COMP 414/514: Optimization – Algorithms, Complexity and Approximations #### Overview And, always having in mind applications in machine learning, AI and signal processing s.t. $x \in C$ $$\min_{x} f(x)$$ Unconstrained optimization $$\min_{x} f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$ Unconstrained optimization $$\min_{x} f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$ Unconstrained optimization #### Overview - In this lecture, we will: - Discuss how to distribute optimization in large-scale settings - Study synchrony vs. asynchrony in gradient descent - Provide some rough theoretical results on how asynchrony affects performance - Alternatives and state of the art - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - In words: i) we select a training sample, ii) we compute the gradient, iii) we update the model - Properties: i) the current model x_t is used for the computation of $\nabla f_{i_t}(\cdot)$ - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - In words: i) we select a training sample, ii) we compute the gradient, iii) we update the model - Properties: i) the current model x_t is used for the computation of $\nabla f_{i_t}(\cdot)$ ii) when we update the model, the state of the system is as when we read x_t - SGD is used **almost everywhere**: training classical ML tasks (linear prediction, linear classification), training modern ML tasks (non-linear classification, neural networks) - In simple math, it satisfies: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$ - In words: i) we select a training sample, ii) we compute the gradient, iii) we update the model - Properties: i) the current model x_t is used for the computation of $\nabla f_{i_t}(\cdot)$ ii) when we update the model, the state of the system is as when we read x_t iii) The whole process is sequential $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t) = x_{t-1} - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{i_{t-1}}(x_{t-1}) \right) = \dots = x_0 - \eta \sum_{i} \nabla f_{i_j}(x_j)$$ - SGD (as presented above) operates on a single machine (single CPU, single memory, single communication bus line) (Very rough description) - SGD (as presented above) operates on a single machine (single CPU, single memory, single communication bus line) (Very rough description) - Can we identify where computation/communication happens in: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)$$? - SGD (as presented above) operates on a single machine (single CPU, single memory, single communication bus line) (Very rough description) - Can we identify where computation/communication happens in: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)?$$ - i) model x_t needs to be "transferred" where computation of $\nabla f_{i_t}(\cdot)$ happens ii) data point $f_{i_t}(\cdot)$ needs to be transferred where $\nabla f_{i_t}(\cdot)$ happens iii) the update $x_t - \eta \nabla f_{i_t}(x_t)$ overwrites (usually) the current model - SGD (as presented above) operates on a single machine (single CPU, single memory, single communication bus line) (Very rough description) - Can we identify where computation/communication happens in: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)?$$ - i) model x_t needs to be "transferred" where computation of $\nabla f_{i_t}(\cdot)$ happens ii) data point $f_{i_t}(\cdot)$ needs to be transferred where $\nabla f_{i_t}(\cdot)$ happens iii) the update $x_t \eta \nabla f_{i_t}(x_t)$ overwrites (usually) the current model - "But we have GPUs!": Limitation is its memory (model/data do not fit) Not easy to parallelize on GPU - SGD (as presented above) operates on a single machine (single CPU, single memory, single communication bus line) (Very rough description) - Can we identify where computation/communication happens in: $$x_{t+1} = x_t - \eta \nabla f_{i_t}(x_t)?$$ - i) model x_t needs to be "transferred" where computation of $\nabla f_{i_t}(\cdot)$ happens ii) data point $f_{i_t}(\cdot)$ needs to be transferred where $\nabla f_{i_t}(\cdot)$ happens iii) the update $x_t \eta \nabla f_{i_t}(x_t)$ overwrites (usually) the current model - "But we have GPUs!": Limitation is its memory (model/data do not fit) Not easy to parallelize on GPU - How can we distribute this computation over multiple processing units? - Disclaimer: there are people in Rice CS with 1000x more expertise on these topics (see John Mellor-Crummey) (Spoiler alert: a very rough description next) - Disclaimer: there are people in Rice CS with 1000x more expertise on these topics (see John Mellor-Crummey) (Spoiler alert: a very rough description next) - Single node distributed computing: - i) Single machine, many cores (up to 100s) - ii) Shared memory (all processors have access to it) - iii) Communication to RAM is relatively cheap - Disclaimer: there