COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

[ecture 2

Overview

— Difterent objective classes
— Ditferent strategies within each problem
— Different approaches based on

computational capabilities
— Different approaches based on constraints

min T ‘
2

s.t. x€C(C

And, always having in mind applications in machine learning,
ATl and signal processing

Overview

— In the last lecture, we:

— Introduced some very basic ideas from linear algebra

— In this lecture, we will:
— Discuss brietly smooth continuous optimization

— Introduce derivatives, Taylor approximation, Lipschitz conditions
— Discuss about gradient descent, and provide the first convergence rate

Convex vs, non—convex optimization

Convex vs, non—convex optimization

Convex

Convex vs, non—convex optimization

Convex

Non—Convex

Convex vs, non—convex optimization

Convex

Non—Convex

(Naive interpretation of) Space of optimization problems

Convex vs, non—convex optimization

Convex

Non—Convex

(Naive interpretation of) Space of optimization problems

Convex vs, non—convex optimization

Convex

Non—Convex

(Naive interpretation of) Space of optimization problems

Convex vs, non—convex optimization

Convex

Smooth
non—convex

Non—Convex

(Naive interpretation of) Space of optimization problems

Convex vs, non—convex optimization

Convex

Smooth
non—convex

Non—Convex

(Naive interpretation of) Space of optimization problems

Derivatives and gradients

— Definition of a derivative

f:R—

R

of _
or

f'(x) = lim

e—(0

flz+e) — flz)

€

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

f(z)

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

— Definition of second—order derivative

fIR% D an :f”(m):hm f/(x+€)—f/($)

8582 e—0 €

Derivatives and gradients

— Definition of a derivative

f:R—R O _ f(a) = i 12T =T @)

833 B e—0 €

— Intuition: generate a sequence of points {f(z + €;), €}, and compute the
[imitas € — 0

— Definition of second—order derivative

fIR% D an :f”(m):hm f/(x+€)—f/($)

8582 e—0 €

Derivatives and gradients

— Generalization to multiple components: gradient

of
ox
O

aa’}z

f:RP =R Vi)=1 .| €RF

0T p

where

f(il?l, ceo s Ljg—15L4 -+ (G b/ S [ZE‘p) — f(az'l, coo s Lg—13LgyLjgt1ye- -y Ql?p) f(.’L‘ —+ 66@) — f(il?)

of ..
— lim —

82131' e—0 € €

Derivatives and gradients

— Jacobian matrix (relates to neural networks)

f R - R™ Df(x)

0f1
8:1?2

Of1

0T p

O fn

0Ty _

— Generalizes the notion of gradient to multiple—output functions

Derivat
erivatives and gradients

— Hessian matrix

f:RF =R

Ve f(a)

— an
8%%

0% f

0% f

8$18x2

aéf

| ap1

awlamg
0% f

>
8:172

8éf

0% f -

ﬁzlﬁxp
0% f

8xp8x2

amgawp

c RP7P

Derivatives and gradients

— Hessian matrix - 9%f 92 f 5f -
8$% Ox10T2 T Ox10x,
an & 82f
Ox10x O 2 I Do O
f:RPF -5 R VQf(gc) — 1. ? .xQ 2. P | ¢ RPXP
)) aé
.. 2

f(xlaa;?) — CC% — ZE%

Indefinite

Taylor's expansion

— Taylor’s expansion: used for (locally) approximating a function

201

f@) =f@)+f@@-0)+ 50 @ -+ + L@ —a) + Ry

n!
=0

10}

5h

O..—‘"‘"'M"l

Taylor's expansion

— Taylor’s expansion: used for (locally) approximating a function

201

f@) =f@)+f@@-0)+ 50 @ -+ + L@ —a) + Ry

n!
=0

10}

5h

O..—‘"‘"'M"l

Taylor's expansion

— Taylor’s expansion: used for (locally) approximating a function

207

f@) =f@)+f@@-0)+ 50 @ -+ + L@ -0+ Ry e

n!
=0

10}

5h

O.——-:““""..’l

— Key properties/assumptions:
— Function f is differentiable as many times we'd like

— Provides (locally) a good approximation of the function

Taylor's expansion

— First—order Taylor's approximation

f:

