COMP 414/514:
Optimization — Algorithms, Complexity
and Approximations

[ecture 9

Overview

— In the previous lecture, we:

— Started talking about non—convex optimization, where non—convexity
1s introduced by the constraints

— We consider the special case of sparsity

— We provide conditions that lead to global convergence guarantees

Overview

— In the previous lecture, we:

— Started talking about non—convex optimization, where non—convexity
1s introduced by the constraints

— We consider the special case of sparsity

— We provide conditions that lead to global convergence guarantees

— For the next 2—3 lectures, we will consider (possibly) another case of non—
convex constraints: low—rank optimization

— We will provide motivation, background and alternative solutions
— We will see that this structure provides various ways to be.. non—convex

— We will focus on how we can provably and efficiently solve
such problems

Overview

min f(x)

L

s.t. x€C(C

Over VICW We will consider convex objectives..

-

min f(x)

af/‘ ..OVer non—convex constraints

/

s.t. x€C(C

Over VICW We will consider convex objectives..

p.
min f(x

af/‘ ..OVer non—convex constraints

— We will focus on the cases of (structured) sparsity and low—rankness

Problem setting via an application

<|||

qro) —P &— U5(0.72,0.4,0.82) —

qu) ¥, |
qra) L U3(0.14,0.095,0.8) H U5(0.099, 0.074,0.85) |-

qr3) —e—F—H ° °

qra) T ° U5(0.48,0.87,0.26) —

OPENQASM 2.0;
inc lude "qe]_'ibl,'inc"; fidelity: 0.997607

qreg qr[5];
creg cr[5];
cx qr[3],qr[o];
cx qr(4],qr[3]; r
cx qr(2],qr[3];
cx qr[4],qr[1];
u3(0.139745784966679,0.0948307634768559,0.799402574081021) qr[2];

u3(0.0987633446591477,0.0737424336287251,0.850473826259255) qr[2];
cx qr[3],qr[0];

cx qr[3],qr[2];
u3(0.477009776552717,0.865309927771640,0.260492310391959) qr[4];
u3(0.719704686403954,0.398823542224269,0.824844977148233) qr[0];

Imagirhol

Problem setting via an application

qu) ¥ |
qra) /L U3(0.14,0.095,0.8) H U5(0.099, 0.074,0.85) |- [05
0.0
r o | ® ®
q 3> T N 0.5
qra) . U5(0.48,0.87, 0.26) | — 10
30
25
0 5 15 20
OPENQASM 2.0; 0 35 10
include "gelibl.inc"; fidelity: 0.997607 5 3 0
qreg qr[5];
creg cr[5];
cx qr[3],qr[e];
cx qr4],qr3]; |
cx qr[2],qr[3]; — I 05
Eg(grlg9éjg7;4566679 ©.0948307634768559,0.799402574081021) qr[2]; %-%E? :‘F""""’#f :ﬁ;Wf/f oo
. sV sV) = -%}"5‘3& ?f#fﬁf%
u3(0.0987633446591477,0.0737424336287251,0.850473826259255) qr[2]; "-ﬁkaaaééégéggé;é;;kf’ 0.5
S -1.0

cx qr[3],qr[0];
cx qr[3],qr([2];
u3(0.477009776552717,0.865309927771640,0.260492310391959) qr[4];
u3(0.719704686403954,0.398823542224269,0.824844977148233) qr[0];

— Goal: Validate the system is in the expected.. state,
the computations are completed ..as expected

<||I

Reallrhoai

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— Some background:

1. Quantum computers can be described by their state they are in

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— Some background:

1. Quantum computers can be described by their state they are in

2. The state of a quantum computer with q qubits is described by the density matrix in C? *?'

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A, e RP*P: feqrures — wy; € R : responses — w; € R @ additive noise
— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers
— (Generative prior: X* € RP*P s rank—7" and PSD: rank(X™) =r < p, X* > 0
— Some background:

1. Quantum computers can be described by their state they are in

2. The state of a quantum computer with q qubits is described by the density matrix in C? *?'

3. An algorithm is a sequence of operations that transform the state of the quantum computer:
the final state is the answer to our question

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A, e RP*P: feqrures — wy; € R : responses — w; € R @ additive noise
— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers
— (Generative prior: X* € RP*P s rank—7" and PSD: rank(X™) =r < p, X* > 0
— Some background:

1. Quantum computers can be described by their state they are in
4] : : q
2. The state of a quantum computer with q qubits is described by the density matrix in C?" *?

