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— Started talking about non—convex optimization, where non—convexity
1s introduced by the constraints
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— We provide conditions that lead to global convergence guarantees

— For the next 2—3 lectures, we will consider (possibly) another case of non—
convex constraints: low—rank optimization

— We will provide motivation, background and alternative solutions
— We will see that this structure provides various ways to be.. non—convex

— We will focus on how we can provably and efficiently solve
such problems
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Over VICW We will consider convex objectives..

p.
min f(x

af/‘ ..OVer non—convex constraints

— We will focus on the cases of (structured) sparsity and low—rankness



Problem setting via an application

<|||

qro) —P &— U5(0.72,0.4,0.82) —

qu) ¥, |
qra) L U3(0.14,0.095,0.8) H U5(0.099, 0.074,0.85) |-

qr3) —e—F—H ° °

qra) T ° U5(0.48,0.87,0.26) —

OPENQASM 2.0;
inc lude "qe]_'ibl,'inc"; fidelity: 0.997607

qreg qr[5];
creg cr[5];
cx qr[3],qr[o];
cx qr(4],qr[3]; r
cx qr(2],qr[3];
cx qr[4],qr[1];
u3(0.139745784966679,0.0948307634768559,0.799402574081021) qr[2];

u3(0.0987633446591477,0.0737424336287251,0.850473826259255) qr[2];
cx qr[3],qr[0];

cx qr[3],qr[2];
u3(0.477009776552717,0.865309927771640,0.260492310391959) qr[4];
u3(0.719704686403954,0.398823542224269,0.824844977148233) qr[0];
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Problem setting via an application
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cx qr[3],qr[0];
cx qr[3],qr([2];
u3(0.477009776552717,0.865309927771640,0.260492310391959) qr[4];
u3(0.719704686403954,0.398823542224269,0.824844977148233) qr[0];

— Goal: Validate the system is in the expected.. state,
the computations are completed ..as expected
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— Some background:

1. Quantum computers can be described by their state they are in

2. The state of a quantum computer with q qubits is described by the density matrix in C? *?'

3. An algorithm is a sequence of operations that transform the state of the quantum computer:
the final state is the answer to our question

4. A quantum computer is a non—deterministic machine: we don't know the final state, unless
we measure it (this is where Schroedinger’s cat come into the picture :) )

5. But if we perform the steps correctly, w.h.p. we measure the anticipated state
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— Some background:

6. Current implementations of quantum computers are more prototypes, rather not commercial
7. We need verification tools to verify that quantum computers behave as anticipated

8. Quantum state tomography is one of such procedures: we can repeat the measurement
many times, we keep the data, and we try to inverse the procedure to get the density matrix

9. Classical quantum state tomography is like solving linear equations; if we have a O (47)
object to recover, we need that many measurements

10.When q = 20 or even 50, do the math
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— Some background:

11. Why assume that the state 1s low—rank? These are called pure states — can be considered as
a first step before going into more mixed states.

12. Theoretically, we can assume rank—1 constructed density matrices; noise + other
Phenomena increases the rank in practice



Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model:  y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p



Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model:  y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we measure??



Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model:  y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A; e RP*P: features — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— How do we measure? (Pauli operators)

| Select: Ai = 01 @01, @+ D 0r, where
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Quantum state tomography

— Generative model:  y; = (A4;, X™) +w; = Tr(A; X™) + w;
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— How do we measure??

1. Select: A; =04, R0, Q-+ & 0j, , Where

10 o 1 [0 —i (10
9= o 1] J”’__l 0| "y—_z' 0 | "z—_o -1
2. Applying it to the system is equivalent with
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Quantum state tOmOgrath (Much easier than it sounds like..)

— Generative model:  y; = (A4;, X™) +w; = Tr(A; X™) + w;

— A, e RP*P . feqtures — y; € R : responses — w; € R : additive noise

— Disclaimer: quantum state tomography operates on complex numbers
here, for simplicity, we assume real numbers

— (Generative prior: X* € RP*? isrank-7 and PSD: rank(X™*) = r < p, X* =0
p

— What if we assume X* € RP*? s of low rank?

XII%R{in 5 Z AZ, X>) — X has O2%) parameters
cRP XD

— It rank 1s small compared to

S.t. X t 0, TI(X) <1, rank(X) <7r ambient dimension, then there is hope



Quantum state tomography

min 1 g AZ,X
X ERPXDP
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Quantum state tomography

j : (A;, X))
min Z i
s.t. X i 0, Tr(X) < 1,rank(X) <r

— Can we recover X* ¢ RP*P from limited set of measurements?

