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ABSTRACT

Critical periods refer to the limited time
window during early development when
infants and children are particularly sen-
sitive to the effects of the environment
and conditions. During critical periods,
the brain of infants and children exhibits
high level of neuroplasticity. As we get
older, neuroplasticity becomes signifi-
cantly less prominent. Recent research
shows evidence that critical periods may
be present in neural networks. In this
paper, We find that critical periods may
not exist for all neural network architec-
tures and datasets. We also measure the
plasticity of an AlexNet on CIFAR-10
and find that its plasticity correlates with
the model’s critical period.

1 Introduction

Critical periods are a biological phenomena where an or-
ganism must be exposed to a certain stimulus within an
explicit time frame in order to develop a specific ability.
For example, newborn mice must experience whisker sen-
sations within the first few days of life, or they will develop
abnormal tactile sensitivity [1]. In addition, cats must have
normal visual inputs within the first 3 months of life, and
monkeys need consistent social contact for the first six
months of life in order to develop normal functions.

Related to critical periods is the concept of plasticity. In
neurology, plasticity can be defined as the ability of the
nervous system to respond to intrinsic or extrinsic stimuli
by reorganizing its structure, function and connections [2].
It has been commonly believed that neuroplasticity peaks
at a young age and then decreases over time, but recent
studies have shown that lifelong neuroplasticity may be
possible [3].

In this research, we investigate whether the concepts of
critical periods and plasticity extend to the realm of artifi-
cial neural networks. Gaining greater insight into the initial
training periods of neural networks is remarkably impor-
tant as they continue to be applied in many areas including
medical imaging, signal processing [4], finance [5], geo-
logical sciences [6], etc. In regards to lifelong plasticity,
[7] and [8] called it one of the main long-standing chal-
lenges for current state-of-the-art networks. As we gain
insight into how new information disseminates throughout
a network over time, we will have an increased capacity to
achieve lifelong learning in neural networks.

We intend to explore the following questions in the realm
of image classification:

1. Do neural networks have critical training periods?

2. Does their plasticity change over time?

3. Do critical training periods correlated with the
amount of plasticity in the network?

Our novel contributions are:

1. We scrutinize the results of [9] and show that
critical training periods may not exist for all ar-
chitectures.

2. We compare the plasticity of an AlexNet to its
critical training period.

2 Related Work

To the best of our knowledge, only a few papers
have touched on critical periods on neural networks
[10][9][11][12]. [10] explores learning stages with reg-
ularization. In particular, they find that if regularization is
not applied within the first few epochs, the network acts as
if it were never regularized. In addition, if regularization
is taken out after the first few epochs, the generalization
accuracy increases. [9] shows that a temporary stimulus
deficit (affecting low-level statistics) at the beginning of
training can permanently impair a network’s ability to



learn a task. They find that neural networks demonstrate a
phenomena called “Information Plasticity". In particular,
they notice that information rises rapidly in early stages of
training. It then decreases, and obstructs the distribution of
information. [11] believes that networks demonstrate an in-
formation theoretic bottleneck that splits learning into two
phases, pattern detection and compression. These phases
can also be thought of as memorization and generalization
stages [13]. Finally, [12] shows that there exists small
subnetworks, "winning tickets", of a larger neural network
that can be found early in training and can be trained to
the same accuracy as the larger network. They validate
the claim that key connectivity patterns of neural networks
emerge early. The main limitations of these works are the
credibility of the results of [9] (as will be further discussed
in Section 4) and that no work provides mechanisms for
determining when different periods start and end.

3 Methods

To provide insights into the enumerated questions in Sec-
tion 1, we conducted the following experiments respec-
tively:

1. Blur images for the first n epochs of training on
the MNIST and CIFAR-10 datasets using a convo-
lutional neural network (CNN), fully-connected
network (FC) and residual network (ResNet). Af-
ter the first n epochs, the blurry images are re-
moved and normal images are utilized for another
160 epochs of training. Then identify the effects
of the initial blurring has on the final test accu-
racy.

2. Measure the plasticity of an AlexNet on a con-
densed CIFAR-10 by adding a new class at n
epochs and observe the final testing accuracies.

3. Compare the critical period and plasticity results
of the AlexNet.

All hyperparameters for the CNN, ResNet and FC models
come from those detailed in [9]. The code for all models
differ from that of [9] in the following ways:

1. [9]’s model contained dropout layers while ours
did not as this was not mentioned in the paper
(we compare the code).

2. Our model puts the output through an extra soft-
max as we did not realize that the cross entropy
loss function in PyTorch already has softmax im-
plemented into it.

3. We use a fixed learning rate and no weight de-
cay for all experiments so that they would not be
confounding variables. We use a learning rate of
0.005.

4. We used an average pooling size of 2 with no
padding whereas [9] used an average pooling size
of 8 and a padding of 1 (it was not specified in
their paper).

Our critical period experiments try to exactly mimic those
in [9] but due to computational limitations (we used
Google Colab for our GPU resources), we do not train
our models for as extensive of time periods as theirs. Par-
ticularly, we train a model on blurry images for n ∈
{0, 20, 40, 60, 80, 100, 120, 140} epochs and then on nor-
mal images for another 160 epochs. We blur the images by
downsampling them to an 8x8 image and then upsampling
them through bilinear interpolation to their original size.
We compare the average (of five runs) final testing accu-
racies for each experiment, whereas [9] presents only one
experiment. We train using the cross entropy loss function.

Plasticity is the ability of a network to respond to new
stimuli by reorganizing its structure, functions and con-
nections [2]. Thus for our plasticity experiment, we study
the ability of a neural network to learn new classes of
training data, while not forgetting old ones. Again due to
computational limitations, for our plasticity experiment we
condense the CIFAR-10 training dataset down to 10,000
samples using random sampling. We train with the Adam
optimizer on an AlexNet. In this experiment, we remove
all truck images from the training dataset for the first
n ∈ {0, 20, 40, 60, 80, 100} epochs of training. We then
continue training on the full dataset for the next 100 epochs
of training. We compare the average (of three runs) fi-
nal testing accuracies for each experiment. To compare
the curves associated with critical periods and plasticity,
we also run the above critical period experiment on the
AlexNet architecture.

4 Results

We first explore our critical period experiment evaluated on
the MNIST dataset. As shown in Figure 1, critical periods
(as defined by the experiment) do not seem to exist for the
MNIST dataset. This could be due to the intrinsic simplic-
ity of MNIST. For comparison, we include the results of
[9] in Figure 2. Due to the small time scale over a large
amount of epochs, we claim that Figure 2 is misleading
and that it does not show that critical periods exist on the
MNIST dataset nor on a fully-connected network. [9] did
not present results of a fully-connected network on the
CIFAR-10 dataset but we include them for our models in
Figure 3. This figure suggests that the initial blurry images
work more as a pre-training than as a hindrance to the
initialization of the network.

Figure 1: The critical period experiments on MNIST. The
mean and variance (over 5 trials) of the final testing accu-
racies are plotted for various values of n. Each value of n
(along the x-axis) represents the number of epochs that the
blurry images were present for.
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Figure 2: [9]’s fully connected results. Note that the differ-
ence on the y-scale is incredibly small. In addition, note
this experiment contains many more epochs than ours.

Figure 3: The critical period experiment of a fully-
connected network on MNIST.

Figure 4: The results of the critical period experiments
using a CNN on CIFAR-10. On the left is our results. The
middle is [9]’s results with a learning rate schedule. And
on the right is their results with a fixed learning rate.

In contrast, our experiments with the CNN (4) and ResNet
(5) on the CIFAR-10 dataset demonstrate an existence of
a critical period. After initially training the network with
blurry images for the first 140 epochs, the final testing
accuracies decrease 3-6%, wheras [9] report about a 13%
decrease in accuracy. This large discrepancy could be due
to the learning rate decay. In [9]’s fixed learning rate ex-
periment with the CNN on CIFAR-10, the decrease is only
about 3%, similar to our findings, except that they had to
increase the initial training period out 240 more epochs (a
total of 400 epochs) to get this result. For the CNN, our
results report a 4% variance for some epochs. As [9] does
not report variances, these large variances could make their
results more suspicious.

Figure 5: The results of the critical period experiments
using a ResNet on CIFAR-10. On the left is our results
and on the right is [9]’s results. Note that our results are
not the average of 5 runs due to computational limitations.

Figure 6 contains the results of the same critical period
experiments for an AlexNet. For this experiment, the av-
erage final testing accuracy did decrease about 7%. The
plasticity results for the exact same implementation of an
AlexNet can also be found in Figure 6. This experiment
showed a similar 7-9% decrease in accuracy. Although
the plasticity experiment showed a sharper initial decrease,
both curves appear to be similar.

Figure 6: The left contains the critical periods experi-
ment for an AlexNet. The right contains the plasticity
experiment for the same AlexNet. On the left, the x-axis
represents the n where the deficit was removed. On the
right, the x-axis represents the n where the new class was
added. Each result shows the average test accuracies across
3 trials.

5 Conclusion

Critical periods may not exist for all architectures and
datasets, although there are evidences for their existence.
The CNN, ResNet and AlexNet on the CIFAR-10 dataset
showed a decrease in average final test accuracy when
initially trained on blurry images. Whereas the Fully-
Connected network showed an increase in average final
test accuracy when trained on CIFAR-10. All architectures
trained on MNIST showed no change in final test accura-
cies. We also found evidence that critical periods could be
correlated with the amount of plasticity in a network at a
certain time. This is important as plasticity could be a way
to measure the start and end points of critical periods.

Future work would include exploring this relationship and
finding other ways to determine the amount of information
flow in a network. The ultimate goal would be to prove
the existence of critical periods under certain conditions
and to be able to determine when these critical period are.
When critical periods of a network are understood, one
could experiment with changing training schemes during
or after these periods, which could lead to more robust and
efficient training of models.
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Batch Size and Generalization Gap

Anonymous Authors1

Abstract
Deep learning models are often trained using ran-
dom gradients. These methods use the gradients
of mini-batches of the training data to update the
model’s parameters. One situation that has been
observed is that when using large batches, gener-
alization will continue to decline - known as the
”generalization gap” phenomenon. Identifying the
root cause and closing the gap are two problems
we need to consider. In this report, we first make
a review of the causes of large batch size gener-
alization gaps. This paper lists and discusses the
possible causes such as overfitting, saddle points,
and sharpness. Later, we also studied some meth-
ods that can improve generalization, such as using
ghost batch normalization and increasing the num-
ber of training iterations. Finally, using combi-
nation strategy of the ghosts batch normalization
and sufficient updating iterations, we found that
the performance of large batch sizes is not weaker
than small batch sizes.

1. Introduction
Stochastic Gradient Descent (SGD) has been the working-
horse of many deep learning models which nowadays play
an important role on a wide variety of applications like Arti-
ficial Intelligence, Computer Vision, and Natural Language
Processing etc. SGD is an iterative algorithm that, within
each loop, helps the network to update weight parameters
in the direction such that the overall loss function would
decrease the most. However, unlike the traditional Gradi-
ent Descent methods that utilize the whole gradient of loss
function which is computation-costly, SGD only selects por-
tions of training data (called the training batch) and compute
a ”partial gradient” of selected data portion to update the
parameters without computing the whole gradient.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Due to the batch-divided training property of SGD method,
one of the hyper-parameter to be wisely chosen is the batch
size, and different batch sizes would affect significantly
both the convergence and accuracy rate of the deep learning
model. For this literature review, we would focus on how
the deep model’s accuracy is affected by batch sizes. In
particular, it has been observed in practice that when using
SGD to train the deep neural network, a large-batch training
method would have poorer performance on test data than
small-batch training method. Such degradation in model’s
generalizability is called ”generalization gap”.

In this literature review, we would summarize the state-of-art
research results over the relationship between ”generaliza-
tion gap” and the training batch size of SGD optimizer (and
its variants such as ADAM, AdaGrad) of the network. We
would focus on the latest ideas and discoveries of two re-
search directions: 1) Theories or hypothesis explaining the
reason why large batch size causes the generalization gap.
2) Strategies improving the large-batch training method to
reduce or eliminate the generalization gap.

2. Motivation
Even though that large-batch training would result in gener-
alization gap and worse test outcomes, people are still look-
ing for possibilities to apply large-batch training method to
neural networks more widely due to its training advantages:
Training the data in a larger batch size provides more paral-
lelism to the learning pipeline. When using GPUs in train-
ing the neural networks, large-batch training would benefit
more in parallel computing, and thus speeds up the training
process much more significantly compared to small-batch
training methods. (Goyal et al., 2017) have been utilized the
speedup of large-batch training to train the ImageNet in less
1 hour. However, such drastic increase in training time did
pay the price of worse testing accuracy when using larger
batch size.

Therefore, to achieve both higher accuracy and faster train-
ing speed of the deep models, it becomes crucial to find
out the reasons that could explain the generalization gap
observed in large-batch training, and come up with methods
that could eliminate the gap accordingly. How to achieve



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

COMP514 Final Project: Batch Size and Generalization Gap

such a jointly optimized network model is still somehow
an open problem. We hope that, with this literature review,
people could have a more organized picture of both the state-
of-art theories and methods to overcome generalization gap.
We also hope that some more successful method might be
inspired in the future.

3. Theories Explaining the Generalization
Gap

According to (Keskar et al., 2016), in general there are four
speculations of the possible causes of generalization gap
in large batch training: i) LB methods over-fit the data. ii)
LB methods are attracted to saddle-points. iii) LB meth-
ods lack the explorative properties of SB methods and are
prone to converging to minimizers closest to the initial point.
iv) SB and LB methods converge to qualitatively different
minimizers with differing generalization properties. Among
them we would focus on the last conjectures in our litera-
ture review, since it has been considered as more reasonable
causes of generalization gap with the support of numerical
results.

3.1. Generalization Gap and Overfitting

Based on numerical results of extensive experiments over
large-batch training of deep networks Keskar et al., the first
conjecture about LB methods over-fitting the data has been
disproved. The phenomenon of overfitting suggests that
with increasing training epochs, the model’s test accuracy
would first increase then decrease due to it over-learned
some idiosyncrasies of the training data. However, Keskar
et al. have found out in their traning experiments that the
test curve does not decay after a certain peak iteration and
creates the gap between LB and SB methods. Instead, both
the test and train curve gradually increase and converge
to two asymptotic values, which incur the gap of test ac-
curacy. Therefore, the generalization gap exists irrelevant
with overfitting. As such, early-stopping heuristics aimed at
preventing models from over-fitting would not help reduce
the generalization gap.

3.2. Generalization Gap and Saddle Points

The conjecture about LB methods being easier to be trapped
at saddle points are not supported by numerical results either.
According to Yao et al., with larger training batch size and
same training epochs (100 epochs in their experiments), the
converged minimum has a more positively larger Hessian
Spectrum and total gradient.(Yao et al., 2018) Such numer-
ical observation contradicts with the assumption that LB
methods are prone to stuck at saddle points, which would
results in very small total gradient and negative eigenval-
ues. Therefore the numerical results have suggested that LB

methods do not get their degradation in performance due to
converging to non-minimum.

3.3. Generalization Gap and Sharp Minimum

3.3.1. INITIAL MOTIVATION

Keskar et al. makes the important state-of-art claim, that
large-batch training methods generalize poorly is because
of the fact that they converge to sharp minimums while the
small-batch training methods converge to flat minimums.
The sharpness of a minimum x∗ is defined in the way
of how rapidly could the loss function increase around a
small neighborhood of the minimum x∗. A flat minimum
could be described with low precision, whereas the sharp
minimum requires higher precision since the function is
very sensitive in changing value around x∗. Therefore, the
large sensitivity of the sharp minimum, which large-batch
training methods tend to converge to, negatively impacts
the ability of the model to generalize on new data.

