COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations
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Overview

— In the last lecture, we:

— Talked about a bit of second—order methods and their approximations
— In theory, they break lower bounds of gradient descent

— They come with a computational cost + often do not work in all cases
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— In the last lecture, we:

— Talked about a bit of second—order methods and their approximations
— In theory, they break lower bounds of gradient descent

— They come with a computational cost + often do not work in all cases

— In this lecture, we will:
— Discuss gradient descent versions that somehow accelerate convergence

— Discuss techniques that do not accelerate in analytical complexity
but help in iteration complexity



From previous lecture: lower bounds

— For objectives with Lipschitz continuous gradients:

3L[lxo — ™ |3
32(t 1 1)2

flxy) — f(a™) >

— In addition, for objectives that are strongly convex:

2t
V-1
fo a1 2 (Yo ) lleo - 1B




From previous lecture: lower bounds

— For objectives with Lipschitz continuous gradients:

3L||xo — 2|3

fxy) — f(x™) > 32(t + 1)2

— In addition, for objectives that are strongly convex:

2t
V-1
fo a1 2 (Yo ) lleo - 1B -

Can we do better if we use more information??



“Can we accelerate having as our basis the standard
gradient descent?”



Acceleration #1: Momentum acceleration

— Heavy ball method
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Acceleration #1: Momentum acceleration

— Heavy ball method

Tir1 = Tt — NV f(x4)

O o EEEEE— O




Acceleration #1: Momentum acceleration
— Heavy ball method

Lt4+1 — Lt — an(a:t) 5(3375 — 3375—1)

or———_————mel) or———_————mel)

V f(w¢)



Acceleration #1: Momentum acceleration
— Heavy ball method

Lt4+1 — Lt — an(a:t) ﬁ(xt — 3375—1)

o———————0 o———————0
Vf(x)
a\
@ Ty — va(aft)

Lt—1



Acceleration #1: Momentum acceleration
— Heavy ball method

Lt4+1 — Lt — an(a:t) ﬁ(xt — 3375—1)

O O
V f(x) (¢ — x4_1)
*. '1
a\
@ Ty — va(aft)



Acceleration #1: Momentum acceleration
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Acceleration #1: Momentum acceleration
— Heavy ball method
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Acceleration #1: Momentum acceleration

— Heavy ball method

Lt4+1 — Lt — an(a:t) ﬁ(xt — 3375—1)
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Guarantees of Heavy Ball method

min f(x)

rERP

“Assume the objective 1s has Lipschitz continuous gradients, and
1t 1s strongly convex. Then:

Tir1 =2 — NV f(xe) + BT — T4-1)
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and B =max{|l — 7g|, |1 — \/nL|}?

for i,

converges linearly according to:




Guarantees of Heavy Ball method

Whiteboard



Guarantees of Heavy Ball method

— It achieves the lower bound for strongly convex cases!
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Guarantees of Heavy Ball method

— It achieves the lower bound for strongly convex cases!
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— In comparison with simple gradient descent:

O (klogZ) vs O (vklog2)
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Performance of Heavy Ball method

Demo



Acceleration #1: Momentum acceleration

— Nesterov's work: a collection of acceleration methods

Constant Step Scheme, II

Constant Step Scheme, I
0. Choose zg € R" and ag € (0,1).

Set yo = o and ¢ = .

0. Choose zg € R™ and v > 0. Set vy = 7. 1. kth iteration (k > 0).
. C t and f'(yx). Set
1. kth iteration (k > 0). a). Compute f(y) and f'(yk). Se

_— L
a). Compute ay € (0,1) from the equation Te+1 = Yk = T (Uk)-

2 b). Compute ax4, € (0,1) from equation
Lag = (1 — ag)y + axp. !

2 2
iy = (1 — agqr)ag + gog,

Set yk41 = (1 — ag) vk + agp.

b). Choose y; = Ok%?:::;m. and set [ = —sl—-&lg; o, Constant step scheme, III
Compute f(yx) and f'(y). Yk+1 = Zk41 + Br(Zr41 — i)
). Set zxy1 = yk — 7./ (yx) and 0. Choose yp = zp € R".

k41 = 50— [(1 = ak)mevk + arpyr — o f'(ye))- , 1. kth iteration (k > 0)

VL-/i
Ykl = $k0~l+7zr£ﬁ(xk+l-xk)°
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Acceleration #1: Momentum acceleration

— Nesterov's work: a collection of acceleration methods

Lt4+1 — Lt — ﬁvf(iﬁt) T 5(3% — $t—1)

r =z — NV [(x¢)
L1l — /Q\f/_l_ 5(5515 - CCt—l)

T = T4 — an(xt + 5(% — mt—l))
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Acceleration #1: Momentum acceleration

— Nesterov's work: a collection of acceleration methods

Tir1 = ¢ — NV f(xe) + BT — 24-1)
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Acceleration #1: Momentum acceleration
— Nesterov's work: most famous version

Ter1 = Ye — NV f(ye)
Yir1 = Teo1 + B(xea1 — T¢)
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Acceleration #1: Momentum acceleration
— Nesterov's work: most famous version

Ter1 = Ye — NV f(ye)
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Acceleration #1: Momentum acceleration
— Nesterov's work: most famous version

Ter1 = Ye — NV f(ye)
Yir1 = Teo1 + B(xea1 — T¢)
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Acceleration #1: Momentum acceleration
— Nesterov's work: most famous version

Ter1 = Ye — NV f(ye)
Yir1 = Teo1 + B(xea1 — T¢)
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Acceleration #1: Momentum acceleration
— Nesterov's work: most famous version

Ter1 = Ye — NV f(ye)
Yir1 = Teo1 + B(xea1 — T¢)

V f(x)
VS (oot Blor = i) — Main difference: the point that
T A —— w1 weare calculating the gradient at.
oo wp+ By — xp-1)

x, — Heavy ball can fail converging
in cases where Nesterov's scheme
still succeeds
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Acceleration #1: Momentum acceleration
— Nesterov's work: how do we set up the momentum parameter?
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Performance of Nesterov's acceleration

Demo



Guarantees of Nesterov's acceleration

— Gradient descent in the absence of strong convexity
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Guarantees of Nesterov's acceleration

— Gradient descent in the absence of strong convexity
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— Nesterov s acceleration (with momentum similarly set up as in previous slide)
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Notes on Nesterov's acceleration

— The original paper ot 1983 does not converge linearly for strongly convex
functions, but there is a fix to this
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— The original paper ot 1983 does not converge linearly for strongly convex
functions, but there is a fix to this
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Notes on Nesterov's acceleration

— The original paper of 1983 does not converge linearly tor strongly convex

functions, but there is a fix to this
— It 1s a common observation to see ripples

— There are heuristics for resetting the
momentum term to zero that improves
the convergence rate.

— Often used even 1n cases where 1t 1S not
cuaranteed to work: deep learning
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