COMP 545: Advanced topics in optimization
From simple to complex ML systems

[ecture 2

Overview

— Difterent objective classes
— Ditferent strategies within each problem
— Different approaches based on

computational capabilities
— Different approaches based on constraints

min T ‘
2

s.t. x€C(C

And, always having in mind applications in machine learning,
ATl and signal processing

The tocus of this lecture

min f(

Overview

— In this lecture, we will:

— Go back to the initial discussion of non—convex optimization

— We will provide generic convergence results for stochastic methods

— Inspired by modern ML (neural networks), we will describe alternatives

to SGD:
— Accelerated SGD — RMSProp
— AdaGrad — Adam

— Bonus discussion: The marginal value of adaptive methods

Recall: Stochastic gradient descent

— SGD 1is used almost everywhere: training classical ML tasks (linear prediction,
linear classification), training modern ML tasks (non—linear classification,
neural networks)

— In simple math, it satisties:
Lt41 = Lt — ﬁvfz‘t (ﬂi‘t)
based on the objective: min f(x):= = Z fi(w

— Why SGD is preterable over full-batch GD?

— Full-batch GD pertorms redundant computations for large datasets
— SGD’s fluctuations enables it to jump to potentially better local minima

— However, SGD’s proof for non—convex settings is more complicated + weaker

SGD convergence result in non—convex scenaria

Whiteboard

— Key observations:

— For convergence, this theory assumes a small step size O (;T)

— In a sense, we need to know a priori the number of iterations to
achieve €—approximation

— Step size can be bad at the beginning — other step sizes used in practice

— Nevertheless, in practice SGD pertorms favorably compared to

full-batch GD.

— Assuming more structure (e.g., PL condition), one can achieve better
rates with constant step sizes (independent on the number of iterations)

Acceleration in SGD in non—convex scenaria

— General observation: moving results from convex to non—convex settings
1s not straighttorward in most cases

— Recall: GD VS Acc. GD
2> X
o O _ F* %
¢ 0 (@oe L2=1) 0 (e L2=1)
S
- GD VS Acc. GD
- E’ 1 / o e~
2 § O (8_2) O (571/4 ' 1Og(1/5))

Acceleration in SGD in non—convex scenaria

— General observation: moving results from convex to non—convex settings
1s not straighttorward in most cases

— Recall: SGD VS Acc. SGD
= 5 1
O)
S 2 O ()
£ 0

— SGD VS Acc. SGD
- O

>
2 5 O ()

(We assume no variance reduction variants)

Acceleration in SGD in non—convex scenaria

Nevertheless, this does not prevent us from using acceleration
IN NON—CONVEX SCENArios

https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer

https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer

Recall: Momentum acceleration

(Gradient descent
with momentum

Recall: Momentum acceleration
— Heavy ball method

Lt4+1 — Lt — an(a:t) ﬁ(xt — 3375—1)

V() (¢ — x4_1)
\ R
T b+l — It current gradient step is in
Blxy —xpy) Same directior} as previous step,
. then move a little further in that
vy — NV [(@) direction

Guarantees of Heavy Ball method

Non—convex!

min f ()

P
: - d
9.
g ~
. P -
’”. M ’Q
x ’ ¥ .‘.'
N v
,c.'.’
‘).
. ' o) = -d oL
/2 s - -

“Assume the obj gtive is has Lipschitz contjgffous gradients, and

it 1s strongly cor "¢ Then: ,&},

| ‘.-. - .,_,‘:). ~ /6(£Et — X 1)

Lt41 —
ax{\l B /—‘ |1 o / |}2

. \ -
o p , A
éI ol
. ."'. O
A 0.y
AU

f+ e

for N =

converges lig" ‘y accordlng to:

t
Kk — 1
2041 — 2|2 < (f) \

AdaGrad algorithm

— Algorithms so far assume a common (and often fixed) step size for
all components of ¢

— AdaGrad adapts the initial step size for each of the components:
— Associates small step sizes to frequently occurring features

— Associates large step sizes to rate occurring features

— What is the main idea? Consider @i41; = Tt — nV f(x¢)