R —

R

f(z)

fla) + (Vila),r —a),a &

Taylor's expansion

— First—order Taylor's approximation

f:

R —

f(z)

R

f(z)

NS
NS

fla) + (Vila),r —a),a &

—

Taylor's expansion

— First—order Taylor's approximation

f:

R —

f(z)

R

f(z)

NS
NS

fla) + (Vila),r —a),a &

—

Taylor's expansion

— First—order Taylor's approximation

f:

R —

R

Taylor's expansion

— First—order Taylor's approximation

f:

R —

R

Taylor's expansion

— First—order Taylor's approximation

f:

R —

R

Taylor's expansion

— Second—order Taylor's approximation

f:RP - R

f(z)

Y
Y

fla) +(Vf(a),z —a)+ 3 (Vf(a)(z —a),z —a),a €

Taylor's expansion

— Second—order Taylor's approximation

f:RP - R

f(2) ~ f(a) + (Vf(a),a — a) + 1 (V*f(a)(@ — a),z —a), o €

f(z)

—

Taylor's expansion

— Second—order Taylor's approximation

f:RP - R

f(2) ~ f(a) + (Vf(a),a — a) + 1 (V*f(a)(@ — a),z —a), o €

f(z)

—

Taylor's expansion

— Second—order Taylor's approximation

f:RP - R

Taylor's expansion

— Second—order Taylor's approximation

f:RP - R

Taylor's expansion

— Spoiler alert: “Why are all these useful?”

— Often, we optimize a function through its local approximations

— E.g., second order approximations are.. quadratic functions!

Taylor's expansion

— Spoiler alert: “Why are all these useful?”

— Often, we optimize a function through its local approximations

— E.g., second order approximations are.. quadratic functions!

min f(x)

Taylor's expansion

— Spoiler alert: “Why are all these useful?”

— Often, we optimize a function through its local approximations

— E.g., second order approximations are.. quadratic functions!

Taylor's expansion

— Spoiler alert: “Why are all these useful?”

— Often, we optimize a function through its local approximations

— E.g., second order approximations are.. quadratic functions!

min { f(20) + Vf(20) " (2 = 20) + 3 (x = 20) "V (o) (2 — 20)}

N | —

Taylor's expansion

— Spoiler alert: “Why are all these useful?”

— Often, we optimize a function through its local approximations

— E.g., second order approximations are.. quadratic functions!

min {pTa:' + %LETHCE}

Taylor's expansion

— Spoiler alert: “Why are all these useful?”

— Often, we optimize a function through its local approximations

— E.g., second order approximations are.. quadratic functions!

min {pTa:' + %LETHCE}

Agnostic optimization

Demo

Agnostic optimization

f(x)

Agnostic optimization

f(x)

Lipschitz conditions

- Lipschitz continuity: | f(x) — f(y)| < M||lx — yll2, Vz,y

Lipschitz conditions

- Lipschitz continuity: | f(x) — f(y)| < M|z — yll2, Vz,y

f(x)

Function examples:
1. Absolute value
Interpretation via . 2. Trigonometric functions
double cone X 3. Quadratics (..)

Lipschitz conditions

— Lipschitz gradient continuity: ||V f(z) — Vf(y)|2 < L||lz — y|l2, Vaz,y

Lipschitz conditions

— Lipschitz gradient continuity: ||V f(z) — Vf(y)|2 < L||lz — y|l2, Vaz,y

— Intuition + comparison with Lipschitz continuity:

f

Lipschitz conditions

— Lipschitz gradient continuity: ||V f(z) — Vf(y)|2 < L||lz — y|l2, Vaz,y

— Intuition + comparison with Lipschitz continuity:

f
f

— Example: Quadratics are not globally Lipschitz continuous

but: IVf(z) = V()2 < A" All2 - lz = yll2
for: f(z) = %HACB — |3

Lipschitz conditions

— Lipschitz gradient continuity: ||V f(z) — Vf(y)|2 < L||lz — y|l2, Vaz,y

— Intuition + comparison with Lipschitz continuity:

f
f

— Example: Quadratics are not globally Lipschitz continuous

but: [Vf(@) = Vi)ll2 < [AT All2 - &~y
for: f(a) = L Aw—p3

Lipschitz conditions

— Equivalent characterizations:

