COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

Lecture 5

Overview

— In the last lecture, we:

— Talked about a bit of smooth non—convex and convex optimization
— Worked 1n practice and theory with gradient descent

— Discussed the limits and convergence rates of gradient descent

Overview

— In the last lecture, we:

— Talked about a bit of smooth non—convex and convex optimization
— Worked 1n practice and theory with gradient descent

— Discussed the limits and convergence rates of gradient descent

— Often, gradient descent is not sufficient in practice. In this lecture, we will:
— Discuss alternatives to gradient descent
— Discuss cases where the above methods are problematic

— Discuss gradient descent versions that somehow accelerate convergence

From previous lecture: lower bounds

— For objectives with Lipschitz continuous gradients:

3L[lxo — ™ |3
32(t 1 1)2

flxy) — f(a™) >

— In addition, for objectives that are strongly convex:

2t
V-1
fo a1 2 (Yo) lleo - 1B

From previous lecture: lower bounds

— For objectives with Lipschitz continuous gradients:

3L||xo — 2|3

fxy) — f(x™) > 32(t + 1)2

— In addition, for objectives that are strongly convex:

2t
V-1
fo a1 2 (Yo) lleo - 1B -

Can we do better if we use more information??

The notorious Newton s method

— Remember the second—order Taylor expansion:

flx+ Az) ~ f(z) + (Vf(x),Az) + 2 (V* f(z)Az, Ax)

The notorious Newton s method

— Remember the second—order Taylor expansion:

flx+ Az) ~ f(z) + (Vf(x),Az) + 2 (V* f(z)Az, Ax)

— Taking the derivative and setting to zero:-

Vaef(@+Az) =0 = Vf(2)+Vf(@)Az=0 = Az=—(V3f(z)) Vf(z)

The notorious Newton s method

— Remember the second—order Taylor expansion:

flx+ Az) ~ f(z) + (Vf(x),Az) + 2 (V* f(z)Az, Ax)

— Taking the derivative and setting to zero:-

Vaef(@+A2) =0 = Vf(@)+Vf(@)Az=0 = Az=—(V’f(z)) Vf(z)
— Newton's iteration:

L+l — Lt — 77Ht_1Vf(£Et), Ht . — VQf(a?t)

The notorious Newton s method

— Remember the second—order Taylor expansion:

flx+ Az) ~ f(z) + (Vf(x),Az) + 2 (V* f(z)Az, Ax)

— Taking the derivative and setting to zero:-

Vaef(@+A2) =0 = Vf(@)+Vf(@)Az=0 = Az=—(V’f(z)) Vf(z)
— Newton's iteration:
L+l — Lt — 77Ht_1Vf(£Et), Ht L= VQf(a?t)

— Theory dictates even 7 = 1, often this is too optimistic, we use n < 1

Guarantees of Newton s method

min f(x)

rERP

“Assume the objective 1is has Lipschitz continuous Hessians. Also,
assume that the initial point is close enough to the optimal point:

2
P where V2f(x*) = ul and ||V2f(x) — V2f(y)|2 < Mz -yl

|z — 272 <

Ti1 = Tt — (VQf(ft))_l Vf(x)

converges quadratically according to:
Mlzy — 2]l -
2(p — M|z — x*||2)

|Te41 — 27 |2 <

Guarantees of Newton s method

min f(x)

rERP

“Assume the objective 1is has Lipschitz continuous Hessians. Also,
assume that the initial point is close enough to the optimal point:

2
P where V2f(x*) = ul and ||V2f(x) — V2f(y)|2 < Mz -yl

|z — 272 <

Ti1 = Tt — (VQf(ft))_l Vf(x)

converges quadratically according to:
Mlzy — 2]l -
2(p — M|z — x*||2)

|Te41 — 27 |2 <

Guarantees of Newton s method

Whiteboard

Guarantees of Newton s method

) in log-scale
S

F(x*)-F(x*

Different Newton

Method
implementations |

10° 10°

Time (sec.) in log-scale

10

The notorious Newton s method

Demo

General comments of Newton s method

General comments of Newton s method

; . - .
— Newton s method exploits the local curvature a‘\he function

General comments of Newton s method

; . - .
— Newton s method exploits the local curvature Q}\ghe function

— Each iteration is more computationally expensive

General comments of Newton s method

/— .
— Newton s method exploits the local curvature Q}\t}he function

W N\ M

— Each iteration is more computationally expensive

— Theory assumes a good initial point for quadratic convergence

General comments of Newton s method

/— .
— Newton s method exploits the local curvature Q}\t}he function

W N\ M

— Each iteration is more computationally expensive

— Theory assumes a good initial point for quadratic convergence

— Usetul for exact solutions; not often the situation in machine learning

Between gradient descent and Newton's method

— Quasi—Newton methods

Litt1 — Lt — UBtVf(th)

