
Review of: Simultaneously Structured Models
With Application to Sparse and Low-Rank Matrices

Andersen Chang 1

1. Introduction
One of the most common goals of data science and machine
learning is to recover a true signal from noisy observations.
In fact, one might say that this is what the whole foundation
of statistics is built on. In order to do this, often times it is
assumed that this true signal follows some set of structural
constraints, such as sparsity, low-rankness, time consistency,
or blockedness. This helps to simplify the model for ease
of interpretation, prevent overfitting, and potentially reduce
the number of samples required to find an estimate. While it
is often more intuitively simple to pose this as a constrained
optimization problem, in practice, the structural constraints
are commonly imposed by using a penalized objective func-
tion, i.e.

θ̂ = arg min
θ∈Θ

L(θ|A) + λp(θ)

where L(θ) is a loss function between the observed and
predicted responses, p(θ) is a non-negative function that
imposes adherence to the desired structure, and λ is a hyper-
parameter that controls the balance between regularization
and prediction accuracy. In more complicated models and
specific applications, multiple structures can be simultane-
ously imposed on a single estimated signal. For example,
(Chandrasekaran et al., 2010) utilizes a sparse plus low rank
structure in matrix decomposition in order to fit latent vari-
able graphical models, which can be used in contexts such
as fMRI and calcium imaging. (Grasedyck et al., 2013)
utilizes multiple low rank structures in order to fit matrix
tensor models with low Tucker rank, a model which is often
used in physics and computational finance.

Of course, being the intellectual, brilliant, wizened, and
principled data scientists that we all are, we are not satisfied
with simply getting point estimates of model parameters
from a black box model and algorithm and accepting them
as correct. No, we also demand some characterization of
the precision of the estimate as well. Typically, especially in
the context of papers written for top tier statistics journals,
this comes in the form of some kind of theoretical guaran-

1Department of Statistics, Rice University, Houston, Texas.
Correspondence to: Andersen Chang <atc7@rice.edu>.

514 Final Report

tee such as asymptotic consistency or finite sample error
bounds. In the paper ”Simultaneously Structured Models
With Application to Sparse and Low-Rank Matrices,” by
Samet Oymak, Amin Jalali, Maryam Fazel, Yonina C. Eldar,
and Babak Hassibi, the performance of recovering signals
with multiple structural constraints is studied. Specifically,
the authors derive theoretical probabilistic finite sample per-
formance bounds in terms of sample complexity for both the
general case of arbitrary simultaneously structured models
as well as the specific case of a simultaneously sparse and
low rank signal matrix.

One particular question the authors attempt to answer in the
paper is whether using multiple simultaneous structures can
reduce the sample complexity for obtaining a globally opti-
mal estimate. It has been shown in many previous cases that
adding one structural constraint to an unconstrained prob-
lem can reduce the sample complexity; one trivial example
of this is adding the `1 Lasso penalty to a linear regres-
sion problem, which then allows one to get a consistent
estimator even in the case where the number of observa-
tions is less than the number of model parameters. To this
end, the authors show new theoretical results, as well as
results from previous literature, for both convex and non-
convex optimization problems corresponding to different
simultaneously structured models.

2. Background
In this paper, the authors consider the situation in which
we observe a signal X ∈ Rn×d, possibly perturbed by a
possibly random linear measurement matrix A ∈ Rm×n.
(The exact perturbation can vary by context; for arbitrary
cases, the operation is denoted as A(X). Specific defini-
tions of A(X) are listed as necessary below.) The goal is to
find the true signal X0, where it is assumed that X0 follows
multiple simultaneous structural constraints. The authors
note various specifically useful norms that can be added to
loss functions in order to induce structure, including the `1
norm for sparsity, the `1,2 norm for column sparsity, and
the nuclear norm for low-rankness. Notably, these are con-
sidered in the literature to be convex relaxations of the `0,
`0,2, and rank(X) penalties, respectively. The latter set
of penalties allow for precise control of the desired spar-

Review of: Simultaneously Structured Models

sity level or rank. However, they are nonconvex penalties,
meaning that it is in general much more difficult to find
optimal solutions algorithmically using these penalties. The
former set of penalties, on the other hand, are convex and
therefore simple to optimize via projected gradient descent
methods such as proximal operators. The downside is that it
can be difficult to control the exact desired structure of the
model estimate due to the fact that these norms depend on
the magnitude of the parameters.

To aid in the development and clarity of the theory for the
paper, the authors also define some extra concepts and no-
tations that are used in the rest of this paper (and literature
review.) For a vector x or matrix X, the normalized versions
are denoted as x = x

‖x‖2 and X = X
‖X‖F , respectively. The

set of all possible subgradients for an arbitrary norm ‖‖ and
vector x is denoted as ∂‖x‖ and is called the subdifferen-
tial. The minimum absolute-valued correlation between the
vector x and elements of a set S is defined as:

ρ(x, S) =
‖x‖

supg∈S ‖g‖2
.

For this context, the correlation quantity is particularly rel-
evant for the set S = ∂‖x‖, i.e. the subdifferential set
mentioned above. The local Lipschitz constant for a given
vector and norm is defined as L = supg∈∂‖x‖ ‖g‖2, i.e. the
largest magnitude subgradient in the set of subdifferentials
for a particular norm. Lastly, we define κ = ‖x‖

L (do not
think of this as the typical condition number.)

2.1. Previous Work

The authors cite several recent previous works that have
addressed the same issue of comparing the sample com-
plexity for convex programs to their nonconvex counter-
parts. Specifically, these papers have looked at performance
in different cases of structural constraints, including low-
rankness, sparsity, and decomposition into low rank plus
sparse matrices for square matrices (Candes & Plan, 2010;
Candes et al., 2006; Wright et al., 2013). The results of
these works are summarized in Table 1; in this particular set-
ting, n is the number of rows and columns, k is the desired
sparsity, and r is the desired rank, when applicable. This
current paper looks to create a generalization of these previ-
ous results to arbitrary sets of structures and corresponding
norms. As an example, it then provides results to a specific
case that has not been analyzed before, namely the sparse
and low-rank case.

The authors specifically note here that the convex recovery
programs have already been shown to perform worse in
these situations compared to the nonconvex versions. An
important result of this paper will show that, from a prob-
abilistic standpoint, for low rank and sparse matrices, the
nonconvex recovery program will require a sample com-

Table 1. Sample complexity results from previous lit for recovering
k-sparse and/or r-rank signals from a signal matrix X ∈ Rn×n.

Structure Nonconvex Convex
Sparse O(k) O(k log n

k
)

Low-rank O(rn) O(rn)
Low-rank + Sparse N/A O((rn+ k) log2(n))

plexity of O(r(k1 + k2) log n) (where k1 and k2 are the
row and column sparsity, respectively), while the convex
recovery program has a sample complexity of Ω(rn), where
Ω(.) denotes the best case complexity.

3. Main Results
In this section, I describe the important theorems that the
authors present in the paper. Included here are results for the
minimum number of samples required to ensure that there
is some probability of correct recovery for the general case
as well as for the sparse and low rank application. There
are also more theorems, lemmas, and propositions that are
presented in the paper, but these tend to either be special
cases of the main theorems or statements used to prove the
main theorems which are not formally proven themselves.

For the theories in the paper, the authors assume that the
recovery a particular signal x0 with multiple simultaneous
structures S1, S2, . . . , Sτ can be thought of as the minimiza-
tion of a function of a set of norms h(‖x‖(i)), i ∈ 1, . . . , τ
among all feasible points, i.e. where A(x) = A(x0). The
authors define a vector-valued convex recovery program as
the optimization problem:

minimize f(x) = h(‖x‖(1), ‖x‖(2), . . . , ‖x‖(τ))

s.t. A(x) = A(x0)

where h is convex and nondecreasing with respect to all
‖x‖(1), ‖x‖(2), . . . , ‖x‖(τ).

3.1. Deterministic Failure

Using the concept of Pareto optimality for convex functions,
the authors explain that there exists a minimum number of
measurements required to recover the true signal for the
convex recovery programs because, without having a suffi-
cient number of measurements, the true signal will not lie on
the Pareto optimal curve. Armed with this concept, the au-
thor present Theorem 3.1, which quantifies the lower bound
on the number of measurements required to prevent the
deterministic failure of the vector-valued convex recovery
program.

Theorem 3.1 Suppose that we have

ρ(x0, f(x0))

(
:=

‖x0‖
supg∈∂‖x0‖ ‖g‖2

)
>
‖Ax0‖2
σmin(AT)

.

Review of: Simultaneously Structured Models

Then x0 is not a minimizer of the vector-valued convex
recovery program.

Intuitively, what Theorem 3.1 tells us is that, for any par-
ticular problem, we need more samples if the subgradients
of f(x) = h(‖x‖(1), ‖x‖(2), . . . , ‖x‖(τ)) are closer to the
direction that x0 is from the origin. This is in line with what
we would expect geometrically: if the direction of the gradi-
ent is close to the direction that the signal is in, then a small
step in the direction of the gradient will lead to a relatively
larger change in the location of the estimate, meaning that
it will be more numerically unstable. Thus, it makes sense
that one would need more measurements for subgradients
that are more aligned with the true signal.

The authors also emphasize that the inequality presented in
Theorem 3.1 is deterministic, even when applied to random
measurement ensembles. It is also mentioned here and later
on in the paper that the bound from Theorem 3.1 may not
be a tight bound or applicable in all cases. In particular, the
bound is meaningless if m > n, since the matrix AT ∈
Rm×n will have at least one linearly dependent column by
definition, meaning that σmin(AT) = 0 and that the right
side of the inequality is infinite.

3.1.1. UPPER AND LOWER BOUNDS

Using the general result of Theorem 3.1, one can derive
specific bounds on the number of measurements required
depending on the problem. Here, the authors bound the
inequality of Theorem 3.1 in two separate ways. The left
side of the inequality can be upper bounded in order to find
the minimum value of ‖Ax0‖2

σmin(AT)
needed to guarantee no de-

terministic failure, or the right side of the inequality can be
lower bounded to find the maximum value of ρ(x0, ∂‖x0‖)
needed to guarantee no deterministic failure. Propositions
3.1, 4.1, and 4.2, as well as Theorem 3.2, deal with the for-
mer of the two. Proposition 3.1 showing the bound for the
general case and Theorem 3.2 showing the lower bound for
(sub)Gaussian entries. Proposition 4.1 and 4.2 deal specif-
ically with linear and quadratic Gaussian measurements,
respectively.

Proposition 3.1 Let Li = supg∈∂‖x0‖(i) ‖g‖2 be the lo-

cal Lipschitz constant and κi = ‖x̄0‖
Li

for the norms
i ∈ 1, 2, . . . , τ in a simultaneously structured model. Let
κmin = min{κi}. We then have that:

• ρ(x0, ∂f(x0)) > κmin,
∀f = h(‖x‖(1), ‖x‖(2), . . . , ‖x‖(τ)).

• Let f =
∑
λi‖x‖(i) for λi > 0. Let λ̄i = λiLi∑

λiLi
.

Then ρ(x0, ∂f(x0)) >
∑
λ̄iκi

Theorem 3.2 Let M ∈ Rn be a closed convex set and

h ∈ Rn be an independent standard Gaussian vector. De-
fine D(M) as the Gaussian distance ofM, i.e.D(M) =
E[infv∈M ‖h−v‖2], and D̄(M) is the standardized Gaus-
sian distance Suppose A has independent standard Gaus-
sian entries. The signal x0 will fail to be recovered with
probability 1 − 10 exp(− 1

16 min{mlow, (1 − D̄(C))2n)},
where

mlow =
(1− D̄(C))nκmin

100
.

Proposition 4.1 Suppose the linear measurement matrix A
has rows comprised of i.i.d sub-Gaussian vectors. Then,
with probability 1− 4 exp(−c2m) for m ≤ c1n,

‖Ax0‖2
σmin(AT)

≤ 2m

n

for c1, c2 > 0, n = d2

Proposition 4.3 Suppose we observe quadratic measure-
ments A(x0) of a signal X0 = yyT , i.e. A(x0)ij =
ziyiyjz

T
j where z are independent standard Gaussian vec-

tors or independent uniform vectors on a sphere of radius√
d. Then, with probability 1− 2ed−2 for m ≤ c1d

log d ,

‖A(x0)‖2
σmin(AT)

≤ c2
√
m log d

d

for c1, c2 > 0, n = d2.

The important thing to note in both Theorems 3.1 and 3.2
is that the lower bounds on ρ are functions of the quantity
κmin. This means that, for any combination of norms in
f(x0) = h(‖x‖(1), ‖x‖(2), . . . , ‖x‖(τ)), the lower bound
of ρ(x0, ∂f(x0)) is at best the same as the lower bound
of ρ(x0, ∂h(x‖x‖(i))) for the single norm associated with
κmin. Thus, for the vector-valued convex recovery program,
the number of measurements required to recover the true
signal with greater than 0 probability for a simultaneously
structured model is at best the same as the number of mea-
surements required to recover the true signal with greater
than 0 probability for a model with only one of the structures.
From this, the authors conclude that adding multiple simul-
taneous structures to a convex recovery program does not in
fact actually reduce the number of samples required to get a
proper estimate of the true signal. This discovery motivates
much of the work later on in the paper, in which the authors
show that the performance of the corresponding nonconvex
problems actually do improve on the performance.

Theorem 5.1 and Proposition 5.1 address the upper bounds
of the right hand side of the inequality of Theorem 3.1; the
former is for the general case, while the latter is specifically
for sparse and low rank matrix recovery. Intuitively, the
general upper bound from Theorem 5.1 implies that the cor-
relation between the true signal and the subgradients for the

Review of: Simultaneously Structured Models

simultaneously structured models can not exceed the total
distance covered by the weighted sum of the normalized
subgradients themselves. Geometrically, this means that
the worst case scenario is when the subgradient is aligned
the signal itself, relative to the origin; thus, the correlation
is bounded by the total distance of the weighted sum of
normalized subgradients themselves.

Theorem 5.1 Suppose the measurement matrix A has
rows of independent standard Gaussians. Let f(x) =∑
λi‖x‖(i). Let λ̄i =

λiα
−1
i∑
α−1

i

for αi > 0. Define

mup =
(∑

λ̄iD(αi)∂‖x0‖(i)
)2

.

If m ≥ (
√
mup + t)2 + 1, then the convex recovery

program will recover the true signal x0 with probability
1− 2 exp(− t

2

2).

Proposition 5.1 Suppose the linear measurement matrix A
has rows of independent standard Gaussians, and the signal
X0 ∈ Rd×d is rank r < d and has a k × k submatrix of
nonzero entries. Let f(X) = λ1‖X‖1 + λ2‖X‖∗, where
λ1 = β

√
log(d/k), λ2 = (1 − β)

√
d. Then, X0 can be

uniquely recovered with probability 1−2 exp(t
2

2) whenever

m ≥

(
2βk

√
log

ed

k
+ (1− β)

√
6dr −+2d+ t

)2

+ 1.

3.2. Application to Sparse and Low Rank Matrices

Here, the authors apply the general results from above to the
case of recovering a true signal which with simultaneously
sparse and low rank. To do this, they first define the general
recovery program, which is similar to the convex version
mentioned above:

minimize f(x) = h(‖x‖(1), ‖x‖(2), . . . , ‖x‖(τ))

s.t. A(x) = A(x0).

For the general program, it is no longer assumed that h is
convex with respect to all norms; this is done in order to use
the concept for both a convex and nonconvex representation
of the simultaneous sparse and low rank recovery problem.
Theorem 3.3 below applies Theorem 3.1 for this problem. It
presents results for three different scenarios: one for a gen-
eral matrix structure, one for a positive semi-definite matrix
where the signal is generally sparse, and one for a positive
semi-definite matrix where the signal is specifically column
sparse. For reference, the norms used and the measurement
requirements for the different convex recovery programs to
recover the individual structures mentioned in Theorem 3.3
are listed in Table 2. The full derivations for Theorem 3.3
can be found in the paper.

Theorem 3.3 Say we want to recover a signal X0 ∈
Rd1×d2 . Let k1 and k2 be the desired row and column
sparsity, respectively, and let r be the desired rank. Also, let
λ1, λ2, c1, c2 > 0. Then we have:

A. General model:

(a) Let f(X) = ‖X‖1,2+λ1‖XT ‖1,2+λ2‖X‖∗ and
m0 = min{d1k2, d2k1, (d1 + d2)r}. Then the
general recovery program will fail to recover X0

with probability 1− exp(−c1m0) for m ≤ c2m0.

(b) Assume that f(X) = 1
k2
‖X‖0,2 + 1

k1
‖XT ‖0,2+

1
r rank(X) and let m0 = max{(k1 + k2)r,

k1 log(d1k1), k2 log(d2k2)}. Then the general recov-
ery program will uniquely recover X0 with prob-
ability 1− exp(−c1m) for m ≥ c2m0.

B. PSD, `1,2 norm:

(a) Let f(X) = ‖X‖1,2+λ1‖X‖∗ . Then the general
recovery program will fail to recover X0 with
probability 1− exp(−c1rd) for m ≤ c2rd.

(b) Let f(X) = 2
k1
‖X‖0,2 + 1

r rank(X) . Then the
general recovery program will uniquely recover
X0 with probability 1 − exp(−c1m) for m ≥
max{rk, k log dk}.

C. PSD, `1 norm:

(a) Let f(X) = ‖X‖1 + λ1‖X‖∗ Then the gen-
eral recovery program will fail to recover X0

with probability 1 − exp(−c1m0) for m0 ≤
c2 min{‖X̄0‖21, ‖X̄0‖2∗d}.

(b) Let f(X) = 1
k21
‖X‖0,2 + rank(X) and rank(X0)

= 1. Then the general recovery program
will uniquely recover X0 with probability 1 −
exp(−c1m) for m ≥ c2k log d

k .

For all parts of the statements in Theorem 3.3, subpart (a)
concerns the probability of failure for a convex character-
ization of the sparse and low rank problem if a minimum
number of measurements is not met, while subpart (b) shows
the probability of unique recovery under a nonconvex char-
acterization of the same problem if a minimum number of
measurements is met. To summarize what the point of The-
orem 3.3 is, all of the minimum measurement requirements

Table 2. Summary of individual structures for recovering signal
X0 ∈ Rd×d where n = d2.

Structure Norm L ‖x̄0‖ ≤ nκ2 <

k-sparse `1
√
n

√
k k

k-column sparse `1,2
√
d

√
k kd

Rank r `∗
√
d

√
r rd

Review of: Simultaneously Structured Models

to uniquely recover the true signal with high probability in
the nonconvex cases are less than the minimum measure-
ment requirements to not fail to recover the true signal with
high probability in the convex cases. Specifically, in all
three situations listed here, once the dimensionality of ob-
servations and/or signal is sufficiently large, the nonconvex
approaches have a general sample complexity that scales
logarithmically with the number of dimensions, while con-
vex approaches have a best case sample complexity that
scales linearly with the number of dimensions. Thus, it is
clear for this particular problem that the nonconvex regime
with perform much better than its convex counterparts, all
other things being equal. (Whether or not all other things
are equal is discussed in section 5 of the literature review.)

4. Simulation Results
A wise man once said, ”Theory and practice are the same in
theory, but not in practice.” Thus, it is probably a good idea
to confirm that what is seen in empirical results matches
what the theory says should happen. In this paper, in order to
confirm some of their theoretical results, the authors perform
a simulation study on the convex program for recovering a
(normalized) sparse and low rank signal matrix. In all of
these simulations, the authors attempt to find a true signal
for d× d matrices with k × k-sparse value generated from
r < d i.i.d Gaussian distributions; they choose k = 8 and
r = 1 for the setting.

From Theorem 3.3 part (B), the best case required sample
complexity required to recover a sparse and low rank posi-
tive semi-definite matrix, using an `1,2 norm for sparsity, is
on the order of Ω(rd) (where n = rd = d). The simulation
results are shown in Figure 1. In the figures, the dark areas
show the empirical region of high failure of recovery. From
the simulation study, it appears that the number of samples
required to get recovery with high probability increases lin-
early with n = rd, which is in line with what the theory
from the paper says.

Similarly, Figure 2 shows the empirical results for recover-
ing a a sparse and low rank positive semi-definite matrix,
this time using an `1 norm for sparsity. The additional green
line on the plot shows the border for the empirical 95%
failure boundary. From Theorem 3.3 part (C), the sample
complexity should be on the order of Ω(min(k2, d)). Again,
the dark region shows the area of high probability of failure.
Here, the required sample complexity appears to grow ap-
proximately linearly with n = rd until it reaches a certain
point, after which the sample complexity appears to grow on
the order of O(log d). The first part of these results matches
what the theory says. However, the second part does not,
as the theory says this should be constant given a predeter-
mined value of k, while the simulation says that it appears
to grow logarithmically with d. The authors posit that this

is due to the sample complexity required to minimize and
`1 norm, which eventually dominates the constant term.

Figure 1. Simulation results for Theorem 3.3 part (b).

Figure 2. Simulation results for Theorem 3.3 part (c).

5. Discussion
Overall, I thought that the paper had some compelling theo-
retical results. In particular, it showed that, from the perspec-
tive of sample complexity, there may be more merit in using
nonconvex formulations to induce multiple simultaneous
structural constraints on an estimated signal as opposed to a
convex one. A lot of the work in this paper is related to the
research work that I currently do. In the past, I have used
sparse plus low-rank decomposition methods to fit latent
variable graphical models, which used the convex formula-
tions of the sum of an `1 norm and a Frobenius norm as the
regularization penalties. Knowing that, in theory, using the
nonconvex formulation may help reduce sample convexity
may be a good motivation to look at different potential for-
mulations. Also, as someone who has been brought up to
predominantly use `1 norms to induce sparsity and nuclear
norms to induce low-rankness, it has been interesting to me
to see people argue for using a nonconvex `0 norm (or even
the `2 ridge norm) for inducing sparsity.

Review of: Simultaneously Structured Models

From a technical writing standpoint, I thought that the au-
thors could have done a better job in terms of organizing the
structure of the paper to be more cogent to the reader. The
theorems and propositions could have been put in a more
logical order so that related ideas could be presented in a
more continuous fashion. For example, the upper bounds
of the inequality for Theorem 3.1 is for some reason shown
in sections 4 and 5. Also, the application of the theorems
to the specific sparse and low rank application are inter-
spersed throughout the paper along with the corresponding
theorems; these may be better served being put in a single
standalone section. Additionally, it seems odd to me that the
proofs for theorems in the 3rd section were put in sections 6
and 7, which comes after all the sections for the theory but
before the numerical experiment and discussion section. I
feel like these either belong next to the corresponding theo-
rems or in an appendix after the main body of the paper, as it
currently makes the paper difficult to browse through to find
certain proofs or results. Unless, of course, they are trying
to hide the simulation and discussion sections of the paper
so that people will not read them for fear of the great shame
it will bring to the authors. In which case, I completely
understand, though I still do not condone the action.

One potentially interesting alternative to nonconvex penal-
ties brought up by the authors in the discussion section
of the paper is the creation of single atomic norms for in-
ducing multiple simultaneous structural constraints, as first
explored and characterized in (Chandrasekaran et al., 2012).
That paper provides a framework for constructing new, sin-
gle norm constraints for multiple simultaneous convex struc-
tures by utilizing the geometry of the convex hulls created by
each of the individual structural constraints. The authors of
this current paper mention that, while they have shown that
the sample complexity for the sum multiple convex norms is
at best on the same order as the smallest sample complexity
of the individual norms, there is a possibility that using a sin-
gle convex norm as a substitute could actually prove to break
the theoretical lower bound for simultaneously structured
models with sums of convex norms that they have presented
here. This could be an interesting alternative to pursue rather
than having to deal with nonconvex optimization algorithms,
as the latter presents a computational problem as we will
discussed below.

