COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

Lecture 5
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— Often, gradient descent is not sufficient in practice. In this lecture, we will:
— Discuss alternatives to gradient descent
— Discuss cases where the above methods are problematic

— Discuss gradient descent versions that somehow accelerate convergence
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Can we do better if we use more information??
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— Remember the second—order Taylor expansion:

flx+ Az) ~ f(z) + (Vf(x),Az) + 2 (V* f(z)Az, Ax)

— Taking the derivative and setting to zero:-

Vaef(@+A2) =0 = Vf(@)+Vf(@)Az=0 = Az=—(V’f(z))  Vf(z)
— Newton's iteration:
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— Theory dictates even 7 = 1, often this is too optimistic, we use n < 1



Guarantees of Newton s method

min f(x)

rERP

“Assume the objective 1is has Lipschitz continuous Hessians. Also,
assume that the initial point is close enough to the optimal point:
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The notorious Newton s method

Demo
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General comments of Newton s method

/— .
— Newton s method exploits the local curvature Q}\t}he function

W N\ M

— Each iteration is more computationally expensive

— Theory assumes a good initial point for quadratic convergence

— Usetul for exact solutions; not often the situation in machine learning
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Between gradient descent and Newton's method

— Quasi—Newton methods

Litt1 — Lt — UBtVf(th)

—"Quasi—Newton reveals that we want to avoid second—order calculations
— There are various ways to construct this approximation

— (L)—BFGS approximation

— SR1 approximation



The BFGS method

Broyden, Fletcher, Goldfarb, Shanno
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The BFGS method

— Quadratic approximations around current point

T B = fw) + (V) ) + § (H A, A

Local quadratic / \ We look for an
Appro=x. The direction we take N\ @pproximation of the
151N Tpa1 = T+ Ax Hessian

— Instead of estimating from scratch Hy+1, we require the new model g¢+1(+)
satisfy two gradient conditions:

Vg:11(0) = Vf(x:11) C(.e., the new approximation should give back the gradient when
no update step is performed)

\V/ “Az) =V Fflr (i.e., we take the opposite step and compute the gradient,
gi+1( ) I t)the latter should match the gradient of the previous quad. approx.)
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The BFGS method

— Secant equation

Vgii1(—Az) =V f(x) Hy1 Az =V f(xe41) — V()
Hi118t = yi

- Requirement: Hyyq = 0 — Az (Vf(zee1) — VF(z)) >0

— How many Hy 1 satisfy this? Infinite!

— By solving: min ||H — Hy||%
H >0
S.T. H = HT?

HAxz =V f(xy) — Vf(xi_q1)
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The BFGS method

— The BFGS method goes a bit further:

' B — B.|
mg;oH el 7

s.t. B = BT,
Az = B (Vf(zs) — Vf(ri1))

— The BFGS method has an easy closed for solution:

B Styt_r ytsz | Stsg_
Bia=(I-224) B, (1- 22 ) + 2
St Yt St Yt S¢ Yt

Sy = Ax

yi = Vf(xi41) — Vf(xe)



The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)



The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)

— Find H.1 such that

Hi 1 = Hy ovv and secant equation is satistied

0O {::1}



The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)

— Find H.1 such that

Hi 1 = Hy ovv and secant equation is satistied

— SR1 rule: 7€ E
st — Bryt) (st — Byt)

(
B = B; 4
o t (st — Brys) " ye




The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)
— Find H.1 such that

Hi 1 = Hy ovv and secant equation is satistied

0O {::1}

— SR1 rule:
— B — By "
Byi1 = B A (St t?/t)(St . tyt)
(8¢ — Bryy) ' ye

— No guarantee for positive definiteness!

— Might be useful to generate indefinite Hessian approximations
In non convex optimization
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For the sake of saving lecture time

H331<:—|—1 — CU*HQ < CkaEk — -’IJ*H2 where Ck — 0

No theory

— Have in mind the formula:

Lt — Lt — nBtVf(ZE‘t)



Instead of forming higher order approximations..

.can we use 0—th order information?
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0—th order optimization

— Some examples: Bisection method, genetic algorithms, simulated annealing
Metropolis methods..

— There are problems where we don’t have access to gradients, or are compu-—
tationally expensive to compute

— Here we will brietly describe the finite differences method:

Tii1 = Ty — nf(mﬁ-lfuiz)—f(xt) iy

— Based on the approximation of the gradient:

flz+e€) — flz)

€

@)~
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Application: Adversarial examples in NN training
(A quick description)

— The 1dea of adversarial examples: small perturbations lead to misclassification
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Ladv — o181 (Vf(il?, ytrue))
We are looking into directions that o (The objective represents a complex

move away from the minimum model like a neural network)
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Application: Adversarial examples in NN training

— This problematic behavior created a series ot defenses to adversarial attacks

— A large class of such defenses is based on the idea of “obfuscating™
the gradient information. E.g., in this attack

Ly Ytrue )|

is disturbed or nullified (through transformations that disturb the back-
Propagation (=gradient calculation)

— However, the forward operation remains intact: this means that the
function evaluations are normally computed



Application: Adversarial examples in NN training

— SPSA attack (Simultaneous Perturbation Stochastic Approximation)

Algorithm 1 SPSA adversarial attack

Input: function to minimize f, initial image zo, € RP,
perturbation size 0, step size o > 0, batch size n
fort =0to1 — 1do
Sample UL,y Un ™ {1, —l}D
Define v, [Uz17 .. ZD
Calculate g; = (f(x: + 51}2) — fx — 6v;))v; 1 /(20)
Setx}, =z — a(l/n) > ", 9;
Project z¢41 = argmin,c y_,.) [1Z — Zo|
end for




Conclusion

— We studied algorithms beyond gradient descent: Newton's method,
quasi—Newton algorithms, derivative—free optimization, and natural
oradient descent method

— Which one to use depends on the problem at hand (accuracy, complexity)

— While thee methods match or even overcome the lower bounds,
we have been “cheating” by exploiting exact or approximate second—order
information

Next lecture

— We will discuss a bit about acceleration and stochasticity in optimization