(1=0) IXIF <JAX)[5 < A +9)[|X[|F, Vrank-r X € RP*?
A(X)|; = Tr(A;, X)

— Similar to the sparsity case, RIP leads to convergence for various algos
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— Definition of the nuclear norm: || X||« = Z 0i (X
i=1
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Matrix sensing
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XIGIIlR{IEXp 2 ; (yi — (Ai, X))
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o — Solution #2: keep the rank—constraint + proj. gradient descent
T n -
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Matrix sensing

min % — (A;, X))
X ERPEP 7,:1
s.t. rank(X) <r
o — Solution #2: keep the rank—constraint + proj. gradient descent
& omin 1Y (i — (4, X)) “
:C:, X EeRP=P i—1 S Xt—l—l — Hrank(X)Sr (Xt — va(Xt))
E s.t. rank(X) <r

— Detinition of the projection onto low—rank matrices

Xe min x-v|}

s.t. rank(X) <r
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But before we proceed.. min 13 (5 (4. X))
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— Q. "How easy it is to solve rank—constrained problems?"

— A: "Low—rankness makes problems exponentially hard to solve"
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— A Yes, without any constraints, the problem has infinite solutions™
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But before we proceed.. min 13 (5 (4. X))

X ERPXP .
1=1

— Some questions: S.t. rank(X) <
— Q. "How easy it is to solve rank—constrained problems?"

— A "Low—rankness makes problems exponentially hard to solve"
(This assumes the most general case)

— Q: "But isn't the problem underdetermined?”

— A Yes, without any constraints, the problem has infinite solutions™

- Q: "Why then do we have hopes solving this problem?"

— A “Similar to sparsity, under assumptions on average this problem
can be solved in polynomial time"
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Convexification vs. hard—thresholding in practice

Demo



The price of SVD

Dimension m = 5000

Rank r = 100
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The price of SVD
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SVD(X) vs. X -U, where X € R™*™ U e R™*"
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First consider a simpler objective: Rank—1 PCA

— Some properties of the prootf:

— Initialization does matter: e.g., for PCA there are initializations that do
not lead to convergence

— After proper initialization, one can prove convergence to global minimum.
Despite this, such convergence results are called local convergence guarantees

— Often the theory dictates how to set the step size, in order to obtain
convergence. For some cases it is a range of values, in other cases we just
rely on a specific step size.
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Back to matrix sensing

(A, UVTY)
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— Key ditterences with PCA:

— Number of observations less than number of parameters

— Mapping is identity, but satisfies a restricted isometry property
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min  f(X)
XGRan

1./ "\ -
YWLLLx\JL/ ~ |/

X=yuv'
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The same story holds for more general functions

~ min fFUvT
UeReryveRan

— Key ditferences with matrix sensing:
— Restricted 1sometry might be substituted by restricted strong cvx/smoothness

— Restricted strong convexity might not hold
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How would we solve this problem?

— We solve: via:
min f(UVT) Uir1 = U; ﬁVf(Usz ) Vi
mXr nXr

Does X ~— UV ' introduce new global and local minima?

Does initialization play key role?

What about (local) convergence under assumptions on J ?

How to initialize in practice (Up, Vo) ?
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Non—uniqueness of global minima

— Factors at X ™ are not unique

X* — U*V*T — U*R ) RTV*T — ﬁ*‘”}*T
forall R suchthat RR' =1
— Example:
F(X)=12%"|ly—vec(A-X)|3

1 1| Unique!
where X™* = 1| =1

In this case

U*=1[1 1] or [-1 —1]"
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Important
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— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

) o1 -1 |10 1
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What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

. o1 =1 ~|100 1
f(uuT) — Z Wi - (Xz-j — uiuj)z where X™ = and W = 1 100
17 . _ N _
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What about local minima??

— Factorization might also introduce local minima

— Example: Weighted low—rank approximation

f(uu_l_) — Z Wij : (Xz*] — uiuj)z where
v]

@ Even simple
objectives can be

hard to handle

@ Proper initialization is

key
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Nevertheless, can we hope for some guarantees?

