COMP 414/514: Optimization – Algorithms, Complexity and Approximations

- In the previous lecture, we:
 - Started talking about non-convex optimization, where non-convexity is introduced by the constraints
 - We consider the special case of sparsity
 - We provide conditions that lead to global convergence guarantees

- In the previous lecture, we:
 - Started talking about non-convex optimization, where non-convexity is introduced by the constraints
 - We consider the special case of sparsity
 - We provide conditions that lead to global convergence guarantees
- For the next 2-3 lectures, we will consider (possibly) another case of non-convex constraints: **low-rank optimization**
 - We will provide motivation, background and alternative solutions
 - We will see that this structure provides various ways to be.. non-convex
 - We will focus on how we can **provably and efficiently solve** such problems

$$\min_{x} f(x)$$

s.t. $x \in C$

We will consider convex objectives..

min min management of the second seco

f(x)

..over non-convex constraints

S.t.

 $x \in C$

We will consider convex objectives.. f(x) ... over non-convex constraints

in 10 min 10 min

S.t.

- We will focus on the cases of (structured) sparsity and low-rankness

(But I open to other alternatives as we proceed)

Problem setting via an application


```
OPENQASM 2.0;
include "qelib1.inc";

qreg qr[5];
creg cr[5];
cx qr[3],qr[0];
cx qr[4],qr[3];
cx qr[2],qr[3];
cx qr[4],qr[1];
u3(0.139745784966679,0.0948307634768559,0.799402574081021) qr[2];
u3(0.0987633446591477,0.0737424336287251,0.850473826259255) qr[2];
cx qr[3],qr[0];
cx qr[3],qr[0];
cx qr[3],qr[2];
u3(0.477009776552717,0.865309927771640,0.260492310391959) qr[4];
u3(0.719704686403954,0.398823542224269,0.824844977148233) qr[0];
```


Problem setting via an application

- Goal: Validate the system is in the expected.. state, the computations are completed ..as expected

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succeq 0$
 - Some background:
- 1. Quantum computers can be described by their state they are in

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 1. Quantum computers can be described by their state they are in
- 2. The state of a quantum computer with q qubits is described by the **density matrix** in $\mathbb{C}^{2^q \times 2^q}$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 1. Quantum computers can be described by their state they are in
- 2. The state of a quantum computer with q qubits is described by the **density matrix** in $\mathbb{C}^{2^q \times 2^q}$
- 3. An algorithm is a sequence of operations that transform the state of the quantum computer; the final state is the answer to our question

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 1. Quantum computers can be described by their state they are in
- 2. The state of a quantum computer with q qubits is described by the **density matrix** in $\mathbb{C}^{2^q \times 2^q}$
- 3. An algorithm is a sequence of operations that transform the state of the quantum computer; the final state is the answer to our question
- 4. A quantum computer is a **non-deterministic machine**: we don't know the final state, unless we measure it (this is where Schroedinger's cat come into the picture:))

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 1. Quantum computers can be described by their state they are in
- 2. The state of a quantum computer with q qubits is described by the **density matrix** in $\mathbb{C}^{2^q \times 2^q}$
- 3. An algorithm is a sequence of operations that transform the state of the quantum computer; the final state is the answer to our question
- 4. A quantum computer is a **non-deterministic machine**: we don't know the final state, unless we measure it (this is where Schroedinger's cat come into the picture:))
- 5. But if we perform the steps "correctly", w.h.p. we measure the anticipated state

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succeq 0$
 - Some background:
- 6. Current implementations of quantum computers are more prototypes, rather not commercial

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 6. Current implementations of quantum computers are more prototypes, rather not commercial
- 7. We need verification tools to verify that quantum computers behave as anticipated

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 6. Current implementations of quantum computers are more prototypes, rather not commercial
- 7. We need verification tools to verify that quantum computers behave as anticipated
- 8. Quantum state tomography is one of such procedures: we can repeat the measurement many times, we keep the data, and we try to inverse the procedure to get the density matrix

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 6. Current implementations of quantum computers are more prototypes, rather not commercial
- 7. We need verification tools to verify that quantum computers behave as anticipated
- 8. Quantum state tomography is one of such procedures: we can repeat the measurement many times, we keep the data, and we try to inverse the procedure to get the density matrix
- 9. Classical quantum state tomography is like solving linear equations; if we have a $O(4^q)$ object to recover, we need that many measurements

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 6. Current implementations of quantum computers are more prototypes, rather not commercial
- 7. We need verification tools to verify that quantum computers behave as anticipated
- 8. Quantum state tomography is one of such procedures: we can repeat the measurement many times, we keep the data, and we try to inverse the procedure to get the density matrix
- 9. Classical quantum state tomography is like solving linear equations; if we have a $O(4^q)$ object to recover, we need that many measurements
- 10. When q = 20 or even 50, do the math

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 11. Why assume that the state is low-rank? These are called **pure** states can be considered as a first step before going into more mixed states.

