COMP 414/514: Optimization – Algorithms, Complexity and Approximations

Overview

- In the last lecture, we:
 - Talked about how acceleration leads to a better convergence rate
 - Worked in practice and theory with accelerated gradient descent variants
 - Discussed the limits and convergence rates of accelerated gradient descent

Overview

- In the last lecture, we:
 - Talked about how acceleration leads to a better convergence rate
 - Worked in practice and theory with accelerated gradient descent variants
 - Discussed the limits and convergence rates of accelerated gradient descent
- Often, gradient descent is not sufficient in practice. In this lecture, we will:
 - Discuss alternatives to batch gradient descent: stochastic gradient descent
 - Discuss alternatives to batch gradient descent: coordinate descent
 - Discuss recent advances on these topics

- Common situation in machine learning/signal processing

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$
 (Empirical risk minimization)

where each $f_i(x)$ depends on, let's say, different part of input data.

- Common situation in machine learning/signal processing

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$
 (Empirical risk minimization)

where each $f_i(x)$ depends on, let's say, different part of input data.

- Examples:
 - Least squares: $f_i(x) = \frac{1}{2}(y_i \alpha_i^\top x)^2$
 - Logistic regression: $f_i(x) = \log(1 + \exp(-y_i \alpha_i^{\mathsf{T}} x))$
- Dimensions to worry about: $x \in \mathbb{R}^p$, number of samples n

- Stochastic gradient descent (SGD)

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$
 \longrightarrow $x_{t+1} = x_t - \eta_t \nabla f_{i_t}(x_t), i_t \in [n]$

where per iteration we select randomly $i_t \in [n]$.

- Stochastic gradient descent (SGD)

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$
 \longrightarrow $x_{t+1} = x_t - \eta_t \nabla f_{i_t}(x_t), i_t \in [n]$

where per iteration we select randomly $i_t \in [n]$.

- "Why do we want to do this?"

What is the complexity of computing full gradient?

What is the complexity of computing a single gradient?

$$O(np)$$
 (Assume least-squares objective) $O(p)$

- Stochastic gradient descent (SGD)

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$
 \longrightarrow $x_{t+1} = x_t - \eta_t \nabla f_{i_t}(x_t), i_t \in [n]$

where per iteration we select randomly $i_t \in [n]$.

- "Why do we want to do this?"

What is the complexity of computing full gradient?

What is the complexity of computing a single gradient?

$$O(np)$$
 (Assume least-squares objective) $O(p)$

- When is $n \gg p$? Big-data regime!
 - There is redundancy in data
 - Far from the optimal, exact gradients might have small returns

- Some notes on SGD (before we proceed)

- Some notes on SGD (before we proceed)
 - 1. It is a stochastic process that depends on a random sequence $i_t \in [n]$

(This means you will see some probability involved in theory)

- Some notes on SGD (before we proceed)
 - 1. It is a stochastic process that depends on a random sequence $i_t \in [n]$ (This means you will see some probability involved in theory)
 - 2. While $-\nabla f(x_t)$ is a descent direction, $-\nabla f_{i_t}(x_t)$ might not be

(This means that some tools from deterministic optimization do not hold here)

- Some notes on SGD (before we proceed)
 - 1. It is a stochastic process that depends on a random sequence $i_t \in [n]$ (This means you will see some probability involved in theory)
 - 2. While $-\nabla f(x_t)$ is a descent direction, $-\nabla f_{i_t}(x_t)$ might not be

(This means that some tools from deterministic optimization do not hold here)

3. The above lead to the intuition that if we have a descent direction in **expectation**, we probably will perform just fine in that we will work with expectations w.r.t. the random sequence)

Guarantees of SGD

Whiteboard

Guarantees of SGD

Pic. from: "Optimization Methods for Large-Scale Machine Learning"

- Start with large step size; decrease it when SGD "stalls"

Guarantees of SGD

Whiteboard

- Overall, for strongly convex and smooth functions

	iteration	per-iteration	total
	complexity	cost	comput. cost
batch GD	$\log rac{1}{arepsilon}$	n	$n \log \frac{1}{\varepsilon}$
SGD	$rac{1}{arepsilon}$	1	$rac{1}{arepsilon}$

- Overall, for strongly convex and smooth functions

	iteration	per-iteration	total
	complexity	cost	comput. cost
batch GD	$\log rac{1}{arepsilon}$	n	$n \log \frac{1}{\varepsilon}$
SGD	$rac{1}{arepsilon}$	1	$rac{1}{arepsilon}$

- The real comparison is between $n \log \frac{1}{\varepsilon}$? $\frac{1}{\varepsilon}$
- In the big data regime, n can be huge!

- Overall, for strongly convex and smooth functions

	iteration	per-iteration	total
	complexity	cost	comput. cost
batch GD	$\log rac{1}{arepsilon}$	n	$n \log \frac{1}{\varepsilon}$
SGD	$rac{1}{arepsilon}$	1	$rac{1}{arepsilon}$

- The real comparison is between $n \log \frac{1}{\varepsilon}$? $\frac{1}{\varepsilon}$
- In the big data regime, n can be huge!
- Gradient descent uses full dataset per iteration; there might be redundancies
- It actually works great in practice!