are people in Rice CS with 1000x more expertise on these topics (see John Mellor-Crummey) (Spoiler alert: a very rough description next) - Single node distributed computing: - i) Single machine, many cores (up to 100s) ii) Shared memory (all processors have access to it) iii) Communication to RAM is relatively cheap - Multi-node distributed computing: - i) Many machines (up to 1000s), probably with many cores each ii) Shared-nothing architecture (each machine has its own CPU, storage) iii) Communication between nodes is much less cheap than single node - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^{N} \nabla f_i(x_t)$$ - Consider the full gradient descent case: dient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^n \nabla f_i(x_t)$$ Clear use of dist. computing - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^n \nabla f_i(x_t)$$ Clear use of dist. computing Parameter node Each contains distinct partition of data - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^n \nabla f_i(x_t)$$ Clear use of dist. computing #### Parameter node Each contains distinct partition of data i) Parameter node keeps and distributes model x_t at every cycle/iteration - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^n \nabla f_i(x_t)$$ Clear use of dist. computing #### Parameter node Each contains distinct partition of data Parameter node keeps and distributes model x_t at every cycle/iteration - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^n \nabla f_i(x_t)$$ Clear use of dist. computing #### Parameter node Each contains distinct partition of data - i) Parameter node keeps and distributes model x_t at every cycle/iteration - ii) Worker nodes compute part of the full gradient, based on the part of data they have - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^n \nabla f_i(x_t)$$ Clear use of dist. computing #### Parameter node Each contains distinct partition of data - i) Parameter node keeps and distributes model x_t at every cycle/iteration - ii) Worker nodes compute part of the full gradient, based on the part of data they have - Consider the full gradient descent case: $$x_{t+1} = x_t - \eta \sum_{i=1}^{n} \nabla f_i(x_t)$$ Clear use of dist. computing #### Parameter node Each contains distinct partition of data - i) Parameter node keeps and distributes model x_t at every cycle/iteration - ii) Worker nodes compute part of the full gradient, based on the part of data they have - iii) Parameter node waits for all gradient parts to be collected to do the gradient step (..till the very last slow worker – active research: tackle stranglers) - "Things are looking good so far.. What's wrong with this scheme?" - "Things are looking good so far.. What's wrong with this scheme?" - "Well, it might be the case that we don't have all data at once" - Online learning: 1. Data samples arrive one-at-a-time, as we optimize - 2. (For some reason), we don't have access to all data - "Things are looking good so far.. What's wrong with this scheme?" - "Well, it might be the case that we don't have all data at once" - Online learning: 1. Data samples arrive one-at-a-time, as we optimize - 2. (For some reason), we don't have access to all data - "But, there are cases where we have finite & fixed data see neural networks" - "Things are looking good so far.. What's wrong with this scheme?" - "Well, it might be the case that we don't have all data at once" - Online learning: 1. Data samples arrive one-at-a-time, as we optimize - 2. (For some reason), we don't have access to all data - "But, there are cases where we have finite & fixed data see neural networks" - "Well, the problem here is that full gradient descent does not perform well" ### Generalization vs. training error: - 1. If we care about only the training error, full GD could work well - 2. In ML tasks, we often care about the generalization error, i.e., the performance of the model on unseen data ### Training vs. generalization error and GD - Gradient descent converges to the "first-seen" stationary point; SGD explores a bit the landscape before converging ### Training vs. generalization error and GD - Gradient descent converges to the "first-seen" stationary point; SGD explores a bit the landscape before converging - Gradient descent overfits the landscape of training data; however the performance deteriorates on unseen data (different landscape) Whiteboard ### Training vs. generalization error and GD - Gradient descent converges to the "first-seen" stationary point; SGD explores a bit the landscape before converging - Gradient descent overfits the landscape of training data; however the performance deteriorates on unseen data (different landscape) ### Whiteboard (This relates to the question 'large vs. small batch training') - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates