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and Approximations
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— In the last lecture, we:

— Talked about how acceleration leads to a better convergence rate
— Worked in practice and theory with accelerated gradient descent variants

— Discussed the limits and convergence rates of accelerated gradient descent

— Often, gradient descent is not sufficient in practice. In this lecture, we will:
— Discuss alternatives to batch gradient descent: stochastic gradient descent
— Discuss alternatives to batch gradient descent: coordinate descent

— Discuss recent advances on these topics
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— Common situation in machine learning/signal processing

f) = > il

where each f;(x) depends on, let’s say, different part of input data.

— Examples:

— Least squares: fi(x) = %(yz — 04;37)2

— Logistic regression: fi(z) = log(1 + exp(—y;c; ))

— Dimensions to worry about: x € R”, number of samples n
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Acceleration #2: Cut—oft complexity per iteration
— Stochastic gradient descent (SGD)
Lt4+1 = Lt — me(xt) Tiy1 = Ty — MV Ji, (xt), 1t € [n]

where per iteration we select randomly ¢ € [n].

— "Why do we want to do this?"

O(np) O(p)

— When is n > p ? Big—data regime!

— There 1s redundancy in data
— Far from the optimal, exact gradients might have small returns
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Acceleration #2: Cut—oft complexity per iteration

— Some notes on SGD (before we proceed)

1. It is a stochastic process that depends on a random sequence i; € |n|

2. While —V f(x;) 1s a descent direction, —V f;, (x;) might not be

3. The above lead to the intuition that if we have a descent direction
In expectation, we probably will pertorm just tine
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Guarantees Of S GD Pic. from: "Optimization Methods

for Large—Scale Machine Learning”

— Start with large step size; decrease it when SGD “stalls”
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Intuition behind preference for SGD

— Overall, tor strongly convex and smooth functions

iteration | per-iteration total
complexity cost comput. cost
I ' I
batch GD lo% . n n lcl)g .
SGD - 1 !

. . I 1
— The real comparison 1s between mnlog — 7 —
e €

— In the big data regime, n can be huge!

— Gradient descent uses full dataset per iteration; there might be redundancies

— It actually works great in practice!



Intuition behind preference for SGD

Pic. from: “Optimization Methods
for Large—Scale Machine Learning”
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Variants of SGD
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Variants of SGD

— Mini—batch SGD: instead of picking one sample, pick multiple

| Z4 |
Tii1 = Ty — MV [T, (ft) — Lt — Mt - Z ij(flft)

j=1

— Still less time than computing the tull gradient
— Converges to a smaller ball around optimum: trade—oftf

— SGD with importance sampling: select carefully” the next sample

— Select %4 € [n| according to distribution p € [0, 1]" sz =1

— Main question: can we compute a good probability distribution
without too much eftort?
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Variants of SGD

— Stochastic variance—reduced gradient (SVRG)
i1 = ot — N (Vi (@) = (V i, (Tg) = V [(Zg)))

O o EEEEEE— O

— Observe that: E[Vf;,(-)] = Vf(:); then

Vi () = Vi (2q) + V[(2g)] =V [f(ze)
— Theoretical guarantees:

2 [f(2i1) — F(@)] < p-E[f(m) — fa)] (o)) <
1

)

— Main drawback: Full gradient, but overall complexity ( k) log —



Performance of SGD

Demo



Why SGD 1s so important in machine learning?

(or some of the reasons)
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Why SGD 1s so important in machine learning?

>

Misclassification rate

Pic. from: "Optimizatign Methods

(or some of the reasons)

— We ask batch optimization methods to find a model
that minimizes an objective other than what they
try to optimize

— SGD explores better the landscape |
(more to come in future

Guaranteed expected risk lectures)
e - il
il / T (LT TRy where batch
Observed empirical risk methods
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for Large—Scale Machine Learning”
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— Stochastic gradient descent (SGD) selects mini batches of training data
what if we subselect variables to update per iteration?
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Acceleration #3: Coordinate descent methods

— Stochastic gradient descent (SGD) selects mini batches of training data
what if we subselect variables to update per iteration?

Tip1 = X — NV f () (Tt41)i, = (@¢)i, — M Vi, J (1),

where per iteration we select randomly 2; € |p|

— "Why do we want to do this?"

O(np) O(n)

— When 1s n < p ? High—dimensional case

— There 1s not enough data
— We will see that it provides solutions to distributed systems