() + (Vf(z),y —)
() + (Vf(z),y —x)
\

IVf(z) = Vf(y)

Lipschitz conditions

— Equivalent characterizations:

IVf(z) = Vf(y)

Lipschitz conditions

— Equivalent characterizations:

IVf(z) = Vf(y)

Lipschitz conditions

— Equivalent characterizations:

IVi(z) = Vf(y)

Lipschitz conditions
— Equivalent characterizations: [[Vf(z) = Vf(y)|2 < L||lz —yll2, Vz,y

() f(y) < f(@) +(Vf(z),y —2) + 5llz -yl

Lipschitz conditions
— Equivalent characterizations: [[Vf(z) = Vf(y)|2 < L||lz —yll2, Vz,y

() f(y) < f(@) +(Vf(z),y —2) + 5llz -yl

Lipschitz conditions
— Equivalent characterizations: [[Vf(z) = Vf(y)|2 < L||lz —yll2, Vz,y

() f(y) < f(@) +(Vf(z),y —2) + 5llz -yl

fa) + fi(af(z —a)

Lipschitz conditions
— Equivalent characterizations: [[Vf(z) = Vf(y)|2 < L||lz —yll2, Vz,y

() f(y) < f(@) +(Vf(z),y —2) + 5llz -yl

fly) < flo)+ f(a)(y— o) + 5y — a)’

fa) + fi(af(z —a)

Lipschitz conditions
— Equivalent characterizations: [[Vf(z) = Vf(y)|2 < L||lz —yll2, Vz,y

f) Ny v fy) < f(@) +(Vf(@)y —z) + 3]z yll2

Lipschitz conditions
— Equivalent characterizations: [[Vf(z) = Vf(y)|2 < L||lz —yll2, Vz,y

f) Ny v fy) < f(@) +(Vf(@)y —z) + 3]z yll2

Lipschitz conditions

— Equivalent characterizations:

f(y)

Lipschitz conditions

— How does this relate to Taylor's expansion?

Lipschitz conditions

— How does this relate to Taylor's expansion?

f(y) = f(z) + (Vf(x),y —) + 5 (V[()(y — 2),y — 2))

Lipschitz conditions

— How does this relate to Taylor's expansion?

f(y) = f(z) + (Vf(x),y —) + 5 (V[()(y — 2),y — 2))

— From V?f(z) < LI, we have:

Vif(z) 2 LI = [V f(@)ll2 < [ILT]2 = [V f(2)]2 < L

Lipschitz conditions

— How does this relate to Taylor's expansion?

f(y) = f(z) + (Vf(x),y —) + 5 (V[()(y — 2),y — 2))

— From V?f(z) < LI, we have:
Vif(x) 2 LI = ||V2f(x)lla < | LI]2 = [V f(2)]l2 < L
— Then:

LV @)y~ 2),y —) < SV @) — Dz ly — oll2 < V27 (@)ally — 2

Lipschitz conditions

— How does this relate to Taylor's expansion?

f(y) = f(z) + (Vf(x),y —) + 5 (V[()(y — 2),y — 2))

— From V?f(z) < LI, we have:
Vif(x) 2 LI = ||V2f(x)lla < | LI]2 = [V f(2)]l2 < L
— Then:

LV (@) (y —2)oy —) < HIVEF@)(y — D)2 ly — all < [V2F(@)ll2lly £ 2]

Agnostic optimization

f(x)

Agnostic optimization

What do you observe at
local minima/maxima
with respect to their

f(x) slope?

Types of solutions

— Global minimizer 2™

Types of solutions

— Global minimizer ™ f(z*) < f(z), Vo

Types of solutions

— Global minimizer ™ f(z*) < f(z), Vo

— Local minimizer T :

Types of solutions

— Global minimizer ™ f(z*) < f(z), Vo

— Local minimizer . f(z) < f(x), Vo € N3

Types of solutions

— Global minimizer ™ f(z*) < f(z), Vo

— Local minimizer . f(z) < f(x), Vo € N3

— What is the meaning of strict inequality vs. inequality?