Each contains all data - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates Parameter node Each contains all data i) Parameter node keeps and distributes model x_t at every cycle/iteration - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates Parameter node i) Parameter node keeps and distributes model x_t at every cycle/iteration - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates - i) Parameter node keeps and distributes model x_t at every cycle/iteration - *ii*) Worker nodes compute part of (stochastic) gradient, based on the coordinates they are asked by the parameter node - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates #### Parameter node - i) Parameter node keeps and distributes model x_t at every cycle/iteration - *ii*) Worker nodes compute part of (stochastic) gradient, based on the coordinates they are asked by the parameter node - iii) Parameter node waits for all gradient parts to be collected to do the gradient step (..till the very last slow worker) - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates Parameter node i) Relates to coordinate descent algorithms - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node $$x_{t+1} = x_t - \eta \nabla f_i(x_t)$$ Parallelism in coordinates - i) Relates to coordinate descent algorithms - *ii*) Could be part of a large-scale implementation, where part of the model is too large to be computed in a centralized fashion - Consider the case where even $\nabla f_{i_t}(x_t) \in \mathbb{R}^p$ is expensive for a single node - i) Relates to coordinate descent algorithms - *ii*) Could be part of a large-scale implementation, where part of the model is too large to be computed in a centralized fashion - iii) Could be an overkill to only compute updates for a subset of entries - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ Parameter node Each contains distinct partition of data - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ #### Parameter node Each contains distinct partition of data i) Parameter node keeps and distributes model x_t at every cycle/iteration - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ Each contains distinct partition of data - i) Parameter node keeps and distributes model x_t at every cycle/iteration - ii) Worker nodes compute part of mini-batch gradient - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ Each contains distinct partition of data - i) Parameter node keeps and distributes model x_t at every cycle/iteration - ii) Worker nodes compute part of mini-batch gradient - *iii*) Parameter node waits for **all gradient parts** to be collected to do the mini-batch step (..till the very last slow worker) - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ #### Parameter node Each contains distinct partition of data i) Still requires synchronization; each worker has less work to do (Discussion about large batch training) - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ has less work to do #### Parameter node *ii*) Introduces a tradeoff between statistical efficiency, computations efficiency (in terms of convergence) and communication efficiency i) Still requires synchronization; each worker Each contains distinct partition of data (Discussion about large batch training) - What about the setting in-between? Mini-batch SGD $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ #### Parameter node Each contains distinct partition of data - i) Still requires synchronization; each worker has less work to do - ii) Introduces a tradeoff between statistical efficiency, computations efficiency (in terms of convergence) and communication efficiency - iii) Usually computing $\nabla f_{i_t}(x_t)$ is cheap per node (Discussion about large batch training) - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ (on each worker node) - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t) \qquad \text{(on each worker node)}$$ Parameter node Worker 1 Worker 2 Worker P Each contains distinct partition of data - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ (on each worker node) Parameter node Each contains distinct partition of data i) Parameter node does.. nothing until the end - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ (on each worker node) Each contains distinct partition of data - i) Parameter node does.. nothing until the end - ii) Worker nodes do mini-batch SGD as if there is no distributed computation - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ (on each worker node) #### Parameter node Each contains distinct partition of data - i) Parameter node does.. nothing until the end - ii) Worker nodes do mini-batch SGD as if there is no distributed computation - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ (on each worker node) #### Parameter node Each contains