
Validating the Theoretical Foundations of Residual Networks
through Experimental Testing

Alex Ho Pranay Mittal

Abstract
Convolutional neural networks traditionally ini-
tialize their learning parameters randomly and
symmetrically about zero. This initialization
makes it difficult for convolutional layers to
”learn” the identity mapping, which in theory
forces layers to alter intermediate mappings which
may offer better performance than the overall net-
work. The residual network architecture aims to
address this problem, however the foundational
theory behind their performance has yet to be
established. (Hardt & Ma, 2016) explores the the-
oretical foundations of residual networks while
also providing experimental results. We aim to
validate and replicate their findings through our
own practical experiments.

1. Literature Overview
1.1. Convolutional Neural Networks for Computer

Vision

With the popularization of the backpropogation algorithm in
(Rumelhart et al., 1985), an era of machine learning using
artificial neural networks emerged. Over time, multilayer
perceptrons were improved upon and different varieties of
artificial neural networks emerged. One of those specialized
varieties was the convolutional neural network. Convolu-
tional networks perform conceptually in same way using the
backpropogation algorithm and nonlinear activation func-
tions, however instead of perceptrons, hidden layers con-
sisted of a kernel matrix which was used to convolve with
the input by multiplication or other dot product. This ar-
chitecture allowed for spatial structure in the inputs to be
used.

One of the first successful uses of convolutional networks
was by (LeCun et al., 1989) in 1989. Here, convolutional
neural networks were used to recognize handwritten digits.
This paper marked the start of computer vision related tasks
using convolutional neural networks, however it did not
gain significant ground until graphics processing units were
shown to be useful in artificial neural networks (Goodfellow
et al., 2016). The convolutional network used in this paper

Figure 1. Illustration of AlexNet architecture from (Krizhevsky
et al., 2017)

only had three hidden layers, and it wasn’t until 2012 when
”deep” convolutional networks were practically viable.

1.2. Advances through ImageNet

The ImageNet LSVRC-2010 contest was the first contest of
its kind to have a large and high quality data set for computer
vision tasks, containing 1.2 million high-resolution images
coming from 1000 different classes. Learning this data set
proved to be highly nontrivial for the first few years. Then
in 2012, (Krizhevsky et al., 2017) made a breakthrough in
convolutional network architecture. Achieving an error rate
of 15.3%, the AlexNet architecture won the 2012 ImageNet
Challenge by more than 10 percentage points compared to
the runner up. It was the first of its kind to use rectified
linear unit (ReLU) proposed in (Nair & Hinton, 2010) as
the activation function. It also boasted a massive 60 mil-
lion trainable parameters from its five convolutional and
three fully-connected layers. Training this model was only
possible with GPU processing. This architecture is con-
sidered the start of the computer vision revolution which
rapidly evolved in the following years. An illustration of the
architecture can be seen in Figure 1.

Just two years later in the 2014 ImageNet challenge, both
(Szegedy et al., 2014) and (Simonyan & Zisserman, 2014)
made large strides with a top-5 error rate less than half of
the error rate of the AlexNet architecture. The network by
(Szegedy et al., 2014), now called the GoogLeNet, intro-
duced the inception module (see Figure 2) and architecture
which showed that convolutional layers do not need to be
stacked sequentially for good performance. This network
also had 22 layers, which made it one of the first to be what

Validating the Theoretical Foundations of Residual Networks

Figure 2. Illustration of an Inception module from (Szegedy et al.,
2014)

is now considered a ”deep” network and achieved an error
rate of 6.7%. The authors of (Simonyan & Zisserman, 2014)
also created a 16 and 19 layer network called VGG-16 and
VGG-19 after the name of their group, Visual Geometry
Group. This network built upon the AlexNet architecture
and used smaller filter sizes and achieved an error rate of
7.1%.

The next year, Kaiming He, et al. from (He et al., 2015b)
reduced the error rate by 47% relative to the previous year
down to 3.57% top-5 error when they developed the ResNet
architecture. This architecture introduced a novel idea of
using residual connections between convolutional blocks
(two convolutional filters with ReLU activation functions
and batch normalization applied) to allow neural networks
to be even deeper than before. Their winning model was
considered ”ultra-deep” with 152 layers, but they also man-
aged to train a network with over a thousand layers. This
contribution was revolutionary because it seemingly fixed
the problem of the vanishing and exploding gradient (Pas-
canu et al., 2013) with the residual connections. If each
convolutional layer is thought of as multiplying the weights
with an input image x, then the output y of a convolutional
block with a residual connection, a residual block, can be
seen as y =W2σ(W1x)+x where σ(x) is the ReLU activa-
tion function (also see Figure 3). The way the weights of a
convolutional layer are initialized, such as He initialization
and Xavier initialization (He et al., 2015a; Glorot & Bengio,
2010), mean they are centered about and near zero. In order
for a standard convolutional block to learn the identity func-
tion, all of the weights would have to tend towards a value
of 1. However in the residual connection architecture, the
weights would only have to converge towards zero which
is much easier given standard initialization. The residual
connections also allow for easier backpropogation. With
very deep networks, the gradient flow either vanishes or
explodes, but with the skipping residual connections, there
is a direct path when backpropogating from every layer to
all layers before it. The ResNeXt architecture builds upon
the standard ResNet architecture by adding a ”cardinality”
dimension which implements a similar structure to the In-
ception module.

Figure 3. Illustration of a residual block from (He et al., 2015b)

Figure 4. Comparison of a standard neural network (left) to a
thinned neural network resulting from dropout (right) from (Sri-
vastava et al., 2014)

1.3. Other Methods to Improve CNNs

In addition to novel convolutional network architectures,
there have also been several methods which aim to improve
their performance. One interesting and useful method is
called dropout (Srivastava et al., 2014). Because these deep
networks have so many parameters in comparison to the
size of the training set, it can be easy for models to overfit.
Dropout aims to mitigate the possibility of overfitting by
randomly dropping units and their connections to the fol-
lowing layer. The goal of this approach is to reduce reliance
on any particular input or set of inputs when training the
weights which should improve robustness and generalizabil-
ity to out of training sample data. The dropped connections
only occur during training, so at test time all the weights
are balanced and available to predict a test input. When
backpropogating on a training mini-batch, only the weights
which were in use get adjusted so that unused weights are
not penalized. Their experimental results supported their
hypothesis, showing minor improvements to state of the art
models on all standard benchmark data sets.

Another method which has proved to be useful is batch nor-

Validating the Theoretical Foundations of Residual Networks

malization (Ioffe & Szegedy, 2015). By using mini-batches
for stochastic gradient descent, the inputs may have slightly
different distributions for each mini-batch. This difference
in distributions, or internal covariate shift as they call it,
forces users to lower learning rates which causes training
time to be unnecessarily long. The goal of batch normal-
ization is to address the issue of internal covariate shift by
normalizing the inputs by each training mini-batch. This
approach allows the distributions of the inputs to be more
similar across batches while also providing a degree of reg-
ularization. They claimed that with batch normalization,
other methods like dropout are not necessary. Their experi-
mental results validated their hypothesis by both increasing
training time and increasing performance. They also noted
that batch normalization allowed them to use higher learning
rates along with the model being less sensitive to the random
weight initialization. Several state of the art convolutional
network architectures implement batch normalization, usu-
ally over dropout. Notable examples include the ResNet
architecture and its variants.

1.4. Theoretical Foundations of ResNets

(Hardt & Ma, 2016) was one of the first to establish the
theoretical foundation for identity parameterization. In this
work, they prove that arbitrarily deep linear residual net-
works do not have spurious local optima, and that residual
networks with ReLu activation functions can express any
function given that the sample size is sufficiently large com-
pared to the number of parameters. Hardt and Ma also
showed that a large fully convolutional neural network with
only residual blocks can match top-1 classification errors
which are comparable to convolutional networks that used
dropout, batch normalization, and intensive preprocessing
in CIFAR-100 and ImageNet data sets.

(Zou et al., 2020) provided analysis for global minimum
convergence of gradient descent and stochastic gradient
descent for training arbitrarily deep linear residual networks.
Their results showed that global convergence is sharper by
a factor of O(κL), where κ is the condition number of the
covariance matrix of the training data and L is the depth
of the linear residual network, when compared to gradient
descent on a standard linear network with zero initialization.

(Arora et al., 2018) showed that increasing depth not only
improves expressiveness but also improves optimization.
They decoupled the the effects of increasing depth on ex-
pressiveness from its effects on optimization by focusing on
linear neural networks, in which additional layers caused
overparametrization. Their results show that on convex
problems (like linear regression) with lp loss (p > 2), over-
parametrization via depth significantly sped up training. The
authors also validate (Hardt & Ma, 2016)’s choice of identity
(or near identity) initialization as a way to reap the bene-

fits of accelerated convergence (by improving depth) while
avoiding the vanishing gradient problem.

2. Experiments and Results
The goal of our experiments is to replicate the results shown
in (Hardt & Ma, 2016). Namely, we want to match the ac-
curacy of their residual network on CIFAR-10 (Krizhevsky,
2009), confirm their claims of no overfitting using large
models, and validate their claim that the addition of batch
normalization is unnecessary.

2.1. Dataset

The data set which will be used to compare the different
models will be the CIFAR-10 data set (Krizhevsky, 2009)
which is a well-known and standard baseline. The CIFAR-
10 data set consists of 10 image classes (airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, truck) where each
class has exactly 5000 examples in the training set and 1000
examples in the test set. Each image is 32 by 32 pixels and
in red, green, blue channels giving each image dimensions
of 32× 32× 3. We will not be replicating the experiments
on the CIFAR-100 and ImageNet data sets due to time and
resource constraints.

The CIFAR-10 data set is ideal for our use case for several
reasons. First, it is sufficiently complex to be nontrivial,
unlike MNIST (LeCun et al., 2010) which can easily reach
less than 10 percent error rate with a single hidden layer fully
connected neural network, and the dimensions of the images
are small enough that progress and results can be made even
with limited computational resources. Additionally, the data
set is is large enough to train deeper models which will help
validate the effects of our tested methods. State of the art
error rates for CIFAR-10 are less than one percent (Foret
et al., 2020; Dosovitskiy et al., 2020), however the goal of
this experiment is not to achieve the highest accuracy, but
rather to validate the findings of (Hardt & Ma, 2016).