The authors also mention a couple of other interesting direc-
tions of research that can follow up from this paper. Firstly,
this paper takes an approach of quantifying the probability
of unique recovery (or failure to do so) given the number of
measurements made. However, often times we already have
a set of data and can not change the number of measurements
we have. Thus, instead of calculating a probability of failure
to determine how many measurements we want to take, it
might be of more use to derive error or confidence bounds
for the estimate given by a simultaneous structured model

given the number of measurements observed. Another topic
that could be of interest would be to apply the theories in
the paper to other problems where the concept of degrees of
freedom or number of measurements is not as clear cut. For
example, the authors posit the idea of using their theories on
the sparse PCA problem. Unlike the straightforward signal
recovery problem studied in this paper, this problem does
not correspond to having one measurement per observation
in the data. Thus, a potentially new framework would need
to be created in order to find the corresponding minimum
necessary observations. Other more difficult problems that
this could be applied to include latent variable models or
non-independent observations.

As mentioned previously in this literature review, a wise
man once said, ”Theory and practice are the same in theory,
but not in practice.” In this particular paper, the authors
do not spend much time addressing the issue of how to
find solutions to the nonconvex programs algorithmically.
While there may be solutions for specific cases of certain
combinations of nonconvex norms, such as interior point
solves for the sparse and low rank case, it may be difficult
to find an efficient and generally applicable algorithm that
can work on any arbitrary set of simultaneous structural
constraints. Thus, if there is no reliable and efficient way to
estimate the solution to a particular nonconvex program for
a certain set of simultaneous structures, the reduced sample
complexity theoretically required to get a correct estimate
of the true signal for the nonconvex regime compared to the
convex one may not outweigh the time complexity required
algorithmically.

One possible algorithm which the authors mention is to use
an Alternating Directions Methods of Multipliers (ADMM)
algorithm, a method that utilizes Lagrangian dual spaces
in order to do blockwise iterative updates for optimization.
To the authors’ credit, the ADMM algorithm has been used
in a wide variety of other settings to perform optimization
for otherwise difficult problems. However, this by itself
may not be a good enough solution. While this has been
shown to have good convergence properties for nonconvex
and nonsmooth optimization problems in the case of a two-
block problem (Wang et al., 2019), which in this case would
correspond to a single norm structural constraint, other pa-
pers have shown that the ADMM algorithm may diverge
in the case of multi-block problems (Chen et al., 2016),
which can arise in this context by having multiple norms
for simultaneous structures. Thus, unless one can create a
single norm that encapsulates all of the desired structural
constraints (something akin to a nonconvex version of what
would be created under the framework of (Chandrasekaran
et al., 2012)), the theory in the paper may not actually be
useful in practice.

Review of: Simultaneously Structured Models

References
Candes, E. and Plan, Y. “tight oracle bounds for low-rank

matrix recovery from a minimal number of random mea-
surements. IEEE Transactions on Information Theory,
57(4):2342–2359, 2010.

Candes, E., Romberg, J., and Tao, T. Robust uncertainty
principles: exact signal reconstruction from highly in-
complete frequency information. IEEE Trans. Inform.
Theory, 52:489–509, 2006.

Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. Latent
variable graphical model selection via convex optimiza-
tion. IEEE 2010 48th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp.
1610–1613, 2010.

Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky,
A. S. The convex geometry of linear inverse problems.
Foundations of Computational mathematics, 12(6):805–
849, 2012.

Chen, C., He, B., Ye, Y., and Yuan, X. The direct extension
of admm for multi-block convex minimization problems
is not necessarily convergent. Mathematical Program-
ming, 155(1-2):57–79, 2016.

Grasedyck, L., Kressner, D., and Tobler, C. A litera-
ture survey of low-rank tensor approximation techniques.
GAMM-Mitteilungen, 36(1):53–78, 2013.

Wang, Y., Yin, W., and Zeng, J. Global convergence of
admm in nonconvex nonsmooth optimization. Journal of
Scientific Computing, 78(1):29–63, 2019.

Wright, J., Ganesh, A., Min, K., and Ma, Y. Compressive
principal component pursuit. Information and Inference:
A Journal of the IMA, 2(1):32–68, 2013.

Applied Machine Learning for Materials Science

Andrew Hitt * 1

Abstract
In recent years, the use of machine learning within
materials science has been on the rise. While
some of these applications of machine learning
are simply post-experimental analysis, other im-
plementations seek to offer unique solutions to
problems within the field of materials science.
Some of these uses of machine learning include
improving both the discovery and synthesis of
novel compounds with desirable properties, expe-
diting the application of conventional analytical
techniques, and providing alternative methodolo-
gies for use in certain domains. Overall, the inter-
facing of machine learning into materials science
has great promise for advancing all stages of the
materials design process, from discovery to syn-
thesis to evaluation to analysis.

1. Introduction
Materials science is, in the most general sense, meta-
engineering. Although it relies heavily on mechanical en-
gineering, with which it is often associated, in recent years,
materials science has become a full-fledged interdisciplinary
field, sitting at the intersection of mechanical, chemical, and
electrical engineering. On a more technical level, materials
science is the investigation of the three-pronged relationship
between structure, processing, and behavior in materials.
Due to its interdisciplinary nature, materials science often
requires the exploration of alternative solutions to existing
problems; one recently popular method for approaching
problems in both materials science and other fields of phys-
ical science is the application of machine learning. In this
review, the use of machine learning within materials science
is discussed, with specific emphasis on the application of
machine learning to address larger problems within the field.

Although both materials science and machine learning are
well-established fields, the use of machine learning method-
ologies within materials science remains a relatively re-
cent development. Despite this, machine learning has been
rapidly adopted within the field as a tool to aid in the analysis
of experimentally generated data for many different domains
of research, including microstructural characterization (de
Albuquerque, 2008), phase segmentation (Carrasquilla &

Melko, 2017), and numerous other applications.

While it is unsurprising that the use of machine learning
in materials is on the rise as scientific computing and data
science become more popular, the use of more advanced
machine learning techniques within the field are especially
interesting. Linear regression, which has been used across
virtually all quantitative domains for centuries since its de-
velopment by Legendre and Gauss in the early 1800s, may
technically be a supervised machine learning algorithm, but
its use in materials science is not representative of the extent
of more powerful algorithms, such as neural networks or
support vector machines within the field. Furthermore, it is
important to make a distinction between how the machine
learning models are being used by researchers; some are
used to supplement more conventional analysis methods,
while others may be deployed more independently as an
alternative to current techniques.

The use of machine learning within materials varies greatly
depending upon the domain of research and the goals of
the application of machine learning methodologies (Butler,
2018). While a machine learning model and a dataset of
adequate size are all that is required to perform machine
learning, doing so without an explicit goal in mind can lead
to ultimately irrelevant results. This, in turn, means that
uses of machine learning that are deployed to solve very
specific problems are especially significant within the field.

This review covers four different novel uses of applying
machine learning techniques to solve more general prob-
lems within the field, typically by demonstrating a proof-
of-concept on a relevant experiment. The first example is
the use of an unsupervised clustering algorithm to reduce
noise in a volumetric dataset, substantially improving the
subsequent analysis. The second example is the use of sup-
port vector regression to predict how materials behave while
under circumstances outside of those that current materials
science methodologies are capable of handling. The third
example is the use of generative adverserial networks to
improve efficiency in otherwise time-consuming microstruc-
tural simulations. The fourth example is the use of meta-
analysis via natural language processing of thousands of
published articles to generate an artificial intelligence to aid
in the development of materials within certain constraints.

Collectively, these examples demonstrate that machine learn-

Applied Machine Learning for Materials Science

ing can be more than just a simple analytical tool; with
proper application, machine learning can provide solutions
to some of the largest problems within the field of materials
science.

2. Discussion
Machine learning can be applied in a variety of different
ways to address problems in materials science. Some of
these uses might be smaller in scale, such as performing
least-squares linear regression on data from a single set of
experiments, while others may be rather significant, such as
performing meta-analysis on all articles in a given domain to
counteract the otherwise limited data resources. While ma-
chine learning models can be applied to almost any dataset
of a suitable size, some of the particular interesting applica-
tions of machine learning are those that provide solutions
to problems that cannot be addressed through conventional
means.

2.1. Improving Analysis of Volumetric Data

The most obvious way that machine learning is used within
mateirals science is as a tool to aid in post-experimental
analysis. Like many other fields of science, research within
materials science generates a sizable quantity of data and
transforming that data into meaningful results can often be
an immensely difficult and time-consuming process. As
with simpler models, it is important to intelligently apply
machine learning models to available data; any machine
learning model and dataset of sufficient size can be com-
bined, but that by itself does not mean that the trained model
is useful beyond its novelty.

One problem of great importance within materials science
is the analysis of volumetric (three-dimensional) data. Out-
side of a small amount of materials (graphene, thinfilms,
carbon nanotubes, borophene, etc.), most materials have
three-dimensional structures on both the micro- and the
macroscale. Analyzing samples of these three-dimensional
materials thus often requires the use of three-dimensional
imaging techniques such as neutron scanning tomography
or iterated scanning electron microscopy. Such imaging
processes result in three-dimensional datasets, upon which
more substantive analysis can then begin.

Analyzing volumetric data can be immensely time-
consuming. Most of the three-dimensional imaging tech-
niques produce datasets that require extensive amounts of
post-processing before the actual analysis can begin. Tomog-
raphy data, for example, can have significant noise due to
the way that it is reconstructed (this is especially important
for biomedical fields, where tomography is more prevalent),
and iterated scanning electron microscopy can require im-
age realignment the images to ensure that adjacent slices of

a sample have not skewed one way or another. Beyond this,
analyzing volumetric data is itself rather difficult, as many
image processing techniques are not designed for three-
dimensional applications in mind, and thus require custom
implementations for use on volumetric data. Furthermore,
image processing algorithms are often of moderate to high
computational complexity; a kernel filter of size k deployed
on an image of dimensions x · y, for example, is O(xyk2),
which in turn scales into O(xyzk2) for three-dimensional
applications.

To address some of these problems with their own tomogra-
phy data, one group of researchers applied machine learning
techniques. While transfer functions methods are usable
for smaller datasets, they do not scale efficiently for use on
larger datasets. As noise reduction of some form is neces-
sary to use for the data to be usable in subsequent analysis,
they focused their efforts on utilizing the fact that considered
spatial characteristics of each voxel in their tomography data.
To do this, the authors employed an unsupervised learning
technique called density-based clustering for applications
with noise (DBSCAN) and use it to aid in the reconstruction
of their neutron scattering tomography data (Hui & Liu,
2018).

DBSCAN is an algorithm that groups a set of points into
clusters based on regional density (Ester, 1996). Under
DBSCAN, all points in a dataset are assigned a label: core
(if the point is within an arbitrary distance ε of many other
points), reachable (if the point is not a core point but is
within an arbitrary distance ε of at least one core point),
or noise (if it is neither core nor reachable). The paper’s
innovation on this technique, beyond simply integrating
DBSCAN with the tomography reconstruction, was to vary
how many nearby points were needed for a point to be
labeled ”core” rather than ”reachable” based on the intensity
at that point.

This application of DBSCAN to reduce noise in the tomogra-
phy data was shown to significantly reduce the noise present
in the data and was able to generally improve the confi-
dence in the results of subsequent analysis. The researchers
also noticed that in addition to generally improving the
reconstruction, the noise reduction also permitted for the
identification of finer features in some of the large internal
structures of their sample.

2.2. Predicting Material Behavior

Predicting material behavior is one of the most important
problems in the field of materials science. Much of materi-
als science is focused on the development and subsequent
implementation of materials with very specific sets of prop-
erties for a given application, and thus being able to assess
whether a given material fulfills all of the design criteria is
paramount. The current standard for prediction of most ma-

Applied Machine Learning for Materials Science

terial properties is density functional theory (DFT), which
simulates material behavior through applications of func-
tional quantum chemistry. Density functional theory has
been used to predict many complex material properties, in-
cluding dipole moments, magnetic behavior, and molecular
geometry (Langenaeker, 2003).

While density functional theory is a powerful tool that has
greatly improved the field of materials science, it has several
notable limitations. One of the most significant issues is
that density functional theory is not optimized to predict
non-equilibrium behavior, which renders it effectively un-
usable for situations where the material’s behavior under
plastic deformation is important. Furthermore, it has been
demonstrated that the prediction of plastic deformation is
further complicated by the multiple length scales involved
(Zhao, 2004).

Collectively, these problems have forced researchers to in-
vestigate alternative methods for the prediction and devel-
opment of materials that perform well under plastic de-
formation. Within the field of materials science, the term
”hardness” is used to quantify a material’s ability to resist lo-
calized plastic deformation (Zhang, 2001). Hardness can be
tested experimentally through either scratch testing (using
the Mohs scale) or indentation testing (typically using the
Vicker’s scale, although other testing methods exist). Gen-
erally, the value of a material’s Vicker’s hardness is a more
intuitive descriptor than the value of the material’s Mohs
hardness, as Vicker’s hardness uses a linear scale whereas
Mohs uses an arbitrary scale, and is thus less quantitatively
consistent.

Of particular interest are the ”superhard” materials, which
are defined as materials with a Vicker’s hardness of greater
than 40 gigapascals. Superhard materials have a wide va-
riety of industrial applications, including as scratch-proof
coatings (Phaal, 1991) and powerful abrasive agents (Lux
& Haubner, 1994). Despite this variety of uses, there are
substantial issues with the two predominant superhard mate-
rials (diamond and cubic boron nitride) that necessitate the
development of new superhard materials (Kaner, 2005).

As density functional theory is ill-suited to the tasks of pre-
dicting hardness, researchers often are forced to resort to
trial-and-error methods, which is incredibly costly in both
time and financial resources; as a result of this significant
cost, materials scientists often restrict their research into su-
perhard materials to a limited class of materials known as in-
trinsic compounds (Tehrani, 2017), which include diamond
and boron nitride along with other, typically non-metallic,
compounds. In more recent years, researchers have also
begun investigating the addition of high-valence transition
metals to expand the region of exploration to include inter-
metallic compounds as well, but the development, synthesis
and testing of these compounds remains expensive.

Thus, the discovery of new superhard compounds is plagued
by issues that limit its progress; existing computational
techniques are almost unusable for the purpose, and doing
so experimentally is expensive with no guarantee of positive
results despite the enormous cost. One solution to these
problems was ultimately found in machine learning, through
the application of support vector machines (SVMs) using
data from two of the largest materials science databases: the
Materials Project and Pearson’s Crystal Database (Brgoch,
2018).

The support vector machines were trained on a test set from
Materials Project that contained hundreds of descriptors of
material composition, processing, and properties for over
2,500 different materials. The trained model was then de-
ployed on more than 100,000 compounds listed on Pearson’s
Crystal Database, generating predictions for the bulk and
shear modulus of each compound. Bulk and shear modulus
are often used as proxies for Vicker’s hardness due to their
strong correlation across many different classes of materials
(Liu & Cohen, 1989).

Taking the results from these predictions, the researchers
then selected the ternary (3-element) and quarternary (4-
element) compounds with the highest predicted elastic mod-
uli and synthesized them. With these samples, they then
tested the bulk modulus (via X-ray powder diffraction) to
provide a direct comparison with predicted values, as well
as the Vicker’s hardness to quantify whether the materials
selected demonstrated superhard behavior.

Ultimately, these researchers found that the machine learn-
ing model performed quite well across their data set, with
agreement between the predictions of the support vector ma-
chine and recorded experimental data within 20%. Although
the model struggled with predictions for certain classes of
materials (such as compounds containing rare-earth metals),
both of the materials predicted to have superhard behavior
possessed Vicker’s hardness values in excess of 40 gigapas-
cals under some conditions, confirming superhardness.

2.3. Simulating Kinetic Processes

A third way that machine learning methods can be used is
as a full replacement of existing techniques that prove to
be inefficient or otherwise ill-suited to applications within
certain domains.

In addition to interest in predicting the bulk properties of
materials (such as hardness), there is also substantial re-
search into the ways that matter moves throughout a mate-
rial. While diffusion itself is important for many processes,
such as semi-conductor processing, one of the most signifi-
cant of these effects is grain evolution. Grain evolution is
the process through which grains (small regions of continu-
ous crystallinity within a larger sample) change over time in

Applied Machine Learning for Materials Science

an effort to minimize the energy of the system; during this
evolution, grains can change their shape and even absorb
smaller grains if the kinetics are favorable.

The reason why grain evolution is so interesting to materials
scientists is that the size and shape distributions of the grains
within a material (often referred to as the microstructure)
can substantially impact a material’s properties. Grain size
can be shown to affect mechanical properties such as elastic
modulus (Kim, 1999), electrical properties such as conduc-
tivity (Badwal & Drennan, 1987), and chemical properties
such as surface reactivity (Santos, 2010). As the microstruc-
ture is capable of changing so many material properties, be-
ing able to predict the ways that microstructure may evolve
is obviously incredibly important.

Generally, grain evolution refers to grain growth, as in most
materials, a reduction in surface energy permits kinetically
favorable changes in the microstructure such that small
grains get slowly absorbed into bigger grains, when pro-
vided sufficient activation energy. The increase of average
grain size can be favorable or not depending on the mate-
rial and application. Notably, the Hall-Petch effect says
that yield stress (a measure of the highest stress a mate-
rial can handle before plastically deforming) decreases with
increasing grain size, and thus for most mechanical applica-
tions, a smaller grain size is often preferable; this is not true
at higher temperatures, where a small grain size increases
the rate of Coble creep, a phenomenon by which vacan-
cies diffuse through a material causing plastic deformation
(Mohamed & Langdon, 1974).

Within materials science, and most fields of physical science,
the industry standard for grain growth simulation is COM-
SOL Multiphysics (often abbreviated to just COMSOL).
COMSOL is a combination of finite element analyzer and
multiphysics simulation solver. COMSOL is also optimized
to solve systems of coupled partial differential equations,
which is the capability that makes it appealing for grain
growth simulation.

While COMSOL does offer an efficient method for predict
grain growth and evolution in materials, its use has a few
substantial limitations that significantly reduce its efficacy.
Running simulations in COMSOL can take incredibly long
amounts of time (up to hours of computational time for sec-
onds of simulation time), despite being quite optimized for
this application. Beyond this, COMSOL’s predictions for
grain evolution can be heavily influenced by the choice of
surface energy model, which can negatively impact confi-
dence in the simulation results (Zaeem, 2011).

To address these problems, researchers have recently begun
investigating the use of machine learning models to provide
an alternative to the computationally expensive simulations
(Tang, unpublished). To generate a dataset for training this

machine learning model, thousands of Voronoi diagrams
(graphs constructed by defining regions based on the closest
point from a set of points) were generated. Short-term grain
growth simulations were then run on these Voronoi diagrams
in COMSOL to create pairs of images (initial and after ten
seconds of simulation time).

Using this training dataset, a generative adverserial network
(GAN) model was developed. Generative adverserial net-
work models are comprised of two separate neural networks:
a generator (which creates fake samples from random noise)
and a discriminator (which tries to determine whether a
given sample is real or generated). For the application of
grain growth simulation, the both networks in the GAN
were convolutional neural networks designed to upscale
or downscale images to or from a single numeric value.
Here, the generator is tasked specifically with simulating
grain evolution from an initially provided image. Thus, the
discriminator is similarly assessing whether the provided
post-simulation image is from COMSOL or from the gener-
ator.

Preliminary results of this research are rather promising.
After about 50 epochs of training on subsets of the training
data, the generator was able to produce grain evolution pat-
terns that were nearly identical to those produced in COM-
SOL, including on novel Voronoi diagrams not used at all
in the training data. Admittedly, the generator struggled to
produce accurate simulations for certain Voronoi diagrams,
particularly ones where it still struggled with certain grain
distributions with well separated regions of either small or
large regions, but this could hopefully be improved upon
with further development of the algorithms and training of
the adverserial network.

2.4. Leveraging Domain Knowledge

One of the most notable problems in terms of the application
of machine learning models or other data science techniques
within materials science is that there is often limited data
available. Materials science, more so than other fields like
biosciences, is notable in that the datasets for materials are
often small in comparison to other fields. The Open Quan-
tum Materials Database (QGMD), which was created by the
Wolverton group at Northwestern University and is often
lauded as the largest materials science database currently
in existence, contains data of approximately 637,000 mate-
rials; for comparison, a single sequenced human genome
contains data for approximately 3 billion base pairs. Due
to this, there is great interest in and extensive discussion
within materials science on how to make the most of the
relatively limited data available.

Currently, much of the effort into maximizing the value of
experimental data is invested in the development of materi-
als databases, such as the previously referenced Open Quan-

Applied Machine Learning for Materials Science

tum Materials Database, Pearson’s Crystal Database, and
the Materials Project. The core principles underpinning all
of these efforts is that materials science, as a field of science
based heavily on stochastic processes and well-understood
physical models, is perfectly suited for the deployment of
data science techniques, and these projects seek to provide
datasets of sufficient size for significant results to appear
when used for analysis.

One option for extending the use of research beyond its
original article is meta-analysis, a technique that has been
gaining popularity in recent years. While meta-analysis
can be handled manually, as it is many literature reviews,
its results significantly improve as the amount of articles
analyzed increases. This has caused a push for automated
meta-analysis techniques in recent years across all fields
of science; one example of an automated meta-analysis
platform is MetaCyto (Hu, 2018), which is optimized to
perform meta-analysis on cytometry studies.

Within materials science specifically, the use of auto-
mated meta-analysis remains rather limited. The Materi-
als Genome Initiative (MGI) has begun investigating meta-
analysis as an option for high-throughput automated design
of novel materials, and has used this framework for numer-
ous different applications including batteries and thermo-
electric materials. However, most of the results produced
by the Materials Genome Initiative are more theoretical pre-
dictions of materials with desirable behaviors, rather than
suggestions for how to synthesize a material with specific
properties.

To address the lack of computationally generated synthesis
methods, one group of researchers developed a natural lan-
guage processing framework that was capable of analyzing
thousands of articles about metal oxide synthesis (Olivetti,
2017). To do this, the researchers first compiled a database
of over 12,000 articles about the synthesis of various metal
oxide compounds, which were downloaded in PDF format
before automated conversion to plain text. A classifier to
distinguish which paragraphs were specifically about syn-
thesis was constructed from a training set of several hundred
manually labeled paragraphs and then deployed on the re-
mainder of the articles to reduce the amount of text being
analyzed. Relevant paragraphs were then parsed using natu-
ral language processing, specifically dependency parse trees,
word tokenization, and part-of-speech tagging. Error cor-
rection (such as fixing the misrepresentation of the degree
symbol o as a numerical digit) was performed.

After the dataset was generated and properly refined, it was
then used to train several different machine learning models.
The authors trained a support vector machine, a linear clas-
sifier, and a random guessing strategy on the data and then
compared the performance of all three models. Unsurpris-
ingly, the support vector machine performed muich better

than the other two models (the linear classifier barely per-
formed better than random guessing) on the set of arbitrarily
selected test cases.

Having sufficiently trained their support vector machine,
the authors then queried whether the model could predict
synthesis methods for compounds not present in the training
set, including the synthesis of two-dimensional zinc sulfide
and cadmium sulfide. They noted that the support vector
machine was able to accurately predict synthesis mecha-
nisms for certain compounds, although it struggled on the
synthesis of cadmium sulfide (a problem that the authors
noted might be due to the relative youth of two-dimensional
metal oxide synthesis in general).