The result is inspired from the parametric plot of a lin-
ear slice of the trained loss function. It shows the one-
dimensional values of the loss function along the line
αx∗l + (1 − α)x∗s that comes across the minimum x∗l , x

∗
s

of both LB and SB methods. It turns out that in the para-
metric plots, though x∗l , x

∗
s have the same value, x∗l has a

much sharper neighborhood than x∗s . Such discovery drives
further analysis over the relation of generalizability and
sharpness in full dimension space.

Figure 1. A linear parametric plot sample from the original paper

3.3.2. THE DEFINITION OF SHARPNESS

Ideally, the sharpness of a minimum x in parameter space is
characterized by the magnitude of eigenvalues of∇2f(x),
where f(·) is the loss function. However, due to the pro-
hibitive cost for computing the Hessian and eigenvalues in
deep learning applications, Keskar et al. instead employs
a sensitivity measurement to define the sharpness of mini-
mum.

The sensitivity measurement characterizes the sharpness
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of a minimum by computing the largest function variation
within a certain neighborhood of the minimum point
x ∈ Rn. Specifically, let Cε denote a small L1 box around
the minimum:

Cε = {z ∈ Rn : −ε(|xi|+ 1) ≤ zi ≤ ε(|xi|+ 1)}
∀i ∈ 1, 2, ..., n

The “ε - sharpness” on the entire space has form of:

Φx,f (ε) =
(maxy∈Cε f(x+ y))− f(x)

1 + f(x)
× 100

However, the sensitivity measurement above considering
the entire L1 box has the potential to be misled by the case
where a large value of f is only attained in a tiny subspace
of Cε. To avoid such unbalanced impact on the sharpness
measurement, Keskar et al. has also defined a modified
version of “ε - sharpness” on random manifold. For such
purpose, they introduced a matrix A ∈ Rn×p, where p
determines the dimension of the manifold. The columns of
matrixA are randomly generated. In the paper’s experiment,
p is chosen as 100.

The modified version of L1 box Cε’s definition:

Cε = {z ∈ Rp : −ε(|(A†x)i|+ 1) ≤ zi ≤ ε(|(A†x)i|+ 1)}
∀i ∈ 1, 2, ..., p

where A† denotes the pseudo-inverse of A.

And the “ε - sharpness” on random manifold:

Φx,f (ε, A) =
(maxy∈Cε f(x+Ay))− f(x)

1 + f(x)
× 100

3.3.3. EXPERIMENTS RESULTS

Based on the definition of sharpness, Keskar et al. has
conducted experiments over the correlation between test
accuracy and minimum’s sharpness with several toy models
and popular datasets. The toy models’ structures were de-
signed to exemplify popular configurations used in pratice
like AlexNet and VGGNet. Their configuration details are
shown in the Table 1 (For detailed architectures please see
the appendix of the original paper).

Each network is trained in both LB and SB method of
ADAM optimizer with 100 epochs, where for LB method
a batch size of 10% of total data size is used, and for SB
method the batch size is 256. To increase the credibility, all
experiments are conducted 5 times with different uniformly
distributed random starting points. The mean and standard

deviation of both training and test accuracy are recorded in
Table 2, along with the measurement of “ε - sharpness” in
both entire space and random lower-dimensional manifold
in Table 3 and 4.

Based on the results, Keskar et al. has claimed that numeri-
cally LB methods would result in worse test accuracy and
meanwhile converging to sharper minimum. Hence, the
conjecture about generalization gap caused by minimum’s
sharpness is supported by numerical results.

3.3.4. THE LIMITATION OF ε - SHARPNESS
MEASUREMENT

Unfortunately, the measurement of sharpness is not perfect
and has been proved by (Dinh et al., 2017) as ill-defined
under certain cases. Dinh et al. cast their doubt on the
“ε - sharpness” definition by pointing out the symmetric
property of ReLu-based deep learning network called ”non-
negative homogeneity”, and analyze its negative impact on
the sharpness measurement.

For all ReLu-based K-layer network they have form of:

y = Φrect

(
Φrect

(
...Φrect(x · θ1)...

)
· θK−1

)
· θK

where x is the input vector, y is the output vector, θk is the
weight parameters of the kth layer, and Φrect is the ReLu
activation function.

However, ReLu activation function has the special property
of ”non-negative homogeneity”, which essentially would
allow interchanging the operation order of non-negative
multiplication and ReLu-activation:

∀(xi, α) ∈ R×R+,Φrect(α · xi) = α · Φrect(xi)

Therefore, utilizing such property, one could scale down
the weight parameters in one layer by α and scale up the
weight of another layer by α, and the network output would
still be the same:

Φrect
(
x · (α · θ1)

)
· θ2 = Φrect(x · θ1) · (α · θ2)

Dinh et al. have named such operation interchange as
alpha-transformation. To be more specifically, for any two
layers of a network, the configuration and test result would
be same as long as the two layers’ parameters are equivalent
under alpha-transformation:

Ta : (θ1, θ2) −→ (αθ1, α
−1θ2)

Based on the unidentifiability, Dinh et al. propose a case
where two network configurations having same output (test
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Name Network Type Data set
F1 Fully Connected MNIST
F2 Fully Connected TIMIT
C1 (Shallow) Convolutional CIFAR-10
C2 (Deep) Convolutional CIFAR-10
C3 (Shallow) Convolutional CIFAR-100
C4 (Deep) Convolutional CIFAR-100

Table 1. Network Configurations

Training Accuracy Test Accuracy
Name SB LB SB LB

F1 99.66%± 0.05% 99.92%± 0.01% 98.03%± 0.07% 97.81%± 0.07%
F2 99.99%± 0.03% 98.35%± 2.08% 64.02%± 0.2% 59.45%± 1.05%
C1 99.89%± 0.02% 99.66%± 0.2% 80.04%± 0.12% 77.26%± 0.42%
C2 99.99%± 0.04% 99.99%± 0.01% 89.24%± 0.12% 87.26%± 0.07%
C3 99.56%± 0.44% 99.88%± 0.3% 49.58%± 0.39% 46.45%± 0.43%
C4 99.10%± 1.23% 99.57%± 1.84% 63.08%± 0.5% 57.81%± 0.17%

Table 2. Performance of small-batch (SB) and large-batch (LB) variants of ADAM on the 6 networks listed in Table 1

ε = 10−3 ε = 5× 10−4

Name SB LB SB LB
F1 1.23± 0.83 205.14± 69.52 0.61± 0.27 42.90± 17.14
F2 1.39± 0.02 310.64± 38.46 0.90± 0.05 93.15± 6.81
C1 28.58± 3.13 707.23± 43.04 7.08± 0.88 227.31± 23.23
C2 8.68± 1.32 925.32± 38.29 2.07± 0.86 175.31± 18.28
C3 29.85± 5.98 258.75± 8.96 8.56± 0.99 105.11± 13.22
C4 12.83± 3.84 421.84± 36.97 4.07± 0.87 109.35± 16.57

Table 3. Sharpness of Minimum in Full Space

ε = 10−3 ε = 5× 10−4

Name SB LB SB LB
F1 0.11± 0.00 9.22± 0.56 0.05± 0.00 9.17± 0.14
F2 0.29± 0.02 23.63± 0.54 0.05± 0.00 6.28± 0.19
C1 2.18± 0.23 137.25± 21.60 0.71± 0.15 29.50± 7.48
C2 0.95± 0.34 25.09± 2.61 0.31± 0.08 5.82± 0.52
C3 17.02± 2.20 236.03± 31.26 4.03± 1.45 86.96± 27.39
C4 6.05± 1.13 72.99± 10.96 1.89± 0.33 19.85± 4.12

Table 4. Sharpness of Minimum in Random Subspaces of Dimension 100
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Figure 2. Illustration of effect of homogeneity. Each curve is a
collection of (θ1,θ2) that result in same output.

accuracy) have different sharpness measurements within
“ε - sharpness” metric. According to Figure 3 below, the
two configuration points on the hyperbola have the same
network output hence the same test accuracy. However, θ

′

is very close to θ2 = 0, where one layer of the network
has all its weight being zero. Such configuration would
result in a constant target function, which is one of the worst
approximation of the data and therefore the loss value would
be extremely large. Therefore, the non-deterministic feature
here of ε - sharpness suggests that such metric needs to
be refined in order to better characterize the relationship
between network generalizability and minimum sharpness.

Figure 3. Illustration of the ill-performance of ε - sharpness met-
ric. Configuration θ and θ

′
have same test accuracy yet different

sharpness

In general, Keskar et al. have defined the notion of ε - sharp-
ness and conducted experiments that showed generalization
accuracy and minimum sharpness are strongly correlated.
On the other hand, Dinh et al. have shown that the definition
of ε - sharpness becomes non-deterministic when consider-
ing the alpha-transformation of weight parameters between
network layers, and therefore are not qualified enough to be
the causer of generalization gap. However, there still lack
theoretical work that either prove or disprove the existence
of causality between minimum sharpness and generalizabil-
ity. Hence, such area is still a open problem for future
research. Some potential works may involve refining or
re-designing the notion of sharpness that would be invariant
under the symmetric transformation of network.

3.4. Summary

In general, the theoretical analysis over the causer of gener-
alization gap between LB and SB methods is still an open
problem. The previous work of experiments have disproved
the naive claims like generalization gap being caused by
overfitting and saddle points. One of the most popular idea
on the reason of generalization gap is that LB methods con-
verge to sharper minimum that generalizes poorly. With
certain mathematical definition of sharpness (e.g. ε - sharp-
ness), such idea has been supported with numerical results
that show strong correlation between sharpness and test ac-
curacy of LB and SB methods. However, current definitions
of sharpness all suffer from the non-deterministic feature,
which is caused by the symmetric transformation of the
network weight. Therefore, the refinement over sharpness’s
definition and more theoretical analysis is still required in
future. What’s more, other theories or hypothesis are also
worthwhile exploring. One of the very promising direction
also mentioned in Keskar et al. is the relationship between
the minimum-and-starting-point distance d(x0, x

∗) and the
test accuracy, which tries to manifest the explorativity of
LB and SB methods and its relation to generalizability.

4. Strategies for reducing the Generalization
Gap

Although there are still arguments from different aspects
about the reasons of the generalization gaps, researchers
have found some interesting tricks for closing those gener-
alization gaps.

4.1. Ghost Batch Normalization

Batch normalization (BN) algorithm is widely applied in
deep learning areas, especially in the convlutional nerual net-
works. BN is knwon to increase the models’ robustnesses,
accelerate training processes, and improve generalization.
In order to overcome the drawback of BN that it is bounded
to depend on the choosen batch size, Hoffer et al. applied
the ghost batch normalization (GBN) method instead of the
traditional BN in training networks (Hoffer et al., 2017). De-
tails of the GBN algorithm are given in Algorithm 1. This
algorithm reduces the generalization error substantially.

4.2. Adapting larger numbers of weight updates

Some researches argued that the poor generalization perfor-
mance of large-batch training is simply because the limited
iteration number of models’ weights (Smith et al., 2017).
For example, the number of weights updating iterations of
batch size 64 is 16 times compared to the training under
batch size of 1024. As shown in Figure 4, the number of
iterations of the weight decreases as the batch size increases.
Not only that, we can also observe that when the batch size
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is large, such as 1024, the training loss curve does not seem
to completely converge. In view of this situation, people
argued: we can solve the problem of generalization gaps by
sufficiently training a large number of iterations for large
batch sizes.

Figure 4. Training loss via number of iterations for different batch
sizes

5. Experiments and Results: Closing the
Generalization Gap

In this section, experiments are conducted for exploring the
relationships between batch sizes and generalization gaps.
A ResNet 50 model is applied in training through CIFAR 10
and CIFAR 100 dataset with SGD optimizer. The training
platform is: CPU: Intel I9-9900k, GPU: Dual RTX 2080 Ti,
RAM: 128 GB.

5.1. Generalization gaps of different batch sizes

In order to get better understanding of the batch sizes and
generalization errors, we plot the error graph via epochs.

Figure 5. Training loss via number of epochs for different batch
sizes

Figure 5 shows the training loss curve of different batch
sizes. It can be learned that although the converging rate
is different, the training loss of different batch sizes con-
verge into the same range. However, in Figure 6, what can
be observed is that as the batch size becomes larger, the

Figure 6. Validation loss via number of epochs for different batch
sizes

model validation error also increases significantly. This phe-
nomenon verifies the fact that under the condition that other
variables are the same, the larger the batch size, the weaker
the generalization performance of the model.

5.2. Ghost Batch Normalization

In the paper by Hoffer et al., they demonstrated that GBN
can reduce generalization errors (Hoffer et al., 2017). We
have emerged from this GBN test based on our previous
experiment. We set the batch size to 1024 and the virtual
batch size to 64 to verify the feasibility of the GBN method.

Figure 7. Training loss via number of epochs for Ghost Batch
Normalization

Figure 7 8 show the train and validation loss for different
batch sizes and the GBN method of 1024-64. In the training
error curve, it shows that the GBN algorithm converges
to the same interval as other ordinary methods; whereas
we can easily find that in the test error curve, the GBN
algorithm with a 1024-bit batch size has converged to a
size similar to the location of batch size of 128, which is
significantly lower than the batch size of 1024. This finding
shows that the GBN method can indeed help the model
reduce generalization errors.
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Algorithm 1 Ghost Batch Normalization (GBN), applied to activation x over a large batch BL with virtual mini-batch BS .
Where BS < BL.
Require: Values of x ovver a large-batch: BL = x1...m size of virtual batch |BS |; parameters to be learned: γ, β,

momentum η.
Training Phase:
Scatter BL to {X1, X2, ..., X |BL|/|BS |} = {x1...|BS |, x|BS |+1...2|BS |...x|BL|−|BS |...m}
µlB ← 1

|BS |
∑|BS |
i=1 X l

i for l = 1, 2, 3..., {calculate ghost mini-batches means}

σlB =
√

1
|BS |

∑|BS |
i=1 (X l

i − µB)2 + ε for l = 1, 2, 3..., {calculate ghost mini-batches std}

µrun = (1− η)|BS |µrun +
∑|BL|/|BS |
i=1 (1− η)iηµlB

σrun = (1− η)|BS |σrun +
∑|BL|/|BS |
i=1 (1− η)iησlB

return γX
l−µlB
σlB

+ β

Training Phase:
return γX−µrunσrun

+ β {scale and shift}

Figure 8. Validation loss via number of epochs for Ghost Batch
Normalization

5.3. Larger weights updating iterations

As discussed in the previous section 4.2, researchers dis-
cussed the reason that there is a generalization error for
large batch sizes simply because the number of iterations of
the parameter update is not enough. In order to fully verify
this view, we try to make the same number of iterations for
training a model with large batch as for a model with small
batch.

From Figure 9, it gives that despite the different conver-
gence rates, under the same number of iterations, a large
batch size model and a small batch size model converge to
very close places. The results of this experiment show that
insufficient number of iterations is indeed a factor affecting
the generalization of a model trained through large batch
size.

5.4. Performances Summary

So far, we have conducted the experiments of using different
batch sizes in training, applying ghost batch normalization
(GBN), training with larger epochs when the batch size

Figure 9. Training loss for batch size of 64 and 1024 with same
weights updating iterations

is large (LE). The performances of different settings are
compared in this section.

Dataset SB LB GBN LE GBN + LE
CIFAR 10 92.78% 90.32% 91.48% 92.72% 94.13%
CIFAR 100 69.89% 65.26% 68.03% 69.42% 71.04%

Table 5. The validation performances of small batch size and batch
size with different settings

As shown in Table 5, we can find that under normal circum-
stances, SB performs better than LB. After using GBN, such
a gap is closed; and when we iterate the same number of
parameters for LB and SB training, the performance of the
two has almost reached a level. Finally, we combined GBN
and LE, the result is that large batch sizes outperform small
batch sizes.