Types of solutions
— Global minimizer ™ f(z*) < f(z), Vo
— Local minimizer = : f(Z) < f(z), Yoz € N3
— What 1s the meaning of strict inequality vs. inequality?

— How do we recognize that a solution we have is a local (global) solution?

Types of solutions
— Global minimizer ™ f(z*) < f(z), Vo
— Local minimizer = : f(Z) < f(z), Yoz € N3
— What 1s the meaning of strict inequality vs. inequality?

— How do we recognize that a solution we have is a local (global) solution?

- 1% order optimality condition: Vf(Z) = 0

Types of solutions
— Global minimizer ™ f(z*) < f(x), Va
— Local minimizer = : f(Z) < f(z), Vo € N
— What is the meaning of strict inequality vs. inequality?
— How do we recognize that a solution we have is a local (global) solution?
- 1°“order optimality condition: V. f(Z) = 0

-2"%order optimality condition: Vf(Z) = 0 and V2f(Z) = 0

Types of solutions
— Global minimizer ™ f(z*) < f(z), Vo
— Local minimizer = : f(Z) < f(z), Yoz € N3
— What 1s the meaning of strict inequality vs. inequality?

— How do we recognize that a solution we have is a local (global) solution?

- 1% order optimality condition: Vf(Z) = 0

Necessary
o————0

-2"%order optimality condition: Vf(Z) =0 and VZf(Z) = 0

Gradient descent

Gradient as local information ¢hort story)

Gradient as local information

Ti41 = Tt — NV f(2¢)

Gradient as local information ong story

O Problem t ve: IMin X
roblem to solve o f()

Gradient as local information ong story

Problem t ve: IMin X
O Problem to solve o f()

o Assume f is differentiable, a first order Taylor expansion around :

flx+0) = f(z) + {(Vf(z),0) +o(]]o]])

Gradient as local information ong story

Problem t ve: IMin X
O Problem to solve o f()

o Assume f is differentiable, a first order Taylor expansion around :

flx+0) = f(z) + {(Vf(z),0) +o(]]o]])

o Minimizing f locally, the steepest descent direction is §such that:

0,V f(z))

Gradient as local information ong story

Problem t ve: IMin X
O Problem to solve o f()

o Assume f is differentiable, a first order Taylor expansion around :
flx+9) = flx) +(Vf(2),0) +o(]o]])
o Minimizing f locally, the steepest descent direction is §such that:
(0, Vf(x))

O Focusing on the direction to move to, and assuming Euclidean space, we get:
5 — Vf(z)

NIOIE (hormalized direction)

Gradient as local information ong story

Problem t ve: IMin X
O Problem to solve o f()

o Assume f is differentiable, a first order Taylor expansion around :

flx+0) = f(z) + {(Vf(z),0) +o(]]o]])

o Minimizing f locally, the steepest descent direction is §such that:

(0, Vf(z))
O Focusing on the direction to move to, and assuming Euclidean space, we get:
) — Hvaf(g))Hg (hormalized direction)

O Gradient descent: 11 =x; + 0 = a1 — NV f(x4)

Gradient as local information ong story

Problem t ve: IMin X
O Problem to solve o f()

o Assume f is differentiable, a first order Taylor expansion around :

flx+0) = f(z) + {(Vf(z),0) +o(]]o]])

o Minimizing f locally, the steepest descent direction is §such that:

(0, Vf(z))
O Focusing on the direction to move to, and assuming Euclidean space, we get:
) — Hvaf(va))llg (hormalized direction)

O Gradient descent: xi11 =24+ 0 dx — NV f(xy)

First convergence result

Whiteboard

Convergence rates 101 (Source: Wikipedia)

Convergence Plot

10 10 E
10
P P 5 o
10-150 -
1 0-40 | 1 D-so . : 0'200 , 10 . .
0 50 100 0 50 100 0 5 10 0 50 100
K K K K
O(log1/e) O (loglog(1/e)) 0(1/¢%), 0(1/e), O(1/V5e)

C] , g <€ (0,1) O(1/k2), 0(1/k), O(v/(k))