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
 - Some background:
- 11. Why assume that the state is low-rank? These are called **pure** states can be considered as a first step before going into more mixed states.
- 12. Theoretically, we can assume rank-1 constructed density matrices; noise + other Phenomena increases the rank in practice

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
- How do we measure?

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succeq 0$
- How do we measure?

(Pauli operators)

1. Select: $A_i = \sigma_{i_1} \otimes \sigma_{i_2} \otimes \cdots \otimes \sigma_{i_q}$, where $\sigma_I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succeq 0$
- How do we measure?

(Pauli operators)

1. Select: $A_i = \sigma_{i_1} \otimes \sigma_{i_2} \otimes \cdots \otimes \sigma_{i_q}$, where

$$\sigma_I = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \quad \sigma_x = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}, \quad \sigma_y = egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}, \quad \sigma_z = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

2. Applying it to the system is equivalent (for the moment) with

$$y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
- How do we solve for $X^* \in \mathbb{R}^{p \times p}$, without any prior information?

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
- How do we solve for $X^* \in \mathbb{R}^{p \times p}$, without any prior information?

$$\min_{\substack{X \in \mathbb{R}^{p \times p} \\ X \in \mathbb{R}^{p \times p}}} \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t.
$$X \succeq 0, \text{ Tr}(X) \leq 1$$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succeq 0$
- How do we solve for $X^* \in \mathbb{R}^{p \times p}$, without any prior information?

$$\min_{\substack{X \in \mathbb{R}^{p \times p} \\ X \in \mathbb{R}^{p \times p}}} \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2 - X \text{ has } O(4^q) \text{ parameters}$$
s.t.
$$X \succeq 0, \text{ Tr}(X) \leq 1$$
- This means that we need that many measurements

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succ 0$
- What if we assume $X^* \in \mathbb{R}^{p \times p}$, is of **low rank**?

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t.
$$X \succeq 0, \text{Tr}(X) \leq 1, \text{rank}(X) \leq r$$

- Generative model: $y_i = \langle A_i, X^* \rangle + w_i = \text{Tr}(A_i X^*) + w_i$
 - $-A_i \in \mathbb{R}^{p \times p}$: features $-y_i \in \mathbb{R}$: responses $-w_i \in \mathbb{R}$: additive noise
- Disclaimer: quantum state tomography operates on complex numbers here, for simplicity, we assume real numbers
- Generative prior: $X^* \in \mathbb{R}^{p \times p}$ is rank-r and PSD: $\operatorname{rank}(X^*) = r \ll p, X^* \succeq 0$
- What if we assume $X^* \in \mathbb{R}^{p \times p}$, is of **low rank**?

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t.
$$X \succeq 0, \text{Tr}(X) \leq 1, \text{rank}(X) \leq r$$

- X has $O(2^q r)$ parameters
- If rank is small compared to ambient dimension, then there is hope

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t.
$$X \succeq 0, \text{Tr}(X) \leq 1, \text{rank}(X) \leq r$$

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t.
$$X \succeq 0, \text{Tr}(X) \leq 1, \text{rank}(X) \leq r$$

- Can we recover $X^* \in \mathbb{R}^{p \times p}$ from limited set of measurements?

RIP for Pauli operators

$$(1 - \delta) \|X\|_F^2 \le \|\mathcal{A}(X)\|_2^2 \le (1 + \delta) \|X\|_F^2, \quad \forall \text{ rank-} r \ X \in \mathbb{R}^{p \times p}$$
$$[\mathcal{A}(X)]_i = \text{Tr}(A_i, X)$$

(RIP also holds for (sub-)Gaussian matrices, Fourier, etc.)

- Similar to the sparsity case, RIP leads to convergence for various algos

Matrix sensing

(without the trace and PSD constraints)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t. $\operatorname{rank}(X) \leq r$

s.t.

Matrix sensing

(without the trace and PSD constraints)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t. $\operatorname{rank}(X) \leq r$

- Solution #1: convexification + proj. gradient descent

$$\min_{\substack{X \in \mathbb{R}^{p \times p}}} \quad \frac{\frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2}{\longrightarrow} \qquad X_{t+1} = \prod_{\|\cdot\|_* \leq \lambda} (X_t - \eta \nabla f(X_t))$$
s.t.
$$\|X\|_* \leq \lambda$$
 (Pros & Cons?)

Nuclear norm min.

(without the trace and PSD constraints)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t. $\operatorname{rank}(X) \leq r$

- Solution #1: convexification + proj. gradient descent

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2 \longrightarrow X_{t+1} = \prod_{\|\cdot\|_* \le \lambda} (X_t - \eta \nabla f(X_t))$$
s.t.
$$\|X\|_* \le \lambda$$
 (Pros & Cons?)