2.2. Implementation

All models were created in TensorFlow, and the code can be
found here. We attempted to match their setup as closely as
possible to the original experiment: momentum 0.9, batch
size 128, initial learning rate 0.05 (dropping by a factor of
10 at 30000 and 50000 steps). They did not provide access
to their original code, and noted that it can be replicated by
altering open source ResNet implementations from Tensor-
Flow. We believe we adapted the architecture in the same
way, but it is not possible to confirm.

We made a few changes to the setup which we thought
were not worth implementing due to difficulty and lack of
impact on the final result. First, they used a fixed random
projection for the last layers, however we did not implement

https://colab.research.google.com/drive/1z71BiaD0kuh7w8TLFZeOLP92iu-TD8N4?usp=sharing

Validating the Theoretical Foundations of Residual Networks

Figure 5. Sample images from the CIFAR-10 data set (Krizhevsky,
2009)

it, and second they used a smaller variance for their weight
initialization, however we used standard Xavier uniform
initializer. Third, we used an exponential decay learning rate
which resulting in learning rate reduction at approximately
the same number of training steps as their step function
decay.

2.3. Results

A summary of the results can be found in Table 1. Our ac-
curacy has hovered around 88-90% instead of the expected
93%. We suspect Hardt and Ma’s improved accuracy is
the result of hyperparameter fine tuning, which we were
unable to do due to time constraints. This is unexected
since they publish their hyperparameters. Another possible
reason for the discrepancy between the accuracy is image
preprocessig techniques. They only specifically say that
they do not use ZCA whitening, and instead use standard
data preprocessing, but without any further details.

While Hardt and Ma used nine residual blocks per filter size,
we changed the number of residual blocks per filter size. We
used 2, 3, and 9 residual blocks per filter for 13, 19, and 55
convolutional layers respectively. Our results showed that
there is not a significant difference in performance between
the networks of varying sizes despite large differences in
the number of trainable weights.

2.4. Discussion

Overall, we were unable to validate many of the results
found in (Hardt & Ma, 2016), but we do not have reason to
believe that they are not achievable. While our own results
did get fairly close to their reported accuracy, the difference

Resblocks/size Top-1 Accuracy (%)
2 89.11
3 90.03
8 88.05
9 88.19

Table 1. Summary of accuracy data for each model tested.

Figure 6. Top-1 classification accuracy and cross entropy loss of
the residual network with 2 residual blocks per filter size over 135
epochs.

is large enough that we hypothesize that there is another
missing element of their implementation that would have
helped incrase performance. For example, more details re-
garding their image preprocessing methods may have helped.
Additionally, their initial learning rate did not appear to be
useful. Using an initial learning rate of 0.05 on the 9 resid-
ual blocks per filter size model made convergence difficult.
After 50 epochs, this model would still have performance
equivalent to random guessing (about 10% validation and
training accuracy). It was only until we changed the inital
learning rate to 0.01 did we see convergence in the model.
However, their loss and accuracy curves showed that their
model was converging and learning almost immediately
which does not reflect our findings.

Regarding overfitting in large models, we also differed in
results than what (Hardt & Ma, 2016) reported. While
there was not significant overfitting, there was evidence of a
nontrivial amount of overfitting as seen in the loss curves
seen in Figures 6 and 7. Both the smallest model with
about 2.7 million trainable parameters and the largest (base)
model with 13.6 million trainable parameters had evidence

Validating the Theoretical Foundations of Residual Networks

Figure 7. Top-1 classification accuracy and cross entropy loss of
the residual network with 9 residual blocks per filter size over 150
epochs. Here we can see evidence of overfitting and marginal
differences from the model with 2 residual blocks per filter size.

of overfitting, but it was more pronounced in the larger
models. This evidence is seen by the diverging training and
validation loss curves as the number of epochs increases.

(Ioffe & Szegedy, 2015) suggested the use of batch nor-
malization in order to speed up convergence of models.
However (Hardt & Ma, 2016) claimed that using batch nor-
malization with their architecture led to overfitting. We
hypothesize that their overfitting was a result of training
the model for too long, and they could have mitigated it by
early stopping. Several of the state of the art models take
advantage of batch normalization and have shown that it
is beneficial to increasing performance, unlike what was
reported by (Hardt & Ma, 2016). Moreover, we saw addi-
tional increases in performance in preliminary experiments
compared to the same architectures without batch normal-
ization reported in this paper. We do not report them here
because they were not repeated enough times to be shown to
be reliable, however initial results showed that the addition
of batch normalization added one to two points across the
board in top-1 accuracy on validation sets, about the same
as the difference between the accuracy of the best and worst
performing model sizes.

Overall, we cannot attribute the discrepancies between our
results and those reported in (Hardt & Ma, 2016) to any
one specific reason. From our experiments, we can see an
example of the reproducibility problem in machine learning
research. Without providing an open source implementation

or detailing the hyperparameters and methods used, it is dif-
ficult to replicate any results. Additionally, many papers do
not report on how many attempts they had before achieving
their reported error rate. Due to the inherently stochastic
nature of weight initialization, results can be truly random
each time and impossible to reproduce. Researchers can get
away with cherry picking their data in order to report “state
of the art” results without showing that it can consistently
do so.

3. Future Work and Open Questions
For (Hardt & Ma, 2016), the open problems resulting from
this work are extending the proof of spurious local optima
to non-linear cases as well as finding conditions that alter
the performance of practical residual networks. They give
big-O notation for the number of training examples needed
to properly train a residual network, however this is not prac-
tically useful due to how big-O is inherently a flexible upper
bound. Fixing a specific residual network architecture and
then finding an experimental bound on how many samples
are needed to properly converge the model would be very
useful for practical use cases as opposed to their current
bound.

For (Zou et al., 2020), again, one of the open questions
resulting from this paper is extending the convergence of
deep residual networks to the non-linear case, but also to
the case with adaptive descent methods or methods with
momentum and acceleration. As it has been shown in recent
work, it is highly nontrivial to accomplish this task regarding
(Hardt & Ma, 2016) and (Zou et al., 2020).

Another interesting application which could lead to future
work is the use of residuals for deep matrix factorization.
(Arora et al., 2018), as discussed before showed that increas-
ing depth in matrix factorization may help optimization of
convergence contrary to conventional wisdom. Instead of
using standard matrices to decompose some given matrix,
we could hypothetically also use residual units consisting
of matrices summed with the identity matrix. The addition
of residuals may increase performance by allowing unnec-
essary matrices which do not contribute to the optimization
to become simply the identity matrix while only the useful
factorization units are non-identity transformations.

References
Arora, S., Cohen, N., and Hazan, E. On the optimization of

deep networks: Implicit acceleration by overparameteri-
zation. arXiv preprint arXiv:1802.06509, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16

Validating the Theoretical Foundations of Residual Networks

words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. arXiv preprint arXiv:2010.01412, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Hardt, M. and Ma, T. Identity matters in deep learning.
arXiv preprint arXiv:1611.04231, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification, 2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015b.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
2015.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In ICML, 2010.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310–1318, 2013.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. Tech-
nical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. Going deeper with convolutions. CoRR,
abs/1409.4842, 2014. URL http://arxiv.org/
abs/1409.4842.

Zou, D., Long, P. M., and Gu, Q. On the global conver-
gence of training deep linear resnets. arXiv preprint
arXiv:2003.01094, 2020.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

THE USE OF MOMENTUM IN STOCHASTIC METHODS

Benito Geordie
bg31@rice.edu

Wenqing (Arthur) Wu
ww31@rice.edu

December 14, 2020

ABSTRACT

Researchers approach problems faced by stochastic gradient descent (SGD) through momentum-
based variants of SGD and stochastic adaptive optimizer algorithms. In this literature review, we aim
to compare popular stochastic adaptive optimizers and analyze their use of momentum. To facilitate
the comparison of these algorithms, we devised a uniform framework – a generalization of SGD, its
variants, and stochastic adaptive optimizers. For the interest of the length of this review, we will
touch on AdaGrad, AdaDelta & RMSProp, Adam, and NAdam.

Keywords Stochastic gradient descent · Momentum · Nesterov accelerated gradients · AdaGrad · AdaDelta ·
RMSProp · Adam · NAdam

1 Introduction

Following increased interest in deep learning, specifically neural network (NN) algorithms, many adaptive optimizers
have been proposed, analyzed, and incorporated into new ones. The choice of optimizer significantly impacts the speed
and outcome of a neural networks’s training. Given the variety in dataset properties and loss function configurations,
there isn’t a one-size-fits-all optimization algorithm that can solve any training problem, as explained in [1] and
demonstrated by [2]. While gradient descent (GD) is the poster child of NN training, in practice, researchers opt for
SGD and SGDM. This makes them the most notable, most widely applied, and most studied optimization technique
used in NN training, with numerous papers like [3, 4, 5] and more recently [6] written to analyze its convergence
guarantees. Despite its effectiveness, challenges arose under more varied scenarios: plateau of saddle points is hard for
SGD to escape [7]; hardcoded learning rate scheduling cannot gain information about the dataset [8]; it is difficult to
choose the proper learning rate as the learning rate cannot be too big or too small for it to converge; fine tuning on
learning rate on different weights can be meaningful, but is unavailable in SGD and SGDM[1]. In response, researchers
developed adaptive optimizers such as AdaGrad, AdaDelta/RMSProp, Adam, all the way to the more recent AdaMax
and Nadam, that are inspired by or developed on top of SGD with momentum (SGDM).

While momentum typically refers to the algorithm proposed by Rumelhart, et al. in [9], many popular mod-
ern optimizers employ the same ideas, rendering momentum’s impact on the field to be vastly larger than just its vanilla
implementation. Thus, with regards to our goal of evaluating the use of momentum in stochastic methods, we find it too
restricting to exclusively analyze SGDM – the bare-bones adoption of Rumelhart et al.’s algorithm into SGD. Some of
the algorithms we analyze don’t explicitly use momentum, but reuse ideas from momentum in one way or another.
Unfortunately, the interconnectedness of these algorithms is often lost in the nuances of notation. In response to this, we
devised the uniform framework – a generalization of all the algorithms analyzed in this paper – presented in section 1.2.

