COMP 414/514: Optimization – Algorithms, Complexity and Approximations

Overview

- In the last lecture, we:
 - Talked about a bit of smooth non-convex and convex optimization
 - Worked in practice and theory with gradient descent
 - Discussed the limits and convergence rates of gradient descent

Overview

- In the last lecture, we:
 - Talked about a bit of smooth non-convex and convex optimization
 - Worked in practice and theory with gradient descent
 - Discussed the limits and convergence rates of gradient descent
- Often, gradient descent is not sufficient in practice. In this lecture, we will:
 - Discuss alternatives to gradient descent
 - Discuss cases where the above methods are problematic
 - Discuss gradient descent versions that somehow accelerate convergence

From previous lecture: lower bounds

- For objectives with Lipschitz continuous gradients:

$$f(x_t) - f(x^*) \ge \frac{3L||x_0 - x^*||_2^2}{32(t+1)^2}$$

(Under these assumptions, and using only gradients, we cannot achieve better than $O\left(\frac{1}{t^2}\right)$)

- In addition, for objectives that are strongly convex:

$$||x_t - x^*||_2^2 \ge \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2t} ||x_0 - x^*||_2^2 \qquad \qquad \kappa := \frac{L}{\mu}$$

(The case we described has near optimal exponent, but does not involve the square root of κ)

From previous lecture: lower bounds

- For objectives with Lipschitz continuous gradients:

$$f(x_t) - f(x^*) \ge \frac{3L||x_0 - x^*||_2^2}{32(t+1)^2}$$

(Under these assumptions, and using only gradients, we cannot achieve better than $O\left(\frac{1}{t^2}\right)$)

- In addition, for objectives that are strongly convex:

$$||x_t - x^*||_2^2 \ge \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2t} ||x_0 - x^*||_2^2 \qquad \qquad \kappa := \frac{L}{\mu}$$

(The case we described has near optimal exponent, but does not involve the square root of κ)

Can we do better if we use more information?

- Remember the second-order Taylor expansion:

$$f(x + \Delta x) \approx f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{1}{2} \langle \nabla^2 f(x) \Delta x, \Delta x \rangle$$

- Remember the second-order Taylor expansion:

$$f(x + \Delta x) \approx f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{1}{2} \langle \nabla^2 f(x) \Delta x, \Delta x \rangle$$

- Taking the derivative and setting to zero:

$$\nabla_{\Delta x} f(x + \Delta x) = 0 \quad \Rightarrow \quad \nabla f(x) + \nabla^2 f(x) \Delta x = 0 \quad \Rightarrow \quad \Delta x = -\left(\nabla^2 f(x)\right)^{-1} \nabla f(x)$$

- Remember the second-order Taylor expansion:

$$f(x + \Delta x) \approx f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{1}{2} \langle \nabla^2 f(x) \Delta x, \Delta x \rangle$$

- Taking the derivative and setting to zero:

$$\nabla_{\Delta x} f(x + \Delta x) = 0 \quad \Rightarrow \quad \nabla f(x) + \nabla^2 f(x) \Delta x = 0 \quad \Rightarrow \quad \Delta x = -\left(\nabla^2 f(x)\right)^{-1} \nabla f(x)$$

- Newton's iteration:

$$x_{t+1} = x_t - \eta H_t^{-1} \nabla f(x_t), \quad H_t := \nabla^2 f(x_t)$$

- Remember the second-order Taylor expansion:

$$f(x + \Delta x) \approx f(x) + \langle \nabla f(x), \Delta x \rangle + \frac{1}{2} \langle \nabla^2 f(x) \Delta x, \Delta x \rangle$$

- Taking the derivative and setting to zero:

$$\nabla_{\Delta x} f(x + \Delta x) = 0 \quad \Rightarrow \quad \nabla f(x) + \nabla^2 f(x) \Delta x = 0 \quad \Rightarrow \quad \Delta x = -\left(\nabla^2 f(x)\right)^{-1} \nabla f(x)$$

- Newton's iteration:

$$x_{t+1} = x_t - \eta H_t^{-1} \nabla f(x_t), \quad H_t := \nabla^2 f(x_t)$$

– Theory dictates even $\eta=1$; often this is too optimistic, we use $\eta<1$

(Damped Newton's method)

$$\min_{x \in \mathbb{R}^p} f(x)$$

"Assume the objective is has Lipschitz continuous Hessians. Also, assume that the initial point is close enough to the optimal point:

$$\|x_0 - x^\star\|_2 < rac{2\mu}{3M}$$
 where $\nabla^2 f(x^\star) \succeq \mu I$ and $\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq M \|x - y\|_2$

