD Google

— Run SGD in parallel without locks! as Microsoft

— All threads have access to shared memory

— Each thread can independently ask for
Y\ fa. (1)

the current model in memory

Vi (@) — Each thread computes an update (=gradient)

" - f and then updates shared memory

L

Each has access to all data

— The controller in shared memory updates
the model in a first—in—first—served fashion

— Assuming all threads have collected ¢
Tiv1 =2 — N (Vi (xe) + VI, (xe) + -+ Vg (11))
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. . Bl n\;
— Run SGD in parallel without locks! mn Microsoft
Shared memory Li4+1 = Lt — 7] (vf’bt (xt) T vfjt (xt) T T vat (wt))
(Slight abuse of {' | (..and this might be an straightforwa.rd case)
representation) Vfi.(z:) — Threads might process an older model version

V fq. (Tt—10) V fj(xi-3)

Thread 1 Thread 2 Thread P

— Threads might complete the job " in an arbitrary
order.

Each has access to all data



Asynchrony in SGD Google

Microsoft

— Run SGD in parallel without locks!

Tiv1 =2 — N (Vfi,(2e) + V[ (xe) + -+ Vg (21))

{I Vfi.(z:) — Threads might process an older model version

Ve (@i10) |V (@=s) . W A .
4 m — Threads might complete the job in an arbitrary

P\ order.
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— Run SGD in parallel without locks! m= Microsoft

Tiv1 =2 — N (Vfi,(2e) + V[ (xe) + -+ Vg (21))

{I Vfi.(z:) — Threads might process an older model version

Vg (@i—10) | VFi(@e-s) . We 1A .
a4l — Threads might complete the job in an arbitrary
e

|’ ‘. : < order.

{l g' gl — And 1t can get more complex:

Each has access to all data

"Threads can read a model state that
only stayed in memory for a short t1me
and between other memory writes
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— Does it work? Large Scale Distributed Deep Networks

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
{jeff, gcorrado}@Rgoogle.com

Google Inc., Mountain View, CA
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— Does it work? Large Scale Distributed Deep Networks
o asynchronous SGD rarely Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen,
. ’ Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato,
applied to nonconvex problems, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng
Tt jeff, rrado @ le.com
works very We!l for training deep {jéoogle%ff, yadofigoogle oo
networks, particularly when e
Combined Wlth Adagr ad —&— Speech: 42M parameters
. o \ -o - : 80M t
adaptlve learnmg rates.. N -v- ﬂ:gzzf 330MpS::;nr§eetres;s R — Comm' bOttleneck
= —O— Images: 1.7B parameters v -
é 10} e
A\ . . . O ’ .
.. There is little theoretical 7] — We can increase batch
: o .
grounc.hng for the safety of the £ | B size — but, we deal
operations for nonconvex s 51 - 1 i
problems, but in practice we = with worse generall
found relaxing consistency nation error
requirements to be remarkably o———— '
“ 1 16 32 64 128

effective... Machines per model instance
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— Can we prove anything about asynchrony in SGD?

— Setting: mlnf Z fe(ze)

ec
where: x € R"™ F is a collection of items, say samples

e C |n| (each element e is a collection of indices in [n]
but also an index from a set of samples E)

— Slight abuse of notation:
f e(')I denotes a component of sum of functions, indexed by sample €

T e - corresponds to sub—vector, indexed by an index set € (connected to
sample €)
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— Key observation: n & |E| are large, while individual fe(:) act on a
small number of components of x € R"

— Example: Sparse SVM

Given data E = {(z1,v1),- .-, (25, g } where y; labels and z; € R"
are features, we solve:

mxin Z IMnax (1 — Yo - wTZOM O) T )\HxH%
ack

— Observe that, if 2z is very sparse (which happens in reality often), then

1 1

T Zo = T, 2a Main objective depends on a subset

of entries
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— Some quantities:
() : maximum number of features involved over all samples

A © maximum frequency of features that can appear in samples

P : approaches 1 it features are very common across examples

— Configuration:

P : number of processors

Each processor can read model x and contribute an update to @
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Algorithm 1 HoGgwiLD! update for individual processors