1.1 Notation

Before introducing our uniform framework, we introduce the following notation:

• I is the identity matrix.

• The subscript of xt denotes that a variable x is calculated in iteration t.

December 14, 2020

• w ∈ Rd represents the given weight vector of the model that needs to be trained.

• `(x) is the objective/loss function evaluated at x.

• α denotes the initial learning rate.

• ζ, φ and ψ each represent arbitrary functions.

• The
√
x and x2 operations output the element-wise square root and square of a vector x respectively.

• x
y and x · y are element-wise multiplication and division respectively. When either x or y is a scalar, they are
treated like xI or yI respectively.

1.2 The Uniform Framework

Based on the algorithms we analyze, we define the uniform framework as follows:

For each training step t:

1. Calculate the gradient of the loss function with current weight vector:

gt ← ∇`(ζ(wt,mt−1, Vt−1))

2. Calculate the first- and second-order moments from history of gradients:

First-order moment: mt ← φ(g1, g2, g3, ..., gt, β1)

Second-order moment: Vt ← ψ(g21 , g
2
2 , g

2
3 , ..., g

2
t , β2)

where β1 and β2 are constants used in calculating the first- and second-order moments respectively.
3. Calculate the the descent step:

ηt ←
α√
Vt
·mt

4. Update the weight vector:
wt+1 ← wt − ηt

1.3 Review Structure

In section 2, we will cover variants of SGD, showing that they are special cases of the uniform framework. In section 3,
we will then briefly summarize the aforementioned popular adaptive optimization algorithms by representing them with
the uniform framework. Subsequently, in section 4, we analyze how these algorithms employ ideas from momentum.
Afterwards, in section 5, we show the results of a simple NN experiment optimized with the algorithms discussed in
this paper. Finally, in section 6, we will summarize the role of momentum described in the previous section and take a
look at cases where momentum is viewed almost adversarially by schemes that curb its impact on each training step.

2 Variants of SGD

2.1 Stochastic Gradient Descent (SGD)

In vanilla SGD, there is no momentum involved. Thus, we can represent it with the uniform framework by setting
ζ(wt,mt−1, Vt−1) = wt such that gt ← ∇`(wt) in step 1, φ(g1, ..., gt, β1) = gt and ψ(g21 , ...g

2
t , β2) = I such that

mt ← gt and Vt ← I2 in step 2 of the uniform framework. It follows that step 3 of the uniform framework is

ηt ←
α√
I2
· gt = α · gt

SGD is known to have the property of performing frequent updates with a high variance, which causes a fluctuation of
the objective function. This results in jumping out of the local minimum and simultaneously complicate or slow down
the convergence rate [1].

2

December 14, 2020

2.2 SGD with Momentum (SGDM)

In order to solve the overshooting and fluctuation of the objective function, and in the interest of accelerating SGD’s
convergence process, we add momentum to SGD [10]. While Vt stays the same as the SGD case, mt is now:

mt ← β1 ·mt−1 + (1− β1) · gt
To be consistent with the uniform framework, this is facilitated by changing phi as follows:

φ(g1, ..., gt, β1) =

t∑
i=1

βt−1
1 (1− β1)gi

The first-order momentum is the exponential moving average of the gradient direction at each iteration, which is
approximately equal to the average of the sum of the gradient vectors at the most recent 1/(1− β1) training steps.

If β1 = 0.9, we can intuitively think that the descent direction at iteration t is not only decided by gradient
evaluated at the current weight vector, and is instead 90% based on the weighted average from previous gradients.
When current gradients are in the same direction as previous, we will be more aggressive in this direction.

2.3 SGD with Nesterov Accelerated Gradients (SGD-NAG)

Another problem with SGD is that it oscillates in the gully of local optimum. Imagine walking into a basin, surrounded
by slightly higher hills. Thinking that there is no downhill direction, you can only stay here. But if you climb up higher
ground, you will find that the outside world is still very vast. Therefore, we cannot stay in the current position to
observe the future direction, but must take a step forward, look one step ahead, and look farther.

SGD-NAG is another variant of SGDM. The difference is in step 1 of the uniform framework:

ζ(wt,mt−1, Vt1) = wt − α ·mt−1

Thus, gt ← ∇`(wt − α ·mt−1)

It does not calculate the gradient at the current position, but calculates the gradient direction at the position that the
model would be in if it took a step in the direction of the accumulated momentum [11]. The ensuing steps in the uniform
framework are the same as SGDM.

3 Stochastic Adaptive Optimizers

The algorithms above did not utilize second-order moment. The emergence of second-order moment indicates the
arrival of the era of "adaptive learning rate" optimization algorithms. SGD and its variants update each parameter at
the same learning rate, but deep neural networks often contain a large number of parameters, which are not always
available (thinking about large-scale embedding). For the frequently updated parameters, we have accumulated a lot of
knowledge about it. We don’t want to be affected too much by a single sample, and therefore want the learning rate for
these parameters to be slower. For the occasionally updated parameters, we know too little information, and we want to
learn more from each occasion by having a higher learning rate for these parameters.

With this intuition, AdaGrad introduces the second-order moment and it is calculated at step 2 of the uniform
framework:

Vt ← ψ(g21 , ..., g
2
t , β2) =

t∑
i=1

g2i

Note that Adagrad does not necessarily use momentum, so gt ← ∇`(wt) and mt ← gt.

If we take another look at step 3 in the uniform framework:

ηt =
α√
Vt
·mt

We can notice that the learning rate changes from α to α/
√
Vt. The more frequently a parameter is updated, the greater

its second-order moment, and therefore the smaller its learning rate.

This method performs very well in sparse data scenarios [12], but it also creates a new problem: because√
Vt is monotonically increasing, the learning rate will monotonously decrease to 0, which may end the training process

prematurely. Even if there is useful data in the ensuing iterations, it is impossible to learn from this new information.

3

December 14, 2020

3.1 AdaDelta & RMSProp

Since AdaGrad’s monotonically decreasing learning rate changes are aggressive, we consider a strategy to change the
second-order moment calculation method: do not accumulate all historical gradients, but focus on the most recent
fixed-length time window. To avoid the inefficient storage of past gradients, this accumulation is implemented with an
exponential moving average [13]. AdaDelta modifies step 3 in AdaGrad as follows:

Vt ← β2 · Vt−1 + (1− β2) · g2t
To be consistent with the uniform framework, this is facilitated by changing ψ as follows:

ψ(g21 , ..., g
2
t , β2) =

t∑
i=1

βt−1
2 (1− β2)g2i

This avoids the problem of continuous accumulation of second-order moment, which led to the premature end of the
training process.

The uniform framework expression of RMSProp would be identical. RMSProp and Adadelta have both been
developed independently around the same time, stemming from the need to resolve Adagrad’s radically diminishing
learning rate [1].

3.2 Adam

At this point, the emergence of Adam and NAdam are very natural; they are the intuitive momentum-based follow-up to
the aforementioned methods. We see that SGDM adds first-order moment to SGD, and AdaGrad and AdaDelta add
second-order moment to SGD. Incorporating both the first- and second-order momentum gives us Adam [14], which is
a combination of adaptive and momentum-based optimizers, where

mt ←
β1 ·mt−1 + (1− β1) · gt

1− βt
1

Vt ←
β2 · Vt−1 + (1− β2) · g2t

1− βt
2

To put it in the uniform framework, we modify φ and ψ as follows:

φ(g1, ..., gt, β1) =

∑t
i=1 β

t−1
1 (1− β1)gi
1− βt

1

ψ(g21 , ..., g
2
t , β2) =

∑t
i=1 β

t−1
2 (1− β2)g2i
1− βt

2

3.3 NAdam

NAdam can be intuitively understood as Adam + Nesterov accelerated gradients [15]. Analogous to how SGD-NAG
was introduced in section 2 as SGDM with a modification in step 1 where

ζ(wt,mt−1, Vt1) = wt − α ·mt−1

NAdam can be presented as Adam with a modification in step 1 where

ζ(wt,mt−1, Vt1) = wt − α ·
mt−1

Vt−1

Thus, gt ← ∇`
(
wt − α ·

mt−1

Vt−1

)

4 The Role of Momentum

In this section, we analyze how the adaptive algorithms introduced above utilize momentum. While not all of the
methods below explicitly use a momentum term, they draw insights from the momentum term’s construction.

4

December 14, 2020

4.1 AdaGrad

Adagrad is one such algorithm that, while it does not incorporate a momentum term, it employs a familiar idea of
collecting information from previous gradients. Specifically, as mentioned above, Adagrad collects the second moment
of the gradients through the Vt term. We would like to highlight the similarities between the function ψ used to calculate
Vt in AdaGrad:

ψ(g21 , ..., g
2
t , β2) =

t∑
i=1

g2i

and the function φ used to calculate mt in SGDM:

φ(g1, ..., gt, β1) =

t∑
i=1

βt−1
1 (1− β1)gi

Unlike SGDM and Nesterov, however, AdaGrad does not use moment to accelerate descent in the historically dominant
direction, and instead uses moment to curb learning in those directions, allowing the optimizer can focus on parameters
with sparser, lower magnitude features.

While AdaGrad uses moments in a different way, it is apparent that momentum contributes to it through the
idea of calculating moments using past gradients.

4.2 AdaDelta & RMSProp

AdaDelta and RMSProp expand on AdaGrad with yet another idea that is reminiscent of momentum: decaying weights.
Just as momentum is a moving average of past gradients that emphasizes more recent gradients, the second moment
calculated by these algorithms is also a moving average of past second moments that prioritize more recent values. The
resemblance is even more jarring when we compare AdaDelta & RMSProp with SGDM using the uniform framework.
ψ used to calculate Vt in AdaDelta & RMSProp:

ψ(g21 , ..., g
2
t , β2) =

t∑
i=1

βt−1
2 (1− β2)g2i

and the function φ used to calculate mt in SGDM:

φ(g1, ..., gt, β1) =

t∑
i=1

βt−1
1 (1− β1)gi

The only difference is φ uses past gradients while ψ uses the squares of those gradients. Here, we see that momentum
contributes the idea of decaying weights and the resulting moving average of past moments to AdaDelta & RMSProp.