6. Conclusion
In this project, we investigated the relationship between
SGD-like optimization using different batch sizes and gen-
eralization errors. It gives that larger batch sizes lead to
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greater generalization gaps. We start by reading the paper
by Keskar et al to find out explanations for this phenomenon,
and they claim generalization gap is due to that large batch
size will introduce the optimization function into the sharp
minimum. The sharpness of LB minimum will then affect
the generalization of the model. However, the theoretical
explanation for sharpness-generalizability relation is still
lacked, and other researches have shown that the metric
for sharpness used in Keskar et al. is not perfect and will
be ill-defined under some test cases. Hence the theoretical
analysis in such field is still open for future. Fortunately,
practically speaking, we found some ways to reduce the
generalization error. Through GBN and LE methods, we
can solve the generalization problem caused by large batch
size.
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Role of Margin in Neural Networks Generalization

Shabnam Daghaghi 1

Abstract
In recent years deep neural networks demon-
strated widespread success in a broad variety of
tasks such as computer vision, speech recognition,
and natural language processing. It is shown that
neural networks are able to generalize relatively
well while they have enormous capacity to overfit
any given dataset. A very popular line of research
recently is focused on explaining generalization
behavior of networks. It has been shown that
generalization performance of neural networks
depends on training data as well as model and
optimization parameters, therefore classic com-
plexity measures based on parameter counting
such as VC dimension are not applicable. In this
work we focus on explaining network generaliza-
tion through the lens of margin and margin dis-
tribution. The importance of margin in designing
classifiers are presented and margin distribution
is introduced. Several very recent methods to im-
prove neural network margin are elaborated and
the relationship between margin distribution and
generalization gap is presented.

1. Introduction
Deep learning models demonstrate different generalization
behavior comparing to classic machine learning models and
generalize well despite their substantial complexity (number
of parameters). This behavior is shown in Figure 1 which
is sometimes interpreted as implicit regularization i.e. the
effective capacity of a network is implicitly controlled and
constrained by combination of network architecture, its pa-
rameters and training data (Neyshabur et al., 2014; 2017b).

Recently in efforts to explain and theorize generalization
behavior of neural networks, several novel complexity mea-
sures such as weight norm, unit capacity (weight distance to
initialization), margin (along with margin distribution) and
sharpness are proposed (Bartlett et al., 2017; Golowich et al.,
2017; Neyshabur et al., 2018; Jiang et al., 2018; Keskar

1Department of Electrical and Computer Engineering, Rice
University.

et al., 2016; Hochreiter & Schmidhuber, 1995). Complex-
ity measures for neural networks should be able to explain
improvement of generalization with over-parameterization
(Neyshabur et al., 2018). Neural networks differ from clas-
sic machine learning models in terms of the impact of over-
parameterization. It is shown that generally as the size
of network increases test error improves (Figure 2) which
demands exploring novel complexity measures and general-
ization bounds (Neyshabur et al., 2018).

One category of the proposed network complexity mea-
sures is based on margin and margin distribution (Garg &
Roth, 2003; Elsayed et al., 2018; Jiang et al., 2018). Classic
hinge loss promotes larger margin and can result in rela-
tively better generalization comparing to other classification
loss functions. However, it has been shown that the ex-
treme definition of margin (distance of closest points to the
boundary) does not effectively represent generalization be-
havior (Garg & Roth, 2003). For an improved notion of
margin, all data points should contribute in calculation of
margin which is referred as margin distribution. Garg &
Roth (2003) showed that margin distribution highly corre-
lates with generalization error. Following the same idea,
Jiang et al. (2018) proposed to utilize margin distributions
of all network layers to predict generalization gap. Addition-
ally, novel large margin losses based on margin distributions
are proposed to improve generalization behavior of neural
networks (Elsayed et al., 2018).

Existing loss functions e.g. Softmax loss can reach zero
loss on training data that is not necessarily an indication
of good generalization error (e.g. in case of random data),
therefore we need to design new loss functions (or modify
existing ones) to better reflect the generalization behavior.
For instance since margin distribution correlates well with
generalization gap (error), the new improved loss should
also include some information about the margin (Jiang et al.,
2018). Hence with this new loss, the training loss of a
random labeled data cannot reach zero indicating that the
generalization performance is going to be poor.

The popular Softmax loss has some drawbacks such as over-
confidence in probability and unbounded penalty for outliers.
Several improvements are suggested to improve discrimina-
tive power of Softmax loss and increase its margin. Among
these improved losses are bi-tempered Softmax loss (Amid
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Figure 1. Generalization behavior of deep learning models vs. clas-
sic machine learning models (https://desh2608.github.
io/2018-07-27-deep-learning-theory-2/).

Figure 2. How neural networks generalize when number of param-
eters increases (Neyshabur et al., 2017a).

et al., 2019) and angular margin Softmax losses (Liu et al.,
2017; 2016; Deng et al., 2019; Wang et al., 2018).

This report first outlines definition of margin and margin dis-
tribution and their properties in Section 2. Next, in Section
3 novel loss functions to improve neural network general-
ization are introduced. Finally in Section 4 conclusions and
discussions are presented.

2. Margin Definition and Properties
Margin is often defined based on either discriminant func-
tion (score) values or distance of a point to decision bound-
ary. The difference of the target class score and maximum
score of other classes can be defined as margin1:

M(f, y) = fy −max
i6=y

fi (1)

1https://www.stat.berkeley.edu/˜bartlett/
talks/201710MLaB.pdf

Figure 3. Capability of deep networks to fit random data due to
their enormous capacity (Zhang et al., 2016).

The popular method to calculate margin is the geometric
interpretation based on the closest distance of data points to
decision boundaries. However this distance calculation is
intractable for general nonlinear boundaries e.g. in neural
networks, so some approximations are proposed to obtain
the margin. Elsayed et al. (2018); Jiang et al. (2018) applied
first order Taylor series approximation to calculate margin
and margin distributions. Elsayed et al. (2018) explored
obtaining margin of all layers of neural network and pro-
posed a new large margin loss (utilizing margin distribution
of all layers) based on multi-class hinge loss to improve
generalization of networks. Their new large margin loss
guarantees robustness against noisy labels and outliers close
and far away from the boundary. The distance (margin) of
data point x to the boundary of classes i, j is defined as:

df,x,{i,j} , min
δ
‖δ‖p s.t. fi(x+ δ) = fj(x+ δ) (2)

Elsayed et al. (2018) proposed to obtain margin via lineariza-
tion:

d̃f,x,{i,j} , min
δ
‖δ‖p s.t. fi(x) + 〈δ,∇xfi(x)〉 =

fj(x) + 〈δ,∇xfj(x)〉
(3)

Finally margin can be approximated using the discriminant
function values and their gradients:

d̃f,x,{i,j} =
|fi(x)− fj(x)|

‖∇xfi(x)−∇xfj(x)‖ q
(4)

The simplified geometric interpretation of Equation 4 can
be explained by Figure 4 where a schematic of a three class

https://desh2608.github.io/2018-07-27-deep-learning-theory-2/
https://desh2608.github.io/2018-07-27-deep-learning-theory-2/
https://www.stat.berkeley.edu/~bartlett/talks/201710MLaB.pdf
https://www.stat.berkeley.edu/~bartlett/talks/201710MLaB.pdf
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Figure 4. Relationship of margin and confidence while linearizing
discriminant functions.

classification problem with one dimensional feature space
is shown. It demonstrates the relationship of margin and
classification scores as follows which is the simplified form
of Equation 4:

m =
f1 − f2
f ′1 − f ′2

(5)

Most large margin methods are only applicable to shallow
models (classic machine learning models as opposed to
deep neural networks) and consider large margin only in a
preset feature representation (input space) and do not guar-
antee large margin in the intermediate representation spaces
(Elsayed et al., 2018; Jiang et al., 2018). Deep neural net-
works include several layers leading to several intermediate
spaces also known as intermediate representations. Elsayed
et al. (2018) shows that to enhance generalization of neural
networks we need to improve margin of all representation
spaces along with margin of input space and it proposes a
large margin loss function based on the margin distribution
of all representation spaces to improve generalization er-
ror. Figure 5 schematically shows the representation spaces
along with the input space for a typical fully connected net-
work. To obtain margin of an intermediate layer we can
simply take the gradient of discriminant functions with re-
spect to the activations of the corresponding layer, ∇hf(x),
instead of input features x in Equation 4.

This definition of margin is applicable to any network archi-
tecture. The margin distribution based loss shows consid-
erable improvements in several difficult learning scenarios
such as small training sets, corrupted labels, and adversarial
examples. However, calculation of the proposed loss is com-
putationally expensive and may increase run time by 60%
due to presence of gradients (first order derivative) in the
loss which requires calculation of second order derivatives
during backpropagation. (Elsayed et al., 2018).

Commonly large margin machine learning methods do not
utilize margin distribution and only rely on the margin
of closest data points to the decision boundary. Garg &

Figure 5. Networks generalization depends on the margin of input
space as well as intermediate representations.

Roth (2003) proposed to improve generalization of linear
classifiers by considering margin distribution in form of a
weighted margin term in the loss function. In the context of
linear classification they showed that the correlation of test
error with weighted margin of training data (margin distribu-
tion) is considerably more than the correlation of test error
with regular margin. This motivates margin distribution as
the superior predictor for generalization error.

Jiang et al. (2018) empirically showed that margin distribu-
tion of all layers in a network highly correlates with the gen-
eralization behaviour. They trained three convolutional neu-
ral networks with cross-entropy loss on CIFAR-10 dataset
with three different levels of label corruptions. As Figure 7
shows, as test accuracy increases, margin distributions of all
layers are skewed to the right (margin increases) confirming
the impact of margin of all layers in a network on its gener-
alization error. Hence, Jiang et al. (2018) proposed utilizing
margin distributions as a predictor for generalization gap.
They first summarized margin distributions of all layers (e.g.
moments, quartiles) as a vector θ called total signature, then
they correlated θ with the generalization error with a simple
relationship as follows: ĝ = a log θ + b

Jiang et al. (2018) evaluated their proposed generalization
gap predictor on several network architectures and datasets
and found out the promising agreement between actual and
predicted gap as shown in Figure 8.

3. Novel Loss Functions to Improve
Generalization

There are several classification loss functions such as Soft-
max, hinge, and exponential loss. Classification losses are
usually expressed in terms of margin as shown in Figure
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Figure 6. (a) A schematic binary classification problem in 2D. (b)
Linear classifiers with zero training error. (c) The hyperplane
learned by a large margin classier such as SVM. (d) This hyper-
plane maybe a better classifier than SVM, since more data points
are further apart from the decision boundary (Garg & Roth, 2003).

9. The trivial classification loss is 0-1 loss which simply
penalizes all incorrect classifications equally and does not
penalize correct classifications. Training a classifier with 0-1
loss is not practical because its minimization is an NP-hard
(combinatorial) optimization. Therefore, we approximate
0-1 loss with its smooth versions to have a computationally
feasible loss.

The most popular classification loss for deep learning is
cross-entropy loss which is also known as Softmax loss,
logistic loss or log loss. Softmax loss for each sample is as
follows:

Li = − log

(
efyi∑
j e
fj

)
= log(1 + e−v) (6)

where we obtain the last equality by plugging in the pre-
dicted probabilities using Softmax function. Usually we
express classification loss in terms of margin or signed dis-
criminant function represented by v. One of the impor-
tant weaknesses of Softmax loss is that it does not provide
enough intra-class compactness and inter-class separability
(specially for fine-grained classification). This is due to Log
and Exp functions in Softmax loss. Log function causes
unbounded loss for incorrect classifications and makes it
sensitive to noise and Exp function leads to overconfidence
in probabilities, hence Softmax loss does not guarantee large

margin. Therefore there are several variants of Softmax loss
to promote large margin and better generalization. A simple
way to improve the margin of Softmax loss is controlling the
overconfidence of Softmax function ,similar to temperature
Softmax (Hinton et al., 2015), via introducing γ parameter:

Li = log(1 + e−γv); 0 < γ < 1 (7)

where γ acts as a regularizer and smaller γ enforces more
regularization and better generalization and leads to a better
margin. If φ(v) represents the loss function, loss margin
µ is defined as − φ′(0)

φ′′(0) which has strong relationship with
generalization behavior (Masnadi-Shirazi & Vasconcelos,
2015). As shown in Figure 10, improved Softmax with
γ parameter has larger loss margin comparing to standard
Softmax.

Another simple way to improve the margin and discrim-
inative power of Softmax loss is to directly penalize the
probabilities for incorrect classes as well correct classes.
The modified Softmax loss will become as follows:

−
n∑
i=1

k∑
j=1

yij log pj(xi)− (1− yij) log(1− pj(xi)) (8)

Contrastive loss (Hadsell et al., 2006) and triplet loss
(Schroff et al., 2015) are also proposed to enforce a dis-
tance constraint to encourage extra intra-class compactness
and inter-class separability (based on the idea of pairing sam-
ples). However, a subsequent problem is that the number of
training pairs and triplets can increase dramatically.

It is shown that weighted margin distribution is a better
complexity measure than the extreme notion of margin e.g.
in SVM (Garg & Roth, 2003). Authors suggest that all
points should contribute to the (generalization) error and the
relative contribution of a point should decay as a function
of its distance from the boundary. The suggested weight
function to build the weighted margin distribution is as
follows:

W (xi) =

{
e−αf

2(xi) if yif(xi) ≥ 0
e−βyif(xi) if yif(xi) < 0

(9)

By plugging in the weighted margins for correct and incor-
rect classifications we can obtain the final loss function:

L(x) =

n∑
i=1

I(ŷi = yi)e
−αf2(xi)+

n∑
i=1

I(ŷi 6= yi)e
−βyif(xi)

(10)
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Figure 7. Impact of margin distributions of all layers in network generalization error. This is the result of training CNN on CIFAR-10 with
different levels of corrupted labels. The label corruption decreases from left to right and as the consequence the margin distributions are
more pulled to the right demonstrating that the margin is becoming larger. As the result the test accuracy increases and the generalization
performance improves. All these networks have almost 100% training accuracy. Margin distributions are highly correlated with
generalization error and can be used to predict generalization gap (Jiang et al., 2018).

Figure 8. Actual vs. predicted generalization gap. The predicted
generalization gap using the signatures of margin distributions
shows very good agreement with the actual generalization gap
(Jiang et al., 2018).

where I(.) represents the indicator function. The new loss
function shown in Figure 11 will result in an overall better
margin and generalization behavior comparing to standard
large margin losses e.g. hinge loss. As seen from the shape
of this loss function, it is a trade-off between 0-1 loss and
hinge loss. Garg & Roth (2003) found out significant cor-
relation between weighted margin on train data with test
(generalization) error which suggests margin distribution as
a promising predictor of generalization gap.

Softmax cannot handle large and small margin noises (out-

Figure 9. Popular classification loss functions commonly ex-
pressed in terms of margin.

liers close to or far away from the boundary) which im-
pacts generalization behaviour negatively. This issue rises
because of loss unboundedness due to Log function and
overconfidence in probabilities due to Exp function. Amid
et al. (2019) addresses these issues by replacing Log and Exp
functions with their corresponding tempered versions shown
in Equations 11 and 12. The proposed bi-tempered Softmax
loss is bounded which handles large-margin outliers and has
a heavy tail which handles small-margin mislabeled exam-
ples. As the result training is more robust to noise while two
tunable temperature parameters are introduced.
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Figure 10. The margin of logistic or Softmax loss can be increased
by slightly modifying the loss equation. Red curve (Equation 6)
shows the standard logistic loss and blue curve (Equation 7) is
the increased margin logistic loss. µ which is called loss margin
is directly related to generalization behavior (Masnadi-Shirazi &
Vasconcelos, 2015).