– Definition of the **nuclear norm**: $||X||_* = \sum_{i=1}^{\infty} \sigma_i(X)$

Nuclear norm min.

(Requires full SVD for its calculation)

Matrix sensing

(without the trace and PSD constraints)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$

s.t.
$$\operatorname{rank}(X) \leq r$$

Matrix sensing

(without the trace and PSD constraints)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{m} (y_i - \langle A_i, X \rangle)^2$$
s.t.
$$\operatorname{rank}(X) \leq r$$

- Solution #2: keep the rank-constraint + proj. gradient descent (Non-convex)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \langle A_i, X \rangle \right)^2 \longrightarrow X_{t+1} = \prod_{\text{rank}(X) \le r} \left(X_t - \eta \nabla f(X_t) \right)$$

s.t. $\operatorname{rank}(X) \leq r$

(Pros & Cons?)

Hard-thresholding

Matrix sensing

(without the trace and PSD constraints)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \langle A_i, X \rangle \right)^2$$
s.t. $\operatorname{rank}(X) \leq r$

- Solution #2: keep the rank-constraint + proj. gradient descent (Non-convex)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{m} (y_i - \langle A_i, X \rangle)^2$$

$$X_{t+1} = \prod_{\text{rank}(X) \le r} (X_t - \eta \nabla f(X_t))$$
s.t.
$$\operatorname{rank}(X) \le r$$
(Pros & Cons?)

- Definition of the projection onto low-rank matrices

$$\widehat{X} \in \min_{X} \frac{1}{2} ||X - Y||_{F}^{2}$$
s.t. $\operatorname{rank}(X) \leq r$

(Requires truncated SVD for its calculation)

Hard-thresholding

- Some questions:

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$

s.t. $\operatorname{rank}(X) \leq r$

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \langle A_i, X \rangle \right)^2$$

- Some questions:

- s.t. $\operatorname{rank}(X) \leq r$
- Q: "How easy it is to solve rank-constrained problems?"
- A: "Low-rankness makes problems exponentially hard to solve" (This assumes the most general case)

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \langle A_i, X \rangle \right)^2$$

- Some questions:

- s.t. $\operatorname{rank}(X) \leq r$
- Q: "How easy it is to solve rank-constrained problems?"
- A: "Low-rankness makes problems exponentially hard to solve" (This assumes the most general case)
- Q: "But isn't the problem underdetermined?"
- A: "Yes, without any constraints, the problem has infinite solutions"

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \langle A_i, X \rangle \right)^2$$

- Some questions:

- s.t. $\operatorname{rank}(X) \leq r$
- Q: "How easy it is to solve rank-constrained problems?"
- A: "Low-rankness makes problems exponentially hard to solve" (This assumes the most general case)
- Q: "But isn't the problem underdetermined?"
- A: "Yes, without any constraints, the problem has infinite solutions"

- Q: "Why then do we have hopes solving this problem?"
- A: "Similar to sparsity, under assumptions on average this problem can be solved in polynomial time"

(It is just projected gradient descent on low-rank constraints)

(It is just projected gradient descent on low-rank constraints)

$$X_{t+1} = H_r \left(X_t - \eta \nabla f(X_t) \right)$$

where
$$H_r(Z) \in \min_{X \in \mathbb{R}^{p \times p}} \|X - Z\|_F^2$$

s.t. $\operatorname{rank}(X) \leq r$

(It is just projected gradient descent on low-rank constraints)

$$X_{t+1} = H_r \left(X_t - \eta \nabla f(X_t) \right)$$

where
$$H_r(Z) \in \min_{X \in \mathbb{R}^{p \times p}} \|X - Z\|_F^2$$
 (Have we seen this before?) s.t. $\operatorname{rank}(X) \leq r$

(It is just projected gradient descent on low-rank constraints)

$$X_{t+1} = H_r \left(X_t - \eta \nabla f(X_t) \right)$$

where
$$H_r(Z) \in \min_{X \in \mathbb{R}^{p \times p}} \|X - Z\|_F^2$$
 (Have we seen this before?) s.t. $\operatorname{rank}(X) \leq r$

(It is just projected gradient descent on low-rank constraints)

- Matrix IHT:

$$X_{t+1} = H_r \left(X_t - \eta \nabla f(X_t) \right)$$

where
$$H_r(Z) \in \min_{X \in \mathbb{R}^{p \times p}} \|X - Z\|_F^2$$
 (Have we seen this before?) s.t. $\operatorname{rank}(X) \leq r$

- Now, imagine yourself implementing this.. What are the hyper-parameters?