4.3 Adam & NAdam

Adam takes RMSProp and goes a step closer to SGDM by incorporating an explicit momentum term, making
momentum’s contribution to Adam the most obvious among the adaptive optimizers discussed in this paper. φ used to
calculate mt in Adam:

φ(g1, ..., gt, β1) =

∑t
i=1 β

t−1
1 (1− β1)g2i
1− βt

1

and the function φ used to calculate mt in SGDM:

φ(g1, ..., gt, β1) =

t∑
i=1

βt−1
1 (1− β1)gi

The only difference between the two first-order moment terms is Adam’s contribution of the bias-correcting denominator.
The explicit momentum term allows Adam to focus sparse features like RMSProp while enjoying acceleration and
stability like SGDM. This ability utilize the best of both worlds makes Adam one of the most popular optimizers in
recent years [16]. NAdam, which incorporates Nesterov acceleration instead of vanilla momentum, also enjoys the
benefits of looking ahead at the gradient at the destination.

5

December 14, 2020

5 Experiment

To see the above algorithms in action, we devised a simple experiment involving a neural network with two hidden
layers containing 200 nodes and 80 nodes respectively, each with its own bias. As our independent variable, we used
7 optimizers under a mini-batch setting: SGD, SGDM, SGD-NAG, AdaGrad, AdaDelta, RMSProp and Adam, thus
covering every algorithm discussed here except NAdam. To ensure a fair experiment, we kept the following constant:

• The initial values of weights and biases in the model

• The shuffled sequence of samples fed into each optimizer

Other details:

• Mini-batch size = 10

• Loss function value sampled every 20 steps

• We used the Iris dataset, which is a classifying training data with 150 samples and 4 attributes each, categoriz-
able into 3 classes. To preprocess the data, we shuffled it then took the first 100 samples for training.

The results are as follows:

Figure 1: Loss function values vs. training steps

Figure 2: Loss function values vs. training time

From the graphs above we can see that, given the stochastic nature of these algorithms, they all go experience instability
and fluctuating loss functions. Digging deeper, we notice the following:

6

December 14, 2020

1. SGD performs very well, and better than SGDM, SGD-NAG as well as Adagrad, supporting the claim that
there is no one-size-fits-all solution when it comes to choosing optimizers. The small size and lack of sparsity
of the Iris dataset potentially gave vanilla SGD an edge as learning it does not require the nuances of the other
optimizers.

2. SGDM (Momentum) and SGD-NAG (Nesterov) delivered what they promised: a more stable descent, as
supported by the smaller number of zigs and zags in the graphs.

3. Adagrad delivered the worst performance, both in terms of descent rate and final loss value. This is expected
as AdaGrad delivers the best performance in large, sparse datasets.

4. Adam and RMSProp seem to deliver the best performance among the adaptive algorithms, with Adam enjoying
more stability, as expected due to its incorporation of momentum.

6 Discussion

From section 4, we can see that as adaptive algorithms progress, they seem to adopt more ideas from momentum, from
calculating moments from past gradients, to the use of decaying weights to produce a moving average, to blatantly
using a momentum term. Thanks to these improvements, adaptive optimizers get more comprehensive and effective 1,
therefore showing the magnitude of momentum’s impact on stochastic methods.

Despite its apparent effectiveness, copying momentum is clearly far from being the solution to every gradi-
ent descent problem. In fact, many optimizer schemes work by curbing the contribution of the momentum term. One of
these schemes is quasi-hyperbolic momentum (QHM), which could be expressed in terms of the uniform framework the
same way as SGDM, except step 3 is modified to

η ← α · (νmt + (1− ν)gt)
where ν is a newly introduced constant that limits the contribution of the momentum term to only ν of the descent
step. This allows the momentum term to enjoy lower variance by using a larger β1 without making the descent step
"unusably biased" to older descent directions [17]. Another scheme that also curbs the contribution of the momentum
term is DEMON, which, in the interest of brevity, can be expressed using the uniform framework the same way as
SGDM, but with an evolving β1:

β1t = β1init
· (1− t/T)
(1− β1init

) + β1init
(1− t/T)

where T is the total number of training steps. Here, the contribution of the momentum term decreases the closer that it
gets to the last training step [18]. While there is no official theoretical explanation for why this helps, one can imagine
that DEMON works by reducing the chance of momentum-caused overshooting when it approaches the global minimum.

This shows that while momentum is undeniably valuable in stochastic optimization, there is still plenty to
discover regarding how to use it optimally.

7 Conclusion

In this review, we have initially looked at the three variants of gradient descent: SGD, SGDM, SGD Nesterov, where the
last two are most common in practice. Using a uniform framework, we have then investigated algorithms that are most
commonly used for optimizing SGD. Specifically, we looked at popular adaptive optimization algorithms Adagrad,
Adadelta & RMSprop, and Adam & Nadam to show the chain of development, their differences, their strengths, and
how they adopted ideas from Rumelhart et al.’s momentum algorithm. Finally, we discussed how optimizers may want
to reduce the contribution of the momentum term in their training step, showing that there is still room for progress in
the use of momentum in stochastic methods.

References

[1] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747, 2016.
[2] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The marginal value of

adaptive gradient methods in machine learning, 2018.
1In the average case. As previously mentioned, no optimizer provides a one-size-fits-all solution.

7

December 14, 2020

[3] Igor Gitman, Hunter Lang, Pengchuan Zhang, and Lin Xiao. Understanding the role of momentum in stochastic
gradient methods. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32, pages 9633–9643. Curran Associates, Inc., 2019.

[4] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M. Kakade. On the insufficiency of existing
momentum schemes for stochastic optimization. CoRR, abs/1803.05591, 2018.

[5] Nicolas Loizou and Peter Richtárik. Linearly convergent stochastic heavy ball method for minimizing generaliza-
tion error, 2017.

[6] Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momentum, 2020.
[7] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc' aurelio Ranzato, Andrew

Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large scale distributed deep networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25, pages 1223–1231. Curran Associates, Inc., 2012.

[8] Christian Darken, Joseph Chang, Joseph Chang Z, and John Moody. Learning rate schedules for faster stochastic
gradient search. IEEE Press, 1992.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error Propagation, page
318–362. MIT Press, Cambridge, MA, USA, 1986.

[10] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145 – 151,
1999.

[11] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate o(1/k2). Dokl.
Akad. Nauk SSSR, 269:543–547, 1983.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 07 2011.

[13] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.
[14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference on

Learning Representations, 12 2014.
[15] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.
[16] S. Bock and M. Weiß. A proof of local convergence for the adam optimizer. In 2019 International Joint Conference

on Neural Networks (IJCNN), pages 1–8, 2019.
[17] Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. CoRR, abs/1810.06801,

2018.
[18] John Chen and Anastasios Kyrillidis. Decaying momentum helps neural network training. CoRR, abs/1910.04952,

2019.

8

Deep double descent

Tianyang Pan * 1 Rui Zhang * 2

Abstract
Machine learning has been developing rapidly
in the recent years and changed to landscape of
science and society. As the learning models evolv-
ing fast, some conventional concept in statistical
learning are facing new challenges. Among them
is the diminishing of ’overfitting’ effect for large-
scale models in the conventional bias-variance
trade-off risk curve. Here we investigated the
”double descent” risks curve for contemporary
machine learning models. We showed that the
such behavior is robust for architectures ranging
from random Fourier features to convolutional
neural networks. Further investigation and experi-
ments show that model architecture, training input
and training process will all have impact on the
double descent phenomenon.

1. Introduction
Bias-variance trade-off is a concept first introduced in statis-
tics text books and later adapted in the study of supervised
learning: a balance between bias and variance is ideal while
training a model: bias error is originated from inaccurate or
simplified assumptions in the parameters and causes under-
fitting, while the variance error is caused by models that are
too complicated or followed the training data too closely,
which will result in overfitting. It is widely accepted that by
controlling the capacity of the model, a sweetspot between
the two should be achieved in the U-shape bias-variance
curve (Fig. 1(a)). However, in the modern machine learning
practice, predictors that utilize large scale of parameters
(e.g. deep neural network architectures) that is certain to
overfit predicted under the conventional bias-variance mind
set usually have very accurate prediction results, despite of
reaching zero training error.

Such contradiction is reconciled by the double descent risk

*Equal contribution 1Department of Computer Science, Rice
University, Houston, Texas, USA 2Department of Physics and
Astronomy, Rice University, Houston, Texas, USA. Corre-
spondence to: Tianyang Pan <tp36@rice.edu>, Rui Zhang
<rz15@rice.edu>.

curve (Fig. 1(b)) proposed by researchers. For high- com-
plexity modern models with given training set of size n, the
risk of a learner as a function of (or some approximation
of) its complexity N have double descent behavior: the risk
initially decreases and reaches a minimum as N increases,
then increases due to overfitting until N equals n, forming
a peak at N = n. As N increases even further, the risk
curve decreases a second and final time. The double descent
curve is consistent with the high performance of predictors
with near-perfect fit of the training data, but its correlation
to the different variables in the learning procedure as well
as a rigorous analysis is still wanting.

Early works on artificial data has exposed double descent
of classifiers trained with minimum norm linear regression
(MNLR) (F. Vallet, 1989), theoretical work (M. Opper,
1990) proved that for MNLR, the solution improves as soon
as N increase beyond n. Further investigations(Duin, 2000)
on real-world data also showed the double descent behavior
of classifier with similar solutions (T. L. H. Watkin, 1993).
However, in these studies, double descent behavior is still
considered within the bias-variance trade-off frame and
hold true only for particular models.