1: loop
2:  Sample e uniformly at random from F
3: Read current state x. and evaluate G¢(x)

4: forveedoz, — x, — Vb Ge(x) o
5: end loop

— Notation:
Ge(z) € R" ! gradient with non—zeros indexed by e, and scaled such that

L |Ge(we)| = Vf(x)
Observe that [Ge(ze)] .. =0
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Algorithm 1 HoGgwiLD! update for individual processors

1: loop
2:  Sample e uniformly at random from F
3: Read current state x. and evaluate G¢(x)

4: forveedoz, — x, — Vb Ge(z) o
5: end loop

— In words:
1. Each processor samples € unitormly at random
2. Each processor computes the gradient fe at z.

3. Each processor applies update on each coordinate in e
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Asynchrony in SGD

— Asynchrony: x; denotes the variable after j updates. Generally updated with
stale gradients

Tk(;) denotes the state of the variable when was read

Whiteboard

No Demo (no resources)
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— Properties of asynchronous HOGWILD! algorithm:

— When the data access is sparse (i.e., SGD modifies a portion of
the variables per step), memory overwrites could be rare

— This further indicates that asynchrony introduces barely any
error in the computations

— The authors show (theoretically and experimentally) a near—linear
speedup, with the number of processors used

— In practice, lock—free SGD exceeds even theoretical guarantees
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Alternatives to avoid asynchrony

(in other words, how we can decrease communication burden?)

— Standard SGD: each entry of the gradient is represented as a float number

O(32 - p) bits : the size of each gradient sent over network

— Quantized SGD: each entry of the gradient is quantized to some levels

O({ - p) bits : where ¢ < 32 is the levels of quantization
VGGI9

o o . = 2 GPUs 1 4 GPUs [ 1 8 GPUs [ 1 16 GPUs
QSGD: Communication-Efficient SGD 20} : .
via Gradient Quantization and Encoding w
-
= 15¢
c
@,
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)
Ryota Tomioka Milan Vojnovic - 5
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— Right learner can slow down the performance of synchronized SGD
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Alternatives to avoid asynchrony

(in other words, can we make synchronization not be a big problem?)

Rt oy sy s et bt oy et sy Aty et bt oty et sy s et bt lads et sy Aty et Rt lads et sy Aty et
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— Right learner can slow down the performance of synchronized SGD
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REVISITING DISTRIBUTED SYNCHRONOUS SGD

Jianmin Chen; Xinghao Pan* Rajat Monga, Samy Bengio Rafal Jozefowicz
Google Brain OpenAl
Mountain View, CA, USA San Francisco, CA, USA

{jmchen, xinghao, rajatmonga, bengio}@google.com rafallRopenai.com

ABSTRACT

Distributed training of deep learning models on large-scale training data is typi-
cally conducted with asynchronous stochastic optimization to maximize the rate
of updates, at the cost of additional noise introduced from asynchrony. In con-
trast, the synchronous approach 1s often thought to be impractical due to 1dle time
wasted on waiting for straggling workers. We revisit these conventional beliefs
in this paper, and examine the weaknesses of both approaches. We demonstrate
that a third approach, synchronous optimization with backup workers, can avoid
asynchronous noise while mitigating for the worst stragglers. Our approach 1s
empirically validated and shown to converge faster and to better test accuracies.
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Alternatives to avoid asynchrony

— Sparsification of gradients: instead of quantizing all entries, keep the
MOosSt important ones

— Large batch training: give more work to workers by increasing the
batch size. However it needs careful parameter tuning to make it work

— Variants of HOGWILD! that minimize communication conflicts: some
computation is performed to distribute examples to different cores
so that examples do not conflict .



Conclusion

— Distributed computing is at the heart of developments in modern ML

— There are different ways to exploit distributed computing: hyper parameter
optimization, coordinate descent, mini—batch synchronous SGD,
asynchronous SGD

— Which contfiguration to use depends on the problem and the resources
at hand

— These topics are highly attractive (research—wise): they define the notion
of systems + machine learning (look for SysML conference)