Ultimately, this work suggests that machine learning (aided
by other computational science techniques like natural lan-
guage processing) could be used to aid in not only the theo-
rizing of new materials with specific properties, but also in
the ways in which those novel compounds could be synthe-
sized.

3. Conclusion
As demonstrated, machine learning is capable of offering
solutions to many problems plaguing the field of materi-
als science today. These computational solutions often go
beyond the capabilities of modern materials science method-
ologies, and thus the use of scientific computing within the
field of materials science shows great promise for the future
of both fields.

One particularly hard problem within materials science is
the analysis of volumetric datasets, which can be rather diffi-
cult to do without some form of automation. To address this
issue, one group of researchers used an unsupervised learn-
ing algorithm called density-based spatial clustering of ap-
plications with noise (DBSCAN) to visualize data gathered
from neutron scanning tomography. They found that, com-
pared to more typical reconstruction methods, DBSCAN
produced a better visualization of the internal structures
with significantly less noise. Thus, machine learning can be
used to improve the analysis process, rather than just as a
simple analytical tool.

Another way that machine learning has been used is as a
complement to the capabilities of current methodologies
in materials science. The hardness of a material cannot
be readily predicted by current methods because hardness
is a non-equilibrium property and density functional the-
ory, which simulates materials using quantum chemistry,
is not optimized to predict material behavior outside of
equilibrium. This means that predicting which compounds
will demonstrate superhard behavior is particularly difficult
within conventional methods. To address this problem, re-
searchers applied support vector regression to predict which

Applied Machine Learning for Materials Science

compounds out of a database of tens of thousands of com-
pounds would be likely to demonstrate superhard behavior,
and ultimately were able to identify several compounds that
fulfilled that criterion when synthesized and tested experi-
mentally. In this way, machine learning models can provide
an alternative solution to problems where more conventional
methods prove insufficient.

A third way that machine learning methods can be used is
as a full replacement of existing techniques. Some currently
ongoing work is evaluating the ability of generative adver-
sarial networks to simulate grain growth and microstructural
evolution in transition metals. Grain growth simulations can
be immensely expensive in terms of computational time,
on the order of hours of computational time for seconds of
simulation time; in fact, they can be even more expensive
than the training of convolutional neural networks in terms
of complexity and computational time required. Preliminary
results from this research suggest that, once trained, the
network can accurately predict the evolution of grains in an
arbitrary image faster than running that same image through
existing material simulation technologies. The ultimate goal
of this research would be to shift the primary computational
time cost from a continuous cost of running expensive sim-
ulations to a more fixed, up-front cost of training a set of
adversarial networks instead, and then using those trained
networks to simulate grain growth over time.

The final application of machine learning discussed in this
paper sought to address the relatively limited amount of
materials science data. By compiling a database of thou-
sands of articles about metal oxide synthesis, researchers
were able to produce an artificial intelligence that could
predict the synthesis methods of novel materials. This not
only has the potential to vastly accelerate the synthesis of
those materials, but also offers a way that the data within
the field can be used to collectively advance science beyond
the individual analysis or article for which it was produced.
The ability to perform meta-analysis on specific subdomains
of materials science is very promising for the purposes of
advancing materials discovery and understanding.

Throughout this review, the application of machine learn-
ing to major materials science problems has been shown to
offer immediate and effective solutions. Machine learning
can be used to not only predict compounds with extraordi-
nary properties, but also aid in the development of synthesis
mechanisms for those materials. Machine learning can im-
prove existing methods of analysis, and can even, in some
cases, provide alternatives to current methods that may not
be well-suited to specific applications. Machine learning can
even address some of the largest problems in the field, such
as the limited amount of available data and the importance
of the ability to reuse not only experimental data but also
information about other aspects of materials development,

such as synthesis methods. To conclude, machine learn-
ing methodologies have a lot to offer the field of materials
science, now and into the future.

References
de Albuquerque, V. H. C., Cortez, P. C., de Alexandria,

A. R. & Tavares, J. M. R. S. (2008). A new solu-
tion for automatic microstructures analysis from images
based on a backpropagation artificial neural network.
Nondestructive Testing and Evaluation, 23(4), 273–283.
doi:10.1080/10589750802258986

Carrasquilla, J. & Melko, R. G. (2017). Machine learn-
ing phases of matter. Nature Phys, 13, 431–434.
doi:10.1038/nphys4035

Butler, K.T., Davies, D. W., Cartwright, H., Isayev, O. &
Walsh, A. (2018). Machine learning for molecular and ma-
terials science. Nature, 59, 547–555. doi:10.1038/s41586-
018-0337-2

Hui, Y. & Liu, Y. (2018). Volumetric data exploration with
machine learning-aided visualization in neutron science.
arXiv:1710.05994

Ester, M., Kriegel, H., Sander, J. & Xu, X. (1996). A density-
based algorithm for discovering clusters. KDD Proceed-
ings, 96, 226–231.

Geerlings, P., De Proft, F. & Langenaeker, W. (2003). Con-
ceptual density functional theory. Chem. Rev., 103(5),
1793–1874. doi:10.1021/cr990029p

Zhao, Y., Ding, Z. & Zhou, S. (2004). Hardness
and fracture toughness of brittle materials: a den-
sity functional theory study. Phys. Rev. B, 70(18).
doi:10.1103/PhysRevB.70.184117

Zhang, H. (2011). Building Materials in Civil Engineering.
Woodhead.

Phaal, C. (1991). United States patent No. US5007207A.

Lux, B. & Haubner, R. (1994). Diamond as a wear-resistant
coating. Thin Film Diamond. Springer. doi:10.1007/978-
94-011-0725-9

Kaner, R. B., Gilman, J. J. & Tolbert, S. H. (2005). Design-
ing superhard materials. Science, 308(5726), 1268–1269.
doi:10.1126/science.1109830

Tehrani, A. M., Ghadbeigi, L., Brgoch, J. & Sparks, T.
D. (2017). Balancing mechanical properties and sus-
tainability in the search for superhard materials. Inte-
grating Materials and Manufacturing Innovation 6, 1–8.
doi:10.1007/s40192-017-0085-4

Applied Machine Learning for Materials Science

Brgoch, J., Tehrani, A. M., Oliynyk, A. O., Parry, M., Rizvi,
Z., Couper, S., Lin, F., Miyagi, L. & Sparks, T. D. (2018).
Machine learning directed search for ultraincompressible,
superhard materials. J. Am. Chem. Soc. 140(31) 9844–
9853. doi:10.1021/jacs.8b02717

Liu, A. Y & Cohen, M. L. (1989). Preidction of new
low compressibility solids. Science, 245(4920), 841–842.
doi:10.1126/science.245.4920.841

Kim, S. P. & Bush, M. B. (1999). The effects of grain
size and porosity on the elastic modulus of nanocrys-
talline materials. Nanostructed Materials, 11(3) 361–367.
doi:10.1016/S0965-9773(99)00052-5

Badwal, S. P. S. & Drennan, J. (1987). Vyttria-zirconia:
effect of microstructure on conductivity. J. Materials Sci-
ence, 22(9), 3231–3239. doi:10.1007/BF01161187

Santos, H. A., Riikonen, J., Salonen, J., Makila, E., Heikkila,
T., Laaksonen, T., Peltonen, L., Lehto, V. & Hirvonen,
J. (2010). In vitro cytotoxicity of porous silicion mi-
croparticles: effect of the particle concentration, surface
chemistry and size. Acta Biomaterialia, 6(7), 2721–2731.
doi:10.1016/j.actbio.2009.12.043

Mohamed, F. A. & Langdon, T. G. (1974). Deformation
mechanism maps based on grain size. Metallurgical
Transactions, 5, 2339–2345. doi:10.1007/BF02644014

Zaeem, M. A., Kadiri, H. E., Horstemeyer, M. F. & Wang, P.
T. (2011). The roles of grain boundary energy anisotropy
and second-phase particles on grain growth in polycrys-
talline materials. Proceedings of IMETI, 1, 180–182.

Tang, M., Yang, K., Cao, Y., & Hitt, A. Unpublished work.

Hu, Z., Jujjavarapu, C., Hughey, J. J., Andorf, S., Lee,
H. C., Gherardini, P. F., Spitzer, M. H., Thomas, C. G.,
Campbell, J., Dunn, P., Wiser, J., Kidd, B. A., Dudley, J.
T., Nolan, G. P., Bhattacharya, S. & Butte, A. J. (2018).
MetaCyto: a tool for automated meta-analysis of mass
and flow cytometry data. Cell Rep., 24(5), 1377–1388.
doi:10.1016/j.celrep.2018.07.003.

Olivetti, E., Kim, E., Huang, K., Saunders, A., McCal-
lum, A. & Ceder, G. (2017). Materials synthesis in-
sights from scientific literature via text extraction and
machine learning. Chem. Mater., 29(21), 9436–9444.
doi:10.1021/acs.chemmater.7b03500

Double Acceleration: Effects of Using Momentum-based Methods on
Overparameterized Models

Mohammad Taha Toghani 1 Delaram Pirhayatifard 1

Abstract
Overparameterization has been of considerable
interest in deep learning recently. It challenges
the general belief that increasing depth in a neu-
ral network simply leads to the complexity of
the algorithm. Yet, by theoretical justification, it
has also been proven that it boosts convergence
rate significantly. In addition to the overparam-
eterization, the same effects have been observed
for the asynchronous distributed machine learn-
ing. In this article, we provide a literature review
on the implicit acceleration methods including
those connected with overparameterization and
asynchrony. Then, we investigate the ”Double
Acceleration” phenomena where an optimization
problem is being affected by both implicit and
explicit accelerators and show that it changes the
inherent value of momentum in optimization.

1. Introduction
In deep learning there has constantly been an attempt to
accelerate the existing learning algorithms. Stochastic gra-
dient descent revolutionized optimization for the large-scale
machine learning at the very beginning, then second-order
methods such as momentum acceleration introduced with
a more amazing performance to the extent that most state-
of-the-art models are trained using it. Where momentum is
defined as the moving average of gradients. This method
is an example of explicit acceleration. Yet, there are also
implicit methods. Implicit acceleration through overparam-
eterization (Arora et al., 2018b) has been of specific interest
in the sense of demonstrating acceleration through increas-
ing the parameters in the simple `p regression problem or
equivalently depth in linear neural networks, where the trade-
off between expressiveness and optimization is investigated.
Another method has been proposed for implicit acceleration

1Department of Electrical and Computer Engineering, Rice
University, Houston, TX, USA. Correspondence to: Moham-
mad Taha Toghani <mttoghani@rice.edu>, Delaram Pirhayatifard
<dp43@rice.edu>.

by (Mitliagkas et al., 2016) where they have demonstrated
running stochastic gradient descent(SGD) asynchronously
can lead to momentum-like behavior. In this work, by em-
pirical evaluation as well as some theoretical justifications,
we intend to suggest that applying two accelerators to the
learning algorithm can make the optimization too much ac-
celerated, where we use the momentum method instead of
gradient descent. In (Arora et al., 2018a), the convergence
rate of the momentum implied by overparameterization un-
der a few assumptions has been discussed and a relaxed
condition for initialization has been suggested in compar-
ison to (Arora et al., 2018b). The remainder of the paper
is organized as follows. In section 2 we investigate exist-
ing state-of-the-art methods for implicit acceleration. In
section 3 applying an explicit momentum accelerator on
an overparameterized case is discussed and we discuss the
valid and optimal value of momentum along with theoretical
investigations.

2. Related Works
2.1. Asynchrony

In distributed machine learning, one of the important inten-
tions is to train a common model using distributed parties.
These parties are called workers and usually (but not nec-
essarily) there is a central part, server, which all parties
have access to. Here, assume that all workers want to op-
timize common parameters using an iterative optimization
algorithm like SGD, while each one of them has access to
a portion of the dataset. Thus, each worker computes the
gradient over its dataset and sends it back to the server. If all
parties work harmonious, this process is called synchronous
and otherwise, it is asynchronous. Note that asynchronous
methods are more efficient in terms of hardware so if are
of great importance for practitioners in this field. So, one
of the imperative subjects is to analyze their functionality
in terms of optimization. (Mitliagkas et al., 2016) showed
that asynchrony leads to an implicit acceleration similar to
what momentum does. In the rest of this subsection, we are
going to review their results.

Double Acceleration

2.1.1. PROBLEM DESCRIPTION

Assume that the aim is to minimize the empirical risk of a
model as follows:

f(w) =:
1

n

n∑
i=1

fi(w) =
1

n

n∑
i=1

f(w, zi) (1)

where f : Rdx → R and fi(.) is the cost function on a
mini-batch of the whole data, like zi. Using SGD, in each
step, w must be updated as follows:

w(t+1) ← w(t) − ηt∇wf(w
(t); zit) (2)

The above update rule belongs to a synchronous learning
regime where in it represents which batch to be chosen, zit
and the worker who owns zit takes care of this update. Also,
its asynchronous counterpart is the same i.e. each worker
reads the current value of common parameter, computes
the gradient, and then updates it. Just the difference is that
workers update the parameter carelessly of each other which
induces a delay to the update. Formally, the update rule
in the asynchronous regime is exactly same as Equation 2,
but the gradient is∇wf(v

(t); zit) where in v(t) = w(t−τt).
Note that τt is the delay imposed by the asynchronous in-
teraction of workers on the common parameter which is
called staleness. To alleviate the complexity of the problem,
assume that for each worker at time t, the delay follows
distribution Q:

v(t) = w(t−l) w.p. ql, l ∈ N (3)

thus, according to the above model on randomness of the
delay, we can infer that:

E[v(t)] =

∞∑
l=0

ql E[w(t−l)] (4)

which means the expectation of the read value is the convex
combination of all values up to now. Also, assume that τt
and it are independent which is a reasonable assumption for
this problem.

2.1.2. ASYNCHRONY IMPLICIT MOMENTUM

Theorem 1 Using SGD with a constant step size ηt = η,
the following result holds:

E[w(t+1) −w(t)] = E[w(t) −w(t−1)]− ηq0 E∇wf(w
(t))

+ η

∞∑
l=0

(ql − ql+1)E∇wf(w
(t−(l+1)))

(5)

Corollary 2 If Q is a geometric distribution such that ql =
(1− µ)µl, then:

E[w(t+1) −w(t)] =µE[w(t) −w(t−1)]

− (1− µ)η E∇wf(w
(t))

(6)

where, the momentum is µ.

Theorem 3 Let’s denote the time it takes to each worker
to finish step t as Wt. If Wt is exponentially distributed
with parameter λ (Wt ∼ Exp(λ)) and there are M asyn-
chronous workers, then:

E[w(t+1) −w(t)] =
(
1− 1

M

)
E[w(t) −w(t−1)]

− η
M E∇wf(w

(t))
(7)

The exponential distribution assumption is a simple queuing
model to elaborate the analysis

According to the result of Theorem 3, β =
(
1 − 1

M

)
is

the imposed momentum by the asynchrony and M is called
the degree of asynchrony. Now, assume that the optimal
momentum to optimize a model is β?, so if we increase
the number of workers such that β? <

(
1 − 1

M

)
then the

implicit momentum of problem passes the optimal value.
On the other hand, if M is not high enough, the implicit
momentum would not be enough to get the optimal value,
so adding an explicit momentum seems can compensate for
the shortage of momentum. Fig. 1 shows this effect very
well. In the next part, we discuss the interaction of both
explicit and implicit momentum induced by asynchrony in
detail.

Figure 1. Borrowed from (Mitliagkas et al., 2016)-Total momen-
tum has some optimal value. When implicit momentum is less
than that, we can algorithmically compensate for the rest. Beyond
a certain point, asynchrony causes too much momentum, leading
to statistical inefficiency.

2.1.3. EXPLICIT & IMPLICIT MOMENTUM

As we discussed in the last part, asynchrony induces an
implicit momentum to SGD. Now the question is what if
we add asynchrony to an explicit optimizer like Heavy-Ball
momentum? The following Theorem shows a closed-form
answer for the interaction of these two.

Theorem 4 If each worker uses Heavy-Ball momentum al-
gorithm to update common parameters as follows:

w(t+1) =w(t) − η∇wf(w
(t−τt)) + β(w(t) −w(t−1))

(8)

Double Acceleration

and Q is like what is in Corollary 2, then we have:

E[w(t+1) −w(t)] =
(
β + µ)E[w(t) −w(t−1)]

− βµE[w(t−1) −w(t−2)]

− (1− µ)η E∇wf(w
(t))

(9)

Figure 2. Borrowed from (Mitliagkas et al., 2016)-The optimal
value of explicit momentum that causes the faster convergence for
different values of implicit momentum. As the value of implicit
momentum caused by staleness grows, the optimal value of explicit
momentum decreases. For higher staleness, the optimal explicit
momentum is negative.

Thus, conform to the result of Theorem 4, we intuitively
expect that the intrinsic momentum of the problem will be
increased proportionally to the summation of staleness (µ)
and β. It’s a convention that people in deep learning use
β = 0.9 and generally β ∈ [0, 1). But if the momentum in-
duced by asynchrony is greater than the optimal momentum,
then using a momentum-based algorithm like Heavy-Ball
with a positive momentum decelerates the optimization. So,
what if we use a negative β? Below, we state a theorem
to compute the convergence rate for quadratic objectives
and then we will discuss the optimal β which should be
used in the Heavy-Ball method in order to achieve the best
convergence.

Theorem 5 (Borrowed from (Mitliagkas et al., 2016)) As-
sume that f is a simple quadratic objective like f(w) =
1
2‖Aw − b‖22, where Aw? = b. Let λi denote the i-th
eigenvalue of A>A and t?i denote the root of smallest mag-
nitude for the polynomial

gi(t) = µβt3 − (µ+ β + µβ)t2 + zit− 1, (10)

where

zi = 1 + µ+ β − η(1− µ)λi. (11)

The convergence rate of the expected iterates in the state-
ment of Theorem 4 is given by

‖Ewt −w?‖2 = O(γt), (12)

where

γ = max
i

1

|t?i |
. (13)

According to Theorem 5, we can compute the best con-
vergence rate as a function of β, µ, η, and A. Thus, for a
simple quadratic model, for each fixed staleness we can find
the optimal value of explicit momentum using a grid search
on β and the learning rate. As shown in Fig. 2, for two
quadratic models with Q = 5, 20, for high values of stale-
ness, the optimal explicit momentum is negative. We can
infer the double acceleration phenomena in the figure. So,
the valid interval of β has been changed using an implicit
momentum factor, i.e. it can be seen that somehow, there
is an upper bound on the summation of both explicit and
implicit momentum. In an extreme case like the very high
value of implicit momentum caused by staleness, a negative
explicit momentum can rectify the asynchrony harm.

2.2. Overparameterization

In machine learning, it is assumed that there is a trade-
off between expressiveness and complexity. As a result
of this belief, increasing depth leads to a more expressive
model while it makes everything complex, including the
optimization. (Arora et al., 2018b;a) have recently shown
that adding the number of parameters implicitly accelerates
the convergence speed. In fact, they have shown that under
some assumptions, more parameters can induce an implicit
momentum behavior. In the rest of this subsection, we first
discuss a simple reparameterization model then review the
case for linear neural networks. Finally, will discuss the
speed of convergence to the global optimum in a linear
neural network using SGD.

2.2.1. SIMPLE REPARAMETERIZATION

In order to demonstrate the significant effect of overparam-
eterization on convergence, consider the simple regression
problem with `p loss function:

L(w) = E(x,y)∼S [
1

p
(xTw − y)p] (14)

Where x ∈ Rdx , w ∈ Rdx and y ∈ R. To find the optimal
answer for the above cost function, we can use an iterative
method like SGD (similar to what is mentioned in Equation
2) To observe the effect of adding parameters, let’s repa-
rameterize w. The simple underlying idea is to write w
as the product of a scalar and a vector, w = w1w2. By
this assumption, in order to apply SGD, we use alternative
gradient descent. In other words, the updating rule for the

Double Acceleration

parameters will be as follows:

w
(t+1)
1 ← w

(t)
1 − η∇w

(t)
1

w
(t+1)
2 ← w

(t)
2 − η∇w(t)

2

(15)

It can be easily shown that ∇
w

(t)
1

= w
(t)
2 ∇w(t) , so we can

then derive the update rule for w as follows:

w(t+1) =w
(t+1)
1 w

(t+1)
2

=w(t) − η(w(t)
2)2

(
∇w(t)

)
− η(w(t)

2)−1
(
∇
w

(t)
2

)
w(t) +O(η2)

(16)

In the above expression, assume that η is small enough
such that η2 is negligible and we can remove it. Therefore,
expression 16 would be simplified as follows:

w(t+1) = w(t) − η(t)∇w(t) − β(t)w(t) (17)

In Equation 17, η(t) is a variable learning rate and (−β(t))
is a variable momentum-like factor. Note that both η(t) and
(−β(t)) depend on the current point in SGD. So, it can be
inferred that adding an extra parameter has implicitly led
to a momentum-like behaviour. Fig. 3 has illustrated this
phenomenon.

Figure 3. Comparison between simple and reparameterized mod-
els.

2.2.2. LINEAR NEURAL NETWORKS TRAINING

In this part we aim to generalize the idea of simple reparam-
eterization. Let’s assume that x ∈ X and y ∈ Y such that
X ⊂ Rdx , Y ⊂ Rdy . So if we want to predict y based-on
x using regression. So there is a W ∈ Rdy×dx (y = Wx)
and a loss function L : Y × Y → R≥0 like `2-loss. The
idea of is to overparameterize the model as follows:

W = WNWN−1 . . .W1 (18)

such that Wj ∈ Rnj×nj−1 where n0 = dx and nN = dy.
The model in Equation 18 is called a linear neural net-
work since it is exactly similar to a dense neural network,

the only difference is that between every two linear opera-
tors there is a non-linear layer. Hereinafter for simplicity
we denote the loss of a depth-N linear neural network as
LN (W1,W2, . . . ,WN). So as a simple deduction of this
definition:

L1(W) = LN (W1,W2, . . . ,WN) (19)

Using the alternative gradient descent to find the optimal
answer, we know that:

W
(t+1)
j ←W

(t)
j − η

∂LN

∂Wj
(W1

(t), . . . ,WN
(t))

∀j : j ∈ [N]

(20)

We intend to find a closed-form update rule based on L1(.)
and W, so a the idea in (Arora et al., 2018b) is to assume
that t is continuous and derive the Equations based on that.
Also note that η2 is negligible. Let’s denote the derivative
of Wj(t) with respect to the time as Ẇj(t), so the update
rule in 20 in the continuous form is as follows:

Ẇj(t) = −η
∂LN

∂Wj
(W1(t), . . . ,WN(t))

∀j : j ∈ [N]

(21)

2.2.3. IMPLICIT MOMENTUM

In this part, we want to show that with a proper initialization,
the update rule in Equation 21 turns into a closed-form
update rule with a momentum term in it.

Lemma 6 Assume that a neural network is initialized as
follows:

W>
j+1(t0)Wj+1(t0) = Wj(t0)W

>
j (t0)

∀j : j ∈ [N − 1]
(22)

(this initialization is called perfect initial balancedness) then
for all j such that j ∈ [N − 1] and ∀t:

W>
j+1(t)Wj+1(t) = Wj(t)W

>
j (t) (23)

Theorem 7 Assume that a depth-N linear neural network
is being trained with SGD (Equation 21) and is initialized
according to Equation 22, then the following differential
equation holds:

Ẇ(t) = −η
N∑
j=1

[
W(t)W>(t)

] j−1
N

.dL
1

dW (W(t)).

[
W(t)W>(t)

]N−j
N

(24)

where [.]
j
N is the fractional power operator over PSD ma-

trices.