This exposition analyzes literatures and conducts ex-
periments on risk curves of various contemporary machine
learning models. Risk as a function of model complexity
exposes a universal double descent behavior. We also test
the curve under different experiment settings, especially
on how the sample size, training time, noise level of
the training data affects the overall risk curve. In the
introduction part, some basic concept such as effective
model complexity is introduced. In the second part, we
conducted a detailed analysis of double descent in a
few model prototypes, such as fully connected neural
network and random fourier features. In the third part,
we focused on the performance of the model in double
descent critical regime. we experiment and summarize the
works of double descent in training architectures such as
residual neural network (ResNet) and convolutional neural
networks (CNN), where the impact of different training
input and training process are discussed. In the last part,
we focused on sample-wise double decent behavior and
showed some analytical results to explain why for networks
of certain complexity, adding more training samples

Deep double descent

Figure 1. Our result showing similar sample-wise double descent phenomenon in the same linear regression problem discussed in
(Nakkiran, 2019). The sample dimension is set to 1000. The x-axis is the number of samples, and the y-axis is the test error.

can adversely affect the performance of the model. We
believe understanding double descent can help us improve
performance of a model especially when under limited
capacity. Under such circumstances, one can not train the
model with infinite time, training parameters or training
data, thus it is crucial to achieve an optimal solution with
the presence of double descent curve.

2. Double Descent
This section presents the analysis and experiments on the
double descent phenomenon developed in (Belkin et al.,
2019). The paper investigated double descent in a set of dif-
ferent popular machine learning models. We will review the
discussion and support with our own experimental results.

2.1. Background

We first define the Effective Model Complexity (EMC) of
a training procedure T as our primary variable in risk curves
introduced below, with respect to train samples S that has
distribution D and parameter ε > 0, is defined as:

EMCD,ε(T):=max{n|ES∼Dn [ErrorS(T (S))] ≤ ε}

where ErrorS(M) is the mean error of model M.

And the key hypothesis is that for any natural data distri-
bution D, neural-network-based training procedure T , and
small ε > 0, if we consider the task of predicting labels
based on n samples from S, then

Under-paremeterized regime. Where EMCD,ε(T) is
sufficiently smaller than n, so that increasing EMC
will lead to decreasing of the test error.

Over-parameterized regime. Where EMCD,ε(T) is suf-
ficiently larger than n, so that increasing EMC will
lead to decreasing of the test error.

Critically parameterized regime. Where
EMCD,ε(T) ≈ n, so that increasing EMC
might lead to decreasing or increasing of the test
error.

Intuitively, when EMC = n, we arrive at interpolation
threshold, where the model achieve perfect fits of the train-
ing data. There is also a critical interval in the vicinity of
the interpolation threshold, and we will analyze the perfor-
mance of the model in the critical interval below.

2.2. Random Fourier Features

Random Fourier Features (RFF) is a class of non-linear
parametric models. As discussed in the paper, RFF can
be seen as a class of two-layer neural networks. The RFF
model familyHN with N parameters consists of functions
h : Rd → C:

h(x) = ΣNk=1akφ(x; vk) where φ(x; v) = e
√
−1〈v,x〉

vi should be sampled from normal distribution in Rd. The
learning process is to find a predictor hn,N ∈ HN that
minimizes squared loss given n data points xi ∈ Rd, yi ∈
R, i.e. the following objective is minimized:

1

n
Σni=1(h(xi)− yi)2

Belkin’s paper trained the RFF model on a subset of MNIST
datset. The result from the paper is shown in figure 1. The
number of training samples is n = 104. From the figure, we
can see that the error reaches a peak (i.e., the interpolation
threshold) at N = 104, which equals to n. On the left side
of the threshold is the underparameterized regime, where
the test risk first decreases then increases. The bias-variance
tradeoff should be considered if the problem setting falls
in this regime. On the right side is the overparameterized

Deep double descent

Figure 2. The result of RFF from (Belkin et al., 2019). The RFF
model is trained using a subset (n = 104) of MNIST dataset.

Figure 3. Our result of RFF trained using a subset (n = 104) of
MNIST dataset. It shows a similar trend as the original result.

regime, where richer models have lower test risk. Figure 3
shows our result. We adapted code from an RFF repo1 and
modified to work with this problem setting. As shown in the
figure, we can observe a similar trend. The double descent
behavior exists and the interpolation threshold is achieved
when n = N .

2.3. Fully Connected Neural Networks

Neural networks uses back propagation to update weights
in the layers. The paper investigates the double descent
behavior on a fully connected two-layer neural network. For
such a neural network, the model capacity can be modeled
using the number of weights in the layers. Assume we
have a layer of H hidden units, learning a subset of MNIST
dataset (n training samples, d samples dimension, and K
classes), the number of parameters is:

1https://github.com/tiskw/Random-Fourier-Features

np = (d+ 1)H + (H + 1)K

The neural network is trained on a subset of MNIST dataset.
The original results from the paper are shown in figure 4
(with weight reuse techinque) and figure 5 (without weight
reuse). For multi-class classification problems, the inter-
polation threshold should be achieved at nK parameters.
As shown in figure 4, the threshold is achieved at 4 ∗ 104

parameters, separating the two regimes as expected.

Figure 4. The result of a fully connected two-layer neural network
from (Belkin et al., 2019). The network is trained using a subset
(n = 4 ∗ 103, d = 784,K = 10) of MNIST dataset with weight
resuse before interpolation threshold and random initialization
after it.

Figure 5. The result of the fully connected two-layer neural net-
work from (Belkin et al., 2019). The network is trained using a
subset (n = 4∗103, d = 784,K = 10) of MNIST dataset without
weight resuse.

We trained a similar neural network on a subset of MNIST
without using weight reuse techinque. Our result is shown in
figure 6. Similar to the original result in 5, our result shows
roughly the same trend as the one using the weight reuse
techinque, but it is more blurry around the interpolation
threshold. This is because stochastic gradient descent using
in the neural network is sensitive to the initialization point

Deep double descent

Figure 6. Our result of RFF trained using a subset (n = 104) of
MNIST dataset. It shows a similar trend as the original result.

in nature. The weight reuse technique helps to mitigate the
sensitivity.

3. Deep Double Descent
This section we present empirical evidence from literature
as well as our experiment to show that double descent is a
robust phenomenon occurs under variety of deep learning
settings. From these experiment results, effective model
complexity (EMC) as a generalized variable is investigated.
Results show that the EMC depends not only on architecture
of the model as the second part concluded, but also on
training data distribution and the training procedure itself.
For example, adding more parameter and increasing training
time will both increase EMC. And double descent can be
observed only when EMC is larger than the number of
samples. Besides model-wise double descent introduced in
the previous section, epoch-wise and sample-wise double
descent phenomenon are presented.

3.1. Experiment Setup

In our experiments, two families of architectures are inves-
tigated: ResNets and standard CNNs, we also include the
Transformer results from literature. For ResNet, we de-
veloped our Keras (Chollet et al., 2015) routine based on a
github repo2. We have 4 ResNet blocks, each one consists of
two BatchNorm-ReLU-Convolution layers. The widths of
each blocks are [k; 2k; 4k; 8k] respectively. The maximum
width we tested is standard ResNet18 that corresponds to
k = 64. For strander CNNs, we set up our a 5-layer CNNs,
with 4 convolutional layers of widths [k; 2k; 4k; 8k] for
varying k and a fully-connected output layer. Each convolu-
tional layer consists of Conv-BatchNorm-ReLU-MaxPool
layers. The Maxpool is [1, 2, 2, 8], kernel size = 3, stride =
1 and padding = 0. We trained both ResNets and standard

2https://github.com/raghakot/keras-resnet

CNNs with Adam optimizer with learning-rate 0.0001.

We also added label noise to the training data, p in label
noise means training on samples which have the correct la-
bel with probability (1−p), and uniformly random incorrect
label with probability p.

3.2. Model-wise double descent

We first study the risk curve of models of increasing size.
We demonstrate model-wise double descent across differ-
ent architectures, datasets, and training procedures. Fig-
ure 7 shows training results with varying model size using
ResNet18 and CNN for 4000 epochs, using optimizer Adam.
We can see for both architecture, there is a peak at k = 12
for ResNet and k = 10 for CNN. We also conducted exper-
iment with similar training setup (figure 10), in our cases,
peak in both architectures occurs at width (k = 12 and
k = 15, respectively) corresponds to model size 60000.
This is inline with the hypothesis that the double descent
peak occurs at EMC = n and proves that such feature is
robust across different classifiers. Moreover, we examined
the risk curve in CNN with different noise level present in
the training data (Figure 8) and shows similar trend. This
proves that besides model size, EMC can also be affected
by the structure of the input training data.

Figure 7. Result of ResNet18 and CNN on cifar10 in (Nakkiran
et al., 2019). Different colors represent labelled noise level in each
training data input.

3.3. Epoch-wise double descent

This section we discussed a novel form of double-descent in
terms of training epochs. The primary conclusion is that the

Deep double descent

Figure 8. Our result in CNN network with different noise level by
varying network size, there is similar behavior but wee do need
finer steps in width for a conclusive trend.

EMC is also correlated with how long the model is trained.
As shown in figure 9, for a standard ResNet18 model, when
width k is sufficiently large (k=64 corresponds to 1 million
parameters), the test error of this model has a peak at ∼100
epochs, then decreases over longer training time and have
best performance at 2000 epochs, showing a double descent
behavior. However, for a smaller model shown as the green
and yellow line, the best result does not correspond to the
longest training time, these models will achieve their best
result at lower epochs, after that the test error will only go
up as the training time increases, which means the yellow
and green line are following the conventional bias-variance
trade-off curve. Our own experiment on both ResNet18 and
CNN shown in figure 10 has the same result: for smaller size
models, the best result is achieved at lower training epochs,
as the blue solid lines shown in both plots, when the model
becomes bigger, the test error will also have epoch-wise
double descent.

3.4. Sample-wise double descent

Here we illustrate that with double descent present in the
critical interval, how does changing the input sample can ad-
versely impact the performance of the model. Intuitively, we
come to understand that adding more training sample will
have two effects: 1) preventing overfitting by reducing vari-
ance, essentially shrink the area below the test error curve.
2) as the input sample size n increases, since EMC = n,
the interpolation threshold, which is the peak of the double
descent curve will also be shifting rightward. Outside of
critical interval, the first effect usually prevails and lower the
test error overall, but in the critical interval, these effect can
cancel out with each other and sometimes the second effect
will be dominant. As Figure 11 shows, for the dark blue
curve, quadrupling samples will increase loss around the
interpolation threshold. We will analyze the sample-wise

Figure 9. Top: Training dynamics from (Nakkiran et al., 2019)
for models with varying width. Bottom: Test error over epochs.
Different slices of this plot are shown on the top.

double descent in detail in the next section.