Convergence rates 101 (Source: Wikipedia)

Convergence Plot

10 10°E
10
ux 10-100-
10-150-
1 0-40 | 1 D-so . : 0'200 , 10 . .
0 50 100 0 50 100 0 5 10 0 50 100
k k k K
O(log1/e) O (loglog(1/¢)) O(1/£%), O(1/e), O(1/+/2)

C] q € (0,1) O(1/k2), 0(1/k), O(v/(k))

First convergence result

“Assume the objective 1s has Lipschitz continuous gradients. Then,
gradient descent:

Ti11 = Tt — NV f(2¢)

with step size ,
n=1

converges sublinearly to a stationary point; 1.e.,

mmHVf Ty) H2<\/T+1- 0)—f($*))1/220(%) “

First convergence result

— "But, which functions satisfy Lipschitz gradient continuity?”

First convergence result

— "But, which functions satisfy Lipschitz gradient continuity?”

— Least—squares objectives: f(x) = %HACC — b||5

[V f(2) = VIl < A All2 - |z = yll2

First convergence result

— "But, which functions satisfy Lipschitz gradient continuity?”

— Least—squares objectives: f(x) = %HACC — b||5

[V f(2) = VIl < A All2 - |z = yll2

— Logistic regression objectives: f(x) = %ZlOg (1 + exp(—yic;))
1=1

Whiteboard

First convergence result

— "But, which functions satisfy Lipschitz gradient continuity?”

— Least—squares objectives: f(x) = %HACC — b||5

[V f(2) = VIl < A All2 - |z = yll2

— Logistic regression objectives: f(x) = %ZlOg (1 + exp(—yic;))
1=1

Whiteboard

First convergence result

— "But, which functions satisfy Lipschitz gradient continuity?”

— Least—squares objectives: f(x) = %HACC — b||5

[V f(2) = VIl < A All2 - |z = yll2

— Logistic regression objectives: f(x) = %ZlOg (1 exp(—y;a; f))
1=1
Whiteboard
- Non-convex objective: f(x) = z* + 3sin’(z)

Demo

Combining all these things together: MLP

Nonlinear operators!

Combining all these things together: MLP

Nonlinear operators!

Combining all these things together: MLP

Feedforward/fully connected neural network

Nonlinear operators!

A bit of math in the mix: Neural Networks

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

Through layers, the neural network learns a hierarchical
representation of data (tries to encode domain information).

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

Through layers, the neural network learns a hierarchical
representation of data (tries to encode domain information).

Neural networks are trained with local search optimization
algorithms such as stochastic gradient descent, Adam,
Adagrad, etc.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

Through layers, the neural network learns a hierarchical
representation of data (tries to encode domain information).

Neural networks are trained with local search optimization
algorithms such as stochastic gradient descent, Adam,
Adagrad, etc.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

Input

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes

input and and provides some answer.
Model

(;

f (W, xz;)

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes

input and and provides some answer.
Model

(;

f (W, xz;)

Output

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

\, Variables

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

y’L:f(W7$Z> W:{WLWZ;“'?WL}
—_ Variables

W’L = Pin X Pout

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

y’L:f<W7$Z> W:{WLWZ;-“?WL}
—_ Variables

W’L = Pin X Pout

Example:

r € R3 ; 2 € R?

14

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

y’L:f(W7$Z> W:{WLWZ;-“?WL}
—_ Variables

W’L = Pin X Pout

Example:

Wi Wi Wiz

3 z € R? — W — .
z € R : v War Waa Was)

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

y’L:f(W7$Z> W:{WLWZ;-“?WL}
—_ Variables

W’L = Pin X Pout

RelLU

Example:

21 ReLlU
ZQ _Re LU

Wl,;x

3 2 € R? _
X R A
< Wo..x

N 7N

N N’
|

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

yz f (W mz) The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).
\ Estimated

output

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

yz f (W xz) The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).
\ Estimated /\

output
How does it compare with real labels/output?

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

yz f (W xz) The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).
\ Estimated /\

output
How does it compare with real labels/output?

f(ym@')

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

yz f (W mz) The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).
\ Estimated /\

output
How does it compare with real labels/output?