Figure 11. The new classification loss considering the margin dis-
tribution. The weight given to the data points as a function of their
margin (Garg & Roth, 2003).

logt(x) :=
1

1− t
(x1−t − 1) 0 ≤ t < 1 (11)

expt(x) := [1 + (1− t)x]
1

1−t

+ t > 1 (12)

In face recognition applications (fine-grained classification),
a proposed improvement to Softmax loss is enhancing the
angular margin. Deng et al. (2019) proposes an additive
angular margin loss (ArcFace) to improve the discrimina-
tive power of face recognition models. Dot product be-
tween (CNN extracted) feature and last fully connected
layer weight is interpreted as cosine distance (after normal-
ization), therefore angular penalties can be incorporated to
cosine distance to improve Softmax loss. Standard Softmax
loss is as follows:

− 1

N

N∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
WT

j xi+bj
(13)

Figure 12. Tempered versions of Log and Exp functions to improve
generalization of Softmax loss (Amid et al., 2019).

where WT
j xi is replaced by ||Wj || ||xi|| cos θj to show the

impact of angular margin θj . After weight normalizing we
have:

− 1

N

N∑
i=1

log
es cos θyi

es cos θyi +
∑N
j=1,j 6=yi e

s cos θj
(14)

Additive angular margin penaltym is added between feature
and weight to simultaneously enhance intra-class compact-
ness and inter-class discrepancy:

− 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑N
j=1,j 6=yi e

s cos θj
(15)

The impact of angular penalty in improving the discrimina-
tive power of classifier is shown schematically in Figure 14.
For instance in case of multiplicative angular penalty Figure
13 shows the gradual improvement of class separability as
angular penalty increases.

To improve Softmax loss three kinds of angular margin
penalties are proposed: SphereFace/L-Softmax (Liu et al.,
2017; 2016), ArcFace (Deng et al., 2019), and CosFace
(Wang et al., 2018) that are based on multiplicative angular
margin m1, additive angular margin m2 and additive cosine
margin m3, respectively. Equation (16) shows the final
improved Softmax loss when we combine all three angular
penalties. Angular margin penalties, no matter added on
angle or cosine space, all enforce intra-class compactness
and inter-class diversity by penalizing target logit.

− 1

N

N∑
i=1

log
es(cos(m1θyi+m2)−m3)

es(cos(m1θyi+m2)−m3) +
∑N
j=1,j 6=yi e

s cos θj

(16)
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Figure 13. The impact of different multiplicative angular margins. As margin multiplier increases, class separations further improve (Liu
et al., 2016).

Figure 14. A schematic representation to show the impact of an-
gular margin. Incorporating angular margin enforces better class
separation (Liu et al., 2016).

4. Discussion
It has been shown that classic measures of complexity fail to
explain neural networks generalization behaviour. As the re-
sult, novel measures such as norm, margin and sharpness are
introduced. Proper complexity measures should include the
impact of model parameters and training data. In this report,
we focused on margin and margin distribution as effective
measures to capture network generalization gap. And the
importance of ensuring large margin in all representation
spaces of neural network is presented. New loss functions
that properly reflect network generalization behavior are
outlined and in particular recent improvements of Softmax
loss are reported.
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A Review of Matrix Sensing

Benjamin Coleman 1 * Gaurav Gupta 1 *

Abstract

Matrix sensing is the well studied problem of re-
covering a low rank matrix i.e. a rank r optimal
solution X? ∈ Rn×n, given a set of linear mea-
surements. The problem belongs to a class of
rank-constrained optimization problems, which
includes related problems such as low-rank matrix
completion, low-dimensional Euclidean embed-
ding problems and image compression. Matrix
sensing has applications in quantum state tomog-
raphy, system approximation and identification,
neuron activity recovery from µECoG and video
background subtraction. In this report we present
a summary of important results in the matrix sens-
ing literature. We also implement and compare
several optimization methods for solving the ma-
trix sensing problem.

1. Introduction
Matrix sensing (Recht et al., 2010) is an important optimiza-
tion problem in quantum state tomography, phase retrieval
and other applications. The task is the matrix analogue to
compressed sensing: Assuming a low-rankX? ∈ Rn×n, we
wish to recover an estimate X of X? from a set of m linear
measurements of the form yi = 〈X,Ai〉. In compressed
sensing, the signal is assumed to have a sparse representa-
tion in some signal basis. In matrix sensing, the signal X?

is assumed to be sparse in terms of the nuclear norm. The
problem is interesting when the number of measurements
m << n × n. In this regime, we can efficiently sample
and recover X? using a small set of fixed measurement
operations.
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dence to: Gaurav Gupta <gaurav.gupta@rice.edu>, Ben Coleman
<ben.coleman@rice.edu>.
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2. Matrix Sensing
Formally, the matrix sensing problem is as follows. Given a
measurement mechanism A with m measurement matrices
Ai, matrix sensing requires a solution to an optimization
problem.

X = arg min
rank(X)≤r

1

2

m−1∑
i=0

(yi − 〈Ai,X〉)2

Where the linear measurements are yi, i ∈ [0,m], which
is assumed to be generated by the model yi = 〈Ai, X?〉,
where X? ∈ Rn×n. Without constraints or a structural
assumption on X?, the problem is under-determined with
infinite solutions. However, given a rank r matrix and a suf-
ficiently large number of measurements (Ω(rn log n)), there
is a unique solution that may be found via optimization.

Just as with compressed sensing, many variations on the
matrix sensing problem have been studied. For instance, a
common assumption is that the measurement matrices A
are near-isometries (Recht et al., 2010), but non-RIP ma-
trices have also been shown to work (Zhong et al., 2015).
A special class of measurement matrix Ai (called Pauli’s
observable) is a Knonecker product of Pauli measurement
operators, also carry RIP property. These matrices are of
particular practical interest due to their importance in quan-
tum state tomography (Liu, 2011). For simplicity, results
are often presented for the simple case where X? is positive
semidefinite (PSD) and the measurements are noiseless, but
the role of measurement noise is well-known for several
optimization methods. As a whole, the matrix sensing field
offers a mature set of tools and theoretical guarantees that
are suitable for a wide range of applications.

3. Motivation
Since the measurements in the matrix sensing problem are
assumed to be the output of a linear system that measures
the hidden variable matrixX , many practical systems can be
studied using matrix sensing. One such example is neuron
activity recovery from µECoG electrode signals (Ajayi et al.,
2018). When a set of neurons receives an input stimulus,
the neurons respond with an electrical potential. Electrode
recording techniques can capture aggregations over the set
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of neurons for a short time period. If we construct a ma-
trix by placing the response of neuron n at time t at index
n, t, this experimental procedure yields valid matrix sensing
measurements. For hours of experiments, the sample size
m is in millions (Markram et al., 2015). The goal is to re-
cover the membrane potential matrix X ∈ Rn×m, which is
exactly the objective of the matrix sensing problem. In this
context, the measurement matrices are determined by the
low-pass filter delay and amplitude attenuation characteris-
tics of the physical media in which the µECoG electrode
operates. The µECoG recordings here can be viewed as the
linear mapping of the membrane potential of the neurons.

Another direct application is in Quantum state tomography
(QST). Here we report the density matrix X∗ ∈ R2q×2q of
the quantum circuits, also called q-cubit state. The measure-
ments are the expected value of q-cubit Pauli’s observables
Ai ∈ C2q×2q . The measurement vector y ∈ Rm is:

y = Tr(Ai.X
∗) + ei, i = 1, ....m

for some error ei.

Currently the best computer in the world is using q = 53.
This makes the size of X∗, very very very large! With
these any brute force method (even existing matrix sensing
methods) are very time consuming and not feasible. (Ajayi
et al., 2018) have done matrix sensing experiment (using
Factored Gradient Descent, section 6) for q = 6.

4. Preliminaries
In this section, we will briefly define some existing concepts
and and tools that we will use.

4.1. Singular vector decomposition

For a rectangular matrix X ∈ Rm×n, the singular vector
decomposition is defined as

X = UΣV T

where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n. The
singular values are always positive. The rank of a matrix is
equivalent to the number of nonzero singular values. For
a square matrix, the time complexity of the full SVD is
O(n3).

4.2. Matrix Norms

The nuclear norm of a matrix is represented by the sum-
mation of singular values.

‖X‖∗ =

r∑
i=0

σi

Note that the nuclear norm is the L1 norm of the vector of
singular values.

The Frobenious norm of a matrix X is represented by

‖X‖F =

√√√√m−1∑
i=0

n−1∑
j=0

X2
ij

Note that the Frobenius norm is also equal to the Euclidean,
or L2, norm of the vector of singular values.

‖X‖F =
√
〈X,X〉 =

√
Trace(XTX) =

√√√√ r∑
i=1

σ2
i

4.3. Positive Semi-Definite Matrix

A matrix M is positive semi-definite if an only if

xTMx > 0 ∀x ∈ Rn \ 0

It is important to note that symmetric real matrices are
positive semi definite.

4.4. Restricted Isometry Property

We use the Restricted Isometry Property (RIP) definition
from (Recht et al., 2010). A linear operator A : Rn×n →
Rm satisfies the RIP on rank-r matrices, with parameter
δr ∈ (0, 1), if the following holds for all rank-r X:

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F

Isometry is a property which says that the all the distances
are preserved after the transformation by matrix A on X .
Restricted isometry is relaxed version of isometry where the
distances are preserved with an error of (1± δr)‖X‖2F . A
measurement matrix is useful for the matrix sensing problem
if it is a near-isometry (satisfies RIP).

4.5. Restricted Strong Convexity

A convex function f is (m, r)-restricted strongly convex
(RSC) (Bhojanapalli et al., 2016a) if

f(Y ) ≥ f(X) + 〈∇f(X), Y −X〉+
m

2
‖Y −X‖2F

for any rank r matrices X,Y ∈ Rn×n. We can think of re-
stricted strong convexity as being strongly convex, but only
in some restricted set of directions. The set of directions is
governed by rank r of matrix X and Y .

5. Projected Gradient Descent
The first provable solution to the matrix sensing problem
came via a connection with compressed sensing, convex re-
laxation and projected gradient descent (Recht et al., 2010).
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For a matrix function, the gradient is a matrix of gradi-
ents, one for the relationship between each cell in the input
matrix and the function output. Gradient descent involves
iteratively updating Xt with the gradient matrix.

Xt+1 = Xt − η∇f(X)

The projected gradient method requires the extra step of
projecting Xt onto the given constraint. The matrix sensing
problem is a convex objective with the non-convex con-
straint that rank(X) = r. Although projected gradient
descent works, it is quite computationally expensive as it
requires computing the SVD for each iteration.

5.1. Iterative Hard Thresholding

One can project the iterate Xt onto a rank r space by com-
puting the SVD at each gradient descent step and truncating
to keep only the singular vectors with the r largest singular
values. The gradient updates take the form:

Xt+1 = Π
rank(X)≤k

Xt − η∇f(X)

This procedure, while effective, requires that we calculate
the SVD of X and sort the singular values for each iteration.
While this is feasible for small matrices, we found in our ex-
periments that the projection updates are no longer feasible
on general-purpose hardware when n >≈ 500.

5.2. Convex Relaxation

Inspired by compressed sensing methods that solve a non-
convex L0 norm constraint via relaxation onto a L1 con-
straint, (Recht et al., 2010) proposed a similar convex re-
laxation for the matrix sensing problem. Using the nuclear
norm as a surrogate for sparsity in the singular values, pro-
jected gradient descent provably converges to the correct
solution provided that the measurement matrices satisfy the
RIP. Since the nuclear norm ball is a convex constraint, and
is the best convex approximation of the rank function over
the unit ball of matrices with norm less than one. The proce-
dure, which we will refer to as nuclear norm minimization
(NMM) updates Xt as follows:

Xt+1 = Π
‖X‖∗≤λ

(Xt − η∇f(X))

Formally, their result is that when the sensing matrices sat-
isfy the RIP with δ2l < 1, l ≥ 1, the solution to the matrix
sensing objective is unique. Given a sufficiently strong
RIP condition (δ5l < 0.1), gradient descent on the convex
relaxation converges to the correct solution.

6. Factored Gradient Descent
Both methods for solving the matrix sensing problem are
undesirable in practice because they require an SVD com-
putation for each gradient descent step. The SVD requires

Algorithm 1 Factored gradient descent (FGD)
Input: Function f , target rank r, # iterations T .
Initialise X = X0

Set U ∈ Rp×r such that X0 = UU>

Set step size η
for t = 0 to T − 1 do
Ut+1 = Ut − η∇f(UtU

>
t )

end for
Output: X = UU>

O(n3) time for a matrix X ∈ Rn×n. While most matrix
multiplication algorithms are also O(n3), the SVD calcula-
tion is non-trivial to parallelize and is substantially slower
in practice. The boundary for computational infeasibility on
a modern laptop is very easy to reach and is near n ≈ 500
based on our experiments.

Another method to solve the matrix sensing problem is
to encode the low rank constraint into the objective and
perform unconstrained gradient descent on the reformulated
problem. While this method has been used as a hueristic
for a long time, the (Tu et al., 2015). This can be done
by factorizing the matrix, X = UV >. Here, U ∈ Rn×r
and V ∈ Rn×r. For the rectangular matrix X ∈ Rn1×n2 ,
U ∈ Rn1×r and V ∈ Rn2×r.

For the special case of a PSD matrix, it is much more ad-
vantageous to use the factorization X = UU>. With this
factorization, the matrix sensing problem becomes

min
U∈Rn×r

1

2

m∑
i=1

f(X)2

Where f(X) = (yi − 〈Ai, UUT 〉). The gradient descent
step becomes:

Ut+1 = Ut − η∇f(UtU
T
t )

FGD eliminates the non-convex constraint and costly pro-
jection step, but induces problems by causing the factoriza-
tion objective to become non-convex. It is easy to show
that there are multiple non-connected solutions to the prob-
lem. For the factorization X = UU>, UU> = UR>RU>

is also a solution, where R is an orthonormal matrix:
R ∈ Rr×r : RTR = I. Therefore, the factorization trans-
fers the complexity of the constraint into the optimization
problem itself.

6.1. Convergence and Initialization

Despite this concerning fact, the factorized matrix approach
is very successful in practice since the extra complexity
for solving a harder optimization problem is not nearly as
computationally expensive as the SVD for each iteration. In
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terms of smoothness and convexity, the problem is deter-
mined by the measurement matrices A. Under reasonable
assumptions on A, we have either an L-smooth objective
with a sub-linear convergence rate or a RSC objective with a
linear convergence (Bhojanapalli et al., 2016a). Specifically,
with a step size

η =
1

16(M‖X0‖2 + ‖∇f(X0)‖2)
(1)

and a correctly-chosen initialization, one can converge with
rate O(1/T ) (sublinear) given an M -smooth matrix sensing
objective and rate O(αT ) with RSC. This is in contrast
with the classic convex optimisation intialisation where η ∝
1/M , the step size depends on the spectral information of
the matrix X .

Rather than express convergence in terms of RSC or convi-
teexity, we may also specify properties of the measurement
mechanism since the two ideas are closely related. If A is
RIP, this implies linear convergence because RIP implies
that the objective obeys an equivalent RSC condition. How-
ever, it should be noted that the RIP condition is stronger
than RSC condition. Since the Hessian of the objective is
given by A?A, restricted strong convexity implies that:

‖A(Z)‖22 ≥ C‖Z‖2F

where C > 0 is small constant. This implies that the
quadratic function has a defined lower bound. It is strongly
convex over restricted set of directions given by Z. On the
other hand, the RIP property is:

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F

Since the RIP has both an upper and lower bound and X is
drawn from restricted set, RIP on the measurement matrices
is stronger than a RSC assumption on the objective.

Regardless of the convergence properties, the initialization
procedure becomes critical to finding a good solution now
that the factorized objective is now non-convex. A variety of
initialization schemes have been proposed. While random
initialization is common for many optimization methods, it
is not particularly well-suited to matrix sensing.

If we assume that FGD is initialized with good starting point
(a point close to low rank solution), then the FGD converges
(Bhojanapalli et al., 2016a).