4. Sample-wise Double Descent
The sample-wise double descent phenomenon is also ob-
served in linear regression problems (Nakkiran, 2019),
which provided a case study in a simple linear regression
setting that demonstrates more data can actually hurt the
performance of the estimator. The double descent behavior
in linear regression problems has also been analyzed by
some other work such as (Hastie et al., 2019) and (Mei &
Montanari, 2020), but Nakkiran’s paper provides a well-
specified problem setting and focus on the sample-wise
behavior. This section discusses the phenomenon and theo-
retical analysis from Nakkiran’s paper, as well as our own
experiment results.

4.1. Problem Setup

The problem setting from the Nakkiran’s paper is as fol-
lows. We have a distribution D that is (x, y) ∼ Rd × R,
where x ∼ N (0, Id) and y = 〈x, β〉 + N (0, σ2). Note
that β is unknown satisfying ‖β‖2 ≤ 1. Given n samples
of (xi, yi), the goal is to learn an estimator β̂ with small
test MSE R(β̂) = E[(〈x, β̂〉 − y)2]. Assume that we do
gradient descent from 0 on the objective minβ̂ ‖Xβ̂ − y‖

2,

Deep double descent

Figure 10. Our result with varying model size trained with
ResNet18 and CNN.

where X ∈ Rn×d is the samples xi stacked together, and y
are the corresponding observations stacked, the solution at
convergence would be β̂ = X†y.

4.2. Experiment and Analysis

The solution β̂ = X†y actually has different forms based on
the ratio between the number of samples n and the sample
dimension d:

β̂ = X†y =

{
argminβ:Xβ=y ‖β‖2, if n ≤ d
argminβ ‖Xβ − y‖2, otherwise

(1)

When n ≤ d, the model is overparameterized, and there are
more than one β that minimizes the objective. In this regime,
the gradient descent actually finds the one with smallest l2
norm. But when n ≥ d, the model becomes underparam-
eterized, and there exists a unique minimizer. Write the
minimizer as β̂ = X†y = X†(Xβ + η) = X†Xβ +X†η.
We see that it consists of two terms, signal and noise. When
n = d, there is exactly one β̂ that minimizes the objective,
which may have high norm that fits the noise term X†η.

The following analysis from Nakkiran’s paper provides in-

Figure 11. Test loss from (Nakkiran et al., 2019) (per-token per-
plexity) as a function of Transformer model size (embedding
dimension d) on language translation (IWSLT‘14 German-to-
English).

sight of how the bias-variance tradeoff happens in this case
study. Consider the excess risk of β̂ which helps to omit the
additive error:

R̄(β̂) = ‖β̂ − β‖2

For and estimator derived from samples (X, y) ∼ Dn, the
expected excess risk is:

EX,y[R̄(β̂X,y)] = ‖β − E[β̂]‖2 + E[‖β̂ − E[β̂]‖2]

Denote the first term asBn, and the second term as Vn. They
are actually bias and variance of the estimator on n samples.
These terms can be approximately computed, and the value
aligns with the experiment result from the paper, as shown in
figure 12. The theoretical result and the experimental result
both shows double descent behavior occurs with increasing
number of samples.

Figure 12. Sample-wise double descent phenomenon in a linear
regression problem (Nakkiran, 2019). The parameters are d =
1000, σ = 0.1. Left: The test MSE. Right: The test MSE in theory.

The paper presents detailed computation of Bn and Vn that
helps understanding the behavior. Let γ = n

d be the ratio

Deep double descent

of number of samples over the sample dimension. The
overparameterized case corresponds to γ < 1. The bias and
the variance can be computed as follows:

Bn = (1− γ)2‖β‖2 (2)

Vn ≈ γ(1− γ)‖β‖2 + σ2 γ

1− γ
(3)

Obviously, in the overparameterized regime, when γ in-
creases towards 1, the bias monotonically decreases to 0,
but the variance first decreases and then increases monoton-
ically, until it diverges at γ = 1. This corresponds to the
peak of the error.

When γ > 1, it corresponds to the underparamterized
regime, where we have more samples than the sample di-
mension. The bias and the variance can be computed as
follows:

Bn = 0 (4)

Vn ≈
σ2

γ − 1
(5)

As shown in figure 12, the theoretical result still matches
the experimental result. In the underparameterized regime,
the bias is always zero, while the variance monotonically
decreases and converges to zero as γ approaches infinity.

Figure 13. Our result showing similar sample-wise double descent
phenomenon in the same linear regression problem discussed in
(Nakkiran, 2019). The sample dimension is set to 1000. The x-axis
is the number of samples, and the y-axis is the test error.

Figure 13 shows our result on the same problem setting.
The β used for generating the random samples should be
different from the paper, as the paper does not provide the
value. As shown in the figure, the threshold is achieved at
n = d as expected. Note that the peak value is not as high as
the original result in the paper. From the theoretical analysis

above, we know that it diverges at n = d. Since it does not
converge, we set the timeout to be 1 hour and obtained the
result showing in the graph. If we let it continue to run, it
should approach infinity as figure 12.

References
Belkin, M., Hsu, D., Ma, S., and Mandal, S. Rec-

onciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of
the National Academy of Sciences, 116(32):15849–
15854, 2019. ISSN 0027-8424. doi: 10.1073/
pnas.1903070116. URL https://www.pnas.org/
content/116/32/15849.

Chollet, F. et al. Keras, 2015. URL https://github.
com/fchollet/keras.

Duin, R. P. W. Classifiers in almost empty spaces”. Pro-
ceedings of the 15th International Conference on Pattern
Recognition (IEEE, 2000), vol. 2, pp. 1–7, 2000.

F. Vallet, J.-G. Cailton, P. R. Linear and nonlinear exten-
sion of the pseudo-inverse solution for learning boolean
functions. Europhys. Lett. 9, 315–320, 1989.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J.
Surprises in high-dimensional ridgeless least squares in-
terpolation. arXiv preprint arXiv:1903.08560, 2019.

M. Opper, W. Kinzel, J. K. R. N. On the ability of the
optimal perceptron to generalise. J. Phys. A Math. Gen.
23, L581–L586, 1990.

Mei, S. and Montanari, A. The generalization error of ran-
dom features regression: Precise asymptotics and double
descent curve, 2020.

Nakkiran, P. More data can hurt for linear regres-
sion: Sample-wise double descent. arXiv preprint
arXiv:1912.07242, 2019.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak,
B., and Sutskever, I. Deep double descent: Where
bigger models and more data hurt. arXiv preprint
arXiv:1912.02292, 2019.

T. L. H. Watkin, A. Rau, M. B. The statistical mechanics of
learning a rule. Rev. Mod. Phys. 65, 499., 1993.

https://www.pnas.org/content/116/32/15849
https://www.pnas.org/content/116/32/15849
https://github.com/fchollet/keras
https://github.com/fchollet/keras

Different theory techniques for shallow neural networks

Han Guo * 1 Yikai Liu * 1

Abstract

We give an literature review on different the-
ory techniques for shallow neural networks. We
specifically focus on limited number of fully con-
nected layer and convolutional layer with standard
activation function and pooling. Our literature re-
view will cover three topics: 1) how different op-
timization techniques affect training performance
on shallow neural network, 2) how different ar-
chitectures of shallow neural network differ in op-
timizations, 3) what assumptions/conditions are
held in papers of interest. While we do not pro-
pose new methodology and analysis, our review
provide some insights on different neural network
settings and convergence analysis by quantita-
tively and qualitatively cross examining state-of-
the-art work in relevant area.

1. Introduction
The stunning performance of deep learning which is back-
boned by neural network has made itself a promising topic
in machine learning area. Deep learning performs well on
variety kinds of problems including object detection and
natural language processing. Neural network even outper-
forms human in image classification competition on Im-
ageNet dataset, with human scored 94.9% (Russakovsky
et al., 2015) and a well trained deep neural network scored
95.06% (He et al., 2015b). Despite its extraordinary empir-
ical success, however, theoretical reasoning on why deep
neural network works so well has remain relatively less well
understood(Soltani & Hegde, 2019), though tremendous
efforts are made trying to unveil its mystery. The significant
difficulty that hinders from developing thorough and gen-
eralized theoretical aspect of deep neural network comes
from highly non-convex nature of optimization posed by
neural networks.(Goel et al., 2018) Empirically, it demon-
strated that neural networks with more layers (”deep” learn-
ing) are essential for better performance. However, due to

*Equal contribution 1Department of Computer Science, Rice
University. Correspondence to: Han Guo <hg31@rice.edu>,
Yikai Liu <yl163@rice.edu>.

Follow ICML 2020 format Copyright 2020 by the author(s).

its non-convex optimization, it is hard to tackle with deep
neural network directly; instead, focusing on shallower neu-
ral network might provide some insightful discoveries that
serve as stepping stones to understand deeper and more
complex models. Nevertheless, (Blum & Rivest, 1989) has
proved that, without any constraints, training on shallow
neural network can be NP-Complete. Thus, many works
have provided convergence analysis with certain constraints
to reduce the workload in reasonable sense (Brutzkus &
Globerson, 2017; Jagatap & Hegde, 2018; Soltanolkotabi,
2017; Blum & Rivest, 1989; Zhang et al., 2018; Du et al.,
2019; 2018a; Hardt & Ma, 2018; Du et al., 2018b; Goel
et al., 2018).

The main motivation of our paper is to introduce some
state-of-the-art theoretical analysis of different optimization
techniques for shallow neural network. In particular, we
will cover three aspects:

• How do different optimization techniques (e.g. Gradi-
ent Descent and Alternating minimization) affect the
performance of shallow neural network.