Z(yi, :/g\z) Examples: U(Yi, Yi) = %Hyz — ?7@”3

((y;,y;) = cross—entropy(y;, y;)

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

yz f (W mz) The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).
\ Estimated /\

output
How does it compare with real labels/output?

K(yi, @) Examples: U(Yi, Yi) = %Hyz — ?7@”3

f(yz, @\Z) — cross—entropy(yi, ?/J\Z)
Goal: make loss as small as possible over the whole dataset ({z:,%:}i—1)

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

Through layers, the neural network learns a hierarchical
representation of data (tries to encode domain information).

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

Through layers, the neural network learns a hierarchical
representation of data (tries to encode domain information).

Learns from data: input could be pixels or words — usually no other information provided.
(This highlights the difference with the so far procedure: hand—crafted representation learning)

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
convolutions, etc) as well as non—linear transformations.

The output of the model is compared to some ground truth
in order to minimize a loss function (user—defined).

Through layers, the neural network learns a hierarchical
representation of data (tries to encode domain information).

Neural networks are trained with local search optimization

algorithms such as stochastic gradient descent, Adam,
Adagrad, etc.

A bit of math in the mix: Neural Networks

— Verbose description: A neural network i1s a model/black box that takes
input and and provides some answer.

The model is parameterized by a number of variables and
includes various operations (matrix/matrix multiplications,
. | - convolutions, etc) as well as non—linear transformations.
|44 € arg min Z (i, i)

{ziy:}

The output of the model is compared to some ground truth

arg mvivn{z}g(yz’»f (W.z:)) in order to minimize a loss function (user—defined).
Li,Yi

Through layers, the neural network learns a hierarchical

(Quite abstract for now) . . L .
- representation of data (tries to encode domain information).

Neural networks are trained with local search optimization

algorithms such as stochastic gradient descent, Adam,
Adagrad, etc.

What differentiates one neural network from another

What differentiates one neural network from another

— Operations involved: Feedtorward layers only

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations
Regularization techniques (dropout, batch normalization)

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations

Regularization techniques (dropout, batch normalization)
Residual steps

Recurrent steps

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations
Regularization techniques (dropout, batch normalization)
Residual steps
Recurrent steps
— Non-linear functions used: RelLU, leaky RelLUs, tanh, sigmoid, etc.

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations
Regularization techniques (dropout, batch normalization)
Residual steps
Recurrent steps
— Non-linear functions used: RelLU, leaky RelLUs, tanh, sigmoid, etc.

— Deep vs. shallow, wide vs. narrow: Although shallow wide NNs work well
in theory, deep nets are more etficient,
and generalize better.

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations
Regularization techniques (dropout, batch normalization)
Residual steps
Recurrent steps
— Non-linear functions used: RelLU, leaky RelLUs, tanh, sigmoid, etc.

— Deep vs. shallow, wide vs. narrow: Although shallow wide NNs work well
in theory, deep nets are more etficient,
and generalize better.

— Objective functions: euclidean norm (regression), cross entropy (classification)
(or type of learning) only input data (autoencoders), min—max (GANSs), etc.

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations
Regularization techniques (dropout, batch normalization)

Modules

Residual steps
Recurrent steps
— Non-linear functions used: RelLU, leaky RelLUs, tanh, sigmoid, etc.

— Deep vs. shallow, wide vs. narrow: Although shallow wide NNs work well
in theory, deep nets are more etficient,
and generalize better.

— Objective functions: euclidean norm (regression), cross entropy (classification)
(or type of learning) only input data (autoencoders), min—max (GANSs), etc.

What differentiates one neural network from another

— Operations involved: Feedtorward layers only
Convolution layers

Pooling operations
Regularization techniques (dropout, batch normalization)

Modules

Residual steps
Recurrent steps
— Non-linear functions used: RelLU, leaky RelLUs, tanh, sigmoid, etc.

— Deep vs. shallow, wide vs. narrow: Although shallow wide NNs work well
in theory, deep nets are more etficient,
and generalize better.

Modules

— Objective functions: euclidean norm (regression), cross entropy (classification)
(or type of learning) only input data (autoencoders), min—max (GANSs), etc.