Double Acceleration

It’s enough to substitute Ẇ(t) with W(t+1) −W(t), in
Equation 7 to obtain the update rule for discrete t. This
update rule relies on the fact that the learning rate is small
enough and parameters are initialized properly. In neural
network the initialization assumption is the case since all
parameters are initialized near zero but specially in 2.2.4, we
will introduce a new notation under which this assumption
is milder.

Apparently, the term on the right-hand side of Equation 7,
is not complied with non of the optimization algorithms.
Claim 8 represents this update rule in an interpretable for-
mat.

Claim 8 For an arbitrary matrix A, vec(A) denotes its
arrangement as a vector in column-first order. The update
rule of linear neural network can be written as:

vec(W(t+1))← vec(W(t))− ηPW(t)vec
(
dL1

dW

(
W(t)

))
(25)

where PW(t) is a PSD preconditioning matrix based on
W(t).

In the above claim, the preconditioning matrix modifies the
gradient direction for update rule. In other words, (if we
look at details) it can be seen that it modifies the move-
ment direction such that it falls in line with the direction of
current position of the algorithm (W(t)). This effect can
be interpreted as a momentum-like behaviour in which the
depth growth phenomena tries to alter the gradient in line
with the current position of the algorithm. Note that, the
momentum effect is not exactly vivid yet, however the next
corollary, clarifies this effect brightly.

Corollary 9 For dy = 1, the update rule in Equation 8 can
be written as follows:

W(t+1) ←W(t)−η‖W(t)‖
(2− 2

N)

2

(
dL1

dW

(
W(t)

)
+

(N − 1)PrW(t)

{
dL1

dW

(
W(t)

)}) (26)

where in PrW(t)(.) stands for the projection operator onto
the direction of W(t).

Equation 26, reminds us Equation 17 since the generated
parameters can be interpreted as a variable learning rate
and an adaptive implicit momentum. In other words, re-
garding the fact that parameters are initialized near zero,
W(t) represents contains the history of all movements in
the optimization process. As a result, when the optimization
paves the way, the learning rate gets more confident and get
adjusted. Moreover, the projected gradient along with the
coefficient N − 1 implies an adaptive momentum propor-
tional to the depth and the correlation between the gradient

and the history of movements. To see the effect of adding
parameters in practice, we generate synthetic data from a
multivariate linear model and try to learn parameters with
SGD. Then similar to what we did in 2.2.1, we increase the
number of parameters, i.e. w = w1w2w3 . . . wi that is a
depth-i model. Note that we chose η small enough such
that none of the models diverge. Fig. 4-Right shows the
potential effect of adding parameters to accelerate the algo-
rithm. Fig. 4-Left is the result of the algorithm with random
initialization. As you see adding the number of parameters
does not necessarily work better. To attain the proper ini-
tialization, we initialized the diagonal of each parameter
with 1 and the rest with 0. It can be clearly seen that for the
case with n1 = n2 = · · · = n(N−1) = min{n0, nN} this
initialization leads to Equation 22.

Figure 4. Left: Layers are initialized randomly near zero. Right:
Layers are initialized according to Equation 22

2.2.4. SPEED OF CONVERGENCE

In the last part, we observed that adding the number of
parameters substitute adds an inherent momentum to SGD
but we did not discuss the possibilities for its convergence.
The ultimate aim of (Arora et al., 2018a) is to show that a
deep linear neural network by minimizing the `2 loss using
SGD over a whitened data converges to a global minimum
with a linear rate under the following conditions:

1. Dimensions of hidden layers are at least the minimum
of the input and output dimensions.

2. Weight matrices at initialization are approximately bal-
anced.

3. The initial loss is smaller than the loss of any rank-
deficient solution.

According to the setting we discussed in 2.2.2, assume that
X ∈ Rdx×m where m is the number of samples and each
column represents a x ∈ Rdx new sample. Similarly, Y ∈
Rdy×m and W ∈ Rdy×dx . Then the formal optimization
problem is:

L(W) =
1

2m
‖WX−Y‖2F (27)

Double Acceleration

The assumption here is that X is whitened i.e. 1
mXX> = I

(the empirical uncentered covariance for instances is iden-
tity), so it can be shown that the above equation turns to:

L(W) =
1

2
‖W −Φ‖2F + c (28)

where Φ = 1
mYX> and c is independent of W. Thus,

we should minimize the first expression in the right-hand
side of Equation 28. Hereinafter, using N different matrix
and substituting W with their product (W := W1:N =
W1W2 . . .WN) we overparameterize the model and inves-
tigate how to satisfy the 3 aforementioned conditions.

Definition 10 For δ ≥ 0, we say that the matrices Wj ∈
Rdj×dj−1 , j ∈ [N], are δ-balanced if:

‖W>
j+1Wj+1 −WjW

>
j ‖F ≤ δ (29)

If δ = 0, then it implies the special initialization in Equation
22. The approximated balancedness is more useful than the
perfect balancedness owing to the fact that layers are usually
being initialized by random Gaussian with mean zero which
does not lead to a perfect balancedness. It can be shown
that if the weights of a linear neural network are initialized
to be δ-balanced, then they will stay the same during the
iterations of gradient descent.

Definition 11 Given a target matrix Φ ∈ RdN×d0 and a
constant c > 0, we say that a matrix W of same size as Φ
has deficiency margin c with respect to Φ if:

‖W −Φ‖F ≤ σmin(Φ)− c (30)

where σmin(Φ) represents the smallest singular value of Φ.

The deficiency margin determines a ball with radius c around
the target in which there is no rank-deficient matrix.

Corollary 12 If W has deficiency margin c with respect
to Φ, then any W′ for which ‖W′ −Φ‖F ≤ ‖W −Φ‖F
satisfies σmin(W

′) ≥ c.

Let’s denote `(t) the loss in the t-th iteration:

`(t) = L1(W(t)) = L1(W
(t)
1:N) =

= LN (W
(t)
1 , . . . ,W

(t)
N)

(31)

Theorem 13 Assume that gradient descent is initialized
such that the end-to-end matrix W

(0)
1:N has deficiency margin

c > 0 with respect to the target Φ and W
(0)
j , j ∈ [n] are

δ-balanced with δ = c2

256.N3.‖Φ‖2(N−1)/N
F

. Also, assume that

η ≤ c(4N−2)/N

6144.N3.‖Φ‖(6N−4)/N
F

. Then, for any ε > 0:

`(T) ≤ ε (32)

where

T ≥ 1

η.c2(N−1)/N
. log(

`(0)

ε
) (33)

According to the above theorem, we can infer that if the ini-
tialization satisfies the approximate balancedness condition
for each matrix and simultaneously forces the end-to-end
matrix to have a margin deficiency with respect to the target,
then SGD converges with a linear rate. Note that a high
margin leads to a faster convergence according to Equation
33. In (Arora et al., 2018a), it has been shown that for a sin-
gle output model (dy = 1), random zero-centered Gaussian
initialization with lower variance causes a deficiency margin
with higher probability (if it is small enough the probability
converges to 0.5). Moreover, we know that for a small vari-
ance, Wjs are likely to be approximately balanced, while
a non-negligible variance is required to have a greater c.
Hence, there is a trade-off on the Gaussian variance value
i.e. higher values may decrease the possibility of deficiency
margin and violate the approximate balancedness chance
but in the case deficiency margin condition satisfies, it has a
greater c. Results in (Arora et al., 2018a) generalize those
in (Bartlett et al., 2019), in the sense that if all layers have
the same size and we initialize them with identity matrix
then it can easily be seen that it satisfies the aforementioned
conditions.

3. Double Acceleration
As we discussed in Subsection 2.1, asynchrony leads to an
implicit momentum. Also, in Subsection 2.2 we observed
the same effects for adding parameters. Now, the idea is to
investigate whether there is any interaction between implicit
acceleration yielded from overparameterization like what we
talked about in 2.1.3 for asynchrony. Thus, in this section,
we are going to investigate a challenging but novel case,
where we apply explicit momentum acceleration along with
overparameterization. What one can expect at the very first
is to see that the intrinsic momentum changes in line with
adding more parameters.

3.1. Optimizing Simple Reparameterized Model By
Heavy-Ball Algorithm

Here, we do the analysis similar to 2.2.1 for the Heavy-Ball
method, to see how does the combination of momentum and
reparameterization acts. So, let’s start with the alternative
update rule:

w
(t+1)
1 =w

(t)
1 − η∇w

(t)
1

+ β

(
w

(t)
1 −w

(t−1)
1

)
w

(t+1)
2 =w

(t)
2 − η∇w(t)

2
+ β

(
w

(t)
2 − w

(t−1)
2

) (34)

Double Acceleration

so, let’s compute the update rule for w:

w(t+1) =w
(t+1)
1 w

(t+1)
2

(35)

=

(
w

(t)
1 − η∇w

(t)
1

)(
w

(t)
2 − η∇w(t)

2

)
(36)

+β

(
w

(t)
1 − η∇w

(t)
1

)(
w

(t)
2 − w

(t−1)
2

)
(37)

+β

(
w

(t)
1 −w

(t−1)
1

)(
w

(t)
2 − η∇w(t)

2

)
(38)

+β2

(
w

(t)
1 −w

(t−1)
1

)(
w

(t)
2 − w

(t−1)
2

)
(39)

we know that:

(36) = w
(t)
1 w

(t)
2 − ηw

(t)
2 ∇w

(t)
1
− ηw(t)

1 ∇w(t)
2

+O(η2)

= w(t) − η
(
w

(t)
2

)2∇w(t)

−
(
η
(
w

(t)
2

)−1∇
w

(t)
2

)
w(t) +O(η2)

(40)

(37) = w
(t)
1 w

(t)
2 −w

(t)
1 w

(t−1)
2 − ηw(t)

2 ∇w
(t)
1

+ ηw
(t−1)
2 ∇

w
(t)
1

= w(t) −w
(t)
1 w

(t−1)
2 − η

(
w

(t)
2

)2∇w(t)

+ ηw
(t−1)
2 w

(t)
2 ∇w(t)

(41)

(38) = w
(t)
1 w

(t)
2 −w

(t−1)
1 w

(t)
2 − ηw

(t)
1 ∇w(t)

2

+ ηw
(t−1)
1 ∇

w
(t)
2

= w(t) −w
(t−1)
1 w

(t)
2 −

(
η
(
w

(t)
2

)−1∇
w

(t)
2

)
w(t)

+

(
η
(
w

(t−1)
2

)−1∇
w

(t)
2

)
w(t−1)

(42)

(39) = w
(t)
1 w

(t)
2 −w

(t−1)
1 w

(t)
2 −w

(t)
1 w

(t−1)
2

+ w
(t−1)
1 w

(t−1)
2

= w(t) −w
(t−1)
1 w

(t)
2 −w

(t)
1 w

(t−1)
2 + w(t−1)

(43)

based on the above equations, w(t+1) can be written as

follows:

w(t+1) =w
(t+1)
1 w

(t+1)
2

=w(t) − ηw(t)
2

(
(1 + β)w

(t)
2 − βw

(t−1)
2

)
∇w(t)

+

(
2β + β2 − η(1 + β)

(
w

(t)
2

)−1∇
w

(t)
2

)
w(t)

+

(
ηβ
(
w

(t−1)
2

)−1∇
w

(t)
2

+ β2

)
w(t−1)

− β(β + 1)

(
w

(t)
1 w

(t−1)
2 + w

(t−1)
1 w

(t)
2

)
(44)

To simplify the above result, let’s use the following ideas:

• Idea 1: Let’s choose η such that:

β′ = 2β + β2 − η(1 + β)
(
w

(t)
2

)−1∇
w

(t)
2

= −ηβ
(
w

(t−1)
2

)−1∇
w

(t)
2
− β2 ⇒

(45)

η =
2β(1 + β)(

(1+β)

w
(t)
2

− β

w
(t−1)
2

)
∇
w

(t)
2

(46)

We can derive the final update rule for our case as
follows:

w(t+1) = w(t) + β′
(

w(t) −w(t−1)
)
− η′∇w(t)

− β(β + 1)

(
w

(t)
1 w

(t−1)
2 + w

(t−1)
1 w

(t)
2

)
(47)

where:

η′ =
2β(1 + β)w

(t)
2

(
(1 + β)w

(t)
2 − βw

(t−1)
2

)(
(1+β)

w
(t)
2

− β

w
(t−1)
2

)
∇
w

(t)
2

(48)

According to Equation 47, the update rule for the prod-
uct parameter is similar to Heavy-Ball with an addi-
tional term. The additional term seems to result in
an extra momentum which is the reason for double
acceleration.

• Idea 2: We know that:

(w
(t)
1 −w

(t−1)
1) = β(w

(t−1)
1 −w

(t−2)
1)− η∇

w
(t)
1

= . . .

= −η
t∑
i=0

β(t−i)∇
w

(i)
1

(49)

Double Acceleration

similarly:

(w
(t)
2 − w

(t−1)
2) = −η

t∑
i=0

β(t−i)∇
w

(i)
2

(50)

let’s simplify w
(t)
1 w

(t−1)
2 + w

(t−1)
1 w

(t)
2 , using Equa-

tions 49 & 50, thus:

(w
(t)
1 −w

(t−1)
1)(w

(t)
2 − w

(t−1)
2) = O(η2)⇒

w
(t)
1 w

(t−1)
2 + w

(t−1)
1 w

(t)
2 =

w
(t)
1 w

(t)
2 + w

(t−1)
1 w

(t−1)
2 = w(t) + w(t−1)

(51)

using the above result, we can re-write Equation 44 as
follows:

w(t+1) =w(t) − ηw(t)
2

(
(1 + β)w

(t)
2 − βw

(t−1)
2

)
∇w(t)

+

(
β − η (1+β)

w
(t)
2

∇
w

(t)
2

)
w(t)

+

(
η β

w
(t−1)
2

∇
w

(t)
2
− β

)
w(t−1)

=w(t) − ηw(t)
2

(
(1 + β)w

(t)
2 − βw

(t−1)
2

)
∇w(t)

+

(
β − η

β

w
(t−1)
2

+ (1+β)

w
(t)
2

2
∇
w

(t)
2

)
.
(
w(t) −w(t−1))

+η

β

w
(t−1)
2

− (1+β)

w
(t)
2

2
∇
w

(t)
2

(
w(t) + w(t−1))

=w(t) − η′∇w(t) + β′
(
w(t) −w(t−1))

+α
(
w(t) + w(t−1))

(52)

According to Equation 52, applying the Heavy-Ball
algorithm with β on reparameterized model leads to a
momentum with a variable parameter, β′, along with
an additional term. The difference in the momentum
term justifies the difference in the optimal momentum
value that we talk about in the next Subsection.

3.2. Momentum Interval

To observe the effect of double acceleration, assume a sim-
ple quadratic objective like what we examined in Theorem
5. That being the case, we generate a synthetic data and
finding the optimal value of w, we reparameterize it as we
discussed in 3.1 and use the Heavy-Ball method with dif-
ferent range for β. Simultaneously, we do the experiment
on the non-reparameterized case and to have a reference
for comparison, we apply these two simulations with SGD
instead of Heavy-Ball.

Figure 5. Effect of changing momentum value on convergence rate
of different schemes.

Complied with Equation 52, we expect the range of β for the
non-reparameterized case differs compared with its reparam-
eterized counterpart. We optimize the non-reparameterized
and reparameterized models using the SGD and Heavy-
Ball method with different values of β from −0.7 to 1.1.
As shown in Fig. 5, the optimal value of momentum for
non-reparameterized model is about 0.9 and it seems the
momentum method works better than SGD for 0 ≤ β < 1.
However, for the reparameterized model, the optimal value
of momentum is β = −0.3. Also, it seems the interval in
which the Heavy-Ball optimizer surpasses SGD is [−0.5, 0].
We also observed a similar effect in Fig. 2. The resem-
blance between our results and those in (Mitliagkas et al.,
2016) emphasizes the existence of the double acceleration
phenomena wherein exploiting both implicit and explicit
momentum leads to a higher value of momentum.

Double Acceleration

If the optimal momentum value for the non-reparameterized
case is β?, then using this momentum value for a reparam-
eterized case can lead to divergence. Additionally, we can
infer that based on some circumstances, we may need to
choose a non-routine value for momentum (for example a
negative value) to obtain a proper convergence.

4. Conclusion
In this article we first did a literature review on the state-of-
the-art notions of implicit acceleration, inspired by them, we
continued by investigating a different case, double accelera-
tion, that stands for exploiting both implicit and explicit ac-
celerators. We examined the effect of using different values
of hyper-parameters in convergence. One may expect that
a powerful algorithm should be robust to the initialization,
however theoretical analyses concede that it has a significant
effect on convergence specifically in iterative methods such
as SGD or momentum it somehow controls the trajectory of
optimization. Then, in order to find the optimal momentum,
we tried different values by empirical analysis. Note that
implicit acceleration changes the intrinsic momentum of
the algorithm, meaning the range of the appropriate explicit
momentum (β) that leads to convergence is likely to change
noticeably as we demonstrated that a negative momentum
led to convergence while the popular choice for momentum,
0.9 diverged. Accordingly, the inherent momentum value
that we derived is a combination of the explicit momentum
and some other terms that causes a change in the value of
momentum and then alters convergence.

References
Arora, S., Cohen, N., Golowich, N., and Hu, W. A conver-

gence analysis of gradient descent for deep linear neural
networks. arXiv preprint arXiv:1810.02281, 2018a.

Arora, S., Cohen, N., and Hazan, E. On the optimization of
deep networks: Implicit acceleration by overparameteri-
zation. arXiv preprint arXiv:1802.06509, 2018b.

Bartlett, P. L., Helmbold, D. P., and Long, P. M. Gradi-
ent descent with identity initialization efficiently learns
positive-definite linear transformations by deep residual
networks. Neural computation, 31(3):477–502, 2019.

Mitliagkas, I., Zhang, C., Hadjis, S., and Ré, C. Asynchrony
begets momentum, with an application to deep learning.
In 2016 54th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pp. 997–1004.
IEEE, 2016.

Exploring Label Smoothing Regularisation as an alternative to
Knowledge Distillation

Aditya Desai Arindam Chowdhury

Abstract
Knowledge distillation has been successfully ap-
plied to model compression. Through a modified
training objective, essential information captured
by a deep network with complex architecture can
be distilled into a shallow network, which signifi-
cantly improves its overall accuracy at the same
convergence rate and also adds to the generaliza-
tion capacity. In spite of the popularity of this
technique, there is a lack of fundamental theoret-
ical understanding of its inner dynamics. There
have been attempts to describe knowledge distil-
lation as a form of regularization and attribute
the strong performance gains to its ability to keep
the model confidence in check by transferring
class-similarity information which prevents over-
fitting. In this work, we investigate if this reg-
ularization effect can be enforced directly on a
shallow network without assistance from a deep
cumbersome network, thereby making the train-
ing process much simpler and efficient.

1. Introduction
Since its inception, deep neural networks have been ap-
plied to a multitude of learning tasks. These networks have
enjoyed tremendous success in almost all modalities viz.
images, text, video, speech, among many others. As prob-
lems are becoming more complex, the complexity of deep
networks are growing exponentially in tandem with growth
in high performance computational resources. Nevertheless,
training these networks and storing the trained models is a
difficult task, especially for online and incremental applica-
tions. Also, there is an increasing demand for algorithms
that can be deployed on hand-held and low power devices,
for example wearables for augmented and virtual reality.
This essentially requires models to be computationally in-
expensive and have smaller memory footprint while at the
same time maintain reasonable performance on standard
tasks.

Four broad categories of techniques have been proposed
for model compression. Parameter pruning and sharing (Li

et al., 2016) which involves reducing redundant parameters
which are not sensitive to the performance. Low-rank fac-
torization (Nakkiran et al., 2015) that uses matrix/tensor
decomposition to estimate the informative parameters. De-
signing compact convolutional filters (Cohen & Welling,
2016) to save parameters and finally, knowledge distillation
(Hinton et al., 2015) that involves training a compact neural
network with distilled knowledge of a large model.

Among all these techniques, knowledge distillation is espe-
cially of interest as it involves transfer of dark knowledge
from a trained deep network to a shallow network. Dark
knowledge comprises of similarity information that is useful
in learning correlations between true class and the rest. This
effectively helps the shallow network to learn a label distri-
bution essential for the task at hand, significantly improving
is performance. One limitation of this method is that it re-
quires a deep network to be trained first on data followed by
training of the shallow network from its logits. This 2-step
training process can be computationally expensive and also
an hindrance to on-device training. Leveraging the inherent
similarity of knowledge distillation to a standard regulariza-
tion scheme, known as label smoothing regularization, we
show that it can be formulated such that the requirement of
a deep network is precluded and training process becomes
simpler. In studying such a mechanism, we also gain im-
portant insights into the internal dynamics of the process
and develop an understanding of its applicability in different
settings.

This report is organized as follows. Section 2 introduces
the concept of Mimicking that acts a precursor to Knowl-
edge Distillation, which we formally present in Section 3.
Section 4 describes a key limitation while suggesting an
improvement over the vanilla version. Label Smoothing
Regularization is introduced in Section 5 . We combine all
the key ideas in Section 6 to establish a relationship between
knowledge distillation and label smoothing regularization.
In Section 7 we present and discuss some experimental re-
sults. We analyze knowledge distillation from yet another
perspective in Section 8 which offers some interesting in-
sights concluding our critical review.

Submission and Formatting Instructions for ICML 2019

2. Mimic Learning
Mimicking as a form of model compression was first pro-
posed by (Ba & Caruana, 2013) who investigated the pos-
sibility of employing a shallow network to exact the per-
formance of a relatively deeper network. Their main aim
was to understand the effect of network depth on model
performance, and in process answer the question Do deep
networks really need to be deep?. They empirically demon-
strate that shallow feed-forward networks can learn complex
functions previously learned by deep nets and achieve ac-
curacy previously only achievable by the later, if trained to
approximate the learnt function instead of being trained on
data. In fact, their experiments suggest that a model directly
trained on the original data performs worse than a model
trained with the help of a deeper model.

The SNN-MIMIC objective is formulated as a regression
problem that involves minimization of L2-distance between
the output logits of a shallow network being trained and
their counterparts from a deep network pre-trained with
cross entropy loss. Experiments with SNN-MIMIC show
encouraging results on multiple classification tasks. For
example, on CIFAR-10 dataset, a shallow network having 1
convolutional and 1 pooling layer with a final linear map-
ping, achieves a gain of ≈ 7% when trained with a CNN
ensemble as compared to training directly on data.

Authors explain the performance gain in terms of relational
information between classes captured in the logits. Essen-
tially, training on these logits make learning easier for the
shallow net as, unlike in cross-entropy objective where only
the true class probability is maximized, it has to learn the
relative importance of each class in classifying an example.
Moreover, the mean square objective ensures that the logits
capture the logarithm relationships between the probabil-
ity predictions. A shallow student model trained on logits
has to learn all of the additional fine detailed relationships
between labels that is not obvious in the probability space
yet learned by the deep teacher model. By training the stu-
dent model on the logits directly, the student is better able
to learn the internal model learned by the teacher, without
suffering from the information loss that occurs after passing
through the logits to probability space.

Such a learning mechanism offers several additional advan-
tages. Firstly, the teacher is able to eliminate some of the
noise in training labels, thus allowing the student to learn
from the information strictly relevant to the task at hand.
Moreover, the original hard 0/1 labels can be difficult to
learn given the features, sample density, and function com-
plexity. In such cases, the teacher may provide simpler
but more informative soft labels to the student. Also, it
is often ineffective to learn from actual hard labels, as the
entire probability mass is concentrated on a single class,
without offering any correlation between training classes.