distinct partition of data - i) Parameter node does.. nothing until the end - ii) Worker nodes do mini-batch SGD as if there is no distributed computation - iii) Parameter node waits for all the models to be collected, and be averaged (..till the very last slow worker) - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ (on each worker node) #### Parameter node Each contains distinct partition of data - i) Parameter node does.. nothing until the end - ii) Worker nodes do mini-batch SGD as if there is no distributed computation - iii) Parameter node waits for all the models to be collected, and be averaged (..till the very last slow worker) - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ #### Parameter node Each contains distinct partition of data *i*) Minimal communication: every node works on its own, and sends the model at the end of its execution - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ Each contains distinct partition of data - *i*) Minimal communication: every node works on its own, and sends the model at the end of its execution - ii) The model was designed for convex problems the idea is that each subproblem has a solution close to the global one thus averaging does not hurt - What if we run mini-batch SGD in parallel and combine at the end: $$x_{t+1} = x_t - \eta \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ Each contains distinct partition of data - *i*) Minimal communication: every node works on its own, and sends the model at the end of its execution - ii) The model was designed for convex problems the idea is that each subproblem has a solution close to the global one thus averaging does not hurt - iii) Final decision is prediction averaging similar ideas hold for random forests # Using distributed computing in a different way - Run code in parallel as a way for hyperparameter optimization $$x_{t+1} = x_t - \eta_1 \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t) \qquad \bullet \quad \bullet \quad \bullet \qquad x_{t+1} = x_t - \eta_q \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ # Using distributed computing in a different way - Run code in parallel as a way for hyperparameter optimization $$x_{t+1} = x_t - \eta_1 \sum_{i \in \mathcal{I}_t} \nabla f_i(x_t)$$ Parameter node Each contains distinct partition of data Parameter node Each contains distinct partition of data ### Using distributed computing in a different way - Run code in parallel as a way for hyperparameter optimization Each contains distinct partition of data Each contains distinct partition of data #### - Synchronization: - Must wait for the slowest worker to synchronize all workers, and keep all nodes aware of each other's updates to the model. ### - Synchronization: - Must wait for the slowest worker to synchronize all workers, and keep all nodes aware of each other's updates to the model. ### - Synchronization is often quite expensive: - Consider the following setting: we have P workers, and P-1 of them have already sent their updates to the parameter server. The whole system has to wait for the last worker to complete and send his part, in order to proceed. ### - Synchronization: - Must wait for the slowest worker to synchronize all workers, and keep all nodes aware of each other's updates to the model. ### - Synchronization is often quite expensive: - Consider the following setting: we have P workers, and P-1 of them have already sent their updates to the parameter server. The whole system has to wait for the last worker to complete and send his part, in order to proceed. - Alternatives or we have to bear with this situation? - Multicore systems can host large-scale problems: - Instead of using clusters of processing nodes, one can use a single inexpensive work station that can host problems that, after preprocessing, involve a few terabytes of data ### - Multicore systems can host large-scale problems: Instead of using clusters of processing nodes, one can use a single inexpensive work station that can host problems that, after preprocessing, involve a few terabytes of data #### - Advantages of multicore systems: - Low latency + high throughput shared main memory - High bandwidth of multiple disks - Fast multithread processors ### - Multicore systems can host large-scale problems: Instead of using clusters of processing nodes, one can use a single inexpensive work station that can host problems that, after preprocessing, involve a few terabytes of data ### - Advantages of multicore systems: - Low latency + high throughput shared main memory - High bandwidth of multiple disks - Fast multithread processors #### - Main bottleneck: - Synchronization (locking) amongst processors - Run SGD in parallel without locks! - Run SGD in parallel without locks! Shared memory - All threads have access to shared memory