• If f is M-smooth convex function and the initialisation
U0 is :

DIST (U0, U∗r ) ≤ ρσr(U∗r ) ρ =
σr(X

∗)

100σ1(X∗)

Then the FGD converges sub-linearly-

f(XT )−f(X∗r ) ≤
5
η .DIST (U0, U∗r )2

T + 5
η .
DIST (U0,U∗

r )
2

f(X0)−f(X∗
r )

= O(1/T )

• If f is M-smooth and (m, r)-restricted convex function
and the initialisation U0 is :

DIST (U0, U∗r ) ≤ ρ′σr(U∗r ) ρ′ =
σr(X

∗)

100κσ1(X∗)

Then the FGD converges linearly-

DIST (U0, U∗r )2 ≤ α.DIST (U0, U∗r )2+β‖X∗−X∗r ‖2F

Where the distance between any arbitrary matrix U and V ,
DIST is defined as:

DIST (U, V ) = min
R:R∈O

‖U − V R‖F

O is the set of r × r orthonormal matrices R, such that
RTR = I

Note that the initialisation is spectral and based on true U∗r ,
however it is easy to obtain, often with just one eigen value
decomposition (Bhojanapalli et al., 2016a).

6.2. Regularization

Since U and V are non-unique, a common step in practice
is to regularize the objective so that U and V are distinct
from each other. This regularizer takes the following form.

g(U, V ) = λλ||U>U − V >V ||2F

This form of regularization improves the convergence rate
(Park et al., 2018) and is extensively used in practice, al-
though there is some evidence that it may not be necessary
when spectral initialization is used (Ma et al.). For a more
complete discussion of this issue, see (Chi et al., 2019).

7. FGD with Momentum
The lower bounds of convergence for L smooth objective is
O(1/T 2) and for L smooth and strong convex objective is
O(c2T ). Momentum based methods are proved to reach this
lower bounds for convex function. However these methods
also works really well in practice for non-convex optimisa-
tion settings.

Momentum can provably accelerate FGD over PSD matrices
(Ajayi et al., 2018). By including previous estimates in the
gradient update, one can obtain a faster linear convergence
rate provided an initialization that is reasonably close to a
local minimum and RIP measurement mechanisms. The size
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Figure 1. Individual effects of over-parameterization (left) and noise (right). The FGD variant used on the left includes momentum. The
results without momentum (not shown) are essentially the same with a slightly slower rate of linear convergence.

of the valid initialization region is inversely proportional
to the condition number of X?, so momentum is not an
appropriate choice when the trailing singular values, which
would otherwise be folded into the measurements as noise,
are important for the application.

8. Noisy Measurements
When X? is a PSD matrix, the matrix sensing problem is
inherently easier because the non-convex objective behaves
well. Any local solution to the objective function in the
factorized space produces a result X = X? (Bhojanapalli
et al., 2016b). However, if we introduce noise to the mea-
surements, the results change. In particular, the introduction
of measurement noise causes the recovered solution X to be
within a noise-dependent factor of the optimal solution X?.
With the measurement model yi = 〈X?, Ai〉+N (0, σ) with
Gaussian noise, we have a bound on how far X is allowed
to deviate from X?.

||UU> −X?||F ≤
√

log n

m
σ

Here, n is the dimension of the problem andm is the number
of measurements. Intuitively, we may think of the measure-
ment noise process as adjusting the objective function. Such
an adjustment produces sets of measurements that would
correspond to noiseless measurements on non-PSD matri-
ces. This introduces some weakly non-optimal local minima
by distorting the matrix that gradient descent attempts to
recover. To improve the recovery guarantees in the presence
of noise, one may take more measurements or reduce the
noise variance.

Algorithm 2 Factored gradient descent (FGD) with Momen-
tum

Input: Function f , target rank r, # iterations T , rate η,
momentum µ.
Initialise X = X0

Set U ∈ Rp×r such that X0 = UU>

Z0 = U0

for t = 0 to T − 1 do
Ut+1 = Zt − η∇f(ZtZ

>
t )

Zt+1 = Ut+1 + µ(Ut+1 − Ut)
end for
Output: X = UU>

9. Over-Parameterization
In many practical situations, the exact rank of X? is not
known. This is a problem for existing methods like FGD and
SVD based IHT, since we must know r to construct a matrix.
Fortunately, the UU> factorization (U ∈ Rn×n) has an im-
plicit regularizing effect when A is RIP. (Li et al., 2017)
show that when properly initialized, FGD converges to the
correct solution even when provided with a U0 ∈ Rn×n.
This implicit regularization is dependent on the initializa-
tion, since only some of the local minima in the overparam-
eterized case lead to X? and avoid overfitting. Orthogonal
low-norm initialization of U is appropriate and comes with
strong convergence guarantees in the overparameterized
setting (Li et al., 2017). In practice, a good initialization is

U0 = αĨ

where Ĩ is a truncated identity matrix and α is a small
value (α < 1/

√
r). For the general UV > factorization,

spectral initialization has weak guarantees (Bhojanapalli
et al., 2016a) but is often sufficient in practice. Spectral
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Figure 2. Comparison of all methods for the synthetic low-rank
PSD matrix recovery problem.

Figure 3. Comparison of several measurement matrices for the
synthetic low-rank PSD recovery problem.

initialization requires computing a SVD, but only once at
the start of the algorithm.

U0 = XΣ1/2, V0 = Y Σ1/2

where X and Y are the left and right singular vectors of
∇f(0).

By ensuring that U0 has orthogonal columns and a small
Frobenius norm, (Li et al., 2017) prove convergence to X?

for PSD matrices in the overparameterized scenario.

10. Experiments
We performed experiments on real and synthetic data to
supplement our discussion of the matrix sensing problem.
We implemented the following methods:

1. FGD with UU>: Standard factored descent for PSD

matrix recovery. We use small orthogonal initialization
(low Frobenius norm with orthogonal columns).

2. FGD with UU> and momentum: Accelerated de-
scent method for PSD matrix recovery using momen-
tum to incorporate previous estimates into the gradient
update.

3. FGD with UV >: This is the general low-rank factor-
ization for all matrices. We use the spectral method for
initialization by computing the SVD of −∇f(0).

4. FGD with UV > and momentum: We applied mo-
mentum to the update procedure for both U and V to
determine whether the UV > factorization can also be
accelerated.

5. Iterative hard thresholding: Each iteration, we use
the SVD to project the iterate onto the space of low-
rank matrices.

6. Convex relaxation: We minimize the nuclear norm
subject to an L1 constraint.

Our goal from the experiments is to understand the condi-
tions and theoretical results from the matrix sensing litera-
ture in a practical context. Given a real-world matrix sensing
problem, we would like to understand how to apply FGD
methods and intuition from the theoretical results presented
so far. We provide three sets of experiments.

10.1. Experiment Setup

First, we perform experiments on a random rank-2 PSD ma-
trix in R64×64. For these experiments, we use η = 0.1 and
µ = 0.5 unless otherwise specified. We use 640 Gaussian
RIP measurements and do not vary the number of measure-
ments n. We run each method to convergence.

Our second set of experiments are for a sketch of the covari-
ance matrix of the covertype dataset from UCI, which has
54 features. This covariance matrix is (approximately) low-
rank, with a sharp drop-off after the first 10 singular values.
We use matrix sensing to recover a rank-15 approximation
of the covariance matrix from a set of 1620 Gaussian RIP
measurements and display the results.

Finally, we want to understand how the measurement ma-
trices affect the convergence and quality of the recovered
solution. We implement three matrix sensing mechanisms:
Gaussian RIP, binary (±1) RIP, and the rank-1 Gaussian
measurements from (Zhong et al., 2015). In practice, sparse
random projections and measurement matrices are incredi-
bly effective for many applications in databases and signal
processing because they considerably reduce the compu-
tational burden without degrading the results (Achlioptas,
2001). Therefore, we also implement and test highly sparse
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Figure 4. Effect of both overparameterization and noise on the PSD matrix sensing problem. We observe that overparameterized
factorizations are less tolerant of measurement noise.

versions of the three measurement mechanisms described
above to determine whether a similar idea holds true in ma-
trix sensing. We use the same synthetic problem in R64×64

used previously, but this time we use ordinary FGD with
η = 0.8, 1000 iterations and a variety of measurement
matrices.

10.2. Results

Figure 2 shows the performance of all methods on the noise-
less synthetic PSD recovery problem. We attempted to tune
the step size and momentum parameter so that the UV >

factorization worked as well as UU> but were unsuccess-
ful, likely due to the fact that our implementation did not
include the regularizer. This is possibly also due to the weak
guarantees afforded by the spectral initialization method, in
contrast with the strong linear convergence guarantees for
the PSD case. As expected, accelerated FGD was substan-
tially faster than ordinary FGD. However, depending on the
value of the momentum parameter µ, the resulting solution
is within a bounded error of the true solution. We chose
µ = 0.5 because it yields a quality solution, but we found
that increasing µ quickly gives a solution with higher error.

Figure 1 shows the individual effects of overparameteriza-
tion and noise on the matrix sensing problem. To obtain
these results, we generated matrix sensing measurements
and added Gaussian noise with variance σ, then performed
the recovery. We observe results consistent with the theory.
In the noiseless case, all local minima are global minimizers
for the PSD problem. However, for noisy measurements the
local minima may produce a result that deviates from the
optimum by a constant value that increases with the noise
variance.

For overparameterization (Figure 1), we observe that while
overparameterized factorizations eventually converge to the
correct solution, they do so at a much slower rate than when
the rank is correctly specified. When we attempt overpa-
rameterized recovery on noisy measurements (Figure 4), we
observe that it is critical in practice to have a reasonable idea
of the rank of the matrix. The results in Figure 4 show that

highly overparameterized factorizations are very sensitive to
noise. We observed that with R = p, FGD actually diverges
for noise levels that converge properly when R << p. Here
R is the rank of the factorization.

When we attempted to recover a covariance matrix from
a matrix sensing sketch, we found that it did a reasonably
good job of preserving important information (Figure 5).
However, matrix sensing tends to introduce some undesired
patterns in the covariance matrix. Finally, we compared
several different sensing mechanisms in Figure 3. We found
that the efficient rank-1 measurements from (Zhong et al.,
2015) were just as effective as Gaussian and ±1 RIP ma-
trices without needing as much storage space. We also
explored the possibility of using sparse versions of each
measurement matrix and found that FGD still converges to
the correct solution. However, it seems to do so at a slower
rate, where the slowdown is proportional to the sparsity in
our projections.

10.3. Conclusion

Matrix sensing is an important problem for several applica-
tion areas. We have presented a survey of matrix sensing
methods and provided a detailed discussion of factorized
gradient descent techniques. We also implemented a set of
common methods and experimentally verified the theoreti-
cal results.
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An Overview of Optimization Methods in Game Theory
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Abstract
Recent advances in machine learning have moti-
vated active study of adversarial frameworks since
the introduction of Generative Adversarial Net-
works (Goodfellow et al., 2014). As such, there
has been a lot of interest in reinterpreting ma-
chine learning problems as game theoretic ones
(Goodfellow et al., 2014; Oliehoek et al., 2017;
Daskalakis et al., 2017; Ge et al., 2018; Zhang
et al., 2019). The tools of game theory provide
us with guarantees on the existence of optima
(Nash, 1950) in game settings and admit differ-
ent optimization dynamics. In order to address
those unique constraints several methods of op-
timization have been adopted to the game the-
oretic setting. In our work we analyze these ap-
proaches both qualitatively and quantitatively. We
describe the algorithms, provide theoretical guar-
antees where they have been proven to exist, and
evaluate the algorithms with respect to training
GANs.

1. Introduction
In this project, we will be considering optimization tech-
niques as they apply to the game theoretic notion of solv-
ability. This area of study has seen a lot of interest in recent
years with the development of adversarial learning frame-
works, in particular the generative adversarial networks
(GANs) (Goodfellow et al., 2014; Hu, 2019; Daskalakis
et al., 2017; Oliehoek et al., 2017; Ge et al., 2018; Zhang
et al., 2019). In an adversarial network, several agents, rep-
resented by neural networks, are placed into a game like
scenario in order to reach a desirable objective through iter-
ated play.

In game theory the notion of solvability is given by the Nash
equilibrium (Osborne & Rubinstein, 1994). We informally
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define a Nash equilibrium as a state induced by a strategy
profile (a set of functions that recommends actions to an
agent based on observed history) in which no agent can im-
prove their payoff by unilaterally deviating from the strategy
profile, i.e. every agent, upon knowing that the other agents
will follow the Nash equilibrium actions will do no better
than following the Nash equilibrium actions themselves.

In a game with a finite number of agents and a finite num-
ber of pure strategies for each agent, the existence of a
mixed strategy Nash equilibrium is guaranteed by Nash’s
Existence theorem (Osborne & Rubinstein, 1994). A pure
strategy is a function that takes the game history as input
and outputs a single action. A mixed strategy takes the game
history as input and returns a probability distribution over
a set of possible actions. This is a very strong existence
guarantee, which, in turn, under permissive conditions al-
lows an optimal solution to exist in the GAN training setting
(Goodfellow et al., 2014).

We motivate our analysis of game theoretic questions from
the optimization lens by drawing a parallel between Nash
equilibria and minima in objective functions in a classical
optimization setting. In a game, under certain permissible
conditions, best response play (optimal response to observed
history) will converge to Nash equilibrium (Osborne & Ru-
binstein, 1994). In this way a parallel can be drawn to
algorithms like gradient descent (GD) that will converge
to a minimum under certain assumptions on the objective
function and constraint set.

We want to examine what restrictions on the constraint set
are induced by the formulation of a problem as a game.
Hence, by using game theoretic algorithms and the concept
of Nash equilibria, what convergence guarantees can we
provide for those problems? Can we improve the existing
techniques in optimization theory by using tools from game
theory?

In order to reason about the links between game theory and
optimization, we believe it will be helpful to phrase the set-
ting induced by a game through the use of well known terms
in optimization theory. As discussed above, we know that,
given a game and its payoff functions, we are guaranteed
the existence of at least one Nash equilibria in any reason-
able setting. Furthermore, because the final output will be a
probability vector representing the weights with which each
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pure strategy is considered, this can be viewed as doing opti-
mization over an n-dimensional simplex - a convex set. This
is the motivation behind the use of algorithms like mirror
descent in the game theory setting. (Rakhlin & Sridharan,
2013)

The rest of paper will be following the layout described
below. In section 2 we will give background material and
some motivation for the algorithms to follow. In section 3
we will describe algorithms proposed by different authors
to solve the game theoretic optimization problems. Next,
in section 4 we will compare the proposed algorithms on a
synthetic dataset to evaluate the effectiveness and trade-offs
of each approach. Finally, in section 5 we will discuss the
observed results and outline some possible directions for
future work in this area.

2. Background
In this section we will briefly introduce the key concepts in
game theory and optimization. We then will follow up with
the problem setup in the optimization context in the next
section. In the game theory subsection we define the notion
of Nash equilibrium and state a corresponding existence the-
orem. In the optimization section we will focus on defining
the gradient descent algorithm and motivating using it as a
foundation for game theoretic problems.

2.1. Game Theory

Although the definition of a game is often tweaked to fit
the specific framework it is being interpreted in, we will
first start by providing a general definition of a game and
explicitly state when we add other assumptions.

Definition 2.1 (Game (Osborne & Rubinstein, 1994)). A
game is a quadruple

〈[n], (S1, S2, . . . Sn), O, f〉

• [n] = 1, 2, . . . , n represents the set of players, and
n ≥ 2

• (S1, S2, . . . Sn) are the sets of strategies. Set Si corre-
sponds to the strategies available to player i. Further-
more we define S = S1 × S2 . . . × Sn as the set of
strategy profiles.

• O is the set of outcomes.

• f : S → O is a function that assigns every strategy
profile an outcome.

The definition may seem opaque at first glance, but the
formulation becomes much more natural when view in the
context of an example.

Example. Let us try to formulate a very simple game in
terms of the definition above. The game "Odds and Evens"
is played by two players. Both players will simultaneously
choose to play either an odd number or an even one. Player
1 wins when the sum of both numbers is odd, and Player 2
wins otherwise. The game will be played for two rounds.

• n = 2, since we have a two player game

• Let odd denote playing an odd number and even
an even one. Then, S1 = S2 = {odd, even} ×
{odd, even}. This represents the two distinct choices
that can be made at each round.