This almost always leads to over-fitting. The model com-
pressing technique discussed so far, provides a regularizing
effect allowing better generalization performance of shallow
networks.

This work established that it was possible, in-principle, for
a shallow network to mimic the performance of a deep
network without an increase in parameters. However, the
algorithm for doing so was not well defined as it offered no
control over how much of teacher’s knowledge was relevant
for the student and therefore strictly required the teacher
model to be perfectly trained. In the next section, we discuss
a more generalized approach that addressed this drawback
while formalizing the student-teacher learning paradigm and
introduced the very popular knowledge distillation frame-
work.

3. Knowledge Distillation
As discussed in the last section, a lot of information is en-
coded in the relative importance of all other classes with
respect to the true class. For example, in CIFAR dataset, the
cat and dog classes are probably mapped much closer in a la-
tent discriminative space and quite far from a bus and a train
which themselves are mapped closer. Therefore, a possible
hierarchy can be imagined, where similar objects group to-
gether and further away from vastly dissimilar objects. Thus,
the correlation between classes makes the classification task
easier. Entropy objective does not allow utilization of this
information as it pushes the softmax prediction towards a
one-hot structure, making the target distributions mutually
orthogonal. As shown, one way to circumvent this problem
is by using the logits, rather than the probabilities produced
by the softmax, as the targets for learning the small model.
A more general solution, called distillation was proposed
by (Hinton et al., 2015), which raises the temperature T of
the final softmax until the deep teacher model produces a
suitably soft set of targets. The same high temperature is
then used to train the shallow student model to match these
soft targets. Temperature T is treated as a hyper-parameter,
thereby allowing a control over the softness of the targets,
lacking in the previous method. The modified softmax has
the form

qi(T) =
exp(zi/T)

Σexp(zj/T)

where zi is i-th output logit. A combined objective function
is then defined as

L = αCE(q(1), y) + (1− α)T 2CE(q(T), p(T))

where CE is the cross-entropy loss, y is true label and p is

Submission and Formatting Instructions for ICML 2019

the output distribution of the teacher. α is a hyper-parameter
that controls a trade-off between the two loss components.

The use of an explicit cross-entropy loss, in addition to
the matching loss, precludes the requirement of a perfectly
trained teacher, as the model is also forced to predict the
correct label while learning the relationship of the same with
the incorrect labels. Nevertheless, best model performance
is achieved for small values of α, i.e. when maximum focus
is on matching the soft probabilities.

This formulation may look different from the logit matching
algorithm under mimic learning framework but the authors
show that matching the logits of the two models is actually
a special case of distillation. In fact, at high temperatures,
optimizing this loss is equivalent to optimizing MSE on the
logits before softmax layer. Cross-entropy gradient for each
logit zi is given by dC

dzi
. Assuming, vi to be teacher logits,

dC

dzi
=

1

T

(
exp(zi/T)

Σ(exp(zj/T))
− exp(vi/T)

Σ(exp(vj/T))

)

For hight temperature, it can be approximated as

dC

dzi
≈ 1

T

(
1 + zi/T

N + Σjzj/T
− 1 + vi/T

N + Σjvj/T

)

Assuming the logits are zero-meaned separately, i.e. Σjzj =
Σjvj = 0,

dC

dzi
≈ 1

NT 2
(zi − vi)

The gradient thus takes the form of gradient of mean square
distance between z and v.

At lower values of T , distillation ignores logits that are
strongly negative. This is advantageous as some of these
logits could be highly noisy, thereby destabilizing training.
Having said that, there is a possibility that the very negative
logits may convey useful information about the knowledge
acquired by the teacher. Authors show that for much shal-
lower students who fail to capture all of the knowledge in the
deeper model, intermediate temperatures work best. Thus it
seems that ignoring the large negative logits can be helpful.

Intuitively, as the soft targets have higher entropy, they pro-
vide much more information per training case than hard
targets and much less variance in the gradient between train-
ing cases. Therefore, a small network can learn from much
less data than the original deep model and also converge
faster than the deep model. Their experiments on MNIST
and other domains also showed how effectively a model
trained by distillation can learn to generalize. For example,

even after removing all the instances of class 3 from the
distillation training set, the smaller model mis-classifies ex-
amples of class 3 in the test set only 133/1010 times, at an
average. Fixing the bias of class 3 further reduces the error
to a mere 14 out of 1000 test samples.

Since the introduction of this vital concept, several modifica-
tions have been proposed to address some of its fundamental
drawbacks and to make it more efficient. In the next section
we discuss some key concepts that provide deep insights
into the dynamics of student-teacher relationship.

4. Improved Knowledge Distillation via
Teacher Assistant

Our discussion so far has shown that knowledge distillation
can be a promising way to obtain a shallow student model
which retains the accuracy of a large teacher. This poten-
tially opens up several possibilities. What if we can use the
most accurate teacher to train the smallest student. In this
section, we will try to find an answer to that.

This work by (Mirzadeh et al., 2019) claims that knowl-
edge distillation is not effective when gap (in size) between
teacher and student is large. Their experiments showed
that a student model distilled from a teacher with more
parameters and better accuracy performs worse than the
same distilled from a smaller teacher with a smaller capac-
ity. Specifically, they experimented with a fixed student
network that was distilled from progressively growing(in
size) teacher networks. It was observed that student’s per-
formance initially improved as the teacher became more
complex, reached a peak and then fell with further growth
in teacher size.

To explain this phenomenon, authors intuitively described
certain factors that competed against each other when the
teacher network was gradually made more complex. Ini-
tially, teacher’s performance improved as its architecture
becomes more complex, and was therefore able to provide
better supervision to the student by being a more accurate
predictor, thereby improving student performance. After a
while, the teacher became so complex that the student lacked
sufficient capacity or mechanics to mimic the teacher’s be-
havior despite receiving hints, and its performance saturated.
As the teacher size grew further, its certainty about data
increased, thus making the logits less soft. This effectively
weakened knowledge transfer via soft targets.

Clearly, factor 1 is in favor of increasing distillation per-
formance while factors 2 and 3 are against it. Initially, as
the teacher size increases, factor 1 prevails; as it grows
further, factors 2 and 3 dominates. As a solution, authors
proposed the use of Teacher Assistant (TA) networks that
were intermediate to student and teacher in terms of size.
Following a 2-step distillation process, the TA was first

Submission and Formatting Instructions for ICML 2019

trained from teacher followed by student being trained from
the TA. They made two important observations regarding
this training paradigm. Firstly, the best TA for training a
student, was the one that lay in the middle not in terms of
size but in terms of average accuracy. They found, while
training a 2-layered student network, that the 4-layered TA
worked best for distillation as it lay at the centre in terms
of accuracy and not the 6-layered network that lay exactly
in the middle of the student and the 10-layered teacher, in
terms of size. And, although it was possible to train the TA
network from scratch and then use it for training the student,
best distillation results were achieved when the TA was also
trained via distillation from the teacher network.

Essentially, this work makes the all important point that the
quality of student is not linearly related to the quality of
teacher. Thus, the best teacher is not the one that has the
most complex architecture or achieves the best prediction
accuracy but one that provides most informative soft targets.
This, in-principle, opens up the possibility of distilling a
student without using a deep teacher network. We shall
discuss more on this topic in a later section.

In the next section, we digress a little from our discussion
so far to describe another form of regularization that has a
slightly different formulation but relates quite strongly to
knowledge distillation.

5. Label Smoothing Regularization
The central theme of our discussion so far has been the
drawback of cross-entropy objective using one-hot targets
in training. It has been discussed how models can get over-
confident due to assigning too much importance to the true
class label. Moreover, it widens the gap between true-class
logit and all other logits. This, combined with the bounded
gradients of cross-entropy objective, restricts adaptability.
(Szegedy et al., 2016) proposed a way to improve the gener-
alization capacity of deep networks by modifying the target
distribution q(i|x) to take the form

q′(i|x) = (1− ε)δi,y + εu(i)

where i is the logit index (x, y) is the data tuple. The most
important component of this formulation is the function u
that redistributes some probability mass to the false classes,
thereby reducing the gap with respect to true class. A com-
monly followed technique is to deduct εmass from true class
and have it uniformly distributed across all false classes.
While experimenting with 1000 classes of ImageNet dataset,
authors achieved a consistent(across architectures) gain of
0.2% by setting u(k) = 1/1000 and ε = 0.1.

The objective function for LSR is defined in terms of cross
entropy as

L(q′, p) = −ΣN
i=1 log p(i)q′(i)

= (1− ε)L(q, p) + εL(u, p)

The second term penalizes the deviation of predicted la-
bel distribution from the given distribution u. This devia-
tion can also be captured by KL-divergence as L(u, p) =
DKL(u||p) + L(u), where L(u) is constant. So in essence,
Label Smoothing Regularization (LSR) is a composite ob-
jective which has a weighted cross-entropy component that
extracts information from labelled data and a KL diver-
gence component to ensure that the predictions match a
given distribution. Assuming complete freedom to choose
any distribution, this formulation allows for incorporating
domain knowledge (bias) in the learning process, allowing
for stronger regularization. Also, a careful glance at the
objective reveals that knowledge distillation is a special case
of LSR in which, soft labels from a teacher network is used
as u.

Label smoothing has since been a widely used “trick” to im-
prove network performance, however, there has not been a
thorough investigation about why and when label smoothing
should work. (Müller et al., 2019) tries to shed light upon
behavior of neural networks trained with label smoothing in
an attempt to formalize its relationship to knowledge distil-
lation. Authors make several important observations when
applying label smoothing to knowledge distillation. They
observe that in spite of achieving stronger generalization
capacity, label smoothing impairs distillation, i.e., when
teacher models are trained with label smoothing, student
models perform worse. Their experiments revealed that
label smoothing actually encourage the representations of
training examples from the same class, learned by the penul-
timate layer of the network, to group in tight clusters. Due
to the formation of these class-wise clusters, every example
of one class has similar distances to examples from all other
classes. This leads to loss of information in the logits about
resemblances between instances of different classes, which
is necessary for distillation, but does not hurt generalization.
They further observe that mutual information between in-
puts and logits undergo a rapid increase in the beginning of
training but then slowly decreased in networks trained with
label smoothing, indicating that much of the information
that could be used to discriminate between examples was
lost as the clusters are formed.

This work therefore suggests that, although label smoothing
acts as an effective regularizer, it is not suitable for use in
scenarios where the objective is to train a teacher network
for distillation. In the next section, we discuss an alternative
approach which involves formulating LSR as generalized
knowledge distillation and thereby doing away with the need
for an explicit teacher.

Submission and Formatting Instructions for ICML 2019

6. Teacher-free Knowledge Distillation
This section combines the key concepts that we discussed
so far, forming the crux of our critical review. Here, we de-
scribe certain experiments that investigate the possibility of
distillation without a teacher. (Yuan et al., 2019) claim that
knowledge distillation is more of a regularization technique
than a mechanism for transfer of similarity information,
popularly known as dark knowledge.

Their first set of experiments were performed to understand
if distillation is possible only from a fully trained and more
complex teacher. Firstly, De-KD or Defective KD that uses
a poorly trained teacher to train a student. Second, Re-KD
or Reversed KD that uses a shallower student model to train
a deep teacher model. By definition of KD, both these teach-
ers are supposed to be bad and therefore should not transfer
the required dark knowledge, reducing student accuracy.
On the contrary, it was found that in both cases the aver-
age performance of the student improves. Authors analyze
knowledge distillation process under the LSR framework to
explain these counter-intuitive results.

As discussed in the previous section, label smoothing objec-
tive takes the form

LLS = (1− α)CE(q, p) + αKL(u, p)

and knowledge distillation objective is defined as

LKD = (1− α)CE(q, p) + αKL(pt, p)

where pt is the soft distribution of teacher predictions.
Comparing the two equations, it can be established eas-
ily that knowledge distillation is a learned LSR whereas
label smoothing is an ad-hoc knowledge distillation, which
can be described as a teacher model with random accuracy
and temperature T = 1.

At higher temperatures, the distribution of teacher’s soft tar-
gets in knowledge distillation is more similar to the uniform
distribution used in label smoothing. Therefore, authors
explained the experimental results of Re-KD and De-KD by
hypothesizing that the soft targets for these models at high
temperatures were very close to having an uniform distri-
bution and thus had a regularizing effect on their respective
students, thus improving their performance. That is why a
student can enhance the teacher and a poorly-trained teacher
can still improve the student model.

Now we come to the all important question that forms the
motivation for this review. Can we achieve distillation with-
out a teacher?. In their second set of experiments, the
authors enforce two forms of teacher-free training. Self-
KD is implemented as a 2-step process. First a network is
trained directly on data to generate a model St. Setting this
model as teacher, the network is trained again from scratch,

this time using distillation objective. Alternatively, a target
distribution can be hand-crafted based on the specific task at
hand. This is called Virtual-KD. For high values of T , this
method converges to LSR. It is interesting to note that, both
these mechanisms do as good as and sometimes better than
teacher-based knowledge distillation. Results are shown in
Table 1 & 2.

Model Self-KD Normal-KD [Teacher]
MobileNetV2 +2.58 +2.67 [ResNet18]
ShuffleNetV2 +1.89 +1.71 [ResNet18]

ResNet18 +1.23 +1.19 [ResNet50]
GoogLeNet +1.45 +1.39 [ResNeXt29]

DenseNet121 +1.22 +1.15 [ResNeXt29]
ResNeXt29 +1.05 +1.12 [ResNeXt101]

Table 1. Comparison of accuracy improvement due to Self-KD (in
%) on CIFAR100

For virtual-KD the target distribution was formulated as

p(i) =

{
a if i = c,
1−a
N−1 if i 6= c,

where c is the true class index. a = 0.99 for the given
experiments.

Model Virtual-KD Normal-KD [Teacher]
MobileNetV2 +2.50 +2.67 [ResNet18]
ShuffleNetV2 +1.75 +1.71 [ResNet18]

ResNet18 +1.49 +1.32 [ResNet50]
GoogLeNet +1.07 +0.99 [ResNeXt29]

Table 2. Comparison of accuracy improvement due to Virtual-KD
(in %) on CIFAR100

In addition to the results presented by the authors, we per-
formed a set of experiments to empirically validate the ef-
fectiveness of teacher-free distillation. Our experimental
setup and results are presented in the next section.

7. Experiments
For our experiments we design a test-bed as described in
(Yuan et al., 2019). We use ShuffleNetV2 (Ma et al., 2018)
as student and ResNet18 (He et al., 2016) as teacher. All
the experiments were performed on CIFAR-10 dataset. We
used Adam optimizer with a learning rate of 1e − 3. Our
experiments were directed towards closing the gap between
student accuracy achieved with the help of teacher and with-
out by using multiple variants of label smoothing.

Submission and Formatting Instructions for ICML 2019

Method Accuracy
Baseline 91.74

Normal-KD [RestNet18] 92.86
Uniform distribution with peak = 0.90 92.21

Geometric distribution with peak = 0.90 92.30
Uniform distribution with peak = 0.99 92.51

Reduced gap between highest and second
highest classes 92.55

Geometric distribution with peak = 0.99 92.71

Table 3. Comparison of accuracy for multiple methods

7.1. Results

7.2. Discussion

In all our experiments, we used a composite loss weighted
by a hyper-parameter α. Keeping the cross entropy loss con-
sistent across all experiments, we present the variants of soft
loss in Table 3. As shown, the student model trained with
knowledge distillation performs better than the one trained
on data. By removing the teacher, we applied several soft
targets to regularize the network. In our experiments, geo-
metric distribution worked best when peaked at true class.
Intuitively, the geometric distribution offers smoother decay
in probability mass from true class to other classes, as com-
pared to a sudden jump in uniform distribution, which helps
the network to capture the similarity information better. We
further observed that, there was a gain in performance as the
gap between the highest class and the next most confident
class was reduced. This not only made the network less
confident of the true class but also helped it to learn asso-
ciation between similar classes. Although, our results did
not exactly match the performance achieved by the network
under knowledge distillation, they clearly showed that it is
possible to achieve comparable accuracy without an explicit
teacher.

Therefore, it can be empirically shown that label smoothing
regularization with a carefully designed objective function,
can be a viable alternative to a cumbersome deep network
based, multi-step optimization.

8. Adaptive Regularization of Labels
In this section, we present an alternative interpretation of the
composite objective that has been central to our discussion
so far. (Ding et al., 2019) found the optimization goals of
the soft KL-divergence loss and the hard cross-entropy loss
as contradictory. Considering z as logits and p as output
predictions of student, q as one-hot labels, q(soft) as soft-
ened teacher predictions with temperature T and weight α,

the gradient of the composite loss takes the form

dLKD

dzi
= (1− α)

dLhard

dzi
+ α

dLsoft

dzi

where dLhard

dzi
= (pi − qi) and dLsoft

dzi
= 1

T (pi − q(soft)i).

To make the objective 0, dLKD

dzi
= 0, pi takes the form,

pi =
(1− α)qi + αTq

(soft)
i

1− α+ αT

From this expression, it is clear that an optimal trade-off is
required in terms of α and T for matching the soft proba-
bilities, which may be hard to find. Further, as their values
are fixed during training, the adaptability of the student
model is restricted when soft labels are not available. To ad-
dress these issues, they proposed an adaptive regularization
scheme that enabled a neural network to self-learn corre-
lation among classes using erroneous knowledge from the
previous training experience.

To this end, they defined a residual label q(res) for each
class. A residual label is a softmax-normalized vector of
dimension N − 1, where N being number of classes. This
vector is extracted from rows of a correlation matrix of
classes, where each row represents a class and each column
records the probability of an instance of that class being mis-
classified as an instance of another class. Therefore, residual
label is an erroneous prediction probability distribution of a
class. Authors hypothesized that by maintaining an explicit
matrix of residual correlation among classes, and feeding
this information back to the network at each training step, it
can be forced to learn the correlation among classes, which
would have a regularizing effect on the performance. Also,
based on the model’s predictions, the correlation matrix is
be updated at each step. The objective functions are defined
as

Lres = − 1

N − 1
ΣN−1

i=1 q
(res)
i log p

(res)
i

Lupd = − 1

N − 1
ΣN−1

i=1 p
(res)
i log q

(res)
i

where p(res) is the erroneous probability distribution for
a mini-batch. Here, Lupd is the update loss that is used
to update the residual correlation matrix and the residual
loss L(res) in addition to a hard CE loss is used to train the
network. Compared to soft loss, residual loss doesn’t have
any hyper-parameter that require manual adjustment, thus
automating the transfer of similarity information. Authors
report superior results on multiple supervised learning tasks.
For example, on CIFAR-100 using ResNet18 architecture
with adaptive regularization, an improvement of 1.54% in
accuracy was observed. Therefore, this work makes the

Submission and Formatting Instructions for ICML 2019

point that by utilizing the rich information content of erro-
neous predictions, a significant improvement in performance
can be achieved without using an explicit teacher model.

9. Conclusion
In this work, we tried to understand the intuition and the-
ory behind knowledge distillation and presented some cases
where it requires improvement. We then discussed the simi-
larities of knowledge distillation with label smoothing regu-
larization and analyzed the idea that knowledge distillation
is mainly a regularization technique and certain appropri-
ately designed training objectives preclude the need for
training a deep cumbersome network for distillation. We
believe there is enough scope for theoretical investigations
in this direction. It would be particularly useful to have
an information theoretic analysis of networks that learn di-
rectly from data and others which learn from soft targets,
providing interesting insights into the fundamental learning
process. Another useful direction would be to study the
robustness of these techniques under adversarial attacks.

References
Ba, L. J. and Caruana, R. Do deep nets really need to

be deep? CoRR, abs/1312.6184, 2013. URL http:
//arxiv.org/abs/1312.6184.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999, 2016.

Ding, Q., Wu, S., Sun, H., Guo, J., and Xia, S.-T. Adaptive
regularization of labels. 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the
Knowledge in a Neural Network. arXiv e-prints, art.
arXiv:1503.02531, Mar 2015.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. Shufflenet v2:
Practical guidelines for efficient cnn architecture design.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 116–131, 2018.

Mirzadeh, S.-I., Farajtabar, M., Li, A., and Ghasemzadeh,
H. Improved knowledge distillation via teacher assistant:
Bridging the gap between student and teacher. arXiv
preprint arXiv:1902.03393, 2019.

Müller, R., Kornblith, S., and Hinton, G. When does label
smoothing help? arXiv preprint arXiv:1906.02629, 2019.

Nakkiran, P., Alvarez, R., Prabhavalkar, R., and Parada,
C. Compressing deep neural networks using a rank-
constrained topology. 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Yuan, L., Tay, F. E. H., Li, G., Wang, T., and Feng, J. Re-
visit Knowledge Distillation: a Teacher-free Framework.
arXiv e-prints, art. arXiv:1909.11723, Sep 2019.

http://arxiv.org/abs/1312.6184
http://arxiv.org/abs/1312.6184

Adversarial Machine Learning and Certified Defenses
against Adversarial Examples

Maomao Ding
Department of Statistics

Rice University
Houston, TX 77005
md45@rice.edu

Wei Wu
Department of Computational and Applied Mathematics

Rice University
Houston, TX 77005

weiwu995@gmail.com

Abstract

In recent years there has been an increasing interest in the topics of adversarial
robustness in the deep learning community. Despite the outstanding accuracy on
tasks such as visual recognition and speech recognition, deep learning classifiers
are vulnerable to adversarial attacks. A small perturbation to the input data, often
noise-like and imperceptible to human’s eyes, could lead to an entirely different
classification result. Researchers have proposed defense methods, which however
are usually overcome by more advanced attack methods later. It is hence desirable
to have defenses that are successful to all attacks within a certain class. However it
is computationally intractable to even compute the worst-case error for any give
network against all adversarial perturbations. Two common approaches are to
approximate by minimizing a lower-bound of the worst case loss and to compute
the worst-case perturbation exactly with discrete optimizations. These approaches
suffer either from a low accuracy due to the bound being loose, or from the
intractability of exact computation. In this paper, we discuss the basic concepts and
methodology in adversarial robustness, then we discuss two methods to train deep
neural network based classifier that are certified to be robust against norm-bounded
perturbations in further details.

1 Introduction

Adversarial machine learning is an emerging field of study that gains its popularity in recent years.
Machine learning techniques are originally designed for stationary data distribution and friendly
environments where the trained models are deployed to work with test data generated from the same
distribution. However, in real world applications, malicious adversaries may take advantage of these
stationarity and attacks the learning system in all possibles phases. For example, poisoning (causative)
attack is a class of attack that happens on the training phase. The attackers can influence or corrupt the
ML model by 1). insert certain instances, 2). modify instances in the data, or 3). selectively remove
certain instances. This type of attack does not happen frequently, as getting access to the training data
and altering the training data distribution is usually difficult and not cost effective. Another type of
attack, evasion (exploratory) attack, is the prevalent type of attack that the ML systems may encounter
in real world applications. It does not alter the ML model, but instead, modifies and disguises the
malicious objects to evade detection from the ML model. For example, adding some specific words
in the spam email to lower the probability of being blocked by mail filtering system. Other possible
attacks includes model inversion attack and model extraction attack, where the attackers try to extract
sensitive data or model parameters from the ML model [1, 2]. Details of attack taxonomy can be
found in [3, 4, 5].

Preprint. Under review.