— General recipe

|2e41 — 2*[[§ = llwe — 0V f (@) — 273
= [lwe — 2*[l — 20 (Vf(2e), 20 — 2%) + 07|V f20) I3

V F ’
P
P

— Where can we actively intervene? By choosing appropriate step size!
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— What is the geometric intuition of (V f(x¢), 2 —x™)?

Lt

Tt — Tep1 = NV f(x)
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Regulatory condition

— Reminder:
|ze41 — 2*|lf = |20 =0V f(2e) — 2™
= |loy — a*[[f = 20 (V f(21), 20 — ) + 07|V f(20) I3
- We would like:
(Vf(xe), 20 — %) > allzg — 2*||§ + BIV (@) 13

for sufficient «, 8 > 0 such that

|z — 2|17 — 20 (V f(2e), 20 — %) + 07 [V f (245
< e — 2|7 — canllze — 2™y — (enB —n°) IV f (@)l

C 1s problem dependent
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Why should we hope for such a condition to hold?

— We know from convex analysis that

“For smooth and strongly convex functions:" Vx, Y

(Vf(z) =V (y),z—y) > Lrlle —ylls + 2z IVF(@) = V)3

— u

- Set y = 2~ and since Vf(z*) =

(Vf(@),x —a*) > fplle — a3+ 7 IV (@)]l3

and compare with

(Vf(@e), 2 — 2%) > allze — 2|7 + BV f ()]l
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-
Local convergence guarantees tor UU

— Detine distance function:
DisT(U, U*R) := m}%n |U — U*R||Fr
|-l

— Local convergence: we assume we start from a sutticiently good initial point

Whiteboard
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Main result: Local convergence guarantees

U1 = Ui =V f(UV;) - V!

+ f is convex and differentiable

Vier = Vi =V iUV, ) - U,

THEOREM: LOCAL CONVERGENCE

i f is a "nice” function and (U, V;)are sufficiently close to(U*, V*), then non-
convex alternating gradient descent i) converges to (U™, V™) and ii)
achieves the same convergence guarantees with convex optimization:

Y

e, in () (1/5) or () (]Qg 1/5) iter., we have f(UVT) — f(U*V*T) < g

(just smooth) (strongly convex)
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Our proof strategy

Show how the algorithm behaves locally

.e., if we are sufficiently close to the optimal point.

Provide proper initialization

i.e., how to gets close to points where we know our algorithm behaves well

|

Convergence to global minimum for non-convex optimization!
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Main result: Proper initialization and global convergence

Goal: |Initialize such that (UO, Vo)is sufficiently closeto (U™, V™)

-+ Proposed initialization: . -

-Compute X X —Vf(()) =

- Perform one SVD calculation:

XO — U()VOT

Original space of X Factored space

THEOREM: GLOBAL CONVERGENCE

If the function fis “well-conditioned” , then non-convex alternating gradient

descent converges to the global optimum / optima.

Condition number: ratio of smoothness over strong convexity parameters



Main result: Proper initialization and global convergence

Goal: |Initialize such that (UO, Vo)is sufficiently closeto (U™, V™)

-+ Proposed initialization: ) :

-Compute X X —Vf(())

- Perform one SVD calculation:

XO — U()VOT

. . . 0
15 -1 0.5 0 0.5 1 _ -1 0.5

X0 Ua = Uy

Original space of X Factored space

PRACTICAL IMPACT

One SVD vs. SVD per iteration!

(non-convex) (convex)
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UERmXT,VGRnXT

. by using (Upr1,Vig1) = (U, Vi) — n(Vf(UtV%T)Vt, Vf(UtVt)TUt)

— There are initializations that come with some convergence guarantees

(Uo, Vo) =SVD (=V f(0rxp))

..the guarantees are weak, but often it works in practice!

— What about random 1nitialization?

— Constant step size vs. adaptive step size
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Practical aspects of optimizing min _ f(UV")
UERmXT,VGRnXT

- bY using (Ut+17 Vt+1) — (Uta Vt) — n(Vf(UtVtT)V;, Vf(UtV;f)TUt)

— What if we don't know the exact rank?

Demo



Conclusion

— This lecture considers low—rank model selection in Data Science applications

— While there are rigorous and efficient methods also in the convex domain
we followed the non—convex path, beyond hard thresholding methods

— We discussed some global convergence guarantees (under proper
initialization assumptions) and discussed about some open questions

Next lecture

— We will focus on the landscape of non—convex functions,
starting from simple cases (such as low—rankness), and moving towards
more generic scenaria