Each has access to all data ### - Run SGD in parallel without locks! Each has access to all data ### - Run SGD in parallel without locks! Thread 1 Thread 2 - All threads have access to shared memory - Each thread can independently ask for the current model in memory - Each thread computes an update (=gradient) and then updates shared memory (the order that updates are sent is random) Each has access to all data Thread P #### Microsoft ### - Run SGD in parallel without locks! Thread 1 Thread 2 - All threads have access to shared memory - Each thread can independently ask for the current model in memory - Each thread computes an update (=gradient) and then updates shared memory (the order that updates are sent is random) The controller in shared memory updates the model in a first-in-first-served fashion Each has access to all data Thread P #### Microsoft ### - Run SGD in parallel without locks! Thread 1 Thread 2 - All threads have access to shared memory - Each thread can independently ask for the current model in memory - Each thread computes an update (=gradient) and then updates shared memory (the order that updates are sent is random) - The controller in shared memory updates the model in a first-in-first-served fashion - Assuming all threads have collected x_t $$x_{t+1} = x_t - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{j_t}(x_t) + \dots + \nabla f_{q_t}(x_t) \right)$$ Each has access to all data Thread P Google Microsoft ### - Run SGD in parallel without locks! #### Shared memory Each has access to all data $$x_{t+1} = x_t - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{j_t}(x_t) + \dots + \nabla f_{q_t}(x_t) \right)$$ ### - Run SGD in parallel without locks! Each has access to all data ### - Run SGD in parallel without locks! $$x_{t+1} = x_t - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{j_t}(x_t) + \dots + \nabla f_{q_t}(x_t) \right)$$ (Slight abuse of representation) — Three x_{t-10} — x_{t-3} — x_{t-3} Each has access to all data Thread P Thread 1 Thread 2 (..and this might be an straightforward case) - Threads might process an older model version #### - Run SGD in parallel without locks! $$x_{t+1} = x_t - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{j_t}(x_t) + \dots + \nabla f_{q_t}(x_t) \right)$$ (..and this might be an straightforward case) - Threads might process an older model version - Threads might complete the "job" in an arbitrary order. Each has access to all data ### - Run SGD in parallel without locks! $$x_{t+1} = x_t - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{j_t}(x_t) + \dots + \nabla f_{q_t}(x_t) \right)$$ (..and this might be an straightforward case) - Threads might process an older model version - Threads might complete the "job" in an arbitrary order. - And it can get more complex: Each has access to all data ### - Run SGD in parallel without locks! $$x_{t+1} = x_t - \eta \left(\nabla f_{i_t}(x_t) + \nabla f_{j_t}(x_t) + \dots + \nabla f_{q_t}(x_t) \right)$$ - Threads might process an older model version - Threads might complete the "job" in an arbitrary order. - And it can get more complex: "Threads can read a model state that only stayed in memory for a short time and between other memory writes" (..and this might be an straightforward case) Each has access to all data – Does it work? – Does it work? (...a bit more involved set up) #### Large Scale Distributed Deep Networks Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng {jeff, gcorrado}@google.com Google Inc., Mountain View, CA #### – Does it work? "..asynchronous SGD, rarely applied to nonconvex problems, works very well for training deep networks, particularly when combined with Adagrad adaptive learning rates.." (..a bit more involved set up) #### Large Scale Distributed Deep Networks Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng {jeff, gcorrado}@google.com Google Inc., Mountain View, CA #### – Does it work? "..asynchronous SGD, rarely applied to nonconvex problems, works very well for training deep networks, particularly when combined with Adagrad adaptive learning rates.." ".. There is little theoretical grounding for the safety of these operations for nonconvex problems, but in practice we found relaxing consistency requirements to be remarkably effective..." #### Large Scale Distributed Deep Networks Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng {jeff, gcorrado}@google.com {jeff, gcorrado}@google.com Google Inc., Mountain View, CA #### – Does it work? "..asynchronous SGD, rarely applied to nonconvex problems, works very well for training deep networks, particularly when combined with Adagrad adaptive learning rates.." ".. There is little theoretical grounding for the safety of the operations for nonconvex problems, but in practice we found relaxing consistency requirements to