In this exposition, we will mainly focus on evasion attack, especially in the deep neural network model
class. People used to believe that trained deep learning models will be robust to data perturbation,
i.e., slightly distorting input data will not change the predicted outcome. However, as pointed out
by [6], the input-output mappings learning by deep neural networks are quite discontinuous, and we
can easily deceive the DNN classifier by adding some unnoticeable noise to the original input. As is
pointed out the authors, these perturbations are not random artifacts of learning: the perturbations
have transferability both cross model and cross training set, meaning that the same perturbed sample
can fool a different network, that was trained on a different training set. This intriguing discovery
attracted a lot of attentions from the deep learning community, and exploding literatures have been
published to discuss about defense and attack strategies.

Write hθ : X → {1, ...,K} as the model that map inputs to the predicted categories, where K is
the number of classes being predicted, and θ represents all the parameters contained in the model.
We further define ` : Rk × {1, ...,K} → R as the loss function. For classification problem, the loss
function is usually defined as cross entropy loss,

`(hθ(x), y) = log

 K∑
j=1

exp{hθ(x)j}

− hθ(x)y,

for x ∈ X and y ∈ {1, ...,K} as the true class, and hθ(x)j denotes the j-th elements of the vector
hθ(x). For a certain data point (x, y), the adversarial example is usually found by maximizing
`(hθ(x + δ), y) such that δ is an allowable perturbation. It is, however, difficult to characterize
the set ∆ of allowable perturbations. Ideally speaking, we want to capture any distortions that is
imperceptible visually to humans. This could include anything from image noise, including Gaussian
noise, salt-and-pepper noise, shot noise, to any form of image deformations, like rotation, scaling,
barrel distortion, pincushion distortion and so on. It is impossible to give a mathematically rigorous
definition that incorporates all the plausible perturbations, instead, we consider only some subset of
the allowable set, such that a adversarial example could be found, or the trained model is robust against
this perturbation. A commonly used perturbation set, is the norm-bounded adversarial perturbations,
defined by

∆ = {δ : ‖δ‖ ≤ ε},
where ‖ · ‖ can be any norm. Some frequently used norms are `∞, `1 and `2 norm.

Now suppose the data is generated from the distribution P, the expected risk of hθ is given as

R(hθ) = E(x,y)∼P [`(hθ(x), y)] .

This quantity is usually unobservable. When a data set D = {(xi, yi)}ni=1 sampled from P is given,
the traditional process usually wants to minimize the empirical risk

R̂(hθ) =
1

n

n∑
i=1

`(hθ(xi), yi),

which is known as empirical risk minimization (ERM) principle in statistical learning theory.

When the model is subject to adversarial attack, we consider the adversarial risk as an alternative.
This is defined as the expected value of maximum risk under the circumstance that the data is subject
to perturbation. Formally speaking, we have

Radv(hθ) = E(x,y)∼P

[
max
δ∈∆(x)

`(hθ(x+ δ), y)

]
,

where we allow the perturbation set ∆ to be data-dependent. There is some concern about the measur-
ability of the function maxδ∈∆(x) `(hθ(x+ δ), y). Generally speaking, when ∆(x) is well-behaved,
this function is usually measurable. When it is not measurable, concepts like outer expectation and
envelops should be used. However, this complication does not give us too much insight about the
problem, and from now on we will assume that maxδ∈∆(x) `(hθ(x+ δ), y) is measurable without
further verification.

Similar to the empirical risk, we can define the empirical adversarial risk as

R̂adv(hθ) =
1

n

n∑
i=1

max
δi∈∆(xi)

`(hθ(xi + δi), yi).

2

From attacker’s perspective, building adversarial example from existing data point (x, y) is equivalent
to find

δ = argmaxδ∈∆(x)`(hθ(x+ δ), y).

Sometimes the attacker would like create adversarial examples that the model would classify as
ytarget, not some random label among {1, ...,K}. This is known as targeted attack, and it is equivalent
to solve the optimization problem

maximizeδ∈∆(x) {`(hθ(x+ δ), y)− `(hθ(x+ δ), ytarget)}
≡ maximizeδ∈∆(x)

{
hθ(x+ δ)ytarget − hθ(x+ δ)y

}
.

Note that typically we do not need to accurately solve this optimization problem. A feasible point
that gives rise to significant raise in loss value should suffice. Based on the amount of knowledge
the attacker has about the model structure, this could be further classified into: 1). white-box
attack: the attacker has almost full knowledge about the algorithm, including model architecture and
hyperparameters, etc. 2). black-box attack: the attacker almost know nothing about the algorithm,
he gains his knowledge about the model mostly by feed data into the trained model that could give
predicted outcomes. People used to believe that black-box attack should be difficult. However, as
pointed out in [7], there exists extremely effective way of conducting black box attacks. As to the
white-box attack, there exists many efficient ways of finding adversarial examples, including fast
gradient sign method [8], DeepFool [9] and CW [10] among others.

From defender’s perspective, it is crucial to train a classifier to the possible attacks. Formally speaking,
the defender is trying to solve the following min-max optimization problem

minimize R̂adv(hθ) ≡ minimize
1

|Dtrain|
∑

(x,y)∈Dtrain

max
δ∈∆(x)

`(hθ(x+ δ), y),

which is also referred to as robust optimization formulation of adversarial learning.

Suppose that we are able to find f and g, such that f(θ) ≤ R̂adv(hθ) ≤ g(θ) for each θ. The
commonly used defense techniques could be categorized into: 1). minimize f(θ), which minimizes
the lower bound of empirical adversarial risk [11, 8]. This provides some protect again certain
types of attack. However, this type of method could not guarantee that the model will be free of
adversarial attacks, and countermeasures were quickly developed [10, 12]. 2). solve the min-max
problem exactly [13, 16]. This could be done by formulating the inner maximization problem as a
mixed integer linear programming problem. However, the computational burden is heavy for this
scheme, and generally infeasible for complex networks used in practice. 3). minimize g(θ) [14,
15]. This strategy gives us certification that the trained network will be robust against all allowable
perturbations, and the error is guaranteed to be within a certain value. This method is conservative,
and the certified error bound is usually too large to be satisfying in practice.

2 Solving the inner maximization

In this section, we discuss the problem of solving the inner maximization, i.e.,

maximize‖δ‖≤ε`(hθ(x), y).

This problem is essential in adversarial learning. Adversarial examples are built by searching for
optimal (suboptimal) points, and solving the inner maximization problem is usually the first step of
building robust deep neural networks.

For simplicity, we consider a d-layer feed-forward network here.

z1 = x,

zi+1 = fi(Wizi + bi), i = 1, ..., d

hθ(x) = zd+1,

where fi denotes the activation function at layer-i, which is usually taken as ReLU operator for
i = 1, ..., d − 1 and identify operator fi(z) = z for layer d. The parameters for this networks are
θ = {W1, b1, ...,Wd, bd}.

3

2.1 Lower bounding the inner maximization

To find a lower bound of the inner maximization, or to propose a good adversarial example, gradient
based methods are usually the most natural choice. Write the gradient of `(hθ(x+ δ), y) with respect
to δ as

v := ∇δ`(hθ(x), y).

To maximize the loss, we would like to adjust x in the direction of v, i.e.,
xadv := x+ αv,

where α is the step size. As a starting point, we would consider only conduct a one-step update, and
in order to maximize the loss increments, we want the step size to be as large as possible. Since we
have additional constrained that ‖δ‖ ≤ ε, we also need to project αv back into this norm ball. When
`∞ norm is used, this strategy gives us the Fast Gradient Sign Method (FGSM) [8],

δ := ε · sign(v).

A natural extension would be using several gradient steps to perform a finer search in the allowable
set. Since δ is restricted to a norm ball of radius ε, we will actually perform projected gradient descent
(PGD). Notice that we are actually solving a maximization problem here, but by convention we will
still call it gradient descent. Starting with δ = 0, the PGD iterates are given as

Repeat :

δ := P(δ + α∇δ`(hθ(x+ δ), y)),

where P denotes the projection to the norm ball. DeepFool [9] used a similar strategy, except the
slight difference that their goal is to find adversarial examples with minimum distance with respect to
`2 norm. Along this line, gradient based methods like steepest descent or Nesterov’s acceleration
could also be used.

2.2 Solving the inner maximization exactly

There are many works using exact solvers to explore the properties of the neural networks. Two types
of techniques are usually deployed. The first line of research uses Satisfiability Modulo Theories
(SMT) [17, 18], and the second line of research formulate adversarial learning as integer programming
problems [13, 16]. In this exposition, we will mainly focus on integer programming formulation of
adversarial robustness.

Suppose that Wizi + bi can be bounded by li and ui element-wisely. It is easy to reformulat
zi+1 = max{0,Wizi + bi} as

zi+1 ≥Wizi + bi
zi+1 ≥ 0

ui · vi ≥ zi+1

Wizi + bi ≥ zi+1 + (1− vi)li
vi ∈ {0, 1}|vi|,

where vi is a binary variable of the same size as zi+1. Plug in this equivalent formulation into the
original inner maximization problem, we obtain a mixed integer linear programming (MILP) problem,
which can be solved using Gurobi or other solvers. The difficulty lies in the fact that each vi can take
2|zi+1| many values, which imposes the combinatorial nature of this problem.

Notice the upper and lower bound will always exist, as we can bound each layer by extremely large
intervals, e.g., [10−100, 10100]. However, the efficiency of the solver will depend heavily on these
bounds. Notice that the input has some natural bound. We could propagate this bound layer by layer.
Suppose l ≤ z ≤ u, then

max{W, 0}l + min{w, 0}u+ b ≤Wz + b ≤ max{W, 0}u+ min{w, 0}l + b,

gives a bound for Wz + b. This bound is quite loose, as it element-wisely finds the bounds for
Wz + b. when applying this trick to deep forward network, the bounds will getting worse as the
layers stack up.

To certify robustness, we need to run the MILP using a targeted attack for all possible alternative
classes for each data point. This further restrict the scalability of exact maximization approach.

4

2.3 Upper bounding the inner maximization

As the exact search for inner maximization problem for large scale networks will never terminate in
reasonable time, it is of practical value to establish upper bound for inner maximization that is fast to
obtain, and this will provide certificates on how our model behave under adversarial attacks.

A natural strategy is convex relaxation [19]. Notice that in the previous MILP formulation, the
majority difficult is searching over vi ∈ {0, 1}|vi|, which grows exponentially with the number
of units. One commonly used technique is to relax this constraint and allow vi to take fractional
values, i.e., 0 ≤ vi ≤ 1. With this modification, the inner maximization problem becomes a convex
optimization problem, which can be solved by solvers like CVX. Notice that in this case, the obtained
solution will not give us adversarial examples anymore, as the we’ve already altered the optimization
problem. Here we are relaxing the optimization problem from the primal view. Actually we can
also relax the optimization problem from the dual view. By weak duality, this also gives us an upper
bound on the inner maximization problem, and under some mild conditions, it can be strong duality
holds, which further shrink this upper bound with the actual optimal value. Further detail can be
found in [19].

[20] used another approach to obtain an upper bound. Their approach is specifically designed for two
layer feed forward networks. For simplicity we will consider a binary classification problem. The
results obtained for binary classification can be easily adapted to multi-class classification case.

Write hθ(x) = V σ(Wx), where W ∈ Rm×d and V ∈ R2×m are the parameters of the first and
second layer (including intercept), and σ is the activation function. For input x, we assume the true
label for x is 2 and write f(x) = hθ(x)1 − hθ(x)2 = V1σ(Wx)− V2σ(Wx), where Vi is the i-th
row of V . Write Bε(x) as the norm ball of radius ε centered at x. The maximizer for the inner
maximization problem is xadv = argmaxx̃∈Bε(x)f(x). When f(xadv) > 0, we successfully find a
adversarial example. Based on first order approximation, we have

f(x̃) ≈ f(x) +∇f(x)T (x̃− x) ≤ f(x) + ε‖∇f(x)‖∗,

where ‖ · ‖∗ is the dual norm. However, this approximated upper bound fails to hold in many cases,
and some attacks can produce adversarial examples if the defense based on above approximation is
used [10, 12]. Thus we use the following formula to obtain exact upper bound instead,

f(x̃) = f(x) +

∫ 1

0

∇f(tx̃+ (1− t)x)T (x̃− x)dt

f(x) + max
x̃∈Bε(x)

ε‖∇f(x̃)‖∗.

The RHS for the above formula is still intractable. We now work on further relax this bound. Write
v = V1 − V2 ∈ Rm. We further assume that the gradient for activation function is bounded. This
holds for commonly used options like ReLU, sigmoid and tanh. For ReLU, we have σ′(z) ∈ [0, 1].
Here we will work with `∞ norm. Thus ‖z‖∗ = ‖z‖1 = maxt∈[−1,1]d t

T z. Therefore:

‖∇f(x̃‖1 = ‖WT diag(v)σ′(Wx̃)‖1
≤ max
s∈[0,1]m

‖WT diag(v)s‖1

= max
s∈[0,1]m,t∈[−1,1]d

tTWT diag(v)s.

The above bound is still non-convex. Similar to the MAXCUT problem, we approximate this by
semidefinite programming relaxation.

First, we symmetrize the variable s, which gives

max
s∈[−1,1]m,t∈[−1,1]d

1

2
tTWT diag(v)(1 + s).

Next we write the above quantity in quadratic form:

y :=

[
1
t
s

]
M(v,W) :=

 0 0 1TWT diag(v)
0 0 WT diag(v)

diag(v)TW1 diag(v)TW 0.

5

The objective can be written as

max
y∈[−1,1]m+d+1

1

4
yTM(v,W)y = max

y∈[−1,1]m+d+1

1

4
〈M(v,W), yyT 〉.

Defining P = yyT , we have P � 0 and Pii ≤ 1. We obtain the following convex semidefinite
relaxation of the original problem:

max
P�0,diag(P)≤1

1

4
〈M(v,W), yyT 〉.

For multi-class problem, we write f ij(x) = hθ(x)i − hθ(x)j . The rest is readily established.

The last approach we present here, is the interval bound propagation (IBP) [20], which is simple to
implement and scales up well to large scale networks.

The idea is similar to what we do to establish upper and lower bounds in building up MILP for exact
solution of inner maximization. In fact, there are immediately available upper bounds for any linear
combination of hθ(x), which we write as cThθ(x). However, we know this bound is quite loose. To
further improve this bound, we can estimate the lower and upper bound for up to the second last layer,
and minimize cThθ(x). Suppose that l ≤ zd ≤ u, we have

minimizezdc
T (Wdzd + bd) + cT bd = (WT

d c)
T zd + cT bd

subject tol ≤ z ≤ u.
There is a closed form for the optimal value

max{cTWd, 0}l + min{cTWd, 0}u+ cT bd.

This bound can be efficiently computed. We can easily use this to maximize loss or targeted loss for
a certain data point.

3 Solving the outer minimization

In this section, we discuss the problem of solving the outer minimization problem, i.e., training
networks that can defense adversarial attacks. When the inner maximization can be solved exactly,
the gradient of maxδ∈∆(x) `(hθ(x), y) can be given by Danskin’s theorem. Write

δ∗(x) = argmaxδ∈∆(x)`(hθ(x), y)

which is the maximizer of the inner maximization problem. The gradient of the adversarial loss is

∇θ max
δ∈∆(x)

`(hθ(x+ δ), y) = ∇θ`(hθ(x+ δ∗(x)), y).

This facilitates the mini-batch gradient descent for empirical adversarial loss

θ := θ − α

|B|
∑

(x,y)∈B

∇θ`(hθ(x+ δ∗(x)), y),

where α is the step size and B is the mini-batch. However, finding exact solution of the inner
maximization is extremely time-consuming, rendering the outer minimization impractical. Thus we
will focus on minimizing the lower and upper bound of inner maximization problem.

3.1 Minimizing the lower bound

Write x+ δ̃(x) as the adversarial example created by algorithm, e.g., FGSM. The gradient step can
be written as

θ := θ − α

|B|
∑

(x,y)∈B

∇θ`(hθ(x+ δ̃(x)), y).

Strictly speaking, Danskin’s theorem only applies at δ = δ∗(x), and it’s not clear about what the
properties we would have when computing the gradient at suboptimal points. In practice, we find that
the “quality” of such a gradient descent scheme is closely related to the quality of inner maximization
step, and the trained model will be robust against to the attack we used to train the inner maximization.
However, when other form of attacks is presented, the trained model is likely to fail.

6

3.2 Minimizing the upper bound

Danskin’s theorem is directly applicable here. In the case of convex relaxation or IBP, the gradient is
easy to compute. One thing we need to be cautious about is that we should not directly optimize with
our targeted ε. In many cases, this causes our model to collapse, predicting equal probability for every
class. Instead, we should start with small ε, then gradually increases to our aimed perturbation level.

For the semidefinite convex relaxation [15], finding the optimal value of a SDP is usually slow. We
seek to the duality theory to alleviate the computation burden.

The primal problem is

maximize 〈M,P 〉
subject to P � 0, diag(P) ≤ 1, tr(P) ≤ d+m+ 1.

Forming the Lagrangian for the constraints diag(P) ≤ 1, we have the following equivalent problem

maximize min
c≥0
〈M,P 〉+ cT (1− diag(P))

subject to P � 0, tr(P) ≤ d+m+ 1.

By strong duality of linear programming problem, this is equivalent to

minimize max
P�0,tr(P)≤d+m+1

〈M,P 〉+ cT (1− diag(P))

subject to c ≥ 0.

The inner maximum is equivalent to

1T c+ (d+m+ 1)

(
max

P�0,trP≤1
〈M − diag(c), P 〉

)
= 1T c+ (d+m+ 1)λmax(M − diag(c))+,

where a+ denote the positive part of a. Notice that λmax(M − diag(c)) = max‖u‖2=1 u
T (M −

diag(c))u is an decreasing function with each components of c, and 1T cI(c ≥ 0) = 1T max(c, 0).
We can write the about problem as the following unconstrained optimization problem

minimize 1T max(c, 0) + (d+m+ 1)λmax(M − diag(c))+

Thus the objective function in its unconstrained (Lagrangian) form is:∑
(x,y)∈D

`(hθ(x), y) + λ1T max(c, 0) + (d+m+ 1)λmax(M(V,W)− diag(c))+,

where λ is the tuning parameter control the trade-off between classification loss and adversarial
robustness. This can be optimized efficiently with gradient based method, and λmax(·) can be
computed using efficient algorithms like Lanczos. The dual formulation also gives us a certificate on
robustness. Specifically, suppose (Wt, Vt, ct) are the obtained parameters after t-th iteration. The
duality theory tells us

f(x̃) ≤ f(x) +
ε

4

[
1T max(ct, 0) + (d+m+ 1)λmax(M(Vt,Wt)− diag(ct))+

]
,

for any adversarial example x̃.

References

[1] Fredrikson, Matt, Somesh Jha, and Thomas Ristenpart. "Model inversion attacks that exploit confidence
information and basic countermeasures." In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1322-1333. ACM, 2015.

[2] Tramèr, Florian, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. "Stealing machine learning
models via prediction apis." In 25th USENIX Security Symposium (USENIX Security 16), pp. 601-618. 2016.

[3] Huang, Ling, Anthony D. Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J. Doug Tygar. "Adversarial
machine learning." In Proceedings of the 4th ACM workshop on Security and artificial intelligence, pp. 43-58.
ACM, 2011.

7

[4] Biggio, Battista, Giorgio Fumera, and Fabio Roli. "Security evaluation of pattern classifiers under attack."
IEEE transactions on knowledge and data engineering 26, no. 4 (2013): 984-996.

[5] Biggio, Battista, Igino Corona, Blaine Nelson, Benjamin IP Rubinstein, Davide Maiorca, Giorgio Fumera,
Giorgio Giacinto, and Fabio Roli. "Security evaluation of support vector machines in adversarial environments."
In Support Vector Machines Applications, pp. 105-153. Springer, Cham, 2014.

[6] Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).

[7] Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami.
"Practical black-box attacks against machine learning." In Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pp. 506-519. ACM, 2017.

[8] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial
examples." arXiv preprint arXiv:1412.6572 (2014).

[9] Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. "Deepfool: a simple and accurate
method to fool deep neural networks." In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2574-2582. 2016.

[10] Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39-57. IEEE, 2017.

[11] Papernot, Nicolas, et al. "Distillation as a Defense to Adversarial Perturbations Against Deep Neural
Networks." 2016 IEEE Symposium on Security and Privacy, SP 2016. Institute of Electrical and Electronics
Engineers Inc., 2016.

[12] Tramèr, Florian, et al. "Ensemble adversarial training: Attacks and defenses." arXiv preprint
arXiv:1705.07204 (2017).

[13] Tjeng, Vincent, Kai Xiao, and Russ Tedrake. "Evaluating robustness of neural networks with mixed integer
programming." arXiv preprint arXiv:1711.07356 (2017).

[14] Wong, Eric, and J. Zico Kolter. "Provable defenses against adversarial examples via the convex outer
adversarial polytope." arXiv preprint arXiv:1711.00851 (2017).

[15] Raghunathan, Aditi, Jacob Steinhardt, and Percy Liang. "Certified defenses against adversarial examples."
arXiv preprint arXiv:1801.09344 (2018).

[16] Cheng, Chih-Hong, Georg Nührenberg, and Harald Ruess. "Maximum resilience of artificial neural
networks." International Symposium on Automated Technology for Verification and Analysis. Springer, Cham,
2017.

[17] Huang, Xiaowei, et al. "Safety verification of deep neural networks." International Conference on Computer
Aided Verification. Springer, Cham, 2017.

[18] Katz, Guy, et al. "Reluplex: An efficient SMT solver for verifying deep neural networks." International
Conference on Computer Aided Verification. Springer, Cham, 2017.

[19] Salman, Hadi, et al. "A convex relaxation barrier to tight robustness verification of neural networks."
Advances in Neural Information Processing Systems. 2019.

[20] Gowal, Sven, et al. "On the effectiveness of interval bound propagation for training verifiably robust
models." arXiv preprint arXiv:1810.12715 (2018).

8

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning?

Sean Farrell * 1 Carlos Quintero Peña * 2

Abstract

This document provides a literature review for
the most important recent works related to opti-
mizing high-dimensional non-convex functions
in the presence of saddle points mostly for ma-
chine learning applications. The inspiration came
from reviewing the paper ”How to Escape Saddle
Points Efficiently?” (Jin et al., 2017a). A large
research effort has been devoted to proposed meth-
ods that can converge to second order stationary
points efficiently. Of special interest is the set of
methods that do not rely on Hessian computation,
mainly driven by applications in machine learn-
ing where this may not be feasible. Although,
many important theoretical results have been pro-
posed, many of them have not be tested in real
experiments, especially in the context of training
a deep neural network. We have designed exper-
iments with different network architectures and
state-of-the-art datasets to observe the behavior
of perturbed versions of gradient descent. Initial
results show that an improvement in experimental
convergence rate can be seen only for small and
shallow networks. These results, although still
encouraging, does not allows us to conclude on
the practicality of the analyzed algorithms.

1. Literature Review
1.1. Context

The pioneering work of (Dauphin et al., 2014) is one of the
first works that bring attention to the analysis of convergence
of gradient-based optimization methods in the presence of
high-dimensional non-convex functions in a variety of ap-
plications, including statistical physics and neural networks,

*Equal contribution 1Department of Electrical and Computer
Engineering, Rice university, Houston, Texas, USA 2Department
of Computer Science, Rice university, Houston, Texas, USA. Cor-
respondence to: Sean Farrell <smf5@rice.edu>, Carlos Quintero
Peña <carlosq@rice.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

among others. In general, the proliferation of saddle points
as the dimension of the problem increases is exponential,
suggesting that saddle points and not local minima are re-
sponsible for slowing down the convergence of both first
order and second order methods. Their algorithm called
saddle-free Newton method (SFN) uses curvature informa-
tion to define a trust region allowing it to escape saddle
points. Their observations are experimentally justified in
the context of neural networks, however, no theoretical char-
acterization is provided.