3. An algorithm is a sequence of operations that transform the state of the quantum computer:
the final state is the answer to our question

4. A quantum computer is a non—deterministic machine: we don't know the final state, unless
we measure it (this is where Schroedinger’s cat come into the picture :))

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0

— Some background:

1. Quantum computers can be described by their state they are in

2. The state of a quantum computer with q qubits is described by the density matrix in C? *?'

3. An algorithm is a sequence of operations that transform the state of the quantum computer:
the final state is the answer to our question

4. A quantum computer is a non—deterministic machine: we don't know the final state, unless
we measure it (this is where Schroedinger’s cat come into the picture :))

5. But if we perform the steps correctly, w.h.p. we measure the anticipated state

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— Some background:

6. Current implementations of quantum computers are more prototypes, rather not commercial

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0

— Some background:

6. Current implementations of quantum computers are more prototypes, rather not commercial
7. We need verification tools to verify that quantum computers behave as anticipated

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise
— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0

— Some background:

6. Current implementations of quantum computers are more prototypes, rather not commercial
7. We need verification tools to verify that quantum computers behave as anticipated

8. Quantum state tomography is one of such procedures: we can repeat the measurement
many times, we keep the data, and we try to inverse the procedure to get the density matrix

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0

— Some background:

6. Current implementations of quantum computers are more prototypes, rather not commercial
7. We need verification tools to verify that quantum computers behave as anticipated

8. Quantum state tomography is one of such procedures: we can repeat the measurement
many times, we keep the data, and we try to inverse the procedure to get the density matrix

9. Classical quantum state tomography is like solving linear equations; if we have a O (47)
object to recover, we need that many measurements

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0

— Some background:

6. Current implementations of quantum computers are more prototypes, rather not commercial
7. We need verification tools to verify that quantum computers behave as anticipated

8. Quantum state tomography is one of such procedures: we can repeat the measurement
many times, we keep the data, and we try to inverse the procedure to get the density matrix

9. Classical quantum state tomography is like solving linear equations; if we have a O (47)
object to recover, we need that many measurements

10.When q = 20 or even 50, do the math

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0
— Some background:

11. Why assume that the state is low—rank? These are called pure states — can be considered as
a first step before going into more mixed states.

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*P jsrank-7" and PSD: rank(X™) =r < p, X* > 0
— Some background:

11. Why assume that the state 1s low—rank? These are called pure states — can be considered as
a first step before going into more mixed states.

12. Theoretically, we can assume rank—1 constructed density matrices; noise + other
Phenomena increases the rank in practice

Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we measure??

Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we measure? (Pauli operators)

| Select: Ai = 01 @01, @+ D 0r, where

(10 o
UI—Olaam—l

-
0| Ty i 0] Tz 0 -1

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we measure??

1. Select: A; =04, R0, Q-+ & 0j, , Where

10 o 1 [0 —i (10
9= o 1] J”’__l 0| "y—_z' 0 | "z—_o -1
2. Applying it to the system is equivalent with

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we solve for X* € RP*? | without any prior information?

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we solve for X* € RP*? | without any prior information?

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we solve for X* € RP*? | without any prior information?

min 5 ¥ (yi — (Ai, X)) X has O(49)

Quantum state tomography

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A, e RP*P . feqtures — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative priorI X* € RP*P is rank-7 and PSD: rank(X™) =r < p, X* >0
— What if we assume X* € RP*? s of low rank?

min 3 Z — (A;, X))

X ERPXDP

s.t. X t 0, Tr(X) < 1,rank(X) < r

Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model: y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A, e RP*P . feqtures — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— What if we assume X* € RP*? s of low rank?