Overview

— Introduction to neural networks

--

--

— Convolutional neural networks (CNNs)
— Recurrent neural networks (RNNs)

— Optimization in neural network training

Overview

--

--

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

{ (softmax (p3(o(@i(xz, W), W), W), y;)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

U

)

(.

(-)xewajos

((softmax (¢3(po 1 LW, i)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

U

)

(.

(-)xewajos

¢ (softmax (p3(foo (@1 (i, W), W)IIW), ;)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Module /\

U

)

(.

(-)xewajos

{ (softmax (p3(o(@i(xz, W), W), W), y;)

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Module /\

U

)

(.

(-)xewajos

[s this the only way
to define modules?

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Module /\

U

)

(.

(-)xewajos

[s this the only way
to define modules?

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)

— Example: teedforward neural network, with 3 hidden layers, and ReLLUs
Softmax betore output, loss function £(-, -)

Module /\

U

)

(.

1nduj
(-)xewajos

[s this the only way
to define modules?

Softmax: function that normalizes
and outputs a vector of probabilities
on the possible outcomes

Neural networks represented as boxes

— Most used representation of neural networks (but math will get us the details)
— Does something restrict us from using more complicated models? NO!

Neural networks represented as boxes

— Most used representation of neural networks

(but math will get us the details)

— Does something restrict us from using more complicated models? NO!

Module

1nduj

/
kU_,U/

Xemq;os

(Free lunc!
could hel

W theorem: user bias

D you 1n One case,

but can hurt you in another)

Neural networks represented as boxes

— In an abstract sense, a module is a (smaller) function

— Receives an input, has variables, provides an output

Neural networks represented as boxes

— In an abstract sense, a module is a (smaller) function

— Receives an input, has variables, provides an output

— (Desirable) properties of modules:

— Easy to evaluate

— Easy to compute its derivatives (mostly first—order / gradients) almost everywhere

— Efficient implementation

— Complex enough to represent/learn data well

Neural networks represented as boxes

— In an abstract sense, a module is a (smaller) function

— Receives an input, has variables, provides an output

— (Desirable) properties of modules:

— Easy to evaluate

— Easy to compute its derivatives (mostly first—order / gradients) almost everywhere

— Efficient implementation

— Complex enough to represent/learn data well

— Examples:

z =W - input

Neural networks represented as boxes

— In an abstract sense, a module is a (smaller) function

— Receives an input, has variables, provides an output

— (Desirable) properties of modules:

— Easy to evaluate

— Easy to compute its derivatives (mostly first—order / gradients) almost everywhere

— Efficient implementation

— Complex enough to represent/learn data well

— Examples:

z =W - input

Neural networks represented as boxes

— In an abstract sense, a module is a (smaller) function

— Receives an input, has variables, provides an output

— (Desirable) properties of modules:

— Easy to evaluate

— Easy to compute its derivatives (mostly first—order / gradients) almost everywhere

— Efficient implementation

— Complex enough to represent/learn data well

— Examples:

z =W -input
x, x>0

0, otherwise

Fully connected neural networks or MLPs

Nonlinear operators!

Fully connected neural networks or MLPs

K_Nonlinear operators!

l.o1 =Wy -z

Fully connected neural networks or MLPs

e NONlINnear operators!
0“- ® /

L] . =

ﬁ
L2

S— Y
L3

ﬁ
Ln

l. 21 =W -2
2.0(z1) =c(Wq-x)

Fully connected neural networks or MLPs

ﬂ,..NonIinear operators!
‘ .
° \g /

T1 - -

- ﬁ
L2

—_— Y

X3

: ﬁ
T . .

4T

l.z21=Wy-z
2.0(z1) =c(Wq-x)
3.22 :W2°O'(Zl) :WQ 'O'(Wl CIZ‘)

Fully connected neural networks or MLPs

K_Nonli_qgar operators!

* /
L1 - o

l.z21=Wy-z
2.0(z1) =c(Wq-x)
3.22 :W2°O'(Zl) :WQ 'O'(Wl CIZ‘)

4. softmax(zy) = softmax(Ws - o(Wy - x))

Fully connected neural networks or MLPs

K_Nonlinear operators!