• How do different neural network architectures (e.g.
Conv block and fully connected layer) affect corre-
sponding convergence analysis .

• How do conditions and assumptions (e.g. input distri-
bution and weight initialization) differ from different
theoretical works, and how do those conditions affect
the convergence analysis.

The rest of this paper is structured as follow: Section 2
will provide necessary textual definitions and mathematical
notations and other background information, Section 3 will
focus on individual aspect by analytically cross examining
variety of SOTA manuscripts, and Section 4 will proceed to
discussion on current research works and future directions.

2. Background
In this section, we will briefly introduce key concepts in
shallow neural network and optimization. We will then pro-
ceed to the problem setup in the context of optimization in
next section. In the architecture subsection, we will provide
mathematical expressions for fully connected layers, con-
volutional layers, residual block, and activation layers. In

Different theory techniques for shallow neural networks(COMP414 Final Project)

optimization technique subsection, we will provide defini-
tions of gradient descent and alternating minimization; more
proposed techniques will be introduced in next section.

2.1. Architecture

The concept of neural network feed-forward pass is simple
enough; here we provide the definitions for some variations
of shallow neural networks. For the sake of simplicity, we do
not include structures other than convolutional layer, fully
connected layer, activation layer, input layer, and output
layer.

2.1.1. FULLY CONNECTED LAYER

Definition 2.1. (Zhang et al., 2018) A typical one-hidden-
layer neural network (one input layer, one hidden layer, one
output layer) has the following form:

yi =

K∑
j=1

σ((w∗j)
>zi) + εi (1)

Here, w∗j ∈ Rd is the weight parameter with respect to the
j-th neuron, σ(x) denotes activation function, {xi}Ni ⊆ Rd
denotes input, {yi}Ni ⊆ Rd denotes output, and {εi}Ni ⊆
Rd denotes noise.

The above expression provides a general structure of shal-
low neural network though, variation exists. One structural
variation based on equation 1 that is adopted in (Soltani &
Hegde, 2019; Du et al., 2018b;c).

Definition 2.2. (Soltani & Hegde, 2019)

ŷ =

r∑
j=1

ajσ(w>j x) =

r∑
j=1

aj〈wj , x〉2 (2)

here, the network comprises p input nodes, a single hidden
layer with r neurons with activation function σ(x), weights
{wj}rj=1 ⊂ Rp, and the single node output layer with
weights {aj}rj=1 ⊂ R.

An multilayer fully connected neural network can
be generalized as a variation from section 3.3 of (Du et al.,
2019) without normalization factor.

Definition 2.3. (Du et al., 2019) x(h) = σ
(
W(h)x(h−1)),

1 ≤ h ≤ H
f(x, θ) = a>x(H) (3)

here, x ∈ Rd denotes input, W(1) ∈ Rm×d denotes the
first weight matrix, W(h) ∈ Rm×m denotes the h-th
layer’s weights, a ∈ Rm denotes the output layer, and σ(x)
denotes the activation function.

2.1.2. CONVOLUTIONAL LAYER

The convolutional layer creates ”patches”, which compli-
cates the mathematical notation.
Definition 2.4. (Goel et al., 2018) Convolutional layer with
overlapping patches is computed as follows (we exclude
average pooling which appeared in original equation):

fw(x) =

k∑
i=1

σ(w>Pix) (4)

here, x ∈ Rn denotes the input, the neural network com-
putes k patches of size r where the location of each patch
is indicated by matrix P1, · · · , Pk ∈ 0, 1r×n and each Pi
has exactly one 1 in each row and at most one 1 in every
column, σ(x) denotes the activation function, and w ∈ Rr
denotes the weight vector of convolution filter.A special
case of convolutional layer arises when the patches do not
overlap. This results an easier analysis which can be found
in Section 3. (Du et al., 2018b) has a slightly different defi-
nition of convolutional layer, though the key concepts align
with equation 4.

2.1.3. ACTIVATION LAYER

Activation layer provides non-linear features to the model,
which increase the expressiveness (Raghu et al., 2017). One
of the most widely used activation function is Rectified
Linear Unit (ReLU), and it’s defined as follows.
Definition 2.5. (Soltanolkotabi, 2017) ReLU preserves the
positive values and set all negative values to 0s

σ(x) = max(0, 〈w,x〉) (5)

here, x ∈ Rd×n denotes input, and w ∈ Rd denotes
weights.
An derivation from ReLU is called Leaky ReLU, and its
definition follows.
Definition 2.6. (Goel et al., 2018) Instead turning all nega-
tive values to 0s, Leaky ReLU scales those values by some
factors α

σ(x) =

{
x if x ≥ 0

αx otherwise
(6)

here, α ∈ [0, 1].

Another activation function that does not belong to ReLU
family is quadratic activation.
Definition 2.7. (Soltani & Hegde, 2019) Quadratic activa-
tion is not as commonly used as ReLU,

σ(x) = x2 (7)

but it has shown competitive expressive power as well(Livni
et al., 2014).

Different theory techniques for shallow neural networks(COMP414 Final Project)

2.1.4. RESIDUAL CONNECTION

ResNet utilizes this structure achieves outstanding image
classification scores. Residual connection enables neural
networks to go deeper without worrying about vanishing
gradient problem (He et al., 2015a). The key observation
here is that the neural network learns the identity mapping.

Definition 2.8. (Li & Yuan, 2017) The following function
contains identity mapping

f(x,W) =
∥∥σ((I + W)>x)

∥∥
1

(8)

here, x ∈ Rd denotes input vector, W ∈ Rd×d denotes
weights, and I is the identity matrix. This representation is
equivalent toH(x) = F(x) + x(He et al., 2015a).

A generalized multilayer residual connection takes the fol-
lowing expression

Definition 2.9. (Hardt & Ma, 2018)

ŷ = (I + Al) · · · (I + A1)x (9)

where A1 · · ·Al ∈ Rd×d denotes weights, and I is the
identity matrix.

2.2. Optimization

2.2.1. GRADIENT DESCENT

Gradient descent perhaps is the most commonly used op-
timization technique in deep learning. The following de-
scribes gradient decent optimization.

Definition 2.10. (Soltanolkotabi, 2017) The following ex-
pression is a variation from original projected gradient de-
scent

wτ+1 = wτ − η∇L(wτ) (10)

here, wτ+1 denotes τ + 1-th weights, wτ denotes τ -th
weights, η denotes stepsize, and ∇L(wτ) denotes loss func-
tion which will be introduced in Subsection 2.3. Other
problem-specific modification on gradient descent concept
will be specified in Section 3.

2.2.2. ALTERNATING MINIMIZATION

Another less common optimization technique is alternating
minimization. The core concept behind this technique is
to always treat one unknown as variable and alternating
the process of choosing unknown and minimizes it. This
technique is problem-specific which will be introduced in
detail in Section 3.

2.3. Loss function

In deep learning optimization, a function used to evaluate a
candidate solution is referred as loss function or objective

solution. Canonically, minimization operation is performed
on a loss function, meaning that we are searching for a can-
didate solution that has the highest score (the score is cal-
culated by comparing the predicted value and ground-truth
label). Section 2.3.1 introduces empirical risk minimization,
and Section 2.3.2 introduces population loss minimization.

2.3.1. EMPIRICAL RISK MINIMIZATION

In practice, we do not have access to the true distribution
of data that we are working on; however, we have access
to some amount of data, and we are trying to approximate
the loss of entire population with the limited access of sam-
pling data. The following defines a typical empirical loss
of a simple feedforward function with only weights and
activation.

Definition 2.11. (Soltanolkotabi, 2017) The least-squares
empirical loss is a variation from the original expression in
(Soltanolkotabi, 2017)

min
w∈Rd

L(w) :=
1

2
(f(w,x)− y)2 (11)

here, f(w,x) = 1
n

n∑
i=1

σ(w>xi) denotes a feedforward

function with weights w, input data xi, activation function
σ(x), and y is ground truth label.

2.3.2. POPULATION LOSS

In an ideal case, if we have access to true distribution of
data that we are working on, we can assume a ground-truth
global minimum weight w∗. This assumption simplifies
some of the convergence analysis. The following defines
a typical population loss of a simple feedforward function
with only weights and activation.

Definition 2.12. (Du et al., 2018a) A least-squares popula-
tion loss is a variation from the original expression in (Du
et al., 2018a)

min
w∈Rd

L(w,x) :=
1

2
(f(w,x)− f(w∗,x))2 (12)

here, f(w,x) follows the same definition as in Definition
2.11, and f(w∗,x) in equation 12 has ground-truth weights
w∗.

Section 2.3.1 and 2.3.2 denotes empirical loss and popula-
tion loss in general form; however, depending on the prob-
lem setup, some adaptations might be necessary. Detailed
modification will be noted in Section 3 as needed.

So far, we have provided some basic notations that will be
utilized in next section. We will then proceed to our analysis
on three main aspects.

Different theory techniques for shallow neural networks(COMP414 Final Project)

3. Methodology
In this section, we are trying to answer the questions that
we have brought up in Section 1 by quantitatively and quali-
tatively reviewing relevant literature works on optimization
with different settings. In Section 3.1, we will discuss how
Gradient Descent and other optimization techniques. In
Section 3.2, we will analyze how different neural network
architectures result in different convergence analysis. In Sec-
tion 3.3, we will discuss on some common assumptions and
conditions that either loose or constrain the applicability and
generalizability of convergence analysis, and how does those
conditions help to develop theoretical bounds/constraints.

3.1. Different optimization techniques

3.1.1. GRADIENT-BASED OPTIMIZATION

In Section 2.2.1, we have briefly introduced the basic con-
cept of gradient descent in which weights are updated in
the direction where the loss is maximally minimized. A
line of research focusing on the behavior of gradient-based
algorithm has shown its power. (Tian, 2017b) use a variant
of gradient descent algorithm – population gradient descent
where instead of empirical loss, population loss is consid-
ered. The population gradient takes the following form.
Definition 3.1. (Tian, 2017b)If we assume population loss,
then population gradient EX [∇Jw(w)] with population loss
J(w) = 1

2 ‖g(X; w∗ − g(X; w))‖2 where g(X; w) =
K∑
j=1

σ(w>j x) with respect to weight wj has the expression

EX [∇wj
J] =

K∑
j′=1

E[F (ej ,wj′)]−
K∑
j′=1

E[F (ej ,w
∗
j′)]

(13)

here, ej = wj/ ‖wj‖. Then simply substituting ∇L(wτ)
in equation 10 with equation 13, we will have the final
population gradient descent

wτ+1 = wτ − η∇EX [∇wJ] (14)

Under the conditions of spherical Gaussian input and ran-
domized weight initialization, (Tian, 2017b) has proved that
one-layer one neuron model is able to recover true weight
vector.