XII%R{in 5 Z AZ, X>) — X has O2%) parameters
cRP XD

— It rank 1s small compared to

S.t. X t 0, TI(X) <1, rank(X) <7r ambient dimension, then there is hope

Quantum state tomography

min 1 g AZ,X
X ERPXDP

s.t. X i 0, Tr(X) < 1,rank(X) <r

Quantum state tomography

j : (A;, X))
min Z i
s.t. X i 0, Tr(X) < 1,rank(X) <r

— Can we recover X* ¢ RP*P from limited set of measurements?

(1=0) IXIF <JAX)[5 < A +9)[|X[|F, Vrank-r X € RP*?
A(X)|; = Tr(A;, X)

— Similar to the sparsity case, RIP leads to convergence for various algos

Matrix sensing

min
XERP XPp

S.1.

N |

3 (i — (Ai, X))

i=1
rank(X) <r

Matrix sensing

n

min %Z(yz — <A7;,X>)2

X ERPXP

i=1
S.t. rank(X) <r

¢ — Solution #1' convexification + proj. gradient descent

=

= .

s min, zZ ~ {45 X)) _

. —> Xy =< (X =V (X))

S st HXH* <A

2

Matrix sensing

n

min %Z(yz — <A7;,X>)2

X ERPXP

i=1
S.t. rank(X) <r

¢ — Solution #1' convexification + proj. gradient descent

=

= .

s min, zZ ~ {45 X)) _

. —> Xy =< (X =V (X))

S st HXH* <A

2

— Definition of the nuclear norm: || X||« = Z 0i (X
i=1

Matrix sensing

min
XERP XPp

S.1.

N |

3 (i — (Ai, X))

i=1
rank(X) <r

Matrix sensing

' 1 (A X))?

XIGIIlR{IEXp 2 ; (yi — (Ai, X))

s.t. rank(X) <r
o — Solution #2: keep the rank—constraint + proj. gradient descent
T n -
o . . 5 -
¢ omin 5> (y; — (4, X)) ¢
:C:, X cRPxP ° 'L:Z]_ —> Xt—l—l — Hrank(X)Sr (Xt — va(Xt))
E s.t. rank(X) <r

Matrix sensing

min % — (A;, X))
X ERPEP 7,:1
s.t. rank(X) <r
o — Solution #2: keep the rank—constraint + proj. gradient descent
& omin 1Y (i — (4, X)) “
:C:, X EeRP=P i—1 S Xt—l—l — Hrank(X)Sr (Xt — va(Xt))
E s.t. rank(X) <r

— Detinition of the projection onto low—rank matrices

Xe min x-v|}

s.t. rank(X) <r

But betore we proceed..

— Some questions:

min
X ERPXP

S.1.

N |—

i=1
rank(X)

VAN

S (i — (A, X))

r

n

But before we proceed.. min 13 (5 (4. X))

X ERPXP .
1=1

— Some questions: S.t. rank(X) <
— Q. "How easy it is to solve rank—constrained problems?"

— A: "Low—rankness makes problems exponentially hard to solve"

BUI b@fOl’G WEC pI’OC@@d.. min %i:(yz_<AzaX>)2

X ERPXP .
1=1

— Some questions: S.t. rank(X) <
— Q. "How easy it is to solve rank—constrained problems?"

— A "Low—rankness makes problems exponentially hard to solve"
(This assumes the most general case)

— Q: "But isn't the problem underdetermined?”

— A Yes, without any constraints, the problem has infinite solutions™

n

But before we proceed.. min 13 (5 (4. X))

X ERPXP .
1=1

— Some questions: S.t. rank(X) <
— Q. "How easy it is to solve rank—constrained problems?"

— A "Low—rankness makes problems exponentially hard to solve"
(This assumes the most general case)

— Q: "But isn't the problem underdetermined?”

— A Yes, without any constraints, the problem has infinite solutions™

- Q: "Why then do we have hopes solving this problem?"