. v,
STENG

76 cami
Y/
N .

o Wi W

Loz =W — Nothing more complicated
2.0(z1) =c(Wy - x)

— Boils down to what modules will be used
3.2 =Wy -0(z1) =Wy -0o(W; -z
: 2 ola) oW -=) — Famous architecture due to simplicity

4. softmax(zz) = softmax(Ws - o(W1 - 2)) and theoretical guarantees

Fully connected neural networks or MLPs

K_Nonlinear operators!
L1 /

——

This sequence of
operations 1s also .
known as the ~ N\
forward pass on

the neural network 2

You can think of
forward pass as
function evaluation

l.z21=Wy-z
2.0(z1) =c(Wq-x)
3.22 :W2°0'(21) :WQ °O'(W1 CIZ‘)

4. softmax(zy) = softmax(Ws - o(Wy - x))

— Nothing more complicated

— Boils down to what modules will be used

— Famous architecture due to simplicity
and theoretical guarantees

Motivation: Gradient descent for least—squares

mmf °—1Z —aa:

Motivation: Gradient descent for least—squares

mmf '—12 —aaz

— Using modules:

Motivation: Gradient descent for least—squares

mmf °—1Z —aa:

— Using modules:

(chain rule of derivatives)

Motivation: Gradient descent for least—squares

mmf °—1Z —aa:

— Using modules:

(chain rule of derivatives)

Motivation: Gradient descent for least—squares

min f(x °—1Z —aa:
XL

— Using modules:

(backward pass on modules!) (chain rule of derivatives)

Motivation: Gradient descent for ML.Ps

mmf(Wl,WQ = 1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1

Motivation: Gradient descent for ML.Ps

mmf(Wl,WQ = 1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1
— Using modules:

Motivation: Gradient descent for ML.Ps

HllIlf(Wl,WQ = =X ZZ i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))
1=1

— Using modules:

1 (input, W) = o(W7 - x;)

p2(input, W) = o (W2 - @a(-))

Motivation: Gradient descent for MI.Ps

mmf(Wl,WQ =1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1

— Using modules:
o1 (input, W) = o(W7 - x;)
p2(input, W) = o(W2 - pa(-))

Motivation: Gradient descent for ML.Ps

m1nf(W1,W2 = 1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1

— Using modules:
1 (input, W) = o(W7 - x;)
p2(input, W) = o(W2 - pa(-))

Vfi(z) = nga/%)
85(:1/2, ?/J\z) 8softmaX(-)
B Osoftmax(-) oW
85(3/@,@\@ 8softmaX(-) 890(,W2)
B Osoftmax(-) Op(-,Ws) OW

(chain rule of derivatives)

Motivation: Gradient descent for ML.Ps

m1nf(W1,W2 = 1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1

— Using modules:
1 (input, W) = o(W7 - x;)
p2(input, W) = o(W2 - pa(-))

Vfi(z) = nga/%)
85(:1/2, ?/J\z) 8softmaX(-)
B Osoftmax(-) oW
85(3/@,@\@ 8softmaX(-) 890(,W2)
B Osoftmax(-) Op(-,Ws) OW

(chain rule of derivatives)

Motivation: Gradient descent for MI.Ps

HllIlf(Wl,WQ =1 Zé i, ¥i) where 3; = softmax (¢ (Wy -0 (W7 -x;)))

1=1

— Using modules:
o1 (input, W) = o(W7 - x;)
p2(input, W) = o(W2 - pa(-))

Vila) = S
8€(yz, ?/J\z) @softmax(-)
B Osoftmax(-) ow
85(?}“@\@ (9softmax(-) 890(,W2)
B Osoftmax(-) Op(-,Ws) OW

(backward pass on modules!) (chain rule of derivatives)

Backpropagation = Gradient descent

(Just done efficiently on graphs, without redoing calculations)

Conclusion

— We have set up background of smooth optimization

— We have provided the first convergence rate result, and defined different
convergence rates that could be attainable

Conclusion

— We have set up background of smooth optimization

— We have provided the first convergence rate result, and defined different
convergence rates that could be attainable

Next lecture

— Brief introduction to convex optimization and related topics

