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— We will consider (possibly) the simplest non—convex setting:
sparse model selection

— We will provide motivation, background and alternative solutions

— We will focus on how we can provably and efficiently solve
such problems
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— We will focus on the cases of (structured) sparsity and low—rankness
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Sparse linear regression

— Generative model:  y; T.CE + w;

— a; € RP : features — 1y; € R : responses — w; € R : additive noise

— (Generative priori ™ € RP is k-sparse: [[z%]lo =k, k < p

— Assuming data set {vi,ai},_,, n<p, find 2* €RP

— Any suggestions how to solve this?
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Sparse linear regression

— Solution #1: convexification + proj. gradient descent

: 1 _ A 2
min - f(z) = 3|y — Az}

S.t. HQL’Hl S A

~ L+l — HH.ng)\ (xt o va(mt))

LASSO

— Solution #2: convexification + proximal gradient descent

. o 2
min  f(e):= 3y - Ael3 + oy —— @1 = Prox,., (v — nV.f(x))

Basis pursuit
(denoising)

— Solution #3: keep non—convexity + non—convex projected gradient descent

. — Ly — -
a?el%RI}? f(ili‘) = QH?J A*THQ —> Tyl = H; (CIZ‘t — WVf(ajt))
s.t.  |lxllo <k

Hard-thresholding
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But betore we proceed.. min - f() = zlly - Azl;

— Some questions:
— Q! "How easy it is to solve £g—pseudo norm problems?"

— A: “Sparsity makes problems exponentially hard to solve™
(This assumes the most general case)

\\

— Q: "Butisn't the problem underdetermined? (n <p)

— A Yes, without any constraints, the problem has infinite solutions™

- Q: "Why then do we have hopes solving this problem?"

— A "Under assumptions on A, and the relation between (n,p, k), we
Will see that on average this problem can be solved in polynomial
time
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- IHT:
Tiv1 = Hy (¢ —nV f(xy))

where Hy(z) € argmin ||z — 2|3
rERP

.t lzllo < k

— Now, imagine yourself implementing this.. What are the hyper—parameters?

- "How do we set the step size?"

\\

- How do we select the initial point? (it is non—convex after all)
— "What if we don’t know the sparsity level?”

— "Are there any other tricks we can use?"
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But, still, wait a minute..

— We already mentioned that the problem is hard to solve

— Imagine that A =1

: 1 _ A 2
min - f(z) = 3|y — Az}

— Property of [: isometry

(1= 0)[lz1 — 22[l2 < [I(z1 — 22)|]2 < (1 = 0)||lz1 — @2]f3,

for some ¢ € [0,1], Va1, z0 € RP
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restricted eigenvalue property

— How can we use this property in proving convergence of IHT?

Whiteboard

— We get linear convergence to the global optimum!



How does it perform in practice?

Demo
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What did go wrong here?

— Q: "Are we certain that A € R"™”*P satisfies RIP?"

— Reminder

(1 =0)[|lz1 — 225 < [JA(z1 — 22)|[3 < (1 +0)[|21 — 223,
for some 6 € (0,1), V k-sparse x1,xo € RP

Note:
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— Q: "How can we then improve its performance?"
— Via hyper—parameter tuning! Can we tune the step size via theory?
— Thus, we propose:

1
1496

U

— But, 1s this practical? Generally, no!
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— Via hyper—parameter tuning! Can we tune the step size via theory?

— What about find a more practical step—size selection?
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Exact line search

— What we performed is exact line search:

"Given the direction we want to move towards, find the best step size
such that we minimize the objective function

- l.e.,

n = arg min f (CUt — Uth f(i'ft))
neky

— Q! "Great! Why don't we use that all the time?"

— A "Because, moving beyond least squares, solving this might be
as difficult as the original problem™
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Phase transition update

min ||z||;
xr &ERP

S | &

s.t. y=Ax

n 0:6 018 1 (Some of these methods can
D be found in the Review part)



But does this step size selection work 1n theory?

Whiteboard
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What about the sparsity level k7

— There is no clear and provable tweak that suggests how to set k

- Q: "What if weset k=p7"
— A "Umm.. Think harder :)"

— Q: "What happens if we undershoot sparsity level?"

— A "We pay for the "energy we leave out

- Q: "What happens if we overshoot sparsity level?"

— A: "We actually get denser and denser solutions™

— Q: "Is there any non—provable tweaks?"

— A "Problem—dependent strategies



“All these sound interesting.. but do they extend to other
objectives? And how are they related with
what we discussed so far?"
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A different view of RIP

— Reminder

(1= 0)flz1 — z2ll5 < [[A(z1 — 22) |5 < (14 9)[Jz1 — x2]3,
for some 6 € (0,1), V k-sparse x1, x5 € RP
— Simplity for 2k —sparse

(1 =9)|zlz < [[Az|3 < [|z]l3, ¥ 2k — sparse z € RP
— What is the Hessian of the objective? VZf(-)=A'A

— Rewriting RIP:
1=zl <z'"A"Az < Q1 +0)|z||5=1-NI<A"A=<(1+)I

— When objective has Lipschitz continuous gradients and is strongly convex:

nl < Vef(z) < LI
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Restricted smoothness and strong convexity

p

— Restricted . the properties hold over a subset of

Letssay z € (C CRP

— Restricted smoothness (Lipschitz gradient continuity)

f(y) < F@) + (Vf(@)y— o) + 5z —yl3, Veyed
L

— Restricted strong convexity
fy) = f@)+ (Vf(@),y =)+ Sl —yl3. Vayed

L4
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Examples

— Sparse logistic regression / c {+1}
4

min 1 ;bg (1 +exp (—yia] z)) + 3 ll3

S.t. HQ?H() § k

Satisties restricted strong convexity with constant: /
K= (”Yk T )‘)7 where Tk — Amin (A AA7 k)

and restricted smoothness with constant:

L = (Amax (A" A k) + N)
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Examples

— Graphical model selection (under Gaussian assumptions)

0 Given a data set D, drawn from a joint pdf with unknown covariance
>, the aim is to learn a sparse matrix ® that approximates X7 .

Input: sample covariance 3 calculated ugually from limited sarmpleg

Optimization problem 1 Convex

%e[{--ooncordamL I

unction — L.
min  — log det(©) + Tr (i@) ool
OERP X7
Optimization problem 2 Non-convex
min — log det(©) + Tr (EA]@)
OcRpPXp
st |10l < k
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Beyond plain sparsity

— Our discussion so far holds for discrete structures beyond sparsity:

— As long as the projection onto the combinatorial constraint can be
computed etticiently:

- o2
min - {lz — ylj3

S.t. xr e C

— Various extensions include inexact projections, greedy approaches, and
there are connections with (sub/super)modular optimization




Interlude: Statistics in Data Science

— We will use the example of RIP

— Disclaimer: this 1s not a complete introduction to concentration inequalities



Conclusion

— This lecture considers sparse model selection in Data Science applications

— While there are rigorous and efficient methods also in the convex domain
we ftollowed the non—convex path of hard thresholding methods

— We discussed some global convergence guarantees, and highlighted the
importance of hyper—parameter tuning

Next lecture

— We will consider the case of low—rank recovery, natural extension of
sparsity — there, we have different ways to exploit non—convexity



