COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

[ecture 3



Overview

— In the last lecture, we:

— Introduced some notions on smooth optimization
— Introduced gradient descent and what we can say about its
convergence rate

— In this lecture, we will:
— Discuss brietly smooth continuous optimization

— Introduce the important class of convex optimization
— Discuss about convergence rates and some lower bounds on such rates



“What does convexity bring onto the table?”



Convex functions

— General definition:

flar+(1-a)y) <af(z)+ (1 -a)f(y), Vac|0,1]



Convex functions

— General definition:

flar+(1-a)y) <af(z)+ (1 -a)f(y), Vac|0,1]



Convex functions

— General definition:

flar+(1-a)y) <af(z)+ (1 -a)f(y), Vac|0,1]



Convex functions

— General definition:

flar+(1-a)y) <af(z)+ (1 -a)f(y), Vac|0,1]



Convex functions

— General definition:

flar+(1-a)y) <af(z)+ (1 -a)f(y), Vac|0,1]



Convex functions
— Examples:

Function

¢, vector norms, p > 1

¢, matrix norms, p > 1

Square root function

Maximum of functions

Minimum of functions
Sum of convex functions

Logarithmic functions

Affine/linear functions

Eigenvalue functions

Example
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Convex functions

— Key consequences of convexity

“Any stationary point 1is a global minimum”

Proof: Assume a stationary point 2. This implies V f(x™) = 0

By convexity:

flz) = f(a7) + (Vf(27),z —27) = f(z7), Vo

— This 1s what makes convex optimization preferable.



Does convexity improve guarantees?

Whiteboard



Convergence rates 101 (Source: Wikipedia)

Convergence Plot
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Lipschitz conditions

— Equivalent characterizations:

IVi(z) = Vf(y)




Strong convexity

— Equivalent characterizations: f(y) > f(z) + (Vf(z),y — x) + §llz — yll2, Yz, y
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— Another important one:
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What is the gain?

Whiteboard



Convergence rates 101 (Source: Wikipedia)

Convergence Plot

10 10 E
10
P P 5 o
10-150 -
1 0-40 | 1 D-so . : 0'200 , 10 . .
0 50 100 0 50 100 0 5 10 0 50 100
K K K K
O(log1/e) O (loglog(1/e))  0(1/¢%), 0(1/e), O(1/V5e)

C] , g <€ (0,1) O(1/k2), 0(1/k), O(v/(k))



What should be our expectations: Lower bounds

— For objectives with Lipschitz continuous gradients:

3L||xo — 2|3

fxy) — f(x™) > 32(t + 1)2




What should be our expectations: Lower bounds

— For objectives with Lipschitz continuous gradients:

3L||xo — 2|3

fxy) — f(x™) > 32(t + 1)2

— In addition, for objectives that are strongly convex:

2t

Hmt o ZE'*H% Z ( Haj() o aj*HQ K i— —
1 [

Vit .




What should be our expectations: Lower bounds

— For objectives with Lipschitz continuous gradients:

3L[lxo — ™ |3
32(t 1 1)2

flxy) — f(a™) >

— In addition, for objectives that are strongly convex:
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— In future lectures: acceleration techniques that achieves these rates



Convex optimization

Demo
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— Does not use convexity: holds for invex functions (stationary = global)



Convex optimization is not only about the objective

f(x
( ) — Back to the first slide:
min f(x)
L
s.t. x €C

- (We will worry about this in the

\ X /’ T lectures to follow!)

Constraints



Convex sets

C CRP is convex if Vxqi,zo € C, it holds Va € [0,1]: axq + (1 — a)xg € C




Convex sets

C CRP is convex if Vxqi,zo € C, it holds Va € [0,1]: axq + (1 — a)xg € C




Convex sets

C CRP is convex if Vxqi,zo € C, it holds Va € [0,1]: axq + (1 — a)xg € C

V] V]
— Convex hull of points: conv(V) = {Zaiwi : Zoa,; =1, a; >0,2; € V}
1=1 1=1



Convex sets

C CRP is convex if Vxqi,zo € C, it holds Va € [0,1]: axq + (1 — a)xg € C

V] V]
— Convex hull of points: conv(V) = {Zaiwi : Zoa,; =1, a; >0,2; € V}
1=1 1=1



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

I — in ||z —
c(x) argggg”iﬁ Y|l



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

I — in ||z —
c(x) argggg”iﬁ Y|l

— Key properties of convex sets

|z — e (2)[l3 < [lz - yll2, Yy €C,Va



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx



Projections onto convex sets T

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[le(2) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