(It is just projected gradient descent on low-rank constraints)

$$X_{t+1} = H_r \left(X_t - \eta \nabla f(X_t) \right)$$

where
$$H_r(Z) \in \min_{X \in \mathbb{R}^{p \times p}} \|X - Z\|_F^2$$
 (Have we seen this before?) s.t. $\operatorname{rank}(X) \leq r$ (If yes, how we solve it?)

- Now, imagine yourself implementing this.. What are the hyper-parameters?
 - "How do we set the step size?"
 - "How do we select the initial point? (it is non-convex after all)"
 - "What if we don't know the sparsity level?"
 - "Are there any other tricks we can pull-off?"

(It is just projected gradient descent on low-rank constraints)

$$X_{t+1} = H_r \left(X_t - \eta \nabla f(X_t) \right)$$

where
$$H_r(Z) \in \min_{X \in \mathbb{R}^{p \times p}} \|X - Z\|_F^2$$
 (Have we seen this before?) s.t. $\operatorname{rank}(X) \leq r$

- Now, imagine yourself implementing this.. What are the hyper-parameters?
 - "How do we set the step size?"
 - "How do we select the initial point? (it is non-convex after all)"
 - "What if we don't know the sparsity level?"
 - "Are there any other tricks we can pull-off?" (Answer: see previous Chapter)

Convexification vs. hard-thresholding in practice

Demo

The price of SVD

SVD(X) vs. $X \cdot U$, where $X \in \mathbb{R}^{m \times m}$, $U \in \mathbb{R}^{m \times r}$

The price of SVD

Non-PSD

$$X \in \mathbb{R}^{n \times p}$$

$$U \in \mathbb{R}^{n \times r}$$

$$V \in \mathbb{R}^{p \times r}$$

PSD

$$X \in \mathbb{R}^{n \times n}$$

$$U = V \in \mathbb{R}^{n \times r}$$

Whiteboard

- Some properties of the proof:
 - Initialization does matter: e.g., for PCA there are initializations that do not lead to convergence (More to come later on)

- Some properties of the proof:
 - Initialization does matter: e.g., for PCA there are initializations that do not lead to convergence (More to come later on)
 - After proper initialization, one can prove convergence to global minimum. Despite this, such convergence results are called **local convergence guarantees**

- Some properties of the proof:
 - Initialization does matter: e.g., for PCA there are initializations that do not lead to convergence (More to come later on)
 - After proper initialization, one can prove convergence to global minimum. Despite this, such convergence results are called **local convergence guarantees**
 - Often the theory dictates how to set the step size, in order to obtain convergence. For some cases it is a range of values, in other cases we just rely on a specific step size.

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \langle A_i, X \rangle \right)^2$$
s.t. $\operatorname{rank}(X) \leq r$

$$\min_{X \in \mathbb{R}^{p \times p}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, X \rangle)^2$$
s.t. $\operatorname{rank}(X) \leq r$

$$X = UV^{\top}$$

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{p \times r}} \quad \frac{1}{2} \sum_{i=1}^{\infty} \left(y_i - \left\langle A_i, UV^\top \right\rangle \right)^2$$

Non-convex!

$$\min_{U\in\mathbb{R}^{n imes r},V\in\mathbb{R}^{p imes r}}$$

$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \left\langle A_i, UV^{\top} \right\rangle \right)^2$$

Non-convex!

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{p \times r}}$$

$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \langle A_i, UV^{\top} \rangle)^2$$

No constraints!

$\min_{\substack{U\in\mathbb{R}^{n imes r},V\in\mathbb{R}^{p imes r}\ No \text{ constraints}!}} rac{1}{2}\sum_{i=1}^n \left(y_i-\left\langle A_i,UV^{ op} ight angle^2 ight)^2$

Non-convex!

- Key differences with PCA:
 - Number of observations less than number of parameters
 - Mapping is identity, but satisfies a restricted isometry property

$$\min_{\substack{X \in \mathbb{R}^m \times n \\ \operatorname{rank}(X) \leq r}} f(X)$$

$$\min_{\substack{X \in \mathbb{R}^m \times n \\ \operatorname{rank}(X) \leq r}} f(X)$$

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f(UV^{\top})$$

- Key differences with matrix sensing:
 - Restricted isometry might be substituted by restricted strong cvx/smoothness
 - Restricted strong convexity might not hold

How would we solve this problem?

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i) \cdot V_i$$

$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

How would we solve this problem?