• Let 1 denote a player 1 win and 2 a player 2 win. Then
the set of outcomesO can be viewed as {1, 2}×{1, 2}
and it represents the four possible outcomes of two
rounds of the game.

• f : S → O maps each strategy to an outcome. So if
player 1 uses the strategy {odd, odd} and player 2 uses
the strategy {even, even}, the function f will map
this strategy profile to (1, 1), as player 1 will win both
rounds. The function f is defined on all other inputs
from S in the same manner.

Note, that while the above formal definition of the game
is required to prove the important results that follow, we
often will skip the explicit definition of the parameters for
the games in the following sections.

In the definition above we have only considered "pure strate-
gies", which are deterministic recommendations of actions.
A more general formulation (and one that we will need to
make a guarantee for existence of a Nash equilibria, which
will be defined later) is one of a mixed strategy.

Definition 2.2 (Mixed Strategy (Osborne & Rubinstein,
1994)). A mixed strategy of a player i is a probability distri-
bution over the set Si. We denote the set of mixed strategies
for player i as Smi . A mixed strategy profile Sm is an ele-
ment of Sm = Sm1 × Sm2 . . .× Smn .

Note, that even in case of games with finite number of
players and pure strategies, the set of mixed strategies is
infinite. This allows for much more expressive behavior of
games in mixed strategies.

Finally, we need the concept of a utility function before
introducing the Nash equilibrium.

Definition 2.3 (Utility (Osborne & Rubinstein, 1994)). A
utility function for a player i is given by Ui : O → R, a
function that maps each game outcome to a real number.

Player’s preferences can be measured through the use of a
utility function, and this is in turn will allow us to reason
about what outcomes are preferred for each player. Utility



An Overview of Optimization Methods in Game Theory

functions can be viewed as negative loss in case of machine
learning. Thus each agent will seek to maximize their utility
or equivalently minimize the loss.
Definition 2.4 (Nash Equilibrium (Osborne & Rubinstein,
1994)). A mixed strategy profile s∗ in an n player game is
a Nash equilibrium if

∀(i ∈ [n])∀(s ∈ Smi )Ui(f(s
∗[i 7→ s])) ≤ Ui(f(s∗))

where s∗[i 7→ s] represents the strategy profile with the
assignment for i rewritten to s.
Remark. Intuitively, the Nash equilibrium can be seen as
a "no single deviance" condition. That is, given a strategy
profile s∗, it is the case that for every single player, they
can’t unilaterally improve their own payoff by deviating
from the Nash equilibrium profile. In this way, a Nash
equilibrium has a certain sense of "stability" in that rational
players will not attempt to individually deviate from the
strategy profile.

Stronger notions of equilibrium can be defined in which
we look at the notions of k players all deviating at once to
improve all of their payoffs (Osborne & Rubinstein, 1994).
However, these "coalition" dynamics are not within the
scope of our current work given that we are mostly focusing
on the two player GAN training setting in this document.
Theorem 2.1 (Existence of Nash Equilibrium). Every finite
game with a finite number of players and finite number of
pure strategies associated with those players has at least one
Nash equilibrium(Nash, 1950).

2.2. Optimization

Many of the algorithms we will present in the methods
section use the gradient descent algorithm as a foundation.
As such, this section will center around introducing the
gradient descent algorithm.

Gradient descent is an iterative, first order optimization
algorithm used to find a minima of an objective function
f(x). The iterations are given by the following iteration
rule.

xt+1 = xt − ηt∇f(xt)

Here, ηt represents a step size (which may vary over index)
and ∇ represents the gradient operator. At each iteration,
the approximation xt is updated by moving in the opposite
direction of the gradient. Intuitively, this can be seen as
"sliding down the slopes" of the function until a minimum
point is reached. Gradient descent can be seen at stopping at
"stable" points in which the gradient is 0 and the algorithm
makes no further progress.

In the optimization setting, two common restraints on objec-
tive functions are used to guarantee the existence of global

minima.

Definition 2.5 (Convex Function). A function is convex if

∀(x, y)f(x) ≥ f(y) + 〈∇f(y), y − x〉

where 〈x, y〉 represents the inner product of x and y and ∇
represents the gradient operator.

Definition 2.6 (Strongly Convex Function). A function is
µ-strongly convex (with respect to the Euclidean norm) if

∀(x, y)f(x) ≥ f(y) + 〈∇f(y), y − x〉+ µ

2
‖x− y‖22

In the same way that convex optimization uses the global
minima guarantees of these restrictions, algorithms in the
game theory setting have the guarantee of a Nash equilib-
rium. In the game setting, using the gradient to move in a
direction has the analogous concept of best response play
(in which a player moves in a way that best responds to the
observed history) which similarly makes no further progress
at Nash equilibrium points. This can be intuitively seen by
unpacking the definition of a Nash equilibrium. If it were
the case that a player had a best response that deviated away
from the Nash equilibrium, this would contradict the no
deviance property of Nash equilibria.

In the next section we will discuss several algorithms de-
signed to find such equilibria given this existential guaran-
tee.

A popular modification of gradient descent is Nesterov’s
acceleration, given by the following updated iteration rule.

xt+1 = xt − ηt∇f(xt) + β(xt − xt−1)

(Nesterov, 1983) The term β(xt − xt−1) is the momen-
tum step amplified by a hyperparameter β, which biases
the direction of the algorithm towards the previously taken
direction. The acceleration exhibits faster convergence for
convex functions (Nesterov, 1983) and the algorithm is con-
sidered to be one of the most important ideas in the theory
of optimization.

3. Methods
We present several optimization algorithms that attempt to
solve the problem of finding Nash equilibria in games.

3.1. Stochastic gradient descent

Stochastic gradient descent is a modification of gradient
descent originally introduced to deal with very large data
sets. It updates the original iteration rule to the following
for an n dimensional x vector:



An Overview of Optimization Methods in Game Theory

xt+1 = xt−ηt∇f(xt) −→ xt+1 = xt−ηt∇fit(xt), it ∈ [n]

At each step, the algorithm uniformly chooses a sample
from the set [n] = {1, 2, . . . n} It then performs the gradient
descent update by only considering that coordinate. In this
way full gradients need not be computed, which may be
expensive when considering high values of n.

In practice, typically instead of choosing one sample uni-
formly from [n], a small subset of samples called a batch
is chosen. Furthermore, the random selection procedure is
replaced with cycling through all batches in sequence.

In a game setting, stochastic gradient descent could be used
by having each player minimize their loss function based on
the stochastic gradient descent update rule. We know of no
convergence guarantees for stochastic gradient descent in
either the general game setting or the GAN training setting.

3.2. Mirror descent

Mirror descent is a modification of gradient descent based
on the observation that the L1 norm is a much more suitable
norm for the n dimensional simplex than the L2 Euclidean
norm we implicitly use in other algorithms. Since the game
theory optimization problem is one of determining proba-
bilities, it is one that utilizes the geometry of the simplex
as well. Therefore techniques utilizing the L1 norm are an
emerging point of interest in the intersection of game theory
and optimization.

Mirror descent makes use of changing the notion of distance
(away from Euclidean) by introducing Bregman divergence

Definition 3.1 (Bregman Divergence(Bubeck, 2014)).
Given a strongly convex function f : D → R with D ⊆ Rn
a convex set, the Bregman divergence Df : D ×D → R+

is given by

Df (x, y) = f(x)− (f(y) + 〈∇f(y), x− y〉)

In the L1 norm, the negative entropy function

E(x) =

n∑
i=1

xi log xi

is a strongly convex function over the set D = Rn+. Under
these conditions, it can also serve as a mirror map, which
we will now define.

Definition 3.2 (Mirror Map(Bubeck, 2014)). Let D ⊆ Rn
be an open convex set and let f be a strongly convex func-
tion. Then f is a mirror map if it additionally satisfies the
following conditions

• f is differentiable on D

• The range of∇f is the entire Rn

• As x approaches δD , the boundary of D, ∇f(x) →
∞

Furthermore, we define the notion of a subgradient of g at a
point

Definition 3.3 (Subgradient(Bubeck, 2014)). If U ⊆ Rn is
an open convex set and g : U → R is convex on U , a vector
v ∈ Rn is called a subgradient of g at the point x0 if

g(x)− g(x0) ≥ 〈v, x− x0〉

The collection of subgradients of the function g at the point
x0 will be denoted δg(x0).

The mirror descent algorithm then has the following up-
date rule for a mirror map f and a compact set C over the
objective function g. Initially we choose

x0 = argmin
x∈C

f(x)

And we iterate by updating

xt+1 = argmin
x∈C

Df (x, xt) + η〈vt, x〉

where {v1, . . . vt . . .} represent a sequence of directions
such that each vt ∈ δg(xt) (Bubeck, 2014).

Under the conditions we have outlined, the negative entropy
function qualifies as a mirror map using the L1 norm and
over the n dimensional simplex. Using this function as the
mirror map is a popular way to use mirror descent when
minimizing an objective function over the probability sim-
plex. In a machine learning setting, mirror descent would
be used to minimize each player’s loss function based on
the mirror descent update rule. We know of no convergence
guarantees for this algorithm for either the general game
setting or the GAN training setting.

3.3. Optimistic gradient descent

Optimistic gradient descent was introduced in (Daskalakis
et al., 2017) in order to specifically reason about the GAN
training framework, specifically the WGAN framework. In
the GAN framework we consider 2 player, zero sum games
explicitly, and the optimistic gradient descent algorithm
takes this into account explicitly.

In a two player game setting, one could imagine using gra-
dient descent on a loss function to optimize each player’s
actions. In the WGAN framework, the loss function is given
by

L(θ, ω) = Ex∼Q[Dω(x)]− Ez∼F [Dω(Gθ(z))]
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where the two players are represented by G (the generator,
who controls θ) and D(the discriminator, who controls ω).
Furthermore Q represents the true distribution (which we
assume we have access to in this particular case) that the
generator is trying to mimic. The game is zero sum, so the
generator is given this loss function and the discriminator is
given the loss function −L(θ, ω).

In this scenario, one could define a gradient descent based
algorithm as follows. Let ∇ω,t = ∇ωL(θt, ωt) and ∇θ,t =
∇θL(θt, ωt). Then we could naturally define the following
update rules

ωt+1 = ωt + η∇ω,t

θt+ 1 = θ − η∇θ,t

The idea behind optimistic gradient descent is to tweak the
update rules to read as follows

ωt+1 = ωt + 2η∇ω,t − η∇ω,t−1

θt+ 1 = θ − 2η∇θ,t + η∇θ,t−1

Optimistic gradient descent exhibits a last iterate conver-
gence rate of O( 1

T ) in the WGAN training framework,
where T represents the number of iterations (Daskalakis
et al., 2017).

3.4. Optimistic ADAM

Optimistic ADAM was also introduced in (Daskalakis et al.,
2017) in make a comparison between the well known
ADAM algorithm and optimistic gradient descent. Given a
step size η, decay rates for moment estimates β1 and β2, a
loss function of weights lt(θ) and initial parameters θ0, the
iteration step of optimistic ADAM is given by the following
step.

First the stochastic gradient is computed

∇θ,t = ∇θlt(θ)

Then the biased estimates of the moments are calculated.

mt = β1mt−1 + (1− β1)∇θ,t

vt = β2vt−1 + (1− β2)∇2
θ,t

Then the bias corrected moments are computed.

m̂t = mt/(1− βt1)

v̂t = vt/(1− βt2)

And then the optimistic gradient step is performed, which
mirrors the form of the optimistic gradient descent algo-
rithm.

θt = θt−1 − 2η
m̂t√
v̂t + ε

+ η
m̂t−1√
v̂t−1 + ε

Note that unlike optimistic gradient descent, this algorithm
is just a general modification of gradient descent. Therefore
it could be used in any scenario where gradient descent
might used, and has no explicit ties to GANs or games. In
order to use it in the context of training GANs, we would
just update our parameters θ and ω using this update rule
instead of simple gradient steps.

We know of no convergence guarantees for this algorithm
for either the general game setting or the GAN training
setting.

3.5. Hamiltonian dynamics (Symplectic gradient
adjustment)

The symplectic gradient adjustment was introduced in (Bal-
duzzi et al., 2018) and introduces it’s own formalism. This
technique provides a way to improve convergence speed and
guarantees when multiple interacting objectives are consid-
ered, such as a game. Gradient descent runs into problems
in this setting, such as entering "orbits" in which no further
progress can be made. The purpose of this section is to
simply briefly introduce the algorithm and its implementa-
tion without a discussion of its motivation. If the reader is
interested in the motivation, (Balduzzi et al., 2018) covers
this in good detail.

For this section, we redefine the notion of a game to match
the definition in (Balduzzi et al., 2018).

Definition 3.4 (Game). A game is a set of players [n] =
{1, 2, . . . n} and twice continuously differentiable losses
{li : Rd → R}ni=1. Parameters are w = (w1, . . . wn) ∈ Rd
with wi ∈ Rdi where

∑n
i=1 di = d. Player i controls wi

Although this definition is largely similar to the one we
have introduced before, it introduces some important addi-
tional constraints, like specifying that the players actions
correspond to setting values for the vector parameters and
requiring that the outcome functions be twice differentiable.
However, it should still be noted that this formalism is still
extremely general and allows for a wide variety of scenarios
to be modelled effectively.

Given a game, we define the simultaneous gradient

Definition 3.5 (Simultaneous Gradient). Given a game as
defined above, we define the simultaneous gradient to be

ξ(w) = (∇w1 l1 . . .∇wn ln) ∈ Rd
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where notation follows the definition for games presented
previously.

The simultaneous gradient is a small tweak on the original
concept of a gradient with an eye towards the fact that certain
players control specific parameters. Given this new concept
of gradient, it now becomes possible to define the concept
of a game Hessian that will mimic the structure of the well
known Hessian.
Definition 3.6 (Game Hessian). The Hessian of a game is a
d× d matrix of second derivatives (d is the dimension from
previous definitions) It is defined as

H =

 ∇2
w1
l1 ∇2

w1,w2
l1 . . . ∇2

w1,wn
l1

. . . . . . . . . . . .
∇2
wn,w1

ln ∇2
wn,w2

ln . . . ∇2
wn,wn

ln


And again, we can see this as a slight modification of the
original Hessian concept with an eye on which players own
which parameters. Given a Hessian matrix, it is known
that it decomposes into the sum of a symmetric and an
anti-symmetric component. Let us denote the symmetric
component as S(w) and the antisymmetric component as
A(w).
Definition 3.7 (Game Classifications). A game is a po-
tential game if A(w) ≡ 0. It is a Hamiltonian game if
S(w) ≡ 0.

Potential games are easy to solve, and so the paper devotes
time towards the Hamiltonian case. It is for this reason they
introduce the symplectic gradient adjustment.

ξλ := ξ + λA>ξ

Where notation follows once again from previous defini-
tions (though parameters were removed). The idea behind
this algorithm is that we precompute this ξλ value and use it
as if it were the gradient for another gradient descent algo-
rithm. This is not an iterative algorithm. It is a precomputed
adjustment that modifies the concept of a gradient in order
to boost convergence in game settings for other algorithms
like gradient descent.

The symplectic gradient descent algorithm’s main advan-
tage is it’s more robust convergence in multiplayer set-
tings,meaning that it converges by avoiding problems com-
mon to other similar algorithms, like gradient descent. A
discussion of these cases as well as convergence rates under
a few varying restrictive constraints is given in (Balduzzi
et al., 2018).

4. Results
To evaluate the proposed algorithms we have used the syn-
thetic dataset from (Metz et al.), i.e. a mixture of 16 Gaus-

sians placed on a 4 × 4 grid. We chose this dataset since
several of the papers we considered (Balduzzi et al., 2018;
Daskalakis et al., 2017; Mertikopoulos et al., 2018) have
claimed the results and ran comparisons using this dataset.
We have used a total of 16× 5, 000 = 80, 000 points (each
Gaussian being equally represented) in R2 as our ground
truth for training of the GANs. For all of the algorithms
we have used batches of size 16× 500 for each iteration of
the algorithm. In addition, to allow for reproducible results
we have fixed random seeds for both NumPy and PyTorch
during the experiments. We have used the learning rate of
0.001 and 0.002 for gradient descent, 0.0002 for RMSprop,
0.0002 for Adam (with β1 = 0.5 and β2 = 0.999). For the
optimistic versions of these algorithms we have used the
same learning rates as for the original ones.