— A “Similar to sparsity, under assumptions on average this problem
can be solved in polynomial time"

[terative hard thresholding (IHT)

[terative hard thresholding (IHT)

— Matrix IHT:
Xiy1 = H, (Xt — va(Xt))

where H,.(Z) € min || X - Z|%
X ERPXP

s.t. rank(X) <r

[terative hard thresholding (IHT)

— Matrix IHT:
Xiy1 = H, (Xt — va(Xt))

where H,.(Z) € min || X - Z|%
X ERPXP

s.t. rank(X) <r

[terative hard thresholding (IHT)

— Matrix IHT:
Xiy1 = H, (Xt — va(Xt))

where H,.(Z) € min || X - Z|%
X ERPXP

s.t. rank(X) <r

[terative hard thresholding (IHT)

— Matrix IHT:

Xip1 = H, (X; —nVf(Xy))
. 12
where H,.(Z) € FRLELN | X — Z||%

s.t. rank(X) <r

— Now, imagine yourself implementing this.. What are the hyper—parameters?

[terative hard thresholding (IHT)

— Matrix IHT:
Xiy1 = H, (Xt — va(Xt))

where H,.(Z) € min || X - Z|%
X ERPXP

s.1. rank(X) <r

— Now, imagine yourself implementing this.. What are the hyper—parameters?

- "How do we set the step size?"

\\

- How do we select the initial point? (it is non—convex after all)
— "What if we don’t know the sparsity level?”

— Are there any other tricks we can pull-off?"

[terative hard thresholding (IHT)

— Matrix IHT:
Xiy1 = H, (Xt — va(Xt))

where H,.(Z) € min || X - Z|%
X ERPXP

s.1. rank(X) <r

— Now, imagine yourself implementing this.. What are the hyper—parameters?

- "How do we set the step size?"

\\

- How do we select the initial point? (it is non—convex after all)
— "What if we don’t know the sparsity level?”

— Are there any other tricks we can pull-off?"

Convexification vs. hard—thresholding in practice

Demo

The price of SVD

Dimension m = 5000

Rank r = 100

—~
%
1 ~ Omr
QE) 10 : —0- M Gé 10 -@-MM
o r— gvds | . svds
2 100k ———————- % irblsvds| — — = X% __ = |-%- irblsvdsF —® — T 7 ?
' irbla § 1024 — = ~ e~ irbla
1 |~p—irblablkf- —@— — = — @ irblablk
10 -~ 27 |eusw f ——LMSVD
| —m - PROPACK —m - PROPACK
107 ' ' ' 10 ' ' '
200 400 600 3800 1000 2000 4000 6000 8000 10000
Rank r Dimension m

SVD(X) vs. X -U, where X € R™*™ U e R™*"

The price of SVD

104+

Rank » = 100
- 1 hour I I g_;--"'"*

f -3l - PROPACK
10" ' ' '
2 4 6 8 10
Dimension m x10*

SVD(X) vs. X -U, where X € R™*™ U e R™*"

X=Uv'

Non-PSD

DTN XD

nXxr

PSD

X - nNXxXn
U=V &

nXxr

First consider a simpler objective: Rank—1 PCA

Whiteboard

First consider a simpler objective: Rank—1 PCA

— Some properties of the prootf:

— Initialization does matter: e.g., for PCA there are initializations that do
not lead to convergence

First consider a simpler objective: Rank—1 PCA

— Some properties of the prootf:

— Initialization does matter: e.g., for PCA there are initializations that do
not lead to convergence

— After proper initialization, one can prove convergence to global minimum.
Despite this, such convergence results are called local convergence guarantees

First consider a simpler objective: Rank—1 PCA

— Some properties of the prootf:

— Initialization does matter: e.g., for PCA there are initializations that do
not lead to convergence

— After proper initialization, one can prove convergence to global minimum.
Despite this, such convergence results are called local convergence guarantees

— Often the theory dictates how to set the step size, in order to obtain
convergence. For some cases it is a range of values, in other cases we just
rely on a specific step size.