Pic. from: "Optimization Methods for Large-Scale Machine Learning"

- Mini-batch SGD: instead of picking one sample, pick multiple

$$x_{t+1} = x_t - \eta_t \nabla f_{\mathcal{I}_t}(x_t) = x_t - \eta_t \cdot \sum_{j=1}^{|\mathcal{I}_t|} \nabla f_j(x_t)$$

- Still less time than computing the full gradient
- Converges to a smaller ball around optimum: trade-off

- Mini-batch SGD: instead of picking one sample, pick multiple

$$x_{t+1} = x_t - \eta_t \nabla f_{\mathcal{I}_t}(x_t) = x_t - \eta_t \cdot \sum_{j=1}^{|\mathcal{I}_t|} \nabla f_j(x_t)$$

- Still less time than computing the full gradient
- Converges to a smaller ball around optimum: trade-off
- SGD with importance sampling: select "carefully" the next sample
 - Select $i_t \in [n]$ according to distribution $p \in [0,1]^n$, $\sum_i p_i = 1$
 - Main question: can we compute a good probability distribution without too much effort?

- Stochastic variance-reduced gradient (SVRG)

$$x_{t+1} = x_t - \eta_t \left(\nabla f_{i_t}(x_t) - \nabla f_{i_t}(x_t) - \nabla f_{i_t}(x_t) \right)$$

- Stochastic variance-reduced gradient (SVRG)

$$x_{t+1} = x_t - \eta_t \left(\nabla f_{i_t}(x_t) - \left(\nabla f_{i_t}(\widetilde{x}_q) - \nabla f(\widetilde{x}_q) \right) \right)$$

- Stochastic variance-reduced gradient (SVRG)

$$x_{t+1} = x_t - \eta_t \left(\nabla f_{i_t}(x_t) - \left(\nabla f_{i_t}(\widetilde{x}_q) - \nabla f(\widetilde{x}_q) \right) \right)$$

Bias in gradient estimate Correction term

- Stochastic variance-reduced gradient (SVRG)

$$x_{t+1} = x_t - \eta_t \left(\nabla f_{i_t}(x_t) - \left(\nabla f_{i_t}(\widetilde{x}_q) - \nabla f(\widetilde{x}_q) \right) \right)$$

Bias in gradient estimate Correction term

– Observe that: $\mathbb{E}[\nabla f_{i_t}(\cdot)] = \nabla f(\cdot)$; then

$$\mathbb{E}\left[\nabla f_{i_t}(x_t) - \nabla f_{i_t}(\widetilde{x}_q) + \nabla f(\widetilde{x}_q)\right] = \nabla f(x_t)$$

Unbiased estimator! We expect smaller variance

- Stochastic variance-reduced gradient (SVRG)

$$x_{t+1} = x_t - \eta_t \left(\nabla f_{i_t}(x_t) - \left(\nabla f_{i_t}(\widetilde{x}_q) - \nabla f(\widetilde{x}_q) \right) \right)$$

Bias in gradient estimate Correction term

- Observe that: $\mathbb{E}[\nabla f_{i_t}(\cdot)] = \nabla f(\cdot)$; then

$$\mathbb{E}\left[\nabla f_{i_t}(x_t) - \nabla f_{i_t}(\widetilde{x}_q) + \nabla f(\widetilde{x}_q)\right] = \nabla f(x_t)$$

Unbiased estimator!
We expect smaller variance

- Theoretical guarantees:

$$\mathbb{E}\left[f(x_{t+1}) - f(x^*)\right] \le \rho \cdot \mathbb{E}\left[f(x_t) - f(x^*)\right], \quad \rho = O\left(\frac{1}{1 - 2\eta L} \cdot \left(\frac{1}{m\eta} + 2L\eta\right)\right) < 1$$

– Main drawback: Full gradient, but overall complexity $O\left((n+\kappa)\log\frac{1}{\varepsilon}\right)$

Performance of SGD

Demo

Why SGD is so important in machine learning?

(or some of the reasons)

Why SGD is so important in machine learning?

(or some of the reasons)

Why SGD is so important in machine learning?

(or some of the reasons)

Acceleration #3: Coordinate descent methods

- Stochastic gradient descent (SGD) selects mini batches of training data; what if we subselect variables to update per iteration?

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$
 $(x_{t+1})_{i_t} = (x_t)_{i_t} - \eta_t \nabla_{i_t} f(x_t),$

where per iteration we select randomly $i_t \in [p]$.

Acceleration #3: Coordinate descent methods

- Stochastic gradient descent (SGD) selects mini batches of training data; what if we subselect variables to update per iteration?

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$
 $(x_{t+1})_{i_t} = (x_t)_{i_t} - \eta_t \nabla_{i_t} f(x_t),$

where per iteration we select randomly $i_t \in [p]$.

- "Why do we want to do this?"

What is the complexity of computing full gradient?

What is the complexity of computing a gradient for a single variable?

$$O(np)$$
 (Assume least-squares objective)

Acceleration #3: Coordinate descent methods

- Stochastic gradient descent (SGD) selects mini batches of training data; what if we subselect variables to update per iteration?

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$
 $(x_{t+1})_{i_t} = (x_t)_{i_t} - \eta_t \nabla_{i_t} f(x_t),$

where per iteration we select randomly $i_t \in [p]$.

- "Why do we want to do this?"

What is the complexity of computing full gradient?

What is the complexity of computing a gradient for a single variable?

$$O(np)$$
 (Assume least-squares objective)

- When is $n \ll p$? High-dimensional case
 - There is not enough data
 - We will see that it provides solutions to distributed systems