Gradient of f w.r.t. U

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i$$

$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

Gradient of f w.r.t. V

$$U_{i+1} = U_i - \eta
abla f(U_i V_i^ op) \cdot V_i$$
Select initial point $V_{i+1} = V_i - \eta
abla f(U_i V_i^ op)^ op \cdot U_i$

$$U_{i+1} = U_i - \eta
abla f(U_i V_i^ op) \cdot V_i$$
Select initial point $V_{i+1} = V_i - \eta
abla f(U_i V_i^ op)^ op \cdot V_i$

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^{\top}) \cdot V_i$$
 $V_{i+1} = V_i - \eta \nabla f(U_i V_i^{\top})^{\top} \cdot U_i$

$$U_{i+1} V_{i+1}^{\mathsf{T}} = \operatorname{rank-}r \text{ matrix}$$

- We solve:

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f(UV^{\top})$$

via:

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

- We solve:

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f(UV^{\top})$$

via:

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

Does $X \mapsto UV^{\top}$ introduce new global and local minima?

- We solve:

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f(UV^{\top})$$

via:

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$

$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

Does $X \mapsto UV^{\mathsf{T}}$ introduce new global and local minima?

Does initialization play key role?

- We solve:

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f(UV^{\top})$$

via:

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$

$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

Does $X \mapsto UV^{\top}$ introduce new global and local minima?

Does initialization play key role?

What about (local) convergence under assumptions on f?

- We solve:

$$\mathcal{L}(TTT)$$

$$\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} f(UV^{\top})$$

via:

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$

$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

Does $X \mapsto UV^{\top}$ introduce new global and local minima?

Does initialization play key role?

What about (local) convergence under assumptions on f?

How to initialize in practice (U_0, V_0) ?

- Factors at X^* are not unique

- Factors at X^* are not unique

$$X^{\star} = U^{\star}V^{\star\top} = U^{\star}R \cdot R^{\top}V^{\star\top} = \widehat{U}^{\star}\widehat{V}^{\star\top}$$

for all R such that $RR^{\top} = I$

- Factors at X^* are not unique

$$X^{\star} = U^{\star}V^{\star\top} = U^{\star}R \cdot R^{\top}V^{\star\top} = \widehat{U}^{\star}\widehat{V}^{\star\top}$$

for all R such that $RR^{\top} = I$

- Example:

$$f(X) = \tfrac{1}{2} \cdot \|y - \operatorname{vec}(A \cdot X)\|_2^2$$

where
$$X^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 Unique! (r=1)

- Factors at X^* are not unique

$$X^{\star} = U^{\star}V^{\star\top} = U^{\star}R \cdot R^{\top}V^{\star\top} = \widehat{U}^{\star}\widehat{V}^{\star\top}$$

for all R such that $RR^{\top} = I$

- Example:

$$f(X) = \frac{1}{2} \cdot \|y - \operatorname{vec}(A \cdot X)\|_2^2$$

where
$$X^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 Unique! (r=1)

$$U^* = [1 \ 1]^\top \text{ or } [-1 \ -1]^\top$$

- Factors at X^* are not unique

$$X^\star = U^\star V^{\star \top} = U^\star R \cdot R^\top V^{\star \top} = \widehat{U}^\star \widehat{V}^{\star \top}$$

for all R such that $RR^{\top} = I$

- Example:

$$f(X) = \frac{1}{2} \cdot \|y - \operatorname{vec}(A \cdot X)\|_2^2$$

where
$$X^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 Unique! (r=1)

$$U^{\star} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top} \text{ or } \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$

- Factors at X^* are not unique

$$X^{\star} = U^{\star}V^{\star\top} = U^{\star}R \cdot R^{\top}V^{\star\top} = \widehat{U}^{\star}\widehat{V}^{\star\top}$$

for all R such that $RR^{\top} = I$

- Example:

$$f(X) = \frac{1}{2} \cdot \|y - \operatorname{vec}(A \cdot X)\|_2^2$$

where
$$X^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 Unique! (r=1)

$$U^{\star} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top} \text{ or } \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$

- Factors at X^* are not unique

$$X^\star = U^\star V^{\star \top} = U^\star R \cdot R^\top V^{\star \top} = \widehat{U}^\star \widehat{V}^{\star \top}$$

for all R such that $RR^{\top} = I$

- Example:

$$f(X) = \frac{1}{2} \cdot \|y - \operatorname{vec}(A \cdot X)\|_2^2$$

where
$$X^* = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 Unique! (r=1)

$$U^{\star} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top} \text{ or } \begin{bmatrix} -1 & -1 \end{bmatrix}^{\top}$$