In figure 1 we see the comparison over the first 8000 iter-
ations between the regular and optimistic versions of the
algorithms discussed. We stopped these experiments after
8000 iterations since both optimistic Adam and optimistic
RMSprop (bottom 2 rows in figure 1) experienced a dis-
criminator collapse prior to reaching the 8000th iteration.
Namely, the generator error became 0, and neither generator
nor discriminator could learn any more. Out of all candidate
algorithms only regular Adam starts converging towards the
proper distribution while the other algorithms struggle to
make progress.

To assess whether this is just an issue of the rate of con-
vergence rather than non-convergence we have let gradient
descent, as well as the optimistic algorithms run for more
iterations. However, as can be seen from the figure 2, even
after 20,000 iterations neither gradient descent, optimistic
gradient descent nor optimistic Adam algorithms (top 3
rows) converge.

5. Discussion and future work
As with any emerging field, many new algorithms have ap-
peared up to address the problem of optimization in game
settings, so many so that we could not review them all here.
One of the aims of this document was to gather several of
these algorithms in one place and test them in as best an
unbiased manner as we can manage. However, we have
realized that in many cases while the theoretical founda-
tions of the algorithms proposed were solid, no ready-to-use
implementations were available. To this extent we have im-
plemented optimistic optimizers in PyTorch and used them
in our tests.

As we have seen from the results, most of the algorithms
did not achieve convergence in the setting they were tested
in. We suspect that conducting a through grid-search on
the space of hyper-parameters could alleviate this problem.
However, that approach would be somewhat contrary to the
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out-of-the-box unbiased testing we were aiming for in this
review. Hence, we suggest that a more thorough evaluation
of these algorithms should be conducted while controlling
for a wide range of hyper-parameters.

Finally, in this document we have only considered the cases
of two player games. However, the framework provided
in section 2 is rich enough to formulate the question of dy-
namics in n-player games. The two player setting gives
rise to adversarial problems, therefore enriching the set of
methods that can be applied and the class of problems that
can be addressed. Games with more than two players intro-
duce a make-shift coalition based dynamics in additional
to adversarial principles. It is not yet well understood what
optimization problems can benefit from these approaches,
and in general the introduction of coalition dynamics pro-
vides a spike in complexity that may not lead to tractable
algorithms. As an example, in the relatively simpler set-
ting of modal logics, adding coalition dynamics makes the
satisfiability problem PSPACE-complete as opposed to NP-
complete(Pauly, 2002). However, it would be interesting
to analyze what kind of machine learning problems have a
natural - or even useful - formulation as an n-player game
for n > 2.
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Figure 1. Comparison of gradient descent, RMSprop, Adam, opti-
mistic RMSprop and optimistic Adam (from top to bottom) algo-
rithms at 4000 and 8000 iterations.
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Figure 2. Comparison of gradient descent, RMSprop, Adam, optimistic RMSprop and optimistic Adam (from top to bottom) algorithms at
4000 and 8000 iterations.
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Abstract
Proximal methods have been widely used in im-
age processing and reconstruction tasks due to
their modularity and efficiency. Traditionally,
hand-designed priors are used in these frame-
works to regularize underdetermined problems.
Recently, deep learning has become state-of-the-
art for many image processing tasks due to their
ability to learn more accurate distributions given
a set of training images. We are interested in
the combination of these two approaches. In this
report, we review two major classes of such tech-
niques: unrolling and learning proximal operators,
in both application and theoretical aspects. We
discuss how these techniques can combine the ad-
vantages of proximal and deep learning to offer
higher efficiency or reconstruction performance.

1. Introduction
Linear inverse problem is pervasive in restoration of high
resolution images in applications from natural image super-
resolution to CT and MRI reconstruction. The majority of
these tasks can be modeled by the linear system

y = Ax+ ω (1)

Given measurement y ∈ RM and the sensing matrix
A ∈ RM×N , one seeks to recover the true signal x ∈ RN
stripped of the noise ω ∈ RM . For example, in superresolu-
tion, A downsamples the high resolution x and returns the
noisy, low resolution y.

However, in most real life situations, M � N and the
inverse problem is underdetermined with non-trivial null
space. Thus prior knowledge of x must be used to narrow
down possible solutions. There are a wealth of existing
literature on inverting ill-posed imaging problems, most
lie on a spectrum between hand-crafted priors and entirely
data-driven recovery.

1.1. Hand-designed recovery methods

Traditionally, the prior on the true signal x are either hand-
crafted or analytically derived based on empirical obser-
vations. Popular imaging priors include l1-regularization,

sparsity in wavelet coefficient, and total variation regular-
ization.

For a given image prior, the inverse problem can be formu-
lated as below:

min
x
f(x) + φ(x;λ) (2)

where φ is the prior function and λ is its parameters.

Since φ is often not differentiable, it is common to adapt the
proximal gradient algorithm with proximal operator P and
step size η to solve (2) iteratively:

xt+1 = Pφλ,η(xt − ηtA>(y −Ax)) (3)

Most of the popular image priors have closed form prox-
imal operator, making the problem both interpretable and
tractable. But the iterative process can take a long time
to converge and depending on the prior used, might not
generate the most natural image.

1.2. Data-driven recovery methods

Deep learning based techniques have been producing the
state-of-the-art results in inverting ill-posed imaging prob-
lems. These methods typically use an over-parameterized
neural network to approximate an inverse mapping from
the perturbed image space Y to the true image space X
by drawing a large amount of sample pairs x, y from X ,Y
respectively.

These data-driven recovery methods generate high quality,
realistic images and once trained, are much faster than itera-
tive methods. However, for different inverse problems, the
network needs to relearn the parameters with a correspond-
ing image data set.

1.3. Combination of proximal methods and data-driven
learning

In order to utilize a generalized, interpretable framework
like proximal gradient while efficiently recovering photo-
realistic images, the combination of proximal methods and
data-driven learning has risen in popularity. These methods
first use hand-designed prior to set up the algorithm and
then use training to learn parameters of the prior.



Proximal + Learning Methods for Image Inverse Problems

In this review, we will discuss two main ways of integrating
proximal methods with learning for image inverse problems:
unrolled algorithms and learning proximal operators for
Plug-and-play (PnP) frameworks.

2. Unrolling
One intuitive way to leverage neural network to solve image
inverse problem is to take a well-explained iterative proxi-
mal algorithm and unroll it. Each iteration of the algorithm
becomes a connected layer of a network and the parameters
become learnable weights. Since the network only contains
a few iterations, the unrolled network is usually a magnitude
or more faster than the original iterative approach. And by
training with ground truth x and perturbed image y pairs,
these networks also offer improved reconstruction quality.
We will discuss some of the most popular unrolled networks
in the following sections.

2.1. From ISTA to LISTA

A popular hand-designed prior for natural images is the
l1-norm, which enforces sparsity. This gives the Lasso
problem:

min
x

1

2
‖y −Ax‖22 + λ‖x‖1 (4)

In the simple case where the sensing matrix A is the iden-
tity matrix, the proximal operator Pl1(x) has a close form
solution, the soft-thresholding operator Psft,λ(x). And for
other A matrices, the Lasso problem can be solved using
iterative soft thresholding algorithm (ISTA).

Given an input image y, ISTA iterates the following:

vt = y −Ax̂t (5a)

x̂t+1 = Psft,λ(x̂t + βA>vt) (5b)

until convergence. Data fidelity is enforced by (5a) while
(5b) ensures sparsity.

Fast ISTA (FISTA) (Beck & Teboulle, 2009) introduces
a momentum term and converges in about an order-of-
magnitude fewer iterations. To further reduce the number
of iterations without sacrificing reconstruction quality, Gre-
gor and Lecun proposed Learned ISTA (LISTA) (Gregor &
LeCun, 2010).

There are two major changes from ISTA to LISTA. 1) The
iteration process is unrolled and truncated into a T -layer
residual neural network. 2) the soft-thresholding parameter
λt is learned for each unrolled layer t ∈ [1, ..., T ]. We can
rewrite ISTA as the following:

x̂t+1 = Psft,λt(Sx̂t +By) (6)

where B = βA> and S = IN − BA. This non-linear,
parameterized, feed-forward architecture is trained with

x, y pairs to approximate optimal sparse code. Depending
on the problem, one can also relax the constraint on sensing
matrix A and estimate B and S.

Figure 1. Top: block diagram of ISTA algorithm. Bottom:
Learned ISTA truncated to 3 layers

LISTA converges in significantly fewer iterations than
FISTA. It takes FISTA around 18 iterations to reach the
same mean square error as a single layer LISTA network
trained for 1 iteration. However, for B ∈ RN×M , and
St ∈ RN×N , each iteration has a higher computational
complexity at O(TN2) for a T -layer network, compared
to ISTA’s O(MN) for A ∈ RM×N . The cost per iteration
can be reduced by approximating S with lower dimensional
matrices U1, U2 ∈ Rq×M such that S = U>1 U2.

In general, LISTA massively enhances the performance of
ISTA and FISTA and inspired a myriad of unrolling of other
iterative algorithms.

2.2. From AMP to L-AMP

Approximate message passing (AMP) can also be used to
solve l1 problems. It has a similar formulation as ISTA:

vt = y −Ax̂t + btvt−1 (7a)

x̂t+1 = Psft,λt(x̂t +A>vt) (7b)

where x̂0 = 0, v−1 = 0 and

bt =
1

M
‖x̂t‖0 (8)

λt =
α√
M
‖vt‖2 (9)

for tuning parameter α.

The main differences between AMP and ISTA are that AMP
includes a ”Onsager correction” term btvt−1 and that the
soft-thresholding parameter λt is now iteration dependent.

When A is a large i.i.d. sub-Guassian random matrix com-
monly seen in compressive sensing, the Onsager correction



Proximal + Learning Methods for Image Inverse Problems

reduces the problem to denoising as it assumes the input to
the shrinkage function can be written as:

rt = x∗ +N (0, σ2
t IN ) (10)

where x∗ is the true signal we are trying to recover and σ2
t

is the known variance of the white Gaussian noise given by

σ2
t =

1

M
‖vt‖22 (11)

This assumption allows AMP-l1 to converge in much fewer
iterations than ISTA. However, when A deviates from an
i.i.d. sub-Gaussian matrix, AMP-l1 often diverges.

To address the dependency on a Gaussian A, Vector AMP
(VAMP) was proposed (Schniter et al., 2016). VAMP also
performs denoising and Onsager correction while maintain-
ing the same per iteration complexity as AMP. But VAMP
can work with a much larger class ofA, the right-rotationally
invariant matrices, which retains its distribution when right
multiplied by a fixed orthogonal matrix with large dimen-
sion.

For more details on the VAMP algorithm see Schniter et al..
In short, VAMP has 2 stages, a linear MMSE (LMMSE)
stage and a shrinkage stage. In the first stage, MMSE is
performed on r̃t with respect to P̃ and Onsager correction
on rt. In the second stage, VAMP performs denoising on rt
with respect to P and then Onsager correction on r̃t+1.

Empirically, VAMP-l1 requires about half the iterations
of AMP-l1, which requires an order-of-magnitude fewer
iterations than FISTA.

AMP and VAMP can both be unrolled into feed-forward neu-
ral networks, which will be denoted as LAMP and LVAMP
respectively.

The differences between LAMP and LISTA stem from the
differences between AMP and ISTA, namely the addition of
Onsager correction and an iteration dependent λt. Further-
more, LAMP can relax the ”tied” constraint B = A> and
achieve better performance when training the two variables
as ”untied.” The network trains on x, y pairs to learn At, Bt
and α.

Similarly, VAMP can be trained for learnable shrinkage
parameter θt = α and learnable LMMSE parameters

θ̃ = U, s, V, σω

where UDiag(s)V > is the economy SVD of A and σ2
ω is

the variance of noise ω.

To avoid over-fitting, Borgerding et al. proposes to train
LAMP and LVAMP with a hybrid of ”layer-wise” and global
optimization. For t = 1, ..., T , parameter θ and θ̃ is learned
up to and including layer t. In the untied case, bootstrapping
is used to escape bad local minimum.

The computational complexity per iteration for LAMP is
≈ 2TMN for a T -layer network. For i.i.d. signals and
SVD-parameterized A, the complextiy of LVAMP is the
same as LAMP at ≈ 2TMN .

Figure 2. Test NMSE versus layer for compressive random access.
bg stands for bernoulli-Gaussian, pwlin stands for piece-wise linear
shrinkage

The addition of Onsager correction in LAMP-l1 provides
significant performance improvement over LISTA. To con-
verge to the same error, LISTA takes 15 layers while LAMP-
l1 only needs 7 layers. The performance of LAMP can
further be improved by replacing the l1 shrinkage with more
sophisticated exponential shrinkage, spline shrinkage, or
bernoulli-Gaussian priors.

LVAMP converges at similar rate as LAMP given the same
shrinkage function when A is i.i.d. Gaussian matrix. How-
ever, as condition number of A increases, LAMP starts to
slow down while LVAMP maintains its fast convergence
rate.

2.3. Learned Denoising-AMP

The Onsager correction term in AMP coerces many image
inverse problems to be generalized into a denoising problem
with white Gaussian noise. Instead of exploring different
priors, Metzler et al. (2016) exploits the denoising step of
AMP by replacing the shrinkage function P with denois-
ers. The many sophisticated imaging denoising algorithms
available, such as BM3D, boost the reconstruction quality
of the proposed denoising-AMP (D-AMP) and is robust to
measurement noise.

With the caveat that the denoiser D easily propagates gradi-
ent. the D-AMP algorithm can be unrolled into a learned
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D-AMP network (LDAMP) (Metzler et al., 2017):

bt =
1

M
vt−1divDt,wt−1

(xt−1 +AHvt−1;λt−1)

(12a)

vt = y −Axt + bt (12b)

λt =
1√
M
‖vt‖2 (12c)

xt+1 = Dt,Wt(xt +AHvt;λt) (12d)

where divDt,wt−1
stands for the divergence of denoiser D

with weights wt−1. divD is usually calculated through
Monte Carlo approximation.

While the formulation has striking resemblence to LAMP,
the major difference between LDAMP and LAMP is that
LDAMP only trains on the weights of the denoiser wt layer-
by-layer instead of the A, B matrices in LAMP.

LDAMP achieves state-of-the-art image compressive sens-
ing result that outperform DAMP both in peak signal-to-
noise ratio (PSNR) and speed. And because the denoisers
can produce more photo-realistic images than the common
shrinkage functions, the resulting reconstruction are percep-
tually more natural.

2.4. ISTA + GAN

LISTA, LAMP, and LVAMP improves the convergence rate
of traditional iteration-based algorithm by learning shrink-
age parameters and sensing matrix A. However, the quality
of reconstructed x̂ is still limited by the prior’s ability to
remove artifact. LDAMP improves on that by employing
more sophisticated denoisers. But traditional image prior
and hand-designed denoisers cannot fully capture the low-
dimensional manifold of natural image X as well as deep
learning methods that directly draws sample pairs from X .

Mardani et al. (2018) proposes GANCS to learn the mani-
fold X through generative adversarial network (GAN). The
goal is to find the intersection between the feasible set of
y = Ax and X .

We can rewrite equation (6) from LISTA to the following:

x̌ = G(By) (13a)
x̂t+1 = Sx̌+By (13b)

The soft-thresholding operator in ISTA and LISTA is re-
placed by a generator network G, which projects the initial
guess By onto the manifold X . Eq(13b) remains the same
as in LISTA, ensuring that the guess x̌ is consistent with the
input y.