$$x_{t+1} = x_t - (\nabla^2 f(x_t))^{-1} \nabla f(x_t)$$

converges quadratically according to:

$$||x_{t+1} - x^*||_2 \le \frac{M||x_t - x^*||_2^2}{2(\mu - M||x_t - x^*||_2)}$$

Local convergence guarantees Assumes no convexity – but assumes good initialization

$$\min_{x \in \mathbb{R}^p} f(x)$$

"Assume the objective is has Lipschitz continuous Hessians. Also, assume that the initial point is close enough to the optimal point:

$$\|x_0 - x^\star\|_2 < \frac{2\mu}{3M} \quad \text{where} \quad \nabla^2 f(x^\star) \succeq \mu I \quad \text{and} \quad \|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq M \|x - y\|_2$$

$$x_{t+1} = x_t - (\nabla^2 f(x_t))^{-1} \nabla f(x_t)$$

converges quadratically according to:

$$||x_{t+1} - x^*||_2 \le \frac{M||x_t - x^*||_2^2}{2(\mu - M||x_t - x^*||_2)}$$

Whiteboard

Demo

- Newton's method exploits the local curvature of the function

"Convex optimization", Boyd and Vandenberghe

- Newton's method exploits the local curvature of the function

"Convex optimization", Boyd and Vandenberghe

- Each iteration is more computationally expensive

- Newton's method exploits the local curvature of the function

"Convex optimization", Boyd and Vandenberghe

- Each iteration is more computationally expensive
- Theory assumes a good initial point for quadratic convergence

(We often observe a two-phase behavior: A linear convergence at first, and then a quadratic one)

- Newton's method exploits the local curvature of the function

- Each iteration is more computationally expensive
- Theory **assumes a good initial point** for quadratic convergence (We often observe a two-phase behavior: A linear convergence at first, and then a quadratic one)
- Useful for exact solutions; not often the situation in machine learning

Quasi-Newton methods

$$x_{t+1} = x_t - \eta B_t \nabla f(x_t)$$

- Quasi-Newton methods

$$x_{t+1} = x_t - \eta B_t \nabla f(x_t)$$

Approximation of the inverse Hessian

- Quasi-Newton methods

$$x_{t+1} = x_t - \eta B_t \nabla f(x_t)$$

Approximation of the inverse Hessian

-"Quasi-Newton" reveals that we want to avoid second-order calculations

- Quasi-Newton methods

$$x_{t+1} = x_t - \eta B_t \nabla f(x_t)$$

Approximation of the inverse Hessian

- -"Quasi-Newton" reveals that we want to avoid second-order calculations
- There are various ways to construct this approximation
 - (L)-BFGS approximation
 - SR1 approximation

Paying tribute to these gentlemen

- Quadratic approximations around current point

$$g_t(\Delta x) := f(x_t) + \langle \nabla f(x_t), \Delta x \rangle + \frac{1}{2} \langle H_t \Delta x, \Delta x \rangle$$

- Quadratic approximations around current point

$$g_t(\Delta x) := f(x_t) + \langle \nabla f(x_t), \Delta x \rangle + \frac{1}{2} \langle H_t \Delta x, \Delta x \rangle$$

Local quadratic approx.

- Quadratic approximations around current point

- Quadratic approximations around current point

Local quadratic approx.

The direction we take as in $x_{t+1} = x_t + \Delta x$

We look for an approximation of the Hessian

- Quadratic approximations around current point

$$\int g_t(\Delta x) := f(x_t) + \langle \nabla f(x_t), \Delta x \rangle + \frac{1}{2} \langle H_t \Delta x, \Delta x \rangle$$
 We look for an approx. The direction we take as in $x_{t+1} = x_t + \Delta x$ Hessian

- Instead of estimating from scratch H_{t+1} , we require the new model $g_{t+1}(\cdot)$ satisfy two gradient conditions:

 $\nabla g_{t+1}(0) = \nabla f(x_{t+1})$ (i.e., the new approximation should give back the gradient when no update step is performed)

- Quadratic approximations around current point

$$\int g_t(\Delta x) := f(x_t) + \langle \nabla f(x_t), \Delta x \rangle + \frac{1}{2} \langle H_t \Delta x, \Delta x \rangle$$
 Local quadratic approx. The direction we take as in $x_{t+1} = x_t + \Delta x$ Hessian

- Instead of estimating from scratch H_{t+1} , we require the new model $g_{t+1}(\cdot)$ satisfy two gradient conditions:

 $\nabla g_{t+1}(0) = \nabla f(x_{t+1})$ (i.e., the new approximation should give back the gradient when no update step is performed)

$$\nabla g_{t+1}(-\Delta x) = \nabla f(x_t)$$
 (i.e., we take the opposite step and compute the gradient, the latter should match the gradient of the previous quad. approx.)