- Factors at X^* are not unique

$$X^{\star} = U^{\star}V^{\star\top} = U^{\star}R \cdot R^{\top}V^{\star\top} = \widehat{U}^{\star}\widehat{V}^{\star\top}$$
 for all R such that $RR^{\top} = I$

$$- \text{Example:}$$

$$X \mapsto UV^{\top}_{1} \text{ "ruins" convexity } 2$$

$$X \mapsto V^{\top}_{1} \text{ "ruins" convexity } 2$$

$$V^{\star}_{1} = 1 \quad V^{\star}_{1} \text{ Unique!}$$

$$V^{\star}_{2} = 1 \quad V^{\star}_{1} \text{ Unique!}$$

$$V^{\star}_{1} = [1 \quad 1]^{\top} \text{ or } [-1 \quad -1]^{\top}$$

$$V = [u_{1} \quad u_{2}]^{\top} \quad V^{\star\top}_{2} \text{ or } [u_{1} \quad u_{2}]^{\top}_{2} \text{ or } [u_{2} \quad u_{2}]^{\top}_{2} \text{ or } [u_{1} \quad u_{2}]^{\top}_{2} \text{ or } [u_{2} \quad u_{2}]^{\top}_{2} \text{ or } [u_{1} \quad u_{2}]^{\top}_{2} \text{ or } [u_{2} \quad$$

 $f(UU^{\top}) = \frac{1}{2} \|y - \operatorname{vec}(A \cdot UU^{\top})\|_2^2$ $\log f(UU^{ op})$ u_2

- Factorization might also introduce local minima

- Factorization might also introduce local minima
- Example: Weighted low-rank approximation

$$f(uu^{\top}) = \sum_{ij} W_{ij} \cdot (X_{ij}^{\star} - u_i u_j)^2 \quad \text{where} \quad X^{\star} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad W = \begin{bmatrix} 100 & 1 \\ 1 & 100 \end{bmatrix}$$

- Factorization might also introduce local minima
- Example: Weighted low-rank approximation

-0.5

 u_1

-0.5

- Factorization might also introduce local minima
- Example: Weighted low-rank approximation

-0.5

 u_1

-0.5

- Factorization might also introduce local minima
- Example: Weighted low-rank approximation

-0.5

 u_1

- Factorization might also introduce local minima
- Example: Weighted low-rank approximation

- Even simple objectives can be hard to handle
- Proper initialization is

- General recipe

norm: abuse of notation to indicate a general class of distance functions

$$||x_{t+1} - x^*||_{\sharp}^2 = ||x_t - \eta \nabla f(x_t) - x^*||_{\sharp}^2$$

$$= ||x_t - x^*||_{\sharp}^2 - 2\eta \langle \nabla f(x_t), x_t - x^* \rangle + \eta^2 ||\nabla f(x_t)||_{\sharp}^2$$

- General recipe

norm: abuse of notation to indicate a general class of distance functions

$$||x_{t+1} - x^*||_{\sharp}^2 = ||x_t - \eta \nabla f(x_t) - x^*||_{\sharp}^2$$

$$= ||x_t - x^*||_{\sharp}^2 - 2\eta \langle \nabla f(x_t), x_t - x^* \rangle + \eta^2 ||\nabla f(x_t)||_{\sharp}^2$$

(This term dictates the distance from previous iteration)

- General recipe

norm: abuse of notation to indicate a general class of distance functions

$$||x_{t+1} - x^{\star}||_{\sharp}^{2} = ||x_{t} - \eta \nabla f(x_{t}) - x^{\star}||_{\sharp}^{2}$$

$$= ||x_{t} - x^{\star}||_{\sharp}^{2} - 2\eta \left\langle \nabla f(x_{t}), x_{t} - x^{\star} \right\rangle + \eta^{2} ||\nabla f(x_{t})||_{\sharp}^{2}$$
(This term dictates the distance from previous to cancel this term)

iteration)

- General recipe

norm: abuse of notation to indicate a general class of distance functions

$$||x_{t+1} - x^{\star}||_{\sharp}^{2} = ||x_{t} - \eta \nabla f(x_{t}) - x^{\star}||_{\sharp}^{2}$$

$$= ||x_{t} - x^{\star}||_{\sharp}^{2} - 2\eta \left\langle \nabla f(x_{t}), x_{t} - x^{\star} \right\rangle + \eta^{2} ||\nabla f(x_{t})||_{\sharp}^{2}$$
(This term dictates the distance from previous iteration) (If we can bound this term to cancel this term)

- Where can we actively intervene? By choosing appropriate step size!

- What is the geometric intuition of $\langle \nabla f(x_t), x_t - x^* \rangle$?

 x_t

Nevertheless, can we hope for some guarantees?

- What is the geometric intuition of $\langle \nabla f(x_t), x_t - x^* \rangle$?

Nevertheless, can we hope for some guarantees?

- What is the geometric intuition of $\langle \nabla f(x_t), x_t - x^* \rangle$?

