COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

[ecture 2



Overview

— Difterent objective classes
— Ditferent strategies within each problem
— Different approaches based on

computational capabilities
— Different approaches based on constraints

min T ‘
2

s.t. x€C(C

And, always having in mind applications in machine learning,
ATl and signal processing




Overview

— In the last lecture, we:

— Introduced some very basic ideas from linear algebra

— In this lecture, we will:
— Discuss brietly smooth continuous optimization

— Introduce derivatives, Taylor approximation, Lipschitz conditions
— Discuss about gradient descent, and provide the first convergence rate
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Derivatives and gradients

— Generalization to multiple components: gradient
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Derivatives and gradients

— Jacobian matrix (relates to neural networks)
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— Generalizes the notion of gradient to multiple—output functions
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— Hessian matrix
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Derivatives and gradients

— Hessian matrix - 9%f 92 f 5f -
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Taylor's expansion

— Taylor’s expansion: used for (locally) approximating a function
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Taylor's expansion

— Taylor’s expansion: used for (locally) approximating a function
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— Key properties/assumptions:
— Function f is differentiable as many times we'd like

— Provides (locally) a good approximation of the function
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Taylor's expansion

— Second—order Taylor's approximation
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f(x)

Function examples:
1. Absolute value
Interpretation via . 2. Trigonometric functions
double cone X 3. Quadratics (..)
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— How does this relate to Taylor's expansion?

f(y) = f(z) + (Vf(x),y — ) + 5 (V[ ()(y — 2),y — 2))

— From V?f(z) < LI, we have:
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Lipschitz conditions

— How does this relate to Taylor's expansion?

f(y) = f(z) + (Vf(x),y — ) + 5 (V[ ()(y — 2),y — 2))

— From V?f(z) < LI, we have:
Vif(x) 2 LI = ||V2f(x)lla < | LI]2 = [V f(2)]l2 < L
— Then:
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Agnostic optimization

What do you observe at
local minima/maxima
with respect to their

f(x) slope?
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Types of solutions
— Global minimizer ™ f(z*) < f(z), Vo
— Local minimizer = : f(Z) < f(z), Yoz € N3
— What 1s the meaning of strict inequality vs. inequality?

— How do we recognize that a solution we have is a local (global) solution?

- 1% order optimality condition: Vf(Z) = 0

Necessary
o————0

-2"%order optimality condition: Vf(Z) =0 and VZf(Z) = 0
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Gradient as local information  ong story

Problem t ve: IMin X
O Problem to solve o f( )

o Assume f is differentiable, a first order Taylor expansion around  :

flx+0) = f(z) + {(Vf(z),0) +o(]]o]])

o Minimizing f locally, the steepest descent direction is §such that:

(0, Vf(z))
O Focusing on the direction to move to, and assuming Euclidean space, we get:
) — Hvaf(va))llg (hormalized direction)

O Gradient descent: xi11 =24+ 0 dx — NV f(xy)
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First convergence result

“Assume the objective 1s has Lipschitz continuous gradients. Then,
gradient descent:

Ti11 = Tt — NV f(2¢)

with step size ,
n=1

converges sublinearly to a stationary point; 1.e.,

mmHVf Ty ) H2<\/T+1- 0)—f($*))1/220(%) “
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First convergence result

— "But, which functions satisfy Lipschitz gradient continuity?”

— Least—squares objectives: f(x) = %HACC — b||5

[V f(2) = VIl < A All2 - |z = yll2

— Logistic regression objectives: f(x) = %ZlOg (1 exp(—y;a; f))
1=1
Whiteboard
- Non-convex objective: f(x) = z* + 3sin’(z)

Demo



Combining all these things together: MLP

Nonlinear operators!




Combining all these things together: MLP

Nonlinear operators!




Combining all these things together: MLP

Feedforward/fully connected neural network

Nonlinear operators!
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— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

yz f (W mz) The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).
\ Estimated /\

output
How does it compare with real labels/output?

K(yi, @) Examples: U(Yi, Yi) = %Hyz — ?7@”3

f(yz, @\Z) — cross—entropy(yi, ?/J\Z)
Goal: make loss as small as possible over the whole dataset ({z:,%:}i—1)
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A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
. | - convolutions, etc) as well as non—linear transformations.
|44 € arg min Z (i, i)

{ziy:}

The output of the model is compared to some ground truth

arg mvivn{z}g(yz’»f (W.z:)) in order to minimize a loss function (user—defined).
Li,Yi

Through layers, the neural network learns a hierarchical

(Quite abstract for now) . . L .
- representation of data (tries to encode domain information).

Neural networks are trained with local search optimization

algorithms such as stochastic gradient descent, Adam,
Adagrad, etc.
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— Convolutional neural networks (CNNs)
— Recurrent neural networks (RNNs)

— Optimization in neural network training
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— Most used representation of neural networks

(but math will get us the details)

— Does something restrict us from using more complicated models? NO!
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Neural networks represented as boxes

— In an abstract sense, a module is a (smaller) function

— Receives an input, has variables, provides an output

— (Desirable) properties of modules:

— Easy to evaluate

— Easy to compute its derivatives (mostly first—order / gradients) almost everywhere

— Efficient implementation

— Complex enough to represent/learn data well

— Examples:

z =W -input
x, x>0

0, otherwise
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Fully connected neural networks or MLPs

K_Nonlinear operators!
L1 /

——

This sequence of
operations 1s also .
known as the ~ N\
forward pass on

the neural network 2

You can think of
forward pass as
function evaluation

l.z21=Wy-z
2.0(z1) =c(Wq-x)
3.22 :W2°0'(21) :WQ °O'(W1 CIZ‘)

4. softmax(zy) = softmax(Ws - o(Wy - x))

— Nothing more complicated

— Boils down to what modules will be used

— Famous architecture due to simplicity
and theoretical guarantees
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XL
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Motivation: Gradient descent for MI.Ps

HllIlf(Wl,WQ =1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1

— Using modules:
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(backward pass on modules!) (chain rule of derivatives)



Backpropagation = Gradient descent

(Just done efficiently on graphs, without redoing calculations)
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— We have set up background of smooth optimization

— We have provided the first convergence rate result, and defined different
convergence rates that could be attainable

Next lecture

— Brief introduction to convex optimization and related topics