Back to matrix sensing

Back to matrix sensing

T
. y
min 33 (s {(4s X)
S i—1
S.t. T ety

X=UuUv'

Back to matrix sensing

min
an)VG

Back to matrix sensing

min
an)VG

Back to matrix sensing

min
an)VG

Back to matrix sensing

(A, UVTY)

-

M

S

<5

M

‘3

N | —
nms
el

— Key ditterences with PCA:

— Number of observations less than number of parameters

— Mapping is identity, but satisfies a restricted isometry property

The same story holds for more general functions

The same story holds for more general functions

min f(X)
XGRan

1./ "\ -
YWLLLx\JL/ ~ |/

X=yuv'

The same story holds for more general functions

min f{UV ")
UeReryveRan

The same story holds for more general functions

 min fF(uvh
UeReryveRan

The same story holds for more general functions

~ min fFUvT
UeReryveRan

— Key ditferences with matrix sensing:
— Restricted 1sometry might be substituted by restricted strong cvx/smoothness

— Restricted strong convexity might not hold

How would we solve this problem?

Uir1 = U, — VUV,)V,

Vier = Vi =V AUV,)" - U,

How would we solve this problem?

Uir1 = U, — VUV,)V,

Vier = Vi =V AUV,)" - U,

How would we solve this problem?

U1 =U;, —nVf(UV,") -V,

Vier = Vi =V AUV,) - U;

How would we solve this problem?

Uiyr = Ui =V f(UV;) - Vi
Select initial point Select step size

Vier = Vi =V AUV,) - U,

How would we solve this problem?

Do gradient step
o |
Uiy1 =U; =V UV,) - Vi
Select initial point Select step size

Vier = Vi =V AUV,) - U,

Do gradient step

How would we solve this problem?

Uir1 = U, — VUV,)V,

Vier = Vi =V AUV,)" - U,

How would we solve this problem?

Uir1 =U;, — VUV,)V,

Vier = Vi =V AUV,)" - U,

How would we solve this problem?

Uir1 =U;, — VUV,)V,

Vier = Vi — VUV,) - U;

How would we solve this problem?

, 1
U’L’—I—l ij—l—l — rank-r matrix

How would we solve this problem?

- We solve: via.
min f(UVT) U;+1 = U; an(UzV@) Vi
mXT nXxrTr
CERTTLYER Vier = Vi =gV f(UV;")T - U,

How would we solve this problem?

— We solve: via:
min f(UVT) Uit1 = U; ﬁVf(Usz) Vi
mXr nXxnr

Does X ~— UV ' introduce new global and local minima?

How would we solve this problem?

— We solve: via.
miﬂ f(UVT) Uz—l—l Uz ﬁvf(Usz) V;
mXr nXxXr

Does X ~— UV ' introduce new global and local minima?

Does initialization play key role?

How would we solve this problem?

— We solve: via:
min f(UVT) Uit1 = U; an(Usz) Vi
mXTr nXr

Does X ~— UV ' introduce new global and local minima?

Does initialization play key role?

What about (local) convergence under assumptions on J ?

How would we solve this problem?

— We solve: via:
min f(UVT) Uir1 = U; ﬁVf(Usz) Vi
mXr nXr

Does X ~— UV ' introduce new global and local minima?

Does initialization play key role?

What about (local) convergence under assumptions on J ?

How to initialize in practice (Up, Vo) ?

Non—uniqueness of global minima

— Factors at X ™ are not unique

Non—uniqueness of global minima

— Factors at X ™ are not unique

X* — U*V*T — U*R) RTV*T — ﬁ*‘”}*T
forall R suchthat RR' =T

Non—uniqueness of global minima

— Factors at X ™ are not unique

X* — U*V*T — U*R) RTV*T — ﬁ*ﬁ*T
forall R suchthat RR' =1
— Example:
F(X)=12%"|ly—vec(A-X)|3

1 1| Unique!
where X™* = 1| =1

Non—uniqueness of global minima

— Factors at X ™ are not unique

X* — U*V*T — U*R) RTV*T — ﬁ*‘”}*T
forall R suchthat RR' =1
— Example:
F(X)=12%"|ly—vec(A-X)|3

1 1| Unique!
where X™* = 1| =1

In this case

U*=1[1 1] or [-1 —1]"

11111T1a

Non—uniqueness of global m

— Factors at X ™ are not unique

2
2

|y —vec(A-UU)|

_| 1___2

o0

(> 8

&=

__

_|

X

S

_|

oo

e~

X

~

__ TR

o

S

X)

) 3

| =
=

X

=
0P
A
=
—
O
e

— Example:

y — vec(A - X)||3

f(X) =3

(r="1)