Another change from LISTA to GANCS is that the loss
function is now replaced by a discriminator network D. The
D network tries to assign 1 to real image drawn from X and

Figure 3. GANCS structure for manifold learning

0 otherwise. The better G is at mapping the input By to X ,
the more likely it is to fool D.

GAN often suffer from vanishing gradient problem, and
depending on the loss function used for training GAN, D
may severely over power G such that the model collapses.
To mitigate the problem, Mardani et al. chose to adapt a
mixture of l1 costs and Least-squares GAN (LSGAN) (Mao
et al., 2017) that jointly minimize the discriminator cost

min
Θd

Ex[(1−D(x; Θd))
2] + Ey[(D(G(By; Θg); Θd))

2]

(14)
and the generator cost

min
Θg

Ey
[
‖y −AG(By; Θg)‖2

]
+ ηEx,y

[
‖x− G(By; Θg)‖1

]
+ λEy

[
(1−D(G(By; Θg); Θd))

2
]

(15)

through stochastic alternating minimization.

While GANCS draws inspiration from LISTA and contains
layers of residual blocks in the dashed box in 3, it is not
strictly an unrolled network. The projection step G happens
only once for each iteration.

Since GANCS is proposed in hope for better and faster MRI
reconstruction, Mardani et al. tested the algorithm on con-
trast enhanced abdominal images from pediatric patients.
On a NVIDIA Titan X Pascal GPU, image reconstruction
takes only 10-20 milli-seconds, which is two orders of mag-
nitude faster than the current state-of-the-art. The recon-
struction also has higher signal-to-noise ratio (SNR) and
structure similarity index (SSIM) than existing methods.

At this point, we see that the shrinkage functions in the tra-
ditional iterative algorithms can be replaced by deep learn-
ing to achieve joint optimization of efficiency and image
reconstruction quality. However, theoretical guarantee of
GAN-based algorithm still requires further investigation.
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3. Learning Proximal Operators for
Plug-and-play Frameworks

Recently, we’ve seen a trend of incorporating deep priors in
image reconstruction tasks. Within a proximal framework,
instead of finding the prior function itself, we can directly
learn the proximal operator of the prior.

Among proximal methods, alternating direction method
of multiplier (ADMM) (Boyd et al., 2011) has been used
widely in image processing tasks due to its modularity. Here,
we’ll review the so-called Plug-and-play (PnP) ADMM
frameworks and show how they can be combined with deep
learning to offer more flexible solutions while being able to
extract useful distributions from training images.

3.1. From ADMM to Plug-and-play ADMM
frameworks

Recall that optimization problems of the following form

x′ = argmin
x

f(x) + λφ(x) (16)

is commonly used for image processing or reconstruction
where we have a data fidelity term and a prior φ. An exam-
ple of such optimization problems is maximum a posteriori
estimation (MAP). ADMM solves the above problem by
introducing an additional variable for the φ term and con-
verting the unconstrained problem to a constrained one, i.e.:

x′, z′ = argmin
x,z

f(x) + λφ(z)

subject to x = z

Then, ADMM finds the minimizers by iteratively solving a
series of subproblems that take the form of proximals:

xt+1 = argmin
x∈Rn

f(x) +
ρ

2
‖x− zt + ūt‖22 (17a)

zt+1 = argmin
z∈Rn

λφ(z) +
ρ

2
‖z − xt+1 + ūt‖22 (17b)

ūt+1 = ūt + (xt+1 − zt+1) (17c)

Where ūt = 1
ρut and ρ is an augmented Lagragian

parameter and can be seen as a step size. In this case, we
can see that f and φ are seperated into two independent
update steps, hence the modular structure. In the context of
image processing, this allows us to decouple the sensing
and prior. Commonly used φ can be total variation
regularization, wavelet sparsity, etc.

(Venkatakrishnan et al., 2013) proposed that we do not need
the actual φ for solving the inverse problem and instead, di-
rectly finding the corresponding proximal would suffice. In

other words, the priors take the form of proximal operators
in the ADMM formulation. Their approach is to replace
(17b) with a denoiser P such that

zt+1 = P(xt+1 − ut) = P(z̃t) (18)

ThisP therefore serves as a proximal operator for the update
step. The resulting algorithm is called Plug-and-Play (PnP)
ADMM and it has been shown to achieve good performance
in a wide range of image processing tasks.

The denoiser P can be a traditional image filter or even a
denoising network trained on natural images as in the case
of (Rick Chang et al., 2017) and (Meinhardt et al., 2017).
However, one issue with the PnP framework it converges
under a number of conditions, which limits the denoisers we
could use. Furthermore, how to train a neural network that
properly satisfy these conditions is a challenging problem.
We will review relevant works in the following sections.

3.2. One Network to Solve Them All

(Rick Chang et al., 2017) learns the proximal operator P
using generative adversarial networks (GANs). The goal is
to train a single network that suits multiple image restoration
tasks at once. The paper considers only linear problems
and f in equation (16) becomes 1

2 ‖y −Ax‖
2
2, where A is

the sensing matrix. This penalty form means they assume
Gaussian noise in the data.

Figure 5 offers a geometric interpretation of the approach.
Given a large natural image dataset, (Rick Chang et al.,
2017) proposed to learn a classifier D that fits the under-
lying distribution of natural images. P is trained to fit the
proximal of D and serves as a projector onto the natural
image set. Another important takeaway from this figure is
that the proximal P should be independent of the type of
inverse problem or sensing matrix here, which is possible
due to the modularity of ADMM.

Figure 4. Geometric interpretation of proximal P and classifier D.
An ideal P should be able to project image-like signals to the set of
natural images X . A1, A2, A3 correspond to the sensing matrices
for different problems.
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The projector P and classifier D can be trained jointly via
adversarial learning. The training framework is shown in
Figure 5 below.

Figure 5. Adversarial Learning framework for finding P and D.
M denotes the training set and ε is a parameter of the denoiser.

The projector and classifier can be seen as players with
adversarial objectives. On one hand, the projector is trained
to confuse the classifier by projecting the perturbed images
onto decision boundary of D. As the projector improves,
D (seen as a discriminator) will also tighten its decision
boundary. If the training is successful, then P should be
able to project perturbed images to somewhere close to
or within the set of natural images. Dl is an additional
classifier in the latent space to help improve performance
of the training (in contrast to D which is a classifier in the
image space).

One critical issue when using a neural network is that the
problem becomes non-convex if the decision function of D
is non-convex. For non-convex ADMM, the paper quotes
the established theory that the algorithm converges to a sta-
tionary point if (1) the gradient of the decision function φ
is Lipschitz continuous and (2) ρ is sufficiently large (still,
global optimum is not guaranteed). The convergence under
non-convex settings is still an active field which we will
discuss in Section 3.3 in detail. To achieve these conditions,
cross entropy loss is used as the discriminative loss and
φ(x) = log(S(D(x))), where S is the sigmoid function.
The smooth exponential linear unit (ELU) (Clevert et al.,
2015) is used as its activation function to guarantee differ-
entiability and network weights are truncated to bound the
gradients. The ELU unit is defined as

ELU(x) =

{
x if x > 0
α(exp(x)− 1) otherwise (here α > 0)

The learned proximal can be used for different image restora-
tion problems by only replacing sensing matrix A. The
authors tested the algorithm on compressive sensing, pixel-
wise inpainting and denoising, scattered impainting, block-
wise inpainting and super-resolution and has achieved rea-

sonably good results (Figure 6). However, we still noticed
quite a few artifacts in the restored images.

Figure 6. Results on 100k Images randomly drawn images from
the ImageNet dataset, for various image processing tasks. The
SNR performances are competitive to the state-of-the-art problem
specific networks

In summary, the main contribution of this method is that
it eliminates the need for problem-specific retraining and
the flexibility makes it suitable for mobile platforms. There
are two major limitations to this method. One is the global
optimum is not guaranteed, especialy for more challenging
problems such as block impainting and 4X super-resolution.
Second is that the weights of the networks can still affect the
projection operator. We also noticed that the authors trained
and tested only within each dataset (MNIST, ImageNet,
etc). Even though the learned proximal is not specific to the
image processing task, it’s unclear whether it is specific to
the types of images being used in the training process.

There were multiple works published concurrently with
this paper presenting similar ideas. Another really classic
work is (Meinhardt et al., 2017), in which they used a deep
convolutional denoising network as the proximal in a PnP
primal-dual hybrid gradient (PDHG) framework. They have
also achieved good performances in a large variety of image
processing tasks. They did not providet theoretical backing
on the convergence of their method but they stated that it
converges well enough in their experiments.

3.3. Theories on Convergence

Plug-and-play ADMM has shown empirical success in a
wide range of image processing tasks. However, this leads to
the theoretical question: when does the algorithm converge
and what denoisers or proximal operators are we allowed
use? While the convergence of ADMM with an explicit
φ is already very well-addressed, the convergence of PnP
ADMM where we directly apply a denoiser P seems to still
be an open area. Theoretical analysis of PnP frameworks
has many challenges since the denoiser is often non-linear
without proper close form expressions (Ryu et al., 2019).
Furthermore, given the convergence conditions, how to en-
force them on the deep denoisers or learned proximals is an
important question.
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Lipschitz Condition on P (Ryu et al., 2019) is one of the
most recent works to establish convergence of serveral PnP
frameworks under a Lipschitz condition onP , which is more
relaxed than the non-expansiveness condition. Furthermore,
they proposed using real spectral normalization (realSN)
to regularize training of the deep denoiser to satisfy such
condition, which we will explain in the next section.

Assume P satisfies

‖(P − I)(x)− (P − I)(y)‖22 ≤ ε
2 ‖x− y‖22 (19)

for all x, y ∈ RN and for some ε > 0, then the paper proves
that all three PnP methods converge. In particular, assuming
condition 19 and f is µ-strongly convex, for some ε ∈ [0, 1)
then the PnP-ADMM has fixed-point convergence for

ε

(1 + ε− 2ε2)µ
<
λ

ρ
(20)

Even though we focus on ADMM here, the PnP frame-
work can extend to other proximal methods such as forward-
backward splitting (FBS) or Douglas-Rachford splitting
(DRS). The paper also establishes convergence of these
methods under condition (19). Some of the interesting
points here they mentioned are (1) PnP DRS and PnP
ADMM both requires f to be strongly convex, but PnP
FBS additionally requires ∇f to be L−Lipschitz and (2)
PnP ADMM and PnP FBS has the same set of fixed points.
The tradeoff here is that ADMM has better convergence
properties while FBS is easier to implement. As the paper
pointed out, one issue here is that some applications don’t
satisfy strong convexity (e.g. compressed sensing, sparse
interpolation, super-resolution).

Regularizing Lipschitz Continuity during NN Training
Spectral normalization was proposed in (Miyato et al., 2018)
and normalize the spectral norms of layer-wise weights to
1 (ReLU layers). Such regularization has many advantages
such as stablizing GAN training and improves their perfor-
mance. RealSN is an extension of the spectral normalization
(SN) method to achieve a tighter constraint on the network’s
Lipschitz constant. Given a convolutional linear operator
Kl and its conjugate K∗l , and Ul and Vl being estimates for
the left and right single vectors, each forward pass of the
NN consists of the following two steps:
1. Apply one step power method to estimate spectral norm
of Kl

Vl ←− K∗l (Ul)/ ‖K∗l (Ul)‖2 ,
Ul ←− Kl(Vl)/ ‖Kl(Vl)‖2

2. Normalize Kl with the spectral norm estimation

Kl ←− Kl/〈Ul,Kl(Vl)〉

To verify the theory, the authors implemented a simple CNN
with RealSN, and DnCNN with RealSN and compared their
convergence with a BM3D and the original CNNs for var-
ious tasks. They verified that the RealSN-Simple-CNN
and RealSN-DnCNN both satisfy condition (19), whereas
BM3D does not. This is done by measuring the distribu-
tion of the LHS of (19). They also computed the average
contraction factor of these methods with PnP FBS and PnP
ADMM (lower contraction factor means faster convergence),
as shown in Figure 7 . Applying realSN did slightly lower
and stabilize the contraction factor in the PnP ADMM case.
Overall, PnP ADMM gives more stable results than PnP
FBS since PnP FBS requires a certain program parameter α
to fall into a specific interval.

Figure 7. Average Contraction Factor over 500 iterations. α is the
tunning parameter in the programs and corresponds to λ

ρ
based on

our ADMM formulation

In terms of performance, RealSN-Simple-CNN and RealSN-
DnCNN gives signficantly higher than the rest of the meth-
ods for CS-MRI tasks. It is unclear whether they have all
converged, however, and the number of iterations each of
them took. On the otherhand, all methods have close perfor-
mance for single photon imaging within the same number
of iterations.
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Other Works There are a few other works on the theo-
retical analysis of PnP frameworks. (Sreehari et al., 2016)
proposed a non-expansive condition for the convergence of
PnP ADMM. However, this condition is too strict for many
type of denoisers. (Chan et al., 2016) proposed a slightly
weaker condition and showed that for any ”bounded denois-
ers”, PnP ADMM has fixed-point convergence. Currently
establishing the convergence of PnP frameworks is still an
active research area. It would be interesting to see whether
convergence can be secured with more relaxed conditions
and without the need for strong convexity. While researchers
have found a few sufficient conditions, it is unclear what
the actual sufficient and necessary condition is to reach con-
vergence. Furthermore, even though the ADMM theories
when φ is given are well established, we currently do not
know how to find φ based on P , that is - we do not know
what priors any arbitrary denoiser correspond to. Another
interesting question is given these convergence conditions,
how do we create effective denoisers and whether we can
modify existing state-of-the-art denoisers to fit these condi-
tions. It would be interesting to see any works along these
directions in the future.

4. Conclusion
In this report, we reviewed techniques that combine learning
based methods with iterative proximal methods. On one
hand, learning based methods can learn accurate distribu-
tions from training images and has achieved state-of-the-art
performances for each specific image processing problem,
while the challenge lies in the cost of problem-specific data
collection and retraining. On the other hand, proximal meth-
ods offer modularity and generalization, making it suitable
for a wide range of image processing tasks. However, better
priors are needed to improve the reconstruction quality. We
are interested in the intersection where their advantages can
be combined.

The first class of techniques we reviewed is unrolling, in
which we aim to speed up iterative proximal reconstruc-
tions by fixing the number of iterations to a small number
T and unrolling it to a network. Due to the large number
of parameters in the network, we can generate a reasonable
approximation even with very few layers. From LISTA
to GANCS, by adding the Onsager correction term and
incremental relaxing of the proximal operator, both the con-
vergence speed and the recovered signal quality see massive
improvement.

When unrolled network is combined with other network
structures, as in the case of GANCS, theoretical guarantee
of convergence and the speed of convergence is still an open
topic of research.

The second category is learning proximal operators for PnP

frameworks. The main motivation is to avoid problem-
specific training while maintaining the state-of-the-art per-
formances from learning-based methods. Instead of learning
the direct inverse mapping, we directly learn the priors in
the form of their proximal function via training. The proxi-
mal can be learned in many different ways as we mentioned
earlier, for example, via GAN or denoising networks, etc.
Proximal learning has been demonstrated for a variety of
proximal methods such as ADMM, PDHG, etc. These learn-
ing proximal frameworks have worked well empirically in
many different image processing tasks. However, we are still
lacking theory on convergence and the selection of denois-
ers. This is particularly challenging as we introduce neural
networks due to their complexity. Currently, establishing
convergence for learning proximal is an active research area.

Finally, when introducing learning, an inevitable problem is
the large amounts of training data required, as seen in all the
techniques we reviewed. Naturally, another open question
here is: can we still learn proximals when we have limited or
small amounts of data? This is important because in certain
types of problems it is very hard to collect lots of training
data. A potential solution could be using a technique similar
to (Heckel & Hand, 2018), in which only a single image is
needed to train the network. Futhermore, we have seen few
works that discuss the potential of applying these techniques
to 3D data such as 3D point clouds acquired by LiDARs,
etc. 3D data introduces very high complexity in the problem
and it would be impressive to see any of the above work
applied to 3D reconstruction problems in the future.
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