be remarkably effective..." #### Large Scale Distributed Deep Networks Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng {jeff, gcorrado}@google.com Google Inc., Mountain View, CA - Comm. bottleneck - We can increase batch size but, we deal with worse generali– nation error - Can we prove anything about asynchrony in SGD? HOGWILD!: "...an update scheme that allows processors accesss shared memory with the possibility of overwriting each other's work - Can we prove anything about asynchrony in SGD? HOGWILD!: "...an update scheme that allows processors accesss shared memory with the possibility of overwriting each other's work - Setting: $$\min_{x} f(x) := \sum_{e \in E} f_e(x_e)$$ where: $x \in \mathbb{R}^n$ E is a collection of items, say samples $e \subset [n]$ (each element e is a collection of indices in [n] but also an index from a set of samples E) - Can we prove anything about asynchrony in SGD? HOGWILD!: "...an update scheme that allows processors accesss shared memory with the possibility of overwriting each other's work - Setting: $$\min_{x} f(x) := \sum_{e \in E} f_e(x_e)$$ where: $x \in \mathbb{R}^n$ E is a collection of items, say samples $e \subset [n]$ (each element e is a collection of indices in [n] but also an index from a set of samples E) - Slight abuse of notation: $f_e(\cdot)$: denotes a component of sum of functions, indexed by sample e x_e : corresponds to sub-vector, indexed by an index set e (connected to sample e) – Key observation: n & |E| are large, while individual $f_e(\cdot)$ act on a small number of components of $x \in \mathbb{R}^n$ - Key observation: n & |E| are large, while individual $f_e(\cdot)$ act on a small number of components of $x \in \mathbb{R}^n$ - Example: Sparse SVM Given data $E = \{(z_1, y_1), \dots, (z_{|E|}, y_{|E|}\}$ where y_i labels and $z_i \in \mathbb{R}^n$ are features, we solve: $$\min_{x} \sum_{\alpha \in E} \max \left(1 - y_{\alpha} \cdot x^{\mathsf{T}} z_{\alpha}, \ 0 \right) + \lambda ||x||_{2}^{2}$$ - Key observation: n & |E| are large, while individual $f_e(\cdot)$ act on a small number of components of $x \in \mathbb{R}^n$ - Example: Sparse SVM Given data $E = \{(z_1, y_1), \dots, (z_{|E|}, y_{|E|}\}$ where y_i labels and $z_i \in \mathbb{R}^n$ are features, we solve: $$\min_{x} \sum_{\alpha \in E} \max \left(1 - y_{\alpha} \cdot x^{\mathsf{T}} z_{\alpha}, \ 0 \right) + \lambda \|x\|_{2}^{2}$$ – Observe that, if z_{α} is very sparse (which happens in reality often), then #### - Some quantities: Ω : maximum number of features involved over all samples Δ : maximum frequency of features that can appear in samples ρ : approaches 1 if features are very common across examples (..and thus we expect often collisions) #### - Some quantities: Ω : maximum number of features involved over all samples Δ : maximum frequency of features that can appear in samples ρ : approaches 1 if features are very common across examples (..and thus we expect often collisions) ### - Configuration: p: number of processors Each processor can read model x and contribute an update to x #### Algorithm 1 Hogwild update for individual processors - 1: **loop** - 2: Sample e uniformly at random from E - 3: Read current state x_e and evaluate $G_e(x)$ - 4: for $v \in e$ do $x_v \leftarrow x_v \gamma b_v^T G_e(x)$ (coordinate-wise) - 5: end loop #### - Notation: $G_e(x) \in \mathbb{R}^n$: gradient with non-zeros indexed by e, and scaled such that $$\mathbb{E}\left[G_e(x_e)\right] = \nabla f(x)$$ Observe that $[G_e(x_e)]_{e^c} = 0$ #### Algorithm 1 Hogwild! update for individual processors - 1: **loop** - 2: Sample e uniformly at random from E - 3: Read current state x_e and evaluate $G_e(x)$ - 4: for $v \in e$ do $x_v \leftarrow x_v \gamma b_v^T G_e(x)$ (coordinate-wise) - 5: end loop #### - In words: - 1. Each processor samples e uniformly at random - 2. Each processor computes the gradient f_e at x_e - 3. Each processor applies update on each coordinate in e – Asynchrony: x_j denotes the variable after j updates. Generally updated with stale gradients $x_{k(j)}$ denotes the state of the variable when was read Whiteboard – Asynchrony: x_j denotes the variable after j updates. Generally updated with stale gradients $x_{k(j)}$ denotes the state of the variable when was read Whiteboard No Demo (no resources) - Properties of asynchronous HOGWILD! algorithm: - Properties of asynchronous HOGWILD! algorithm: - When the data access is **sparse** (i.e., SGD modifies a portion of the variables per step), memory overwrites could be rare - Properties of asynchronous HOGWILD! algorithm: - When the data access is **sparse** (i.e., SGD modifies a portion of the variables per step), memory overwrites could be rare - This further indicates that asynchrony introduces barely any error in the computations - Properties