I — in ||z —
c(x) argggg”iﬁ Y|l

— Key properties of convex sets

|z — e (2)[l3 < [lz - yll2, Yy €C,Va

e (z) =y, le(z) —z) <0,Vy € C,Va



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets T

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[le(2) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

I — in ||z —
c(x) argggglkv Y|l

— Key properties of convex sets

|z —Tc(2)[|3 < [z —yll3, Yy € C,Vx

e (z) =y, le(z) —z) <0,Vy € C,Va

L
Q



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

I — in ||z —
c(x) argggglkv Y|l

— Key properties of convex sets

|z — e (2)ll3 < lz - yll2, Yy €C,Va

e (z) =y, le(z) —z) <0,Vy € C,Va

L
Q



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

(The use of Euclidean norm is arbitrary
and often depends on the application)

[l (x) = arg min ||z —
c(w) = argmin [|lz —y|;

— Key properties of convex sets

|z —Te(2)]|3 < [z —yll3, Yy € C,Vx

(e (x) — y, e (x) —x) <0,Vy € C,Vx



Projections onto convex sets

[l¢(z) = arg min ||z — y||3
yeC

I _ ||z —
c(x) argggglkv Y|l

— Key properties of convex sets

|z —Te(2)|)5 < ||z —yll3, Vy € C,Va
(e (z) — y,Ue(x) — ) <0,Vy € C,Va

e (z) = He(y)llz < llz —yll2, Vo, y



Projections onto convex sets T
Y

[l¢(z) = arg min ||z — y||3
yeC

I _ ||z —
c(x) argggglkv Y|l

— Key properties of convex sets

|z —Te(2)|)5 < ||z —yll3, Vy € C,Va
(e (z) — y,Ue(x) — ) <0,Vy € C,Va

e (z) = He(y)llz < llz —yll2, Vo, y



Projections onto convex sets L

[I-(x) = are min ||z — vyl )
C( ) gyEC || ?JHQ 'Hc(x)

I — in ||z —
c(x) argggg”iﬁ Y|l

— Key properties of convex sets

|z — e ()] < [lz —yll2, Yy € C,Va
(He(z) =y, He(z) —x) <0,Vy € C, Vo

e (z) = He(y)llz < llz —yll2, Vo, y



Projections onto convex sets T

H — ] — 2 \\ “‘
c(z) argrynelgﬂw yll2 N

I — in ||z —
c(x) argggglkv Y|l

— Key properties of convex sets

|z —Te(2)])z < [lz —yll2, Yy € C,Va
(He(z) =y, He(z) —x) <0,Vy € C, Vo

e (z) = He(y)llz < llz —yll2, Vo, y



Projected gradient descent

riy1 = e (xy —nV f(x24))



Projected gradient descent

Ti+1 = e (xy — NV f(24))

— A two—step procedure: 1. x =z —nV f(z¢)
2. Ltt+1 = HC (%)



Projected gradient descent

Ti+1 = e (xy — NV f(24))

— A two—step procedure: 1. x =z —nV f(z¢)
2. Ltt+1 = HC (%)

Demo



Projected gradient descent

riy1 = e (xy —nV f(x24))

— What about its convergence guarantees? Do we lose much by projecting?



Projected gradient descent

riy1 = e (xy —nV f(x24))

— What about its convergence guarantees? Do we lose much by projecting?

Whiteboard
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But wait; didn't we consider proj. GD before?

riy1 = e (xy —nV f(x24))

— Yes, in the case of exact sparse linear regression:

C={zxeRP : |x|o <k}

— But we observed that, despite non—convexity, it works just fine..
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But, constrained optimization can be hard..

riy1 = e (xy —nV f(x24))

— There are constrained problems where we need exponentially many bits
even to describe the solution..

— We considered cases where the constraints are simple:
Operations Research is an area where multiple, difficult constraints appear

— Prot. Richard Tapia 1s teaching a course on constrained convex opt.
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— Yes, we know about it more than most other areas of optimization

— Yes, there are off—the—shelf solvers available online

CVXOPT - https://cvxopt.org Many optimizers in NN training can
CVXPy - http://www.cvxpy.org/ be applied to convex problems

CVX - http://cvxr.com/cvx/ TensorFlow — https://www.tensortlow.org/
JuliaOpt = https://www.juliaopt.org/ PyTorch — https://pytorch.org/

— Why should we still care about convex optimization?

Several practical problems are actually convex
Many practical problems can be approximated by convex ones
If one doesn't understand convex opt., why even try understanding non—convex opt.?
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Conclusion

— We have introduced the notion of convexity

— We studied some of the merits of convex optimization

Next lecture

— We will consider an important variant for convex optimization
for large—scale computing: Frank—Wolfe (conditional gradient) algorithm