- Secant equation

$$\nabla g_{t+1}(-\Delta x) = \nabla f(x_t) \longrightarrow H_{t+1}\Delta x = \nabla f(x_{t+1}) - \nabla f(x_t)$$

(Some of you might have seen the expression $H_{t+1}s_t=y_k$)

- Secant equation

$$\nabla g_{t+1}(-\Delta x) = \nabla f(x_t) \longrightarrow H_{t+1}\Delta x = \nabla f(x_{t+1}) - \nabla f(x_t)$$
(Some of you might have seen the expression $H_{t+1}s_t = y_k$)

- Requirement:
$$H_{t+1} \succ 0 \longrightarrow \Delta x^{\top} \left(\nabla f(x_{t+1}) - \nabla f(x_t) \right) > 0$$
 (Why?)

- Secant equation

$$\nabla g_{t+1}(-\Delta x) = \nabla f(x_t) \longrightarrow H_{t+1}\Delta x = \nabla f(x_{t+1}) - \nabla f(x_t)$$
(Some of you might have seen the expression $H_{t+1}s_t = y_k$)

- Requirement: $H_{t+1} \succ 0 \longrightarrow \Delta x^{\top} \left(\nabla f(x_{t+1}) \nabla f(x_t) \right) > 0$ (Why?
- How many H_{t+1} satisfy this? Infinite!

(How do we choose which one?)

- Secant equation

$$\nabla g_{t+1}(-\Delta x) = \nabla f(x_t) \longrightarrow H_{t+1}\Delta x = \nabla f(x_{t+1}) - \nabla f(x_t)$$
(Some of you might have seen the expression $H_{t+1}s_t = y_k$)

- Requirement: $H_{t+1} \succ 0 \longrightarrow \Delta x^{\top} \left(\nabla f(x_{t+1}) \nabla f(x_t) \right) > 0$ (Why?)
- How many H_{t+1} satisfy this? Infinite!

(How do we choose which one?)

- By solving:
$$\min_{\pmb{H} \succ 0} \|H - H_t\|_F^2 \tag{Intuition?}$$
 s.t. $H = H^\top,$
$$H\Delta x = \nabla f(x_t) - \nabla f(x_{t-1})$$

- The BFGS method goes a bit further:

Approximates directly the inverse!

$$\min_{B \succ 0} \|B - B_t\|_F^2$$
s.t. $B = B^\top$,
$$\Delta x = B \left(\nabla f(x_t) - \nabla f(x_{t-1})\right)$$

- The BFGS method goes a bit further:

Approximates directly the inverse!

$$\min_{B \succ 0} ||B - B_t||_F^2$$
s.t. $B = B^\top$,
$$\Delta x = B \left(\nabla f(x_t) - \nabla f(x_{t-1}) \right)$$

- The BFGS method has an easy closed for solution:

$$B_{t+1} = \left(I - \frac{s_t y_t^{\top}}{s_t^{\top} y_t}\right) B_t \left(I - \frac{y_t s_t^{\top}}{s_t^{\top} y_t}\right) + \frac{s_t s_t^{\top}}{s_t^{\top} y_t}$$

$$s_t := \Delta x$$

$$y_t := \nabla f(x_{t+1}) - \nabla f(x_t)$$

(Only inner product/outer product computations!)
(Only uses gradient information)

- SR1 = Symmetric-Rank-1 update (in contrast to BFGS which is rank-2)

- SR1 = Symmetric-Rank-1 update (in contrast to BFGS which is rank-2)
- Find H_{t+1} such that

$$H_{t+1} = H_t + \sigma v v^{\top}$$
 and secant equation is satisfied
 (Rank-1 update) $\sigma \in \{\pm 1\}$

- SR1 = Symmetric-Rank-1 update (in contrast to BFGS which is rank-2)
- Find H_{t+1} such that

$$H_{t+1} = H_t + \sigma v v^{\top}$$
 and secant equation is satisfied (Rank-1 update) $\sigma \in \{\pm 1\}$

- SR1 rule:

$$B_{t+1} = B_t + \frac{(s_t - B_t y_t)(s_t - B_t y_t)^\top}{(s_t - B_t y_t)^\top y_t}$$

- SR1 = Symmetric-Rank-1 update (in contrast to BFGS which is rank-2)
- Find H_{t+1} such that

$$H_{t+1} = H_t + \sigma v v^{\top}$$
 and secant equation is satisfied (Rank-1 update) $\sigma \in \{\pm 1\}$

- SR1 rule:

$$B_{t+1} = B_t + \frac{(s_t - B_t y_t)(s_t - B_t y_t)^\top}{(s_t - B_t y_t)^\top y_t}$$