11 Uniquel

1

1
1

where X™

In this case

U*

11111T1a

Non—uniqueness of global m

— Factors at X ™ are not unique

2
2

|y —vec(A-UU)|

—_—
x O
> 8
AU = 1
|
_|
X
V © < o o A__.\ © o\
— Akbbvf\woﬁ
A
2~
X
~
| =
E
L= g
F o < T
qu! =
- e LS
|+ <T
25—
% >
| —
o =
= |
ma k — | WA
5 = |
— —~ »
v u
LG
| - W

In this case

U*

11111T1a

Non—uniqueness of global m

— Factors at X ™ are not unique

S S

X* — U*V*T — U*R) RTV*T — U*V*T

ly —vec(A-UU)3

1
2

fUU") =

.\ 8N

.\ N

OSSNy

A W W &

forall R suchthat RR' =1

— Example:

(r="1)

11 Uniquel

1
1

1

where X™

In this case

U*

11111T1a

Non—uniqueness of global m

ly — vec(A-UU)3

1
2

fuu') =

S S

*R) RTV*T — U*V*T

— Factors at X ™ are not unique

T VLV WL W WL W WL WA

\

AN
.\ N

\“
\ WA §
A W .y 2\ 8N
T A W .\ N
‘\\“‘\‘\““\\\
A\

S

S\

A\

NS
) -

\" \4

-\
o\

=
0% v
'

SOk

\)
T\

-
A
\

L8 L L\

.\

\

‘\\“‘

-
-\
e
—

R
DN\

=

RN

NN

convexity

|
.
=
T
><
®

@ Even local convergence results are

Important

What about local minima??

What about local minima??

— Factorization might also introduce local minima

What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

) o1 -1 |10 1
fluu') = Z Wij - (X} — wiuj)? where X7 = and W= 1 100
1] _ _ . -

(r=1)

What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

. o1 =1 ~|100 1
f(uuT) — Z Wi - (Xz-j — uiuj)z where X™ = and W = 1 100
17 . _ N _

|| 10" ~

10°

107 } Global Opt.

What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

. o1 =1 ~|100 1
f(uuT) — Z Wi - (Xz-j — uiuj)z where X™ = and W = 1 100
17 . _ N _

|| 10" ~

10°

107 } Global Opt.

What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

. o1 =1 ~|100 1
f(uuT) — Z Wi - (Xz-j — uiuj)z where X™ = and W = 1 100
17 . _ N _

10°
102

|| 10" ~

10°

107 } Global Opt.

What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

f(uu_l_) — Z Wij : (Xz*] — uiuj)z where
v]

@ Even simple
objectives can be

hard to handle

@ Proper initialization is

key

Nevertheless, can we hope for some guarantees?

— General recipe

|2e41 — 2*[[§ = llwe — 0V f (@) — 273
= [lwe — 2*[l — 20 (Vf(2e), 20 — 2%) + 07|V f20) I3

Nevertheless, can we hope for some guarantees?

— General recipe

|2e41 — 2*[[§ = llwe — 0V f (@) — 273
= [lwe — 2*[l — 20 (Vf(2e), 20 — 2%) + 07|V f20) I3

-~

Nevertheless, can we hope for some guarantees?

— General recipe

|2e41 — 2*[[§ = llwe — 0V f (@) — 273
= [lwe — 2*[l — 20 (Vf(2e), 20 — 2%) + 07|V f20) I3

i
F
Vs i
s
g Z

-~

Nevertheless, can we hope for some guarantees?

— General recipe

|2e41 — 2*[[§ = llwe — 0V f (@) — 273
= [lwe — 2*[l — 20 (Vf(2e), 20 — 2%) + 07|V f20) I3

V F ’
P
P

— Where can we actively intervene? By choosing appropriate step size!

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?

Lt

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?
Lt

Lt — L

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?
Lt

Lt — L
Tt — Te41 = NV f(x4)

L1

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?

Lt

Tt — Tep1 = NV f(x)

L1

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?

Lt

Tt — Tep1 = NV f(x)

Nevertheless, can we hope for some guarantees?