. . 7]
Then, practical version of AdaGrad does: Ti+1,i = T, T te Vi, (xt)
t.id

AdaGrad algorithm

— AdaGrad is just another preconditioning algorithm:

» Recall: Preconditioning
Tir1 = @ — NBy "V f(x4) algorithms (BFGS, SR1) in
lecture 3

where

1/2 “
: . Square root of the sum of
By=|» Vfi,(x;) Vfi(x;) oradient outer products, till
j=1 current iteration

— Compare this to the simpler (and practical version) L

Ti+14i = LTt 77 = -V fi, (x¢)i

AdaGrad algorithm

— "What is the intuition behind the form of By 7

; t/2 Relates to the Fisher Information
By = | Y Vfi(x;)-Vfi,(z;)" matrix (which is related to the
j=1 expected Hessian) — outside our scope

— "What is the connection between full and diagonal preconditioner?”

Whiteboard

— "What are some properties of AdaGrad?"
1. Step size 1s automatically set — default values for initial step size 1s 17 =0.01

2. The original version keeps accumulating squared gradients,
which makes resulting step sizes really small.

— "Are there guarantees for AdaGrad?”
— Yes, in the convex case, using regret bounds — see Literature section

AdaGrad pseudocode

while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ... (™)} with
corresponding targets y).
Compute gradient: g < %Vg S L(f(2;0),yY)
Accumulate squared gradient: r < r +g ® g
Compute update: A0 <« ; +6 7 © g. (Division and square root applied

element-wise)
Apply update: 8 < 0 + A8
end while

Ada GI‘ ad ln pr aCtlce (Similar performance in logistic regression)

—U | - [.aD] 100 _:
q.) g -«-AdaGrad]
5 "

v N o 107 : o907 :

Nt el 13 | | Co o\ n carefully selected
— : ~+-GD — | T _ \ \-aD _
% 8 : -.-AdaGrad . . _.-AdaGrad
S o2l | 10 : 102} :
| — 5 '

iy m I I |) L | | | | | J

' I q‘) 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
», G Passes over the data Passes over the data Passes over the data

3
=
"U G 10300 F .] 1 — :
O 1 D . GD 0.95 o
-v-] -+-AdaGrad|;
Q) oy 0-95 -+-AdaGrad|] -+-AdaGrad 0.9 :
- N 0.9] 0.85
O w 0.85 . 0-8

. _ _ : 0.75 :
- > 0.8 L0 = |

R = . & 07 _‘

b0 % 075 5 e n carefully selected

S 1 ' n=_0.1 0% |

- @ 0.7 = = a] = el _:
— o - L 10100 | | ad!
O 0.65 : 0.55
Q — : !
| 8 06| 0.5]

: | b

\om— G 0'55- | [. \ . | — 100 : ' ' : : : : 500 1000 1500 2000 2500 3000 3500 4000

— e 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 Passes over the data

1

Passes over the data Passes over the data

AdaGrad 1n practice

0.0450

0.0400

0.0350

0.0300

0.0250

0.0200

0.0150

0.0100

5.000e-3

0.00

-5.000e-3

Name
AdaGrad2
AdaGrad3

Nesterov2
Nesterov3
SGD1
SGD1/.
SGD2

Smoothed
-1.1921e-7
3.6024e-3

-1.1921e-7
-2.3665e-7
2.1986e-5

2.1986e-5

-1.1921e-7

VEUTE
-1.1921e-7
3.5634e-3
-1.1921e-7
-2.3842e-7
0.000
0.000
-1.1921e-7

Step
5.381k
764.0
5.303k
764.0
5.486k
5.486k

5.486K

0.005

Time

Sun Dec 10, 15:17:05
Sun Dec 10, 15:19:02
Sun Dec 10, 15:28:30
Sun Dec 10, 15:30:29
Sun Dec 10, 15:01:31
Sun Dec 10, 15:01:31
Sun Dec 10, 15:03:13