Between gradient descent and Newton's method

— Quasi—Newton methods

Litt1 — Lt — UBtVf(th)

Between gradient descent and Newton's method

— Quasi—Newton methods

Litt1 — Lt — UBtVf(th)

—"Quasi—Newton™ reveals that we want to avoid second—order calculations

Between gradient descent and Newton's method

— Quasi—Newton methods

Litt1 — Lt — UBtVf(th)

—"Quasi—Newton reveals that we want to avoid second—order calculations
— There are various ways to construct this approximation

— (L)—BFGS approximation

— SR1 approximation

The BFGS method

Broyden, Fletcher, Goldfarb, Shanno

- —

»
.

Paying tribute to
these gentlemen

The BFGS method

— Quadratic approximations around current point

gi(Ax) = f(xy) + (Vf(xy), Ax) - ; (Hi Az, Ax)

The BFGS method

— Quadratic approximations around current point

gi(Ax) = f(xy) + (Vf(xy), Ax) - ; (Hi Az, Ax)

The BFGS method

— Quadratic approximations around current point

gi(Ax) = f(xy) + (Vf(xy), Ax) - ; (Hi Az, Ax)

Tir1 = Ty + Ax

The BFGS method

— Quadratic approximations around current point

Local quadratic
APProx.

4s 1N Tt

The direction we take

1 = Tt T+ Axr

% <HtA$, AZC>

We look for an

approximation of the
Hessian

The BFGS method

— Quadratic approximations around current point

gi(Ax) = f(xy) + (Vf(xy), Ax) - ; (Hi Az, Ax)

Tir1 = Ty + Ax

— Instead of estimating from scratch Hy+1, we require the new model g¢+1(+)
satisfy two gradient conditions:

Vgi+1(0) = Vf(z41)

The BFGS method

— Quadratic approximations around current point

T B = fw) + (V)) + § (H A, A

Local quadratic / \ We look for an
Appro=x. The direction we take N\ @pproximation of the
151N Tpa1 = T+ Ax Hessian

— Instead of estimating from scratch Hy+1, we require the new model g¢+1(+)
satisfy two gradient conditions:

Vg:11(0) = Vf(x:11) C(.e., the new approximation should give back the gradient when
no update step is performed)

\V/ “Az) =V Fflr (i.e., we take the opposite step and compute the gradient,
gi+1() I t)the latter should match the gradient of the previous quad. approx.)

The BFGS method

— Secant equation

Vgir1(—Az) = Vf(xy) Hi 1Az =V f(w441) — V [f(14)

Ht+13t — Yk

The BFGS method

— Secant equation

Vgir1(—Az) = Vf(xy) Hi 1Az =V f(w441) — V [f(14)

Ht+13t — Yk

- Requirement: Hyyq = 0 — Az (Vf(zee1) — VF(z)) >0

The BFGS method

— Secant equation

Vgir1(—Az) = Vf(xy) Hi 1Az =V f(w441) — V [f(14)

Ht+13t — Yk

- Requirement: Hyyq = 0 — Az (Vf(zee1) — VF(z)) >0

— How many Hy 1 satisfy this? Infinite!

The BFGS method

— Secant equation

Vgii1(—Az) =V f(x) Hy1 Az =V f(xe41) — V()
Hi118t = yi

- Requirement: Hyyq = 0 — Az (Vf(zee1) — VF(z)) >0

— How many Hy 1 satisfy this? Infinite!

— By solving: min ||H — Hy||%
H >0
S.T. H = HT?

HAxz =V f(xy) — Vf(xi_q1)

The BFGS method

— The BFGS method goes a bit further:

' B — B.|
mg;oH el 7

s.t. B = BT,
Az = B (Vf(zs) — Vf(ri1))

The BFGS method

— The BFGS method goes a bit further:

' B — B.|
mg;oH el 7

s.t. B = BT,
Az = B (Vf(zs) — Vf(ri1))

— The BFGS method has an easy closed for solution:

B Styt_r ytsz | Stsg_
Bia=(I-224) B, (1- 22) + 2
St Yt St Yt S¢ Yt

Sy = Ax

yi = Vf(xi41) — Vf(xe)

The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)

The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)

— Find H.1 such that

Hi 1 = Hy ovv and secant equation is satistied

0O {::1}

The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)

— Find H.1 such that

Hi 1 = Hy ovv and secant equation is satistied

— SR1 rule: 7€ E
st — Bryt) (st — Byt)

(
B = B; 4
o t (st — Brys) " ye

The SR1 method

— SR1 = Symmetric-Rank—1 update (in contrast to BFGS which is rank—2)
— Find H.1 such that

Hi 1 = Hy ovv and secant equation is satistied

0O {::1}

— SR1 rule:
— B — By "
Byi1 = B A (St t?/t)(St . tyt)
(8¢ — Bryy) ' ye

— No guarantee for positive definiteness!