— What is the geometric intuition of (V f(x¢), 2 —x™)?

Lt

Tt — Tep1 = NV f(x)

Regulatory condition

— Reminder:
|zep1 — 2*||F = |2 —nV f(2e) — 2|
= [Jay — 2™ ||f — 20 (V f(xs), 20 —) + 07|V f ()]

Regulatory condition

— Reminder:
|ze41 — 2*|lf = |20 =0V f(2e) — 2™
= |loy — a*[[f = 20 (V f(21), 20 —) + 07|V f(20) I3
- We would like:
(Vf(xe), 20 — %) > allzg — 2*||§ + BIV (@) 13

Regulatory condition

— Reminder:
|ze41 — 2*|lf = |20 =0V f(2e) — 2™
= |loy — a*[[f = 20 (V f(21), 20 —) + 07|V f(20) I3
- We would like:
(Vf(xe), 20 — %) > allzg — 2*||§ + BIV (@) 13

for sufficient «, 8 > 0 such that

|z — 2|17 — 20 (V f(2e), 20 — %) + 07 [V f (245
< e — 2|7 — canllze — 2™y — (enB —n°) IV f (@)l

C 1s problem dependent

Why should we hope for such a condition to hold?

Why should we hope for such a condition to hold?

— We know from convex analysis that

“For smooth and strongly convex functions:" Vx, Y

(Vf(z) =V (y),z—y) > Lrlle —ylls + 2z IVF(@) = V)3

Why should we hope for such a condition to hold?

— We know from convex analysis that

“For smooth and strongly convex functions:" Vx, Y

(Vf(z) =V (y),z—y) > Lrlle —ylls + 2z IVF(@) = V)3

— u

- Set y = 2~ and since Vf(z*) =

(Vf(@),x —a*) > fplle — a3+ 7 IV (@)]l3

and compare with

(Vf(@e), 2 — 2%) > allze — 2|7 + BV f ()]l

-
Local convergence guarantees tor UU

— Detine distance function:
DisT(U, U*R) := m}%n |U — U*R||Fr
|-l

-
Local convergence guarantees tor UU

— Detine distance function:
DisT(U, U*R) := m}%n |U — U*R||Fr
|-l

— Local convergence: we assume we start from a sutticiently good initial point

Whiteboard

Main result: Local convergence guarantees

U1 =U;, =V UV,)V,

+ f is convex and differentiable

Vier = Vi =V iUV,) - U,

THEOREM: LOCAL CONVERGENCE

I f is a"nice” function and (U, V;)are sufficiently close to(U*, V*), then non-
convex alternating gradient descent i) converges to (U™, V™) and ii)

achieves the same convergence guarantees with convex optimization:

Main result: Local convergence guarantees

U1 = Ui =V f(UV;) - V!

+ f is convex and differentiable

Vier = Vi =V iUV,) - U,

THEOREM: LOCAL CONVERGENCE

I f is a"nice” function and (U, V;)are sufficiently close to(U*, V*), then non-
convex alternating gradient descent i) converges to (U™, V™) and ii)

achieves the same convergence guarantees with convex optimization:

Y

e, in () (1/5) or () (]Qg 1/8) iter., we have f(UVT) — f(U*V*T) < g

(just smooth) (strongly convex)

Main result: Local convergence guarantees

U1 = Ui =V f(UV;) - V!

+ f is convex and differentiable

Vier = Vi =V iUV,) - U,

THEOREM: LOCAL CONVERGENCE

i f is a "nice” function and (U, V;)are sufficiently close to(U*, V*), then non-
convex alternating gradient descent i) converges to (U™, V™) and ii)
achieves the same convergence guarantees with convex optimization:

Y

e, in () (1/5) or () (]Qg 1/5) iter., we have f(UVT) — f(U*V*T) < g

(just smooth) (strongly convex)

Our proof strategy

Show how the algorithm behaves locally

.e., if we are sufficiently close to the optimal point.

Our proof strategy

Show how the algorithm behaves locally

.e., if we are sufficiently close to the optimal point.

|

Provide proper initialization

i.e., how to gets close to points where we know our algorithm behaves well

Our proof strategy

Show how the algorithm behaves locally

.e., if we are sufficiently close to the optimal point.