'%l .L\.._hlltk.l A ! Ml-m M\ Mm AL A k. F\-‘ o

0.01 0.015 0.02 0.025 0.03 0.035

Relative
Tm 54s
Tm 54s
Tm 54s
Tm 54s
1m 27s
Tm 27s

Tm4ls

Removing extended gradient accumulation:
RMSprop algorithm

— Idea: keep AdaGrad as it is; except, use a weighted moving average for
oradient accumulation

+ Diagonal AdaGrad rule: diag(B;) = diag(B;_1) + diag (Vfi, (z¢) o V fi, (2¢))
O—0 0——0 00— 0

Elg°l: Elg°]i-1 th

+ RMSprop rule: E[QZ]t — % 'E[Qz]t—l | 110 .th

"We always give weight 0.1 to the new information™

— Algorithm: E[QQ]t — 2 -E[QQ]t_1 | 110 '9?

Introducing exponentially weighted averages
(Adapted from Ng's lectures)

— Toy example: temperature values over a year

— Computing trends: local averages
and how they evolve

Vo =0
Vi =09V, +0.164
Vo =0.9V; +0.165

temperature

V;g — 0.9%_1 Ol@t

days

Introducing exponentially weighted averages
(Adapted from Ng's lectures)

— Toy example: temperature values over a year

— General formula:
Vi=06Vi_1+ (1 —0)6;

— Intuition: V3 approximates

temperature over

1
~ 15 days

temperature

days

Introducing exponentially weighted averages
(Adapted from Ng's lectures)

— Toy example: temperature values over a year

A

— Examples:
B8-092 = 10days
[5=098 =50 days
:E%f.! r_ﬁ = 0.0 - ~ 2 days |

o
T
- 5

days

Going beyond RMSprop: Adam algorithm
— Idea: Use weighted moving average in gradient also:

+ RMSprop rule: Flg*], = % - E[g°]¢_1 1 110 - g;

10
+ Addam rule: E[g%)y = B2 Elg*]i—1 + (1 — Ba) - g7
"Moving averages are essentially and
about averaging many previous
values in order to become my = 61 - M1 —|— (1 — 51) . szt (th)

independent of local fluctuations and
focus on the overall trend”

2
. me . Elg*]
Further: r— —
t 1 B %7 { 1 B 65
— Aleorithm: Ti41 — Tt !/ 'T?lt
gorithme. T @\t 1e

B, = 0.9. By = 0.999

Bias correction in weighted averages
(Adapted from Ng's lectures)

— How to explain these "weird" denominators?

Vi=p08Vi1+ (1 —5)6;

temperature

days

Other algorithms and sources
— Not a complete list: AdaMax, Nadam, AMSGrad, ..

— A nice blog post on the matter:

http://ruder.io/optimizing-gradient-descent/

— Choosing the right algorithm: there is no consensus about it (see next slides)

— A visualization of their performance in toy examples:

http://ruder.io/optimizing-gradient-descent/
http://ruder.io/optimizing-gradient-descent/

— GD

- Momentum
= NAG

— Adagrad
Adadelta
Rmsprop

" "'4 NSRS NI
AR KD
2.%.9%, "'"""""
IR
9020000, % 6/,/,/,’, %

1.0 10

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

Ty

'| *0.25

|
|
|
' l
l e

|

Gradient Descent
100 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 =100 = Momentum

y — Nasterov
m—— RMSProp
— Adam

Other algorithms and sources
— Not a complete list: AdaMax, Nadam, AMSGrad, ..

— A nice blog post on the matter:

http://ruder.io/optimizing-gradient-descent/

— Choosing the right algorithm: there is no consensus about it (see next slides)

— A visualization of their performance in toy examples:

— Bonus discussion: The marginal value of adaptive methods

http://ruder.io/optimizing-gradient-descent/
http://ruder.io/optimizing-gradient-descent/

Conclusion

— There are various algorithms for modern machine learning

— The most successful of them are gradient based; however, there are
variations that make difference in practice (acceleration helps, adaptive
learning rates work for most applications, etc).

— Which algorithm to use depends on the problem and the resources
at hand

— These topics are highly attractive (research—wise): the idea is to devise
new algorithms that achieve practical acceleration (with minimal tuning

effort)