The intuition gained from experimentation in low-
dimensional problems can lead us to misleading conclu-
sions when extending the concepts to higher-dimensional
problems. In an extreme case, consider the random matrix
theory. Choosing an eigenvalue with exact eigenvalue of
0 has probability 0, while for larger dimensions it is ex-
ponentially unlikely to get all eigenvalues either positive
or negative, which means that most critical points will be
saddle points.

(Choromanska et al., 2014) shows one of the first theoretical
attempts to explain the optimization of highly non-convex
multi-layer neural network functions using results from the
prism of spin-glass theory.

These results have inspired a plethora of works that aimed
at: i) understanding the behavior of gradient descent (GD)
under the presence of saddle points, ii) the proposal of GD
modifications that aim at improving its convergence proper-
ties to converge to second-order stationary points and iii) the
proposal of new algorithms that are not GD modifications
that achieve improved performance over traditional opti-
mization algorithms in the presence of saddle points. Most
of these efforts have been heavily driven by applications in
machine learning and signal processing, where non-convex
and high-dimensional problems easily arise.

A highly influential line of work is the one that strives to
understand and improve the behavior of GD-based algo-
rithms in the presence of saddle points. Originally, (Ge
et al., 2015b) showed how a simple variation of GD named
Noisy Stochastic Gradient can converge to a local minimum
in d4poly(ε−1), where d is the dimension and ε is the size of
the gradient at the critical point (see Definition 1). In their
approach the idea is to add noise to the gradient sampled uni-
formly from the unit sphere. Their choice of adding noise

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

to the gradient is based on observations that even though
gradient-based methods will not move when converged to
a stationary point (one with ∇f(x) = 0), the randomness
in stochastic gradient updates helps the algorithm to escape
unstable stationary points, such as saddle points. In their
proof, they use the fact that when the algorithm is near a
saddle point, there is a finite number of steps in which the
expected value of the function will slightly decrease with
respect to the one in the stationary point. In other words, the
update of the algorithm guarantees that the point will move
in a direction of negative curvature and will remain close to
it in directions of positive curvature. They prove this using
martingale theory. Later, (Lee et al., 2016) showed that
gradient descent converges asymptotically to minima with
either random initialization or noise. For this, the authors
use the Stable Manifold Theorem. Intuitively, if the initial
point of the algorithm has a component outside the subspace
spanned by the standard basis vectors corresponding to the
positive eigenvalues of the Hessian, then GD will converge
to the corresponding saddle point. The probability of the
initial point landing in this subspace is zero. In their proof,
they use the fact that there exists a diffeomorphism between
the neighborhood of a critical point and a stable center man-
ifold that contains the points that are locally forward not
escaping. This results may apply even when the noise is
not artificially added which means that variants of GD such
as stochastic gradient descent also fall under this analysis.
However, the noise coming from the stochastic gradients
may not be good enough in the required directions.

(Levy, 2016) showed how a variant of normalized gradi-
ent descent (NGD) could be extended to efficient escape
strict saddle points withinO(η−2) which is an improvement
to (Ge et al., 2015a) Noisy gradient descent (Noisy-GD)
convergence guarantees. The proposed algorithm is called
Saddle-NGD, and it adds zero mean Gaussian noise θnt
with a variance dependent on the dimensionality of the prob-
lem once every N0 iterations. The main difference between
this method and Noisy-GD is the fact that only the direc-
tion of the gradient is taken into account and the noise is
sampled from a different distribution after a certain number
of iterations. This method is beneficial because near a sad-
dle point the gradients approach minute values near zero.
The normalization step helps to ensure a fast escape from
a saddle point because once the algorithm arrives at a sad-
dle point the most negative eigenvalue will be sufficiently
large relative to the other eigenvalues. Experimentally Levy
(2016) tested his proposed Saddle-NGD algorithm against
(Ge et al., 2015a) Noisy-GD method on online tensor data
significant in big data applications. The results show that
Saddle-NGD has slower initial convergence improvements,
compared to Noisy-GD, but after a specific critical point de-
pendent on the learning rate, Saddle-NGD shows significant
improvements in decreasing the reconstruction error.

Work presented by (Du et al., 2017) showed that general gra-
dient descent will require exponential time to escape strict
saddle points in general non-convex smooth functions us-
ing natural random initialization methods (Du et al., 2017).
They further tested (Jin et al., 2017a) PGD algorithm, show-
ing that it outperforms GD by taking only polynomial time
instead of exponential time to escape saddle points. Through
theoretical and experimental work Du et al. (2017) showed
that GD takes at least td exponential time to escape d sad-
dle points following td ≥ (L+γ

γ)d. Where L and γ are
characteristics of the non-convex function being optimized.
The PGD algorithm for the same experiments and theory
required an approximately constant number of iterations of
approximately 1

ηγ , where η is the specified learning rate. For
general non-convex optimization problems (Du et al., 2017)
showed the significant improvements PGD has versus GD
with random initialization to reduce the convergence time re-
quirements from exponential time to polynomial time. This
can be significant for high dimensional neural network prob-
lems to help reduce training time. However, these results
cannot be generalized to all non-convex problems, because
there can be classes of problems and initialization schemes
where GD can have better performance in the presence of
saddle points (Du et al., 2017).

1.2. Perturbed Gradient Descent

Here is where the paper selected to review for this project
comes in. In (2017a), Jin et al., proposed Perturbed Gradient
Descent (PGD), a simple variation of GD capable of achiev-
ing convergence to ε-second order stationary points in a
number of iterations that is almost “dimension-free”, which
means that its complexity depends only poly-logarithmically
on the problem dimension. This result outperforms previous
results for the following reasons:

• Previous works were able to characterize the conver-
gence behavior of GD algorithms either asymptotically
or bounding their complexity polynomially in terms
of the problem dimensionality. This work attained im-
proved results by providing sharp bounds for second
order stationary points

• Their analysis leads to a convergence complexity that
matches those of the original GD (Nesterov) up to a
poly-logarithmic factor

• Their results apply to a more general class of non-
convex functions instead of being problem-specific

• This work is an important step towards reducing the
gap between practice and theory in this field, since it
better characterizes the behavior observed in practice
when optimizing high-dimensional non-convex func-
tions using GD-based algorithms

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

The dynamics of the PGD algorithm are mostly that of the
GD, except that it keeps track of the gradient’s norm to
identify when the current iteration is close to a stationary
point. At that point, PGD adds noise to the current iterate
by sampling uniformly from a d-dimensional ball, only a
maximum amount of iterations. If the function value does
not decrease enough, the algorithm is potentially in a local
minimum and returns the current point. Conversely, if the
function value decreases enough, it has escaped the saddle
point and regular GD iterations are put in place again. The
algorithm is shown in Algorithm 1.

Algorithm 1 Perturbed Gradient Descent (PGD)
Input: x0, l, ρ, ε, c, δ, ∆f

χ← 3 max{log
(
dl∆f

cε2δ

)
, 4}, η ← c

l , r ←
√
c

χ2
ε
l ,

gthres ←
√
c

χ2 ε.fthres ← c
χ3

√
ε3

ρ , tthres ←
χ
c2

l√
ρε

tnoise ← −tthres − 1
for t = 0, 1, ..., do

if ‖∇f(xt)‖ ≤ gthres and t− tnoise > tthres then
x̃← xt, tnoise
xt ← x̃t + ξt, ξt uniformly B0(r)

end if
if t−tnoise = tthres and f(xt)−f(x̃tnoise

) > −fthres
then

Return x̃tnoise

end if
xt+1 ← xt − η∇f(xt)

end for

For further clarification, we briefly present the following
definitions:

Definition 1. For a differentiable function f , we say that x
is a first-order stationary point if ‖∇f(x)‖ = 0; we also
say x is an ε-first-order stationary point if ‖∇f(x)‖ ≤ ε.

Definition 2. For a differentiable function f , we say that x
is a local minimum if x is a first-order stationary point, and
there exists ε > 0 so that for any y in the ε-neighborhood of
x, we have f(x) ≤ f(y); we also say x is a saddle point if x
is a first-order stationary point but not a local minimum. For
a twice-differentiable function f , we further say a saddle
point x is strict (or non-degenerate) if λmin(∇2f(x)) < 0

Definition 3. For a ρ-Hessian Lipschitz function f , we say
that x is a second-order stationary point if ‖∇f(x)‖ = 0
and λmin(∇2f(x)) ≥ 0; we also say x is ε-second-order
stationary point if ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥
−√ρε

Note that these definitions define ε-first order and second
order stationary points in terms of ε to make explicit the
relation between the gradient and Hessian. Jin et al., (2017a)
main results is stated below:

Theorem 1. (Jin et al., 2017a) Assume that f satisfies
that is l-smooth and ρ-Hessian Lipschitz. Then there ex-
ists an absolute constant cmax max such that, for any
δ > 0, ε ≤ l2

ρ ,∆f ≥ f(x0) − f∗, and constant c ≤
cmax, PGD(x0, l, ρ, ε, c, δ,∆f) will output an ε-second-
order stationary point, with probability 1− δ, and terminate
in the following number of iterations:

O

(
l(f(x0)− f∗)

ε2
log4

(
dl∆f

ε2δ

))
. (1)

In addition to this general result, the authors also show
analysis for strict saddle property, strong convexity and
provide examples of matrix factorization. The proof is
based on a geometric interpretation of the perturbation ball
achieved by the PGD algorithm. In general, the perturbation
region is divided by two disjoint regions; the escaping region
which contains all the points where the algorithm can escape
the critical point and the stuck region where that is not
possible. The shape of these regions is in general not known;
however, the authors bound the volume of the stuck region
using the smallest eigendirection of∇2f(x̃) as the thickness
of such small band. In this way, they can guarantee that
PGD will escape the critical points with high probability.
Figure 1 shows graphically the described concept in 2D and
3D. For the former, a thin band is created near the point
where the perturbation is performed; in 3D, it becomes a
thin disk.

Figure 1. Ball region created by the perturbation in PGD algorithm
showing the escaping and stuck region. The region in green corre-
sponds to the stuck region and the authors show that its volume is
small. Figure taken from (Jin et al., 2017a).

As stated above, this result shows only a poly-logarithmic
convergence on the dimension, which can be written as
Õ
(
ε−2
)

and can be compared to the convergence of original
GD (Nesterov) to achieve a ε-first order stationary point of
O
(
l(f(x0)−f∗)

ε2

)
, or equivalently O

(
ε−2
)
.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

1.3. Perturbed Accelerated Gradient Descent

The natural way to improve on the PGD convergence rate
involved momentum-based techniques. Previously, (Nes-
terov) showed that an accelerated version of gradient de-
scent can achieve a O(1√

ε
) to an ε-first order stationary

point which is faster than traditional gradient descent. Jin
et al. (2017b) investigated the theoretical possibilities of
developing a momentum-based algorithm that could achieve
faster convergence then GD in the presence of strict sad-
dle points. Their algorithm is called Perturbed Accelerated
Gradient Descent (PAGD) with the pseudo-code presented
in Algorithm 2 (Jin et al., 2017b). The first if-statement in
PAGD is used for the perturbation step. A perturbation to
the current position is added when the gradient is small and
the previous perturbation was added over T iterations ago.
The noise is sampled uniformly from a d-dimension ball
with radius r (Jin et al., 2017b). The following three lines
correspond to the AGD component of the algorithm. The
last if-statement in PAGD is used for the negative curvature
exploitation (NCE). The NCE steps make sure the Hamilton
will decrease per iteration. Intuitively this helps to restrict
the momentum incorporated in PAGD from growing too
large where negative curvature can not be exploited. Jin et
al. (2017b), show that their PAGD method is one of the first
Hessian-free single loop algorithms to find second-order
stationary points faster than GD inO(1/ε7/4) iterations (Jin
et al., 2017b).

Algorithm 2 Perturbed Accelerated Gradient Descent
(PAGD)

Input: initial point x0, step sizeη, γ, s, r, T, and v0.
for t = 0, 1, ..., do

if ‖∇f(xt)‖ ≤ ε and no perturbation in last T steps
then
xt ← xt + χt χt = Unif(B0(r))

end if
yt ← xt + (1− θ) vt
xt+1 ← yt − η∇f(yt)
vt+1 ← xt+1 − xt
if f(xt) ≤ f(yt) + {∇f(yt), xt − yt}− γ

2 ‖xt − yt‖
2

then
if ‖vt‖ ≥ s then
xt+1 ← xt

else
δ = s · vt/‖vt‖
xt+1 ← argminx∈(xt+δ,xt−δ)f(x)

return (xt+1, 0)
end if

end if
end for

1.4. Stochastic Gradient Descent Algorithm

The standard SGD algorithm does not require the complete
gradient ∇f(·) but instead uses a stochastic gradient g(x,θ)
when at some location x. The θ term is a random variable
sampled from a specific distribution D. The SGD algorithm
is proven to converge to an ε-first order stationary point in
O(ε−4) (Ghadimi & Lan, 2013). The general convergence
for SGD is shown in Theorem 2.

Theorem 2. (Ghadimi & Lan, 2013) Let the function f
satisfy Lipschitz gradients and the stochastic gradient g has
an expectation equal to the true gradient and the sampling
distribution has strongly bounded tails. Let the step size
scale as η = Θ̃(`−1(1 + σ2/ε2)−1). Then with probability
1− δ, SGD will find an ε-first order stationary point in the
following iteration shown in Eq.2.

Õ
(
`(f(x0))− f∗

ε2
·
(

1 +
σ2

ε2

))
(2)

The SGD algorithm pseudo-code is presented in Algorithm
3. This method can also be used in a mini-batch method
where several random variables are sampled from the distri-
bution and used to calculate and average stochastic gradient.

Algorithm 3 Stochastic Gradient Descent (SGD)
Input: initial point x0, step size η.
for t = 0, 1, ..., do

sample θt ∼ D
xt+1 ← xt − η(g(xt;θt))

end for

1.5. Perturbed Stochastic Gradient Descent Algorithm

The PSGD algorithm is a variant of SGD that theoretically
has been proven to converge to an ε-second-order stationary
point in Õ(ε−4) when the gradients are Lipschitz (Jin
et al., 2019). If the Lipschitz assumption cannot be
applied then a linear dimensional dependence d arises,
bounding convergence to an ε-second-order stationary
point in Õ(dε−4) (Jin et al., 2019). The complete theorem
formulation of this convergence criterion is shown in
Theorem 3.

Theorem 3. (Jin et al., 2019) Let the function f satisfy
Lipschitz gradients and the stochastic gradient g has an
expectation equal to the true gradient and the sampling
distribution has strongly bounded tails. For any ε, δ > 0,
the PSGD algorithm with chosen parameters (η, r) will find
an ε-second order stationary point in the following number
of iterations in Eq. 3, with probability 1− δ.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

Õ
(
`(f(x0))− f∗

ε2
·N
)

(3)

The parameters η, r, and N are chosen based on Eq.4-5 by
setting theoretical parameters about the optimized functional
space.

η = Θ̃

(
1

` ·N

)
, r = Θ̃(ε

√
N), (4)

where N = 1 + min
{σ2

ε2
+

˜̀2

`
√
ρε
,
σ2d

ε2

}
(5)

Recall that SGD finds convergence to an ε-first-order station-
ary point in O(ε−4) (Ghadimi & Lan, 2013). Thus, PSGD
can achieve the same convergence as SGD to a ε-second
order stationary point with a poly-logarithmic dependence
in dimension d. This is significant because convergence
to second-order stationary points eliminates the possibility
of the convergence point being a strict saddle point. How-
ever, that being said the convergence point could either be a
local/global minimum or degenerate saddle point.

The general PSGD algorithm pseudo code developed by
Jin eta al. (2019) is presented in Algorithm 4 and the
mini-batch version is presented in Algorithm 5 (Jin et al.,
2019). For both algorithms random noise is added to the
gradient each iteration. The noise ξt is sampled from a
normal distribution with zero mean and covariance (r2/dI).
If r is selected as r = Θ̃(ε) then, theoretically PSGD will
find an ε-second order stationary point following Theorem 3.

Algorithm 4 Perturbed Stochastic Gradient Descent
(PSGD)

Input: initial point x0, step size η, perturbation radius r.
for t = 0, 1, ..., do

sample θt ∼ D
xt+1 ← xt − η(g(xt;θt) + ξt), ξt ∼ N (0, (r2/d)I)

end for

Algorithm 5 Mini-batch Perturbed Stochastic Gradient De-
scent (Mini-batch PSGD)

Input: initial point x0, step size η, perturbation radius r.
for t = 0, 1, ..., do

sample {θ(1)
t , ..., θ

(m)
t } ∼ D

gt(xt)←
∑m
i=1 g(xt; θ

(i)
t)/m

xt+1 ← xt − η(g(xt;θt) + ξt), ξt ∼ N (0, (r2/d)I)
end for

A very recent work by Fang et al., (2019) showed how SGD
can benefit from added dispersive noise and converge to a ε-
second order stationary point in Õ(ε−3.5), which improves

on the PSGD convergence rate and is the sharpest result
so far for stochastic gradient-based methods. Its worth
mentioning that these convergence results that are almost
dimension free, holding when the gradients are Lipschitz
continuous. When this condition does not hold, a linear
dependency of the dimensions appears in the analysis (Fang
et al., 2019; Jin et al., 2019).

1.6. Beyond first-order methods

Other researchers have contributed important work to ap-
proaches that do not rely solely on the gradient, but also
use higher-order information. For instance, in (Agarwal
et al., 2017), the FastCubic algorithm is based on Nesterov’s
cubic regularization and is capable of finding ε-second order
stationary points in Õ

(
ε−7/4

)
. Although, these algorithms

improve convergence analysis, they require Hessian infor-
mation which may not be available in large scale machine
learning problems.

Similar to the perturbed accelerated version of GD (Jin et al.,
2017b), in (O’Neill & Wright, 2017; Sun et al., 2019), the
authors analyze the behavior of accelerated methods such
as the heavy-ball method when they are close to saddle
points by using the stable manifold theorem proving that
it is not very likely that accelerated methods get stuck in
saddle points and that they can escape them faster than
gradient-descent.

(Anandkumar & Ge, 2016) proposes the use of third order
derivatives to escape degenerate saddle points. They also
show that fourth order derivatives and higher is NP hard.
Also, (Reddi et al., 2017) proposes a method that alternates
between first-order and second-order subroutines to reduce
the complexity of computing Hessians while allowing it
to escape saddle points. The problem of escaping saddle
points has also been explored in constraint optimization for
quadratic objectives subject to convex sets (Mokhtari et al.,
2018), as well as in the presence of Riemannian Manifolds
(Criscitiello & Boumal, 2019; Sun et al., 2019).

Other important techniques are based on negative curvature
information. For example, in (Xu et al., 2018; Allen-Zhu
& Li, 2017) the authors propose NEON and NEON2, a
methodology in which negative curvature information is ex-
tracted from the Hessian using only first order information
attaining convergence rate of Õ

(
ε−4
)

and Õ
(
ε−3.5

)
respec-

tively. Similarly, by adding regularization to the negative
curvatures approach (Allen-Zhu, 2017) attains Õ

(
ε−3.25

)
using Natasha2. Finally, using variance reduced gradient
techniques SPIDER (Fang et al., 2018) is capable of achiev-
ing Õ

(
ε−3
)

which is the current state of the art stochastic
gradient computational cost.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

1.7. Second order Stationarity in Machine Learning

In machine learning and signal processing non-convex prob-
lems it has been shown over the last years that all second-
order stationary points are global minima, which means
that if one can find second-order stationary points, this is
equivalent to globally solving the problem. Areas where this
has been shown include Tensor decomposition (Ge et al.,
2015a), Dictionary Learning (Sun et al., 2016a), Phase
Retrieval (Sun et al., 2016b), Synchronization and Max-
Cut (Bandeira et al., 2016), Smooth Semidefinite Programs
(Nicolas Boumal & Bandeira, 2016), Matrix sensing (Bho-
janapalli et al., 2016), Matrix Completion (Ge et al., 2016)
and Robust Principale Components (Rong Ge & Zheng,
2017). In most of these applications, the following is true:

1. All local minima are global minima

2. All saddle points have at least one direction with
strictly negative curvature (are strict saddle points)

Note that for a function that meets 1 and 2, all second-order
stationary points correspond to global minima. This observa-
tion further increases the importance of algorithms capable
of finding second-order stationary points efficiently, as those
reviewed here, since that guarantees global convergence in
these non-convex problems.

One exciting area that has also received significant attention
is that of Deep Learning. Several authors had been inter-
ested in the surface error of the training process of neural
networks. (Dauphin et al., 2014) argues about the prolif-
eration of saddle points when training a neural network
and provides experimental evidence in this direction. Also,
(Kawaguchi, 2016) provides a theoretical analysis showing
that just like in other machine learning areas, in a Deep
Network every local minimum is a global minimum and the
remaining are saddle points. Furthermore, they argue that in
deeper networks degenerate saddle points appear whereas
strict saddle points are present in shallow networks (3 lay-
ers or less). This was an important result since it helped
characterizing the optimization problem that needs to be
solved in the training process of a neural network, showing
that although it may be difficult it is easier than the general
non-convex problem.

A more practical work by (Sankar & Balasubramanian,
2017) showed through an experimental setup that deep neu-
ral networks actually converge to saddle points and not to
local minima and furthermore that these saddle points are
degenerate. They claim that the theoretical work around
convergence to saddle points only considers strict saddle
points and therefore its motivation is questionable. We note
that the definition of strict and degenerate saddle points be-
tween this work and the most notorious theoretical works
(Ge et al., 2015b; Rong Ge & Zheng, 2017; Ge et al., 2016;

Jin et al., 2017a; 2019) differs. For Sankar et al., (2017),
degenerate saddle points can have positive, negative and
zero eigenvalues of the Hessian. Furthermore, they call the
number of zero eigenvalues the degree of degeneracy of the
saddle point. For the theoretical works, a strict saddle point
only requires the minimum eigenvalue of the Hessian to be
negative, meaning that a saddle point with zero, positive and
negative eigenvalues is still strict and can be analyzed under
their framework.

In (Sankar & Balasubramanian, 2017), the authors charac-
terize the critical point where the algorithms converge when
training deep neural networks by explicitly computing the
Hessian and its eigenvalue decomposition. Using this, they
conclude that actually deep networks converge to saddle
points and not to local minima. Although the conclusion
somewhat agrees with other’s authors observations, we point
out that their experiments show one-layer neural networks
that achieve comparable performance to deep networks due
to the difficulty on computing the Hessian of a practical
deep network. We believe that these conclusions can not
be extracted from this approximation since the optimiza-
tion problem may completely show different characteristics
when using shallow and deep networks. It is widely known
by the community that although shallow networks can match
the performance of deep networks, this is not possible by
using the gradient-based optimization algorithms that are
usually used in this context.

In another work, (Daneshmand et al., 2018) show theoreti-
cally that when learning half-spaces using neural networks,
the stochastic gradient has strong components in the direc-
tion of negative curvature. Using this observation, they pro-
pose a variation of PGD (Rong Ge & Zheng, 2017) where
the noise is not added isotropic but the iteration is replaced
by that of stochastic gradient descent. Their analysis show
that this is enough to achieve convergence to second order
stationary points.

Based on these theoretical and practical results and ob-
servations we propose to study the performance of per-
turbed gradient-based algorithms such as PGD and SPGD
(Rong Ge & Zheng, 2017; Jin et al., 2019), in the training
of deep neural networks.