Provide proper initialization

i.e., how to gets close to points where we know our algorithm behaves well

|

Convergence to global minimum for non-convex optimization!

Main result: Proper initialization and global convergence

Main result: Proper initialization and global convergence

Goal: |Initialize such that (UO, Vo)is sufficiently closeto (U™, V™)

Main result: Proper initialization and global convergence

Goal: |Initialize such that (U(), Vo)is sufficiently closeto (U™, V™)

-+ Proposed initialization: y :

-Compute Xg o« =V f(0) -

- Perform one SVD calculation:

X

XO — U()VOT

1

)) 0.5 0
Xoo Us = Uy

A5 -1 0.5 0 05

Original space of X Factored space

Main result: Proper initialization and global convergence

Goal: |Initialize such that (UO, Vo)is sufficiently closeto (U™, V™)

-+ Proposed initialization: . -

-Compute X X —Vf(()) =

- Perform one SVD calculation:

XO — U()VOT

Original space of X Factored space

THEOREM: GLOBAL CONVERGENCE

If the function fis “well-conditioned” , then non-convex alternating gradient

descent converges to the global optimum / optima.

Condition number: ratio of smoothness over strong convexity parameters

Main result: Proper initialization and global convergence

Goal: |Initialize such that (UO, Vo)is sufficiently closeto (U™, V™)

-+ Proposed initialization:) :

-Compute X X —Vf(())

- Perform one SVD calculation:

XO — U()VOT

. . . 0
15 -1 0.5 0 0.5 1 _ -1 0.5

X0 Ua = Uy

Original space of X Factored space

PRACTICAL IMPACT

One SVD vs. SVD per iteration!

(non-convex) (convex)

. L | -
Practical aspects of optimizing pepe i FUVY)

. by using (Upr1,Vig1) = (U, Vi) — n(Vf(UtV%T)Vt, Vf(UtVt)TUt)

Practical aspects of optimizing min _ f(UV")
UERmXT,VGRnXT

. by using (Upr1,Vig1) = (U, Vi) — n(Vf(UtV%T)Vt, Vf(UtVt)TUt)

— There are initializations that come with some convergence guarantees

(Uo, Vo) =SVD (=V f(0rxp))

..the guarantees are weak, but often it works in practice!

Practical aspects of optimizing min _ f(UV")
UERmXT,VGRnXT

. by using (Upr1,Vig1) = (U, Vi) — n(Vf(UtV%T)Vt, Vf(UtVt)TUt)

— There are initializations that come with some convergence guarantees

(Uo, Vo) =SVD (=V f(0rxp))

..the guarantees are weak, but often it works in practice!

— What about random 1nitialization?

Practical aspects of optimizing min _ f(UV")
UERmXT,VGRnXT

. by using (Upr1,Vig1) = (U, Vi) — n(Vf(UtV%T)Vt, Vf(UtVt)TUt)

— There are initializations that come with some convergence guarantees

(Uo, Vo) =SVD (=V f(0rxp))

..the guarantees are weak, but often it works in practice!

— What about random 1nitialization?

— Constant step size vs. adaptive step size

Practical aspects of optimizing min _ f(UV")
UERmXT,VGRnXT

- bY using (Ut+17 Vt+1) — (Uta Vt) — n(Vf(UtVtT)V;, Vf(UtV;f)TUt)

— What if we don't know the exact rank?

Practical aspects of optimizing min _ f(UV")
UERmXT,VGRnXT

- bY using (Ut+17 Vt+1) — (Uta Vt) — n(Vf(UtVtT)V;, Vf(UtV;f)TUt)

— What if we don't know the exact rank?

Demo

Conclusion

— This lecture considers low—rank model selection in Data Science applications

— While there are rigorous and efficient methods also in the convex domain
we followed the non—convex path, beyond hard thresholding methods

— We discussed some global convergence guarantees (under proper
initialization assumptions) and discussed about some open questions

Next lecture

— We will focus on the landscape of non—convex functions,
starting from simple cases (such as low—rankness), and moving towards
more generic scenaria