of asynchronous HOGWILD! algorithm: - When the data access is **sparse** (i.e., SGD modifies a portion of the variables per step), memory overwrites could be rare - This further indicates that asynchrony introduces barely any error in the computations - The authors show (theoretically and experimentally) a near-linear speedup, with the number of processors used - Properties of asynchronous HOGWILD! algorithm: - When the data access is **sparse** (i.e., SGD modifies a portion of the variables per step), memory overwrites could be rare - This further indicates that asynchrony introduces barely any error in the computations - The authors show (theoretically and experimentally) a near-linear speedup, with the number of processors used - In practice, lock-free SGD exceeds even theoretical guarantees (in other words, how we can decrease communication burden?) – Standard SGD: each entry of the gradient is represented as a **float** number $O(32 \cdot p)$ bits: the size of each gradient sent over network (in other words, how we can decrease communication burden?) - Standard SGD: each entry of the gradient is represented as a **float** number $O(32 \cdot p)$ bits: the size of each gradient sent over network - Quantized SGD: each entry of the gradient is quantized to some levels $O(\ell \cdot p)$ bits: where $\ell \ll 32$ is the levels of quantization (in other words, how we can decrease communication burden?) - Standard SGD: each entry of the gradient is represented as a float number $O(32 \cdot p)$ bits: the size of each gradient sent over network - Quantized SGD: each entry of the gradient is quantized to some levels $O(\ell \cdot p)$ bits: where $\ell \ll 32$ is the levels of quantization ### QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding Dan Alistarh IST Austria & ETH Zurich dan.alistarh@ist.ac.at Demjan Grubic ETH Zurich & Google demjangrubic@gmail.com Jerry Z. Li MIT jerryzli@mit.edu Ryota Tomioka Microsoft Research ryoto@microsoft.com Milan Vojnovic London School of Economics M.Vojnovic@lse.ac.uk (in other words, can we make synchronization not be a big problem?) - Right learner can slow down the performance of synchronized SGD (in other words, can we make synchronization not be a big problem?) - Right learner can slow down the performance of synchronized SGD (in other words, can we make synchronization not be a big problem?) - Right learner can slow down the performance of synchronized SGD (in other words, can we make synchronization not be a big problem?) #### REVISITING DISTRIBUTED SYNCHRONOUS SGD Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio Google Brain Mountain View, CA, USA {jmchen, xinghao, rajatmonga, bengio}@google.com Rafal Jozefowicz OpenAI San Francisco, CA, USA rafal@openai.com #### **ABSTRACT** Distributed training of deep learning models on large-scale training data is typically conducted with *asynchronous* stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the *synchronous* approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional beliefs in this paper, and examine the weaknesses of both approaches. We demonstrate that a third approach, synchronous optimization with backup workers, can avoid asynchronous noise while mitigating for the worst stragglers. Our approach is empirically validated and shown to converge *faster* and to *better* test accuracies. (in other words, can we make synchronization not be a big problem?) (in other words, can we make synchronization not be a big problem?) - Sparsification of gradients: instead of quantizing all entries, keep the most important ones (in other words, can we make synchronization not be a big problem?) - Sparsification of gradients: instead of quantizing all entries, keep the most important ones - Large batch training: give more "work" to workers by increasing the batch size. However it needs careful parameter tuning to make it work (in other words, can we make synchronization not be a big problem?) - Sparsification of gradients: instead of quantizing all entries, keep the most important ones - Large batch training: give more "work" to workers by increasing the batch size. However it needs careful parameter tuning to make it work - Variants of HOGWILD! that minimize communication conflicts: some computation is performed to distribute examples to different cores so that examples do not "conflict". #### Conclusion - Distributed computing is at the heart of developments in modern ML - There are different ways to exploit distributed computing: hyper parameter optimization, coordinate descent, mini-batch synchronous SGD, asynchronous SGD - Which configuration to use depends on the problem and the resources at hand - These topics are highly attractive (research-wise): they define the notion of systems + machine learning (look for SysML conference)