— Might be useful to generate indefinite Hessian approximations
In non convex optimization

For the sake of saving lecture time

H331<:—|—1 — CU*HQ < CkaEk — -’IJ*H2 where Ck — 0

For the sake of saving lecture time

H331<:—|—1 — CU*HQ < CkaEk — -’IJ*H2 where Ck — 0

No theory

For the sake of saving lecture time

H331<:—|—1 — CU*HQ < CkaEk — -’IJ*H2 where Ck — 0

No theory

— Have in mind the formula:

Lt — Lt — nBtVf(ZE‘t)

Instead of forming higher order approximations..

.can we use 0—th order information?

0—th order optimization

— Some examples: Bisection method, genetic algorithms, simulated annealing
Metropolis methods..

0—th order optimization

— Some examples: Bisection method, genetic algorithms, simulated annealing
Metropolis methods..

— There are problems where we don’t have access to gradients, or are compu-—
tationally expensive to compute

0—th order optimization

— Some examples: Bisection method, genetic algorithms, simulated annealing
Metropolis methods..

— There are problems where we don’t have access to gradients, or are compu-—
tationally expensive to compute

— Here we will brietly describe the finite differences method:

fretpiu)—f(xe)
Hot

Li+1 = Lt — 7] U

0—th order optimization

— Some examples: Bisection method, genetic algorithms, simulated annealing
Metropolis methods..

— There are problems where we don’t have access to gradients, or are compu-—
tationally expensive to compute

— Here we will brietly describe the finite differences method:

Tii1 = Ty — nf(mﬁ-lfuiz)—f(xt) iy

— Based on the approximation of the gradient:

flz+e€) — flz)

€

@)~

Application: Adversarial examples in NN training

Application: Adversarial examples in NN training

— The idea of adversarial examples: small perturbations lead to misclassification

Application: Adversarial examples in NN training
(A quick description)

— The 1dea of adversarial examples: small perturbations lead to misclassification

Ytrue “panda” “gibbon”

% confidence 00.3% confidence

Tadv = T+ €-8ign (Vf(x, Yirue))

(The objective represents a complex
model like a neural network)

Application: Adversarial examples in NN training
(A quick description)

— The 1dea of adversarial examples: small perturbations lead to misclassification

.

¢‘ ‘:ar
S
A £

ot LA B
. .
‘&‘\l 4§ &2
h 'Y
- -
¢«) -
WS

N

5 .‘_l
- F r:

P
.~.

.
-
.

- y
L4

LR
-
L

X
ytrue “ponda" ugibbonn
o2 /./% confidence 99.3% confidence
Ladv — o181 (Vf(il?, ytrue))
We are looking into directions that o (The objective represents a complex

move away from the minimum model like a neural network)

Application: Adversarial examples in NN training

— This problematic behavior created a series ot defenses to adversarial attacks

Application: Adversarial examples in NN training

— This problematic behavior created a series ot defenses to adversarial attacks

— A large class of such defenses is based on the idea of “obfuscating™
the gradient information. E.g., in this attack

is disturbed or nullified (through transformations that disturb the back-
Propagation (=gradient calculation)

Application: Adversarial examples in NN training

— This problematic behavior created a series ot defenses to adversarial attacks

— A large class of such defenses is based on the idea of “obfuscating™
the gradient information. E.g., in this attack

Ly Ytrue)|

is disturbed or nullified (through transformations that disturb the back-
Propagation (=gradient calculation)

— However, the forward operation remains intact: this means that the
function evaluations are normally computed

Application: Adversarial examples in NN training

— SPSA attack (Simultaneous Perturbation Stochastic Approximation)

Algorithm 1 SPSA adversarial attack

Input: function to minimize f, initial image zo, € RP,
perturbation size 0, step size o > 0, batch size n
fort =0to1 — 1do
Sample UL,y Un ™ {1, —l}D
Define v, [Uz17 .. ZD
Calculate g; = (f(x: + 51}2) — fx — 6v;))v; 1 /(20)
Setx}, =z — a(l/n) > ", 9;
Project z¢41 = argmin,c y_,.) [1Z — Zo|
end for

Conclusion

— We studied algorithms beyond gradient descent: Newton's method,
quasi—Newton algorithms, derivative—free optimization, and natural
oradient descent method

— Which one to use depends on the problem at hand (accuracy, complexity)

— While thee methods match or even overcome the lower bounds,
we have been “cheating” by exploiting exact or approximate second—order
information

Next lecture

— We will discuss a bit about acceleration and stochasticity in optimization