- No guarantee for positive definiteness!
 - Might be useful to generate indefinite Hessian approximations in non convex optimization

(Could be a project proposal)

For the sake of saving lecture time

$$||x_{k+1} - x^*||_2 \le c_k ||x_k - x^*||_2$$
 where $c_k \to 0$

For the sake of saving lecture time

$$||x_{k+1} - x^*||_2 \le c_k ||x_k - x^*||_2$$
 where $c_k \to 0$

No theory

(But willing to prepare some if people get interested)

For the sake of saving lecture time

$$||x_{k+1} - x^*||_2 \le c_k ||x_k - x^*||_2$$
 where $c_k \to 0$

No theory

(But willing to prepare some if people get interested)

- Have in mind the formula:

$$x_{t+1} = x_t - \eta B_t \nabla f(x_t)$$

Preconditioner matrix

Instead of forming higher order approximations..

...can we use 0-th order information?

- Some examples: Bisection method, genetic algorithms, simulated annealing Metropolis methods..

- Some examples: Bisection method, genetic algorithms, simulated annealing Metropolis methods..
- There are problems where we don't have access to gradients, or are computationally expensive to compute

- Some examples: Bisection method, genetic algorithms, simulated annealing Metropolis methods..
- There are problems where we don't have access to gradients, or are computationally expensive to compute
- Here we will briefly describe the finite differences method:

$$x_{t+1} = x_t - \eta \frac{f(x_t + \mu_t u) - f(x_t)}{\mu_t} \cdot u$$

(we have access to function evaluations)

- Some examples: Bisection method, genetic algorithms, simulated annealing Metropolis methods..
- There are problems where we don't have access to gradients, or are computationally expensive to compute
- Here we will briefly describe the finite differences method:

$$x_{t+1} = x_t - \eta \frac{f(x_t + \mu_t u) - f(x_t)}{\mu_t} \cdot u$$

evaluations)

(we have access to function - Based on the approximation of the gradient:

$$f'(x) \approx \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

(A quick description)

(A quick description)

- The idea of adversarial examples: small perturbations lead to misclassification

(A quick description)

- The idea of adversarial examples: small perturbations lead to misclassification

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign}\left(\nabla f(x, y_{\text{true}})\right)$$

(The objective represents a complex model like a neural network)

(A quick description)

- The idea of adversarial examples: small perturbations lead to misclassification

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign}(\nabla f(x, y_{\text{true}}))$$

We are looking into directions that move away from the minimum

(The objective represents a complex model like a neural network)

(A quick description)

- This problematic behavior created a series of defenses to adversarial attacks

(A quick description)

- This problematic behavior created a series of defenses to adversarial attacks
- A large class of such defenses is based on the idea of "obfuscating" the gradient information. E.g., in this attack

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign}(\nabla f(x, y_{\text{true}}))$$

is disturbed or nullified (through transformations that disturb the back– Propagation (=gradient calculation)

(A quick description)

- This problematic behavior created a series of defenses to adversarial attacks
- A large class of such defenses is based on the idea of "obfuscating" the gradient information. E.g., in this attack

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign}(\nabla f(x, y_{\text{true}}))$$

is disturbed or nullified (through transformations that disturb the back–Propagation (=gradient calculation)

- However, the forward operation remains intact: this means that the function evaluations are normally computed

(A quick description)

- SPSA attack (Simultaneous Perturbation Stochastic Approximation)

Algorithm 1 SPSA adversarial attack

```
Input: function to minimize f, initial image x_0 \in \mathbb{R}^D, perturbation size \delta, step size \alpha > 0, batch size n for t = 0 to T - 1 do  \text{Sample } v_1, \dots, v_n \sim \{1, -1\}^D  Define v_i^{-1} = [v_{i,1}^{-1}, \dots, v_{i,D}^{-1}]  Calculate g_i = (f(x_t + \delta v_i) - f(x - \delta v_i))v_i^{-1}/(2\delta)  Set x_t' = x_t - \alpha(1/n) \sum_{i=1}^n g_i  Project x_{t+1} = \arg\min_{x \in N_\epsilon(x_0)} \|x_t' - x_0\|  end for
```

"Adversarial Risk and the Dangers of Evaluating Against Weak Attacks", Uesato et al., 2018

Conclusion

- We studied algorithms beyond gradient descent: Newton's method, quasi-Newton algorithms, derivative-free optimization, and natural gradient descent method
- Which one to use depends on the problem at hand (accuracy, complexity)
- While thee methods match or even overcome the lower bounds, we have been "cheating" by exploiting exact or approximate second-order information

Next lecture

- We will discuss a bit about acceleration and stochasticity in optimization