2. Experimental Results
In this section, we will present preliminary results evaluating
the perturbed version of stochastic gradient descent (PSGD),
using the mini-batch method, versus vanilla stochastic gra-
dient descent (SGD). The experimental setup is outlined at
a high level in Fig. 2. This setup describes two main tests
where PSGD and SGD convergence rate accuracy and loss
are compared using relatively shallow and deep networks.
The MLP architecture is considered a relatively shallow net-

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

work in the experiments due to it containing only 5 layers.
Similarly, the VGG3 architecture is considered a relatively
deep network because it contains 22 layers. The CIFAR-10
MLP has an input shape of (32,32,3) that is flattened. It
then has a dense layer with 128 hidden neurons using sig-
moid activation. This is followed by a 25% percent dropout,
another dense 32 hidden neuron layer, and lastly 10 output
neurons using softmax activation. The CIFAR-10 VGG3
has an input shape of (32,32,32) into a convolution layer
followed by a max pooling and dropout layers. This layer
sequence is repeated three times using Relu activation with
the dropout increasing from 20% to 40%. The last four lay-
ers are flattening, dense 128 hidden neurons, 20% dropout,
and 10 output neurons using softmax activation.

All networks were developed using Keras back-end onto
TensorFlow. The networks were trained in Google Colab
using Tesla K80 GPUs with 12 GB of RAM. Due to the ex-
ecution time limitations set by Google Colab we were only
able to run each experiment for 200 epochs. We used 50,000
images from the CIFAR-10 dataset for training and 10,000
for testing the network. In the following sections experi-
mental results are presented for each algorithm based on the
shallow and deep network tests depicted in the experimental
setup.

Experimental Setup

MLP VGG3
Network

Architectures

CIFAR-10

SGD

Dataset

Optimizers
PSGD SGD PSGD

Figure 2. Experimental setup testing the performance of PSGD
against SGD on relatively shallow (MLP) and deep (VGG3) net-
works.

2.1. Shallow Network Results

In this section both training and testing accuracy and loss
results are presented for CIFAR10 using the MLP network
architecture. The batch size was set to 128 and learning rate
η = 0.01 for all experiments.

The training and test accuracy for SGD and PSGD, at vari-
ous r values is shown in Fig.3-4 for 200 epochs. The cor-
responding training and testing loss for both algorithms
is shown in Fig.5-6. Focusing on the test accuracy re-
sults in Fig.4, the maximum testing accuracy approaches

47% in 200 epochs when the PSGD algorithm is used with
r = 0.015. When compared to the SGD algorithm the test-
ing accuracy results show a significant increase in the con-
vergence rate for the PSGD algorithm when r = 0.015. This
increase starts at approximately 25 epochs and continues
to converge exponentially faster than SGD with increased
epochs. PSGD has a similar trend when r = 0.1 but after
150 epochs its convergence rate approximates that of SGD.
The same results are present in the training data between
PSGD and SGD as shown in Fig.3. However, in the training
results the magnitude of convergence improvement in using
PSGD with r = 0.015 is less pronounced when compared
to the performance of SGD.

0 25 50 75 100 125 150 175 200
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 A
cc

ur
ac

y

CIFAR10 MLP Model - Training Accuracy

PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1SGD

Figure 3. Training accuracy results for PSGD and SGD using a
MLP network architecture. Implemented PSGD using mini-batch
method described by Algorithm 5 at various r values. PSGD has
moderate increase in convergence when r = 0.1 and significant
increase when r = 0.015 compare to SGD. All other PSGD r
values tested show negligible differences to SGD convergence
rates.

In the testing loss results shown in Fig.6 there appears to be
an inflection point around 25 epochs. The PSGD loss for all
r values tested was greater than or equal to the SGD loss up
to 25 epochs. After this point, up to 200 epochs, the PSGD
algorithm with r values of 0.015 and 0.1 have significantly
lower loss when compared to the SGD algorithm. When r =
0.1 the PSGD algorithm appears to have a fixed magnitude
of lower loss compared to the SGD loss. However, when
r = 0.015 the loss difference between PSGD and SGD
increases in magnitude with increased epochs. The training
loss shown in Fig.5 presents similar results to the testing

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

0 25 50 75 100 125 150 175 200
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

in
g

Ac
cu

ra
cy

CIFAR10 MLP Model - Testing Accuracy

PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1SGD

Figure 4. Testing accuracy results for PSGD and SGD using a
MLP network architecture. Implemented PSGD using mini-batch
method described by Algorithm 5 at various r values. PSGD has
moderate increase in convergence when r = 0.1 between 10 -150
epochs and significant increase when r = 0.015 compare to SGD
for all 200 epochs. All other PSGD r values tested show negligible
differences to SGD convergence rates.

loss except the PSGD algorithm with r = 0.1 starts to
moderately converge to the SGD loss after 175 epochs.

Since the previous results shown in Figs.3-6 only repre-
sent data from one testing and training cycle, the improved
PSGD performance could have been due to the random
initialization. Thus, the training and testing process was
repeated 10 times to validate that the improved convergence
rate with r = 0.015 shown in Fig.4 was due to the PSGD
algorithm. The average training and testing accuracy results
for PSGD with r = 0.015 and SGD is shown in Figs.7-
8. The corresponding average training and testing loss is
shown in Figs.9-10.

The average testing accuracy in Fig.8 shows that the PSGD
algorithm repeatably starts to converge faster than the SGD
algorithm after approximately 75 epochs. After this point
the standard deviation for both algorithms becomes very
small supporting the notion that the PSGD algorithm with
r = 0.015 is converging faster than the SGD algorithm in
this experimental setup. The average training accuracy in
Fig.7 shows a similar but not as distinguished trend as in
the average testing accuracy results.

The average testing loss in Fig.9 supports the average accu-

0 25 50 75 100 125 150 175 200
Epoch

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Tr
ai

ni
ng

 L
os

s

CIFAR10 MLP Model - Training Loss
PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1

SGD

Figure 5. Training loss results for PSGD and SGD using a MLP net-
work architecture. Implemented PSGD using mini-batch method
described by Algorithm 5 at various r values. Comparing PSGD
to SGD, it has a moderate decrease in L2 loss magnitude when
r = 0.1 between 25 -150 epochs and significant decrease in L2
loss magnitude when r = 0.015 from 25 – 200 epochs. All other
PSGD r values tested show negligible differences to SGD conver-
gence rates.

racy results with the PSGD loss increasingly measuring a
lower loss than SGD after 75 epochs. The significant dif-
ference between the PSGD and SGD average testing loss
appears to be induced by algorithmic variations because
the standard deviation in both results is negligible after 75
epochs. The average training loss in Fig.10 shows the same
trend present in the average testing loss results.

Overall, the initial experimental results testing the shallow
network in Figs.3-6 highlight the fact that the PSGD algo-
rithm with r = 0.015 has significantly better convergence
rate than the SGD algorithm for this experimental setup
in 200 epochs. The average testing results for PSGD with
r = 0.015 and SGD shown in Figs.7-10 suggest this conver-
gence increase is partially algorithmically induced. Previous
work by Sankar and Balasubramanian (2017) studied the
relationship between saddle point degeneracy and neural
networks and proposed that convergence points of deep
neural networks tend to be saddle points that increase in de-
generacy with increased depth (Sankar & Balasubramanian,
2017). Recall that the MLP architecture is 5 layers deep
which means it could contain many low degenerate saddle
points. However, during training if the gradient descent
method converged to a saddle point we should see it plateau

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

0 25 50 75 100 125 150 175 200
Epoch

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Te
st

in
g

Lo
ss

CIFAR10 MLP Model - Testing Loss
PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1

SGD

Figure 6. Testing loss results for PSGD and SGD using a MLP net-
work architecture. Implemented PSGD using mini-batch method
described by Algorithm 5 at various r values. PSGD shows the
same trends, just more pronounced as presented in the training loss
results shown in Fig.5.

in accuracy or loss per iteration. It is unclear in the 200
epoch presented results if the SGD algorithm and all other
PSGD algorithms with r values other than 0.015 are con-
verging to a degenerate saddle point. If that is the case then
based on this experimental setup setting the r magnitude to
0.015 seems to optimally tune the high dimensional zero-
mean Gaussian distribution that the gradient perturbation
is sampled from in the PSGD algorithm. However, these
results are preliminary and require further testing before a
conclusion about the practicality of the analyzed algorithms
can be made.

0 25 50 75 100 125 150 175 200
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 A
cc

ur
ac

y

Average CIFAR10 MLP Model r0.015 - Training Accuracy

PSGD Train Avg
SGD Train avg

Figure 7. Training accuracy for PSGD using mini-batch method
described in Algorithm 5 at r = 0.015 for 10 trials and compared to
a single SGD trial. PSGD has an average convergence rate that is
moderately improved compared to the SGD average convergence
rate.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

0 25 50 75 100 125 150 175 200
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

in
g

Ac
cu

ra
cy

Average CIFAR10 MLP Model r0.015 - Testing Accuracy

PSGD Test Avg
SGD Test avg

Figure 8. Testing accuracy for PSGD using mini-batch method de-
scribed in Algorithm 5 at r = 0.015 for 10 trials and compared to
a single SGD trial. PSGD has an average convergence rate that
is significantly improved compared to the SGD average conver-
gence rate between 75-200 epochs. The PSGD convergence rate is
increasingly improving with each epoch compared to SGD.

0 25 50 75 100 125 150 175 200
Epoch

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Tr
ai

ni
ng

 L
os

s

Average CIFAR10 MLP Model r0.015 - Training Loss
PSGD Train Avg
SGD Train avg

Figure 9. Training loss for PSGD using mini-batch method de-
scribed in Algorithm 5 at r = 0.015 for 10 trials and compared to
a single SGD trial. PSGD has an average `2 loss is moderately
improved compared to the SGD average `2 loss.

0 25 50 75 100 125 150 175 200
Epoch

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Te
st

in
g

Lo
ss

Average CIFAR10 MLP Model r0.015 - Testing Loss
PSGD Test Avg
SGD Test avg

Figure 10. Testing loss for PSGD using mini-batch method de-
scribed in Algorithm 5 at r = 0.015 for 10 trials and compared to
a single SGD trial. PSGD has an average `2 loss that is signifi-
cantly improved compared to the SGD average `2 loss between
75-200 epochs. The PSGD `2 loss increasingly lowers per epoch
compared to the SGD `2 loss.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

2.2. Deep Network Results

In this section both training and testing accuracy and loss
results are presented for CIFAR10 using the VGG3 network
architecture. The batch size was set to 128 and learning rate
η = 0.001.

The training accuracy over 200 epoch for SGD and PSGD
at various r values is shown in Fig.11. The correspond-
ing testing accuracy is shown for the same case in Fig.12.
The training and testing loss are presented in Figs.13-14 re-
spectively. The general trend throughout the accuracy plots
in Figs.11-12 is increasing the parameter r decreases the
convergence rate and overall performance of the network
when trained using the PSGD optimizer. In this setup the
maximum testing accuracy in 200 epochs approaches 70%
when using the SGD optimizer. The SGD optimizer ap-
pears to be an upper bound on the performance of the PSGD
optimizer during this 200 epoch range with this specific
experimental setup. However, the only immediate exception
to this claim is when PSGD has the r parameter set to 0.025.
At this setting PSGD converges faster then SGD between
20-100 epochs and then converges slower than SGD after
130 epochs.

Further tests were run using PSGD with r = 0.025 to ver-
ify that the slightly faster convergence compared to SGD,
shown in Figs.11-12, was due to the PSGD algorithm and
not the random initialization point. The results in Figs.15-16
show the training and testing accuracy for 10 PSGD opti-
mized trials averaged and compared to SGD on the CIFAR-
10 dataset using the VGG3 architecture. In Fig.16 the testing
accuracy results show that the PSGD algorithm convergence
rates have significant varaince between 20-100 epochs and
the average approximates the convergence performance of
the SGD algorithm. This means that in this specific exper-
imental setup the PSGD algorithm has at a maximum the
same performance as SGD both in convergence rate and
accuracy.

The training and testing loss plots in Figs.13-14 where
PSGD for various r values is compared to SGD, depicts
a similar trend as seen in the accuracy plots for this test.
The loss magnitude for both training and testing generally
increases with and increased r value. Analogous to the ac-
curacy results, the average loss of PSGD with r = 0.025 for
10 trials shown in Figs.17-18 support the findings that the
PSGD algorithm does not outperform the traditional SGD
algorithm for this experimental setup.

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 A
cc

ur
ac

y

CIFAR10 VGG3 Model - Training Accuracy

PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1SGD

Figure 11. Implemented PSGD using mini-batch method described
in Algorithm 5 at various r values. Training accuracy convergence
rate is similar to SGD with increasing r decreasing PSGD conver-
gence rate.

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

Ac
cu

ra
cy

CIFAR10 VGG3 Model - Testing Accuracy

PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1SGD

Figure 12. Implemented PSGD using mini-batch method described
in Algorithm 5 at various r values. Testing accuracy convergence
rate is similar to SGD with increasing r decreasing PSGD con-
vergence rate. Case of PSGD with r = 0.025 appears to have
improved convergence between 20-100 epochs but this is due to
initialization point.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

0 25 50 75 100 125 150 175 200
Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Tr
ai

ni
ng

 L
os

s

CIFAR10 VGG3 Model - Training Loss
PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1

SGD

Figure 13. Implemented PSGD using mini-batch method described
in Algorithm 5 at various r values. Training loss is similar to SGD
with increasing r increasing PSGD loss magnitude.

0 25 50 75 100 125 150 175 200
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

in
g

Lo
ss

CIFAR10 VGG3 Model - Testing Loss
PSGD
r = 0.001
r = 0.01
r = 0.015
r = 0.025
r=0.05
r=0.1

SGD

Figure 14. Implemented PSGD using mini-batch method described
in Algorithm 5 at various r values. Testing loss is similar to SGD
with increasing r increasing PSGD loss magnitude. Case of PSGD
with r = 0.025 appears to have improved loss between 20-100
epochs but this is due to initialization point.

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 A
cc

ur
ac

y

Average CIFAR10 VGG3 Model r0.025 - Training Accuracy

SGD Train
PSGD Train avg

Figure 15. Training accuracy for PSGD using mini-batch method
described in Algorithm 5 at r = 0.025 for 10 trials and compared
to a single SGD trial.

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

Ac
cu

ra
cy

Average CIFAR10 VGG3 Model r0.025 - Testing Accuracy

SGD Test
PSGD Test avg

Figure 16. Testing accuracy for PSGD using mini-batch method
described in Algorithm 5 at r = 0.025 for 10 trials and compared
to a single SGD trial. Testing accuracy shows high variance be-
tween 20-100 epochs with the average approximating the SGD
convergence result.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

0 25 50 75 100 125 150 175 200
Epoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Tr
ai

ni
ng

 L
os

s

Average CIFAR10 VGG3 Model r0.025 - Training Loss
SGD Train
PSGD Train avg

Figure 17. Training loss for PSGD using mini-batch method de-
scribed in Algorithm 5 at r = 0.025 for 10 trials and compared to
a single SGD trial.

0 25 50 75 100 125 150 175 200
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

in
g

Lo
ss

Average CIFAR10 VGG3 Model r0.025 - Testing Loss
SGD Test
PSGD Test avg

Figure 18. Testing loss for PSGD using mini-batch method de-
scribed in Algorithm 5 at r = 0.025 for 10 trials and compared
to a single SGD trial. Testing accuracy shows high variance be-
tween 20-100 epochs with the average approximating the SGD
convergence result.

3. Conclusion
This work provides a comprehensive literature review of
gradient based algorithms designed to efficiently escape
saddle points in non-convex settings. The literature review
originated from (Jin et al., 2017a) work ”How to Escape
Saddle Points Efficiently?”. The authors derived a gradient
descent variant algorithm called perturbed gradient descent
(PGD) that theoretically will converge to a ε-second order
stationary point in a number of iterations that is almost
”dimension-free”. A majority of recent work is focused on
improving the convergence rate of gradient based algorithms
that can still escape strict saddle points efficiently. Future
work could be focused on achieving third-order stationary
points in the presence of saddle points and determining the
GD convergence rates for this condition (Jin et al., 2019).
However, significant applications of when third-order sta-
tionary points are beneficial will also need to be established.

This work also provides experimental convergence results
for perturbed versions of gradient descent on different
MLP and VGG3 network architectures using the CIFAR-10
dataset. This is some of the first experimental results testing
some of the current proposed theoretical perturbed gradient
descent techniques on neural networks. Initial results show
an improved experimental convergence rate for perturbed
stochastic gradient descent with r = 0.015 between 10-150
epochs when compared to general SGD using a MLP ar-
chitecture. There was no significant improvement to using
a perturbed version of SGD with the VGG3 architecture.
While results are promising they are preliminary and further
experimentation need to be conducted before a conclusion
can be made on the practicality of the perturbed version of
SGD.

The next stage for these experiments is to run the tests
for an increased number of epochs with access to GPUs.
These experiments could be further extended to investigate
the following open ended questions: possibility of adding
scheduled perturbations, auto-detection for adding perturba-
tion when necessary, determining what type of perturbation
(uniform dimensional ball or normal distribution) is the
best to add. Also investigating ways to use randomized
algorithms to approximate the minimized eigenvalue of the
Hessian; to help characterize the type of convergence point
the algorithms are converging to during each experiment.

References
Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and Ma,

T. Finding approximate local minima faster than gradient
descent, 2017.

Allen-Zhu, Z. Natasha 2: Faster non-convex optimization
than sgd, 2017.

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

Allen-Zhu, Z. and Li, Y. Neon2: Finding local minima via
first-order oracles. CoRR, abs/1711.06673, 2017. URL
http://arxiv.org/abs/1711.06673.

Anandkumar, A. and Ge, R. Efficient approaches for es-
caping higher order saddle points in non-convex opti-
mization. CoRR, abs/1602.05908, 2016. URL http:
//arxiv.org/abs/1602.05908.

Bandeira, A. S., Boumal, N., and Voroninski, V. On the
low-rank approach for semidefinite programs arising in
synchronization and community detection. Conference
on Learning Theory, pp. 361–382, 2016.

Bhojanapalli, S., Neyshabur, B., , and Srebro, N. Global
optimality of local search for low rank matrix recovery.
Advances in Neural Information Processing Systems, pp.
3873–3881, 2016.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,
and LeCun, Y. The loss surface of multilayer networks,
2014. URL arXiv:1412.0233.

Criscitiello, C. and Boumal, N. Efficiently escaping saddle
points on manifolds, 2019.

Daneshmand, H., Kohler, J. M., Lucchi, A., and Hofmann,
T. Escaping saddles with stochastic gradients. CoRR,
abs/1803.05999, 2018. URL http://arxiv.org/
abs/1803.05999.

Dauphin, Y. N., Pascanu, R., Gülçehre, Ç., Cho, K., Gan-
guli, S., and Bengio, Y. Identifying and attacking the
saddle point problem in high-dimensional non-convex
optimization. CoRR, abs/1406.2572, 2014. URL http:
//arxiv.org/abs/1406.2572.

Du, S. S., Jin, C., Lee, J. D., Jordan, M. I., Poczos, B., and
Singh, A. Gradient descent can take exponential time to
escape saddle points, 2017.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. Spider: Near-
optimal non-convex optimization via stochastic path-
integrated differential estimator. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 31, pp. 689–699. Curran Associates, Inc.,
2018.

Fang, C., Lin, Z., and Zhang, T. Sharp analysis for noncon-
vex sgd escaping from saddle points, 2019.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points - online stochastic gradient for tensor de-
composition. arXiv: 1503.02101v1 [cs.LG], pp. 1–46,
March 2015a.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from
saddle points — online stochastic gradient for tensor de-
composition. In Grünwald, P., Hazan, E., and Kale, S.
(eds.), Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learn-
ing Research, pp. 797–842, Paris, France, 03–06 Jul
2015b. PMLR. URL http://proceedings.mlr.
press/v40/Ge15.html.

Ge, R., Lee, J. D., and Ma, T. Matrix completion has no
spurious local minimum. Advances in Neural Information
Processing Systems, pp. 2973–2981, 2016.

Ghadimi, S. and Lan, G. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013. doi:
10.1137/120880811. URL https://doi.org/10.
1137/120880811.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. arXiv:
1703.00887v1 [cs.LG], pp. 1–35, March 2017a.

Jin, C., Netrapalli, P., and Jordan, M. I. Accelerated gradient
descent escapes saddle points faster than gradient descent.
CoRR, abs/1711.10456, 2017b. URL http://arxiv.
org/abs/1711.10456.

Jin, C., Ge, R., Netrapalli, P., Ge, R., Kakade, S. M., and Jor-
dan, M. I. On nonconvex optimization for machine learn-
ing: Gradients, stochasticity, and saddle points. arXiv:
1902.04811v2 [cs.LG], pp. 1–31, September 2019.

Kawaguchi, K. Deep learning without poor local minima,
2016.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent converges to minimizers, 2016.

Levy, K. Y. The power of normalization: Faster evasion
of saddle points. CoRR, abs/1611.04831, 2016. URL
http://arxiv.org/abs/1611.04831.

Mokhtari, A., Ozdaglar, A. E., and Jadbabaie, A. Escap-
ing saddle points in constrained optimization. CoRR,
abs/1809.02162, 2018. URL http://arxiv.org/
abs/1809.02162.

Nesterov, Y. Introductory lectures on convex programming
volume i: Basic course.

Nicolas Boumal, V. V. and Bandeira, A. The non-convex
burer-monteiro approach works on smooth semidefinite
programs. Advances in Neural Information Processing
Systems, pp. 2757–2765, 2016.

O’Neill, M. and Wright, S. J. Behavior of accelerated gradi-
ent methods near critical points of nonconvex functions,
2017.

http://arxiv.org/abs/1711.06673
http://arxiv.org/abs/1602.05908
http://arxiv.org/abs/1602.05908
arXiv:1412.0233
http://arxiv.org/abs/1803.05999
http://arxiv.org/abs/1803.05999
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
http://proceedings.mlr.press/v40/Ge15.html
http://proceedings.mlr.press/v40/Ge15.html
https://doi.org/10.1137/120880811
https://doi.org/10.1137/120880811
http://arxiv.org/abs/1711.10456
http://arxiv.org/abs/1711.10456
http://arxiv.org/abs/1611.04831
http://arxiv.org/abs/1809.02162
http://arxiv.org/abs/1809.02162

Can Theoretical Algorithms Efficiently Escape Saddle Points in Deep Learning? A Review of Methods to Escape Saddle Points

Reddi, S. J., Zaheer, M., Sra, S., Póczos, B., Bach, F. R.,
Salakhutdinov, R., and Smola, A. J. A generic approach
for escaping saddle points. CoRR, abs/1709.01434, 2017.
URL http://arxiv.org/abs/1709.01434.

Rong Ge, C. J. and Zheng, Y. No spurious local minima
in nonconvex low rank problems: A unified geometric
analysis. arXiv preprint arXiv:1704.00708, 2017.

Sankar, A. R. and Balasubramanian, V. N. Are saddles good
enough for deep learning?, 2017.

Sun, J., Qu, Q., and Wright., J. Complete dictionary recov-
ery over the sphere i: Overview and the geometric picture.
IEEE Transactions on Information Theory, 2016a.

Sun, J., Qu, Q., and Wright., J. A geometric analysis of
phase retrieval. 2016 IEEE International Symposium on
Information Theory (ISIT), pp. 2379–2383, 2016b.

Sun, T., Li, D., Quan, Z., Jiang, H., Li, S., and Dou, Y.
Heavy-ball algorithms always escape saddle points, 2019.

Xu, Y., Jin, R., and Yang, T. First-order stochastic algo-
rithms for escaping from saddle points in almost linear
time, 2018.

http://arxiv.org/abs/1709.01434