Regulatory condition

- Reminder:

$$||x_{t+1} - x^*||_{\sharp}^2 = ||x_t - \eta \nabla f(x_t) - x^*||_{\sharp}^2$$

$$= ||x_t - x^*||_{\sharp}^2 - 2\eta \langle \nabla f(x_t), x_t - x^* \rangle + \eta^2 ||\nabla f(x_t)||_{\sharp}^2$$

Regulatory condition

- Reminder:

$$||x_{t+1} - x^*||_{\sharp}^2 = ||x_t - \eta \nabla f(x_t) - x^*||_{\sharp}^2$$

$$= ||x_t - x^*||_{\sharp}^2 - 2\eta \langle \nabla f(x_t), x_t - x^* \rangle + \eta^2 ||\nabla f(x_t)||_{\sharp}^2$$

- We would like:

$$\langle \nabla f(x_t), x_t - x^* \rangle \ge \alpha \|x_t - x^*\|_{\sharp}^2 + \beta \|\nabla f(x_t)\|_{\sharp}^2$$

Regulatory condition

- Reminder:

$$||x_{t+1} - x^*||_{\sharp}^2 = ||x_t - \eta \nabla f(x_t) - x^*||_{\sharp}^2$$

$$= ||x_t - x^*||_{\sharp}^2 - 2\eta \langle \nabla f(x_t), x_t - x^* \rangle + \eta^2 ||\nabla f(x_t)||_{\sharp}^2$$

- We would like:

$$\langle \nabla f(x_t), x_t - x^* \rangle \ge \alpha \|x_t - x^*\|_{\sharp}^2 + \beta \|\nabla f(x_t)\|_{\sharp}^2$$

for sufficient $\alpha, \beta \geq 0$ such that

$$||x_{t} - x^{*}||_{\sharp}^{2} - 2\eta \langle \nabla f(x_{t}), x_{t} - x^{*} \rangle + \eta^{2} ||\nabla f(x_{t})||_{\sharp}^{2}$$

$$\leq ||x_{t} - x^{*}||_{\sharp}^{2} - c\alpha\eta ||x_{t} - x^{*}||_{\sharp}^{2} - (c\eta\beta - \eta^{2}) ||\nabla f(x_{t})||_{\sharp}^{2}$$

C is problem dependent

Why should we hope for such a condition to hold?

Why should we hope for such a condition to hold?

- We know from convex analysis that

"For smooth and strongly convex functions:" $\forall x, y$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

Why should we hope for such a condition to hold?

- We know from convex analysis that

"For smooth and strongly convex functions:" $\forall x, y$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

- Set $y = x^*$ and since $\nabla f(x^*) = 0$

$$\langle \nabla f(x), x - x^* \rangle \ge \frac{\mu L}{\mu + L} \|x - x^*\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x)\|_2^2$$

and compare with

$$\langle \nabla f(x_t), x_t - x^* \rangle \ge \alpha \|x_t - x^*\|_{\sharp}^2 + \beta \|\nabla f(x_t)\|_{\sharp}^2$$

Local convergence guarantees for UU^{\top}

- Define distance function:

Dist
$$(U, U^*R) := \min_{R} \|U - U^*R\|_F$$

Local convergence guarantees for UU^{\top}

- Define distance function:

Dist
$$(U, U^*R) := \min_{R} \|U - U^*R\|_F$$

- Local convergence: we assume we start from a sufficiently good initial point

Whiteboard

Main result: Local convergence guarantees

 $\cdot F$ is convex and differentiable

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

THEOREM: LOCAL CONVERGENCE

If f is a "nice" function and (U_i, V_i) are **sufficiently** close to (U^*, V^*) , then **non-convex** alternating gradient descent **i)** converges to (U^*, V^*) , and **ii)** achieves the same convergence guarantees with convex optimization:

Main result: Local convergence guarantees

 $\cdot F$ is convex and differentiable

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

THEOREM: LOCAL CONVERGENCE

If f is a "nice" function and (U_i, V_i) are **sufficiently** close to (U^*, V^*) , then **non-convex** alternating gradient descent **i)** converges to (U^*, V^*) , and **ii)** achieves the same convergence guarantees with convex optimization:

i.e., in $O\left(1/\varepsilon\right)$ or $O\left(\log 1/\varepsilon\right)$ iter., we have $f(\widehat{U}\widehat{V}^{\top}) - f(U^{\star}V^{\star\top}) \leq \varepsilon$ (just smooth) (strongly convex)

Main result: Local convergence guarantees

f is convex and differentiable

$$U_{i+1} = U_i - \eta \nabla f(U_i V_i^\top) \cdot V_i^\top$$
$$V_{i+1} = V_i - \eta \nabla f(U_i V_i^\top)^\top \cdot U_i$$

THEOREM: LOCAL CONVERGENCE

If f is a "nice" function and (U_i, V_i) are **sufficiently** close to (U^*, V^*) , then **non-convex** alternating gradient descent **i)** converges to (U^*, V^*) , and **ii)** achieves the same convergence guarantees with convex optimization:

i.e., in
$$O\left(1/\varepsilon\right)$$
 or $O\left(\log 1/\varepsilon\right)$ iter., we have
$$f(\widehat{U}\widehat{V}^{\top}) - f(U^{\star}V^{\star\top}) \leq \varepsilon$$
 (just smooth) (strongly convex)

Impact in practice: Theory...

- ...provides insights for step size selection, proper initialization,
- ...covers cases where we do not know the rank parameter a priori,
- \cdot ...provides statistical guarantees for specific f.

Our proof strategy

Show how the algorithm behaves locally

i.e., if we are sufficiently close to the optimal point.

Our proof strategy

Show how the algorithm behaves locally

i.e., if we are sufficiently close to the optimal point.

Provide proper initialization

i.e., how to gets close to points where we know our algorithm behaves well

Our proof strategy

Show how the algorithm behaves locally

i.e., if we are sufficiently close to the optimal point.

Provide proper initialization

i.e., how to gets close to points where we know our algorithm behaves well

Convergence to global minimum for non-convex optimization!

Goal: Initialize such that (U_0,V_0) is sufficiently close to (U^\star,V^\star)

Goal: Initialize such that (U_0,V_0) is sufficiently close to (U^\star,V^\star)

Proposed initialization:

- Compute $~X_0 \propto
 abla f(0)$
- Perform one SVD calculation:

$$X_0 = U_0 V_0^{\top}$$

Original space of X

Factored space

Goal: Initialize such that (U_0,V_0) is sufficiently close to (U^\star,V^\star)

Proposed initialization:

- Compute $~X_0 \propto
 abla f(0)$
- Perform one SVD calculation:

$$X_0 = U_0 V_0^{\top}$$

Original space of X

Factored space

THEOREM: GLOBAL CONVERGENCE

If the function f is "well-conditioned", then non-convex alternating gradient descent converges to the global optimum / optima.

Condition number: ratio of smoothness over strong convexity parameters

Goal: Initialize such that (U_0,V_0) is sufficiently close to (U^\star,V^\star)

Proposed initialization:

- Compute $\ X_0 \propto
 abla f(0)$
- Perform one SVD calculation:

$$X_0 = U_0 V_0^{\top}$$

PRACTICAL IMPACT

One SVD vs. SVD per iteration!

(non-convex)

(convex)

.. by using
$$(U_{t+1}, V_{t+1}) = (U_t, V_t) - \eta(\nabla f(U_t V_t^{\top}) V_t, \nabla f(U_t V_t)^{\top} U_t)$$

.. by using
$$(U_{t+1}, V_{t+1}) = (U_t, V_t) - \eta(\nabla f(U_t V_t^{\top}) V_t, \nabla f(U_t V_t)^{\top} U_t)$$

- There are initializations that come with some convergence guarantees

$$(U_0, V_0) = \text{SVD}\left(-\nabla f(0_{n \times p})\right)$$

..the guarantees are weak, but often it works in practice!

(Often called spectral method for initialization)

.. by using
$$(U_{t+1}, V_{t+1}) = (U_t, V_t) - \eta(\nabla f(U_t V_t^{\top}) V_t, \nabla f(U_t V_t)^{\top} U_t)$$

- There are initializations that come with some convergence guarantees

$$(U_0, V_0) = \text{SVD}\left(-\nabla f(0_{n \times p})\right)$$

..the guarantees are weak, but often it works in practice!

(Often called spectral method for initialization)

- What about random initialization?

.. by using
$$(U_{t+1}, V_{t+1}) = (U_t, V_t) - \eta(\nabla f(U_t V_t^{\top}) V_t, \nabla f(U_t V_t)^{\top} U_t)$$

- There are initializations that come with some convergence guarantees

$$(U_0, V_0) = \text{SVD}\left(-\nabla f(0_{n \times p})\right)$$

..the guarantees are weak, but often it works in practice!

(Often called spectral method for initialization)

- What about random initialization?
- Constant step size vs. adaptive step size (Open question for specific f)

.. by using
$$(U_{t+1}, V_{t+1}) = (U_t, V_t) - \eta(\nabla f(U_t V_t^{\top}) V_t, \nabla f(U_t V_t)^{\top} U_t)$$

- What if we don't know the exact rank? (Open question)

.. by using
$$(U_{t+1}, V_{t+1}) = (U_t, V_t) - \eta(\nabla f(U_t V_t^{\top}) V_t, \nabla f(U_t V_t)^{\top} U_t)$$

- What if we don't know the exact rank? (Open question)

Demo

Conclusion

- This lecture considers low-rank model selection in Data Science applications
- While there are rigorous and efficient methods also in the convex domain we followed the **non-convex path**, beyond hard thresholding methods
- We discussed some global convergence guarantees (under proper initialization assumptions) and discussed about some open questions

Next lecture

- We will focus on the landscape of non-convex functions, starting from simple cases (such as low-rankness), and moving towards more generic scenaria