(Soltanolkotabi, 2017) improves this result by using empiri-
cal loss that looses the constraint. Particularly,

n0 =M((R),w∗) = ω2(CR(w∗) ∩ Bd) (15)

defines n0 to be the exact minimum number of samples
required, where CR(w∗) is a cone descent of a regularizer
function R at w∗ and Bd denotes unit ball of Rd, then
the empirical projected gradient descent can be defined as
follow.

Definition 3.2. (Soltanolkotabi, 2017) Let∇L(wτ) be em-
pirical loss function, then empirical projected gradient de-
scent is

wτ+1 = Pk(wτ − η∇L(wτ)) (16)

here, η denotes the step size and K = {w ∈ Rd :
R(w ≤ R)} is the constraint set with PK denoting the
Euclidean projection onto this set. The key theorem here
is that if equation 15 is satisfied, then equation 16 obey
‖wτ −w∗‖F ≤

(
1
2

)τ ‖w∗‖F . This theorem shows that
with near minimal number of data sample n0, projected
gradient descent learns ground-truth weight with linear con-
vergence rate. This result also applies to both convex and
nonconvex regularization functions, and it shows that with
near minimal number of data samples, project gradient de-
scent converges without getting trapped in bad local optima.

3.1.2. ALTERNATING MINIMIZATION OPTIMIZATION

Alternating minimization is another optimization technique
proposed by (Jagatap & Hegde, 2018). On the high level, the
idea of alternating minimization is to estimate the activation
patterns of each ReLU for all given samples and interleave
with weight updates via a least-squares loss.

Specifically, they linearize all samples by defining state
of the neural network as the collection of binary variables
that indicates whether ReLU is active or not and fixing
that state. This idea is inspired by the feature of ReLU
that positive values of ReLU will remain their weights and
negative values will be clipped to 0, so we can separate
the value of weights to an indicator matrix and values of
weights. This process can be linearized. Let

B = [diag(p1)X...diag(pk)X]n×dk (17)

be linearized state of ReLU where pi = 1{Xwi>0} denotes
the indicator function for sign of weights. Then
Definition 3.3. (Jagatap & Hegde, 2018)Feedforward func-
tion can be expressed as

f(X) =

k∑
i=1

ReLU(Xwi) = B · vec(W) (18)

here, vec(W) vectorize weight W . And the minimization
update can be thus described as

vec(W)t+1 = arg min
vec(W)

∥∥Bt · vec(W)− y
∥∥2
2

(19)

Thus, by alternating equation 17 and equation 19 , alter-
nating minimization converges to global minimum with
linear convergence rate if the initial weight W 0 satisfy-
ing dist(W 0,W ∗) ≤ δ1 ‖W ∗‖F for 0 < δ1 < 1, where
dist(W,W ′) is defined as

dist(W,W ′) = min
all possible of column perturbations

‖W −W ′‖F

Different theory techniques for shallow neural networks(COMP414 Final Project)

Algorithm 1 Alternating Minimization
Require: X, y, T, k

Initialize W 0 s.t. dist(W 0,W ∗) ≤ δ1 ‖W ∗‖F
for t = 0, · · · , T − 1 do
ptq = 1{Xwt

q>0}, ∀q ∈ {1...k}
Bt = [diag(pt1)X...diag(ptk)X]n×dk

vec(W)t+1 = arg min
vec(W)

∥∥Bt · vec(W)− y
∥∥2
2

W t+1 ← reshape(vec(W)t+1, [d, k])
end for
Return WT ←W t

. This weight initialization can be obtained by set W 0 ← I.
The detailed implementation is shown in Algorithm 1.

3.1.3. LOW RANK MATRIX ESTIMATION

Though theoretical aspect of neural network is not well
understood, there are areas that we do have enough theoret-
ical findings. One natural idea is to bridge the problem of
learning (shallow) neural network with a well understood
problem of low-rank matrix estimation. Specifically, the
problem of learning a shallow neural network can be treated
as a low-rank matrix estimation problem where the rank of
the resulting matrix equals to the number of hidden neu-
rons. The following definition provides a problem setup the
network of our interest.
Definition 3.4. (Soltani & Hegde, 2019) The network of our
interest consists p input nodes, a single hidden layer with
r neurons with quadratic activation function σ(z) = z2,
first layer weights {wj}rj=1 ⊂ Rp, and an output layer
comprising of a single node and weights {aj}rj=1 ⊂ R, then
the input-output relation can be expressed as the following

ŷ =

r∑
j=1

ajσ(wTj x) =

r∑
j=1

aj〈wTj x〉2 (20)

Consider set of training input-output pairs {(xi, yi)}mi=1 and
set of weights {(aj , wj)}rj=1. We define matrix variable
L∗ =

∑r
j=1 ajwjw

T , then input-output relation becomes

ŷi = xTi L∗xi = 〈xixTi , L∗〉 (21)

here xi ∈ Rp denotes the ith training sample, L∗ is a rank-r
matrix of size p× p, so empirical loss function

min
W∈Rr×p,a∈Rr

F (W,a) =
1

2m

m∑
i=1

(yi − ŷi)2 (22)

can be viewed as an instance of learning a fixed rank-r
symmetric matrix L∗ ∈ Rp×p where r � p from small
number of rank-one linear observation given by Ai = xix

T
i .

A few algorithms are proposed to estimate L∗,given
{xi, yi}mi=1. The first method, called Exact Projections

Algorithm 2 EP-ROM
Inputs: y, number of iterations K, independent data sam-
ples {xT1 ..., xTm} for t = 1,....,K,rank r
Outputs: Estimates L̂
Initialization: L0 ← 0, t← 0
Calculate: ŷ = 1

m

∑m
i=1 yi

while t ≤ K do
Lt+1 = Pr(Lt− 1

2m

∑m
i=1((xti)

TLtx
t
i−yi)xti(xti)T−

(1
2m1TA(Lt)− 1

2 ŷ)I),
t← t+ 1

end while
Return L̂ = Lk

Algorithm 3 AP-ROM
Inputs: y, number of iterations K, independent data sam-
ples {xT1 ..., xTm} for t = 1,....,K,rank r
Outputs: Estimates L̂
Initialization: L0 ← 0, t← 0
Calculate: ŷ = 1

m

∑m
i=1 yi

while t ≤ K do
Lt+1 = τ(Lt − H(1

2m

∑m
i=1(((xti)

T ltx
t
i −

yi)x
t
i(x

t
i)
T − (1

2n1TA(Lt)− 1
2 ŷ)I)),

t← t+ 1
end while
Return L̂ = Lk

for Rank-One Matrix, or EP-ROM, which solves the
non-convex, constrained risk minimization problem:

min
L∈Rp×p

F (L) =
1

2m

m∑
i=1

(yi − xTi Lxi)2 (23)

is demonstrated in Algorithm 2.

While EP-ROM exhibits linear convergence, the per-
iteration complexity is still high since it requires projection
onto the space of rank-r matrices, which necessitates the
application of SVD. The total running time of EP-ROM is
O(mp2log(1

ε))Thus, a second algorithm, called Approxi-
mate Projection for Rank One Matrix estimation, or AP-
ROM, is proposed, as shown in Algorithm 3.
The specific choice of approximate SVD algorithm that
simulates the operators τ (.) and H(.) is flexible. AP-
ROM also demonstrates linear convergence as EP-ROM.
However, AP-ROM demonstrates a better running time of
O(mprlog(p)log(1

ε))

Note that without any assumptions on spectral norm,
estimating L∗ takes O(p3r2) running time complexity,
due to the calculation of SVD. However, this can be
improved by replacing standard SVD with approximate
heuristics such as randomized Block Krylov SVD to
O(p2r4 log2(1

ε)polylog(p)).

Different theory techniques for shallow neural networks(COMP414 Final Project)

3.2. Different neural network architectures

Mathematical formulation of the problem setup depends
strictly on the architectural design of neural network. For
shallow neural network, most common design patterns are
input layer, hidden layer, and output layer. While input
and output layer are canonically invariant across different
network designs, hidden layers take much versatile forms.
Modern neural network architecture design mainly focus
on better hidden layer construction. Here we convey three
common architecture practices.

3.2.1. FULLY CONNECTED ARCHITECTURE

Fully connected layer (FC) forms fundamental connection
between neurons in adjacent layers. While we have briefly
provide some definitions in Section 2.1.1, we have yet pro-
vide a interpretation of FC in general. The following defini-
tion defines fully connected layer in linear algebraic aspect.

Definition 3.5. Assuming σ(·) is activation operator (if
assume σ(x) to be ReLU, then σ(x) = max(0, x)). Let
x ∈ Rm and yi ∈ R be the i-th output, then

yi = σ(w1x1 + ...wmxm) (24)

holds. Full output y is then

y =

σ(w1,1x1 + ...w1,mxm)
...

σ(wn,1x1 + ...wn,mxm)

 (25)

Note that since the concept of FC involves summation over
all weights, in the convergence analysis, we can easily re-
arrange summation operator in our favor. In (Zhang et al.,
2018), where the original population loss function

L(W) =
1

2
EX∼DX

 K∑
j=1

σ(w>j X)−
K∑
j=1

σ(w∗>j W)

2

its partial derivative takes form

[
∇L̂N (W)

]
=

K∑
j=1

(Σ̂(wj ,wk)wj − Σ̂(w∗j ,wk)w∗j)

− 1

N

N∑
i=1

εixi · 1{w>k xi ≥ 0}

Where we can see that the summation is taken out as a
stand alone factor. (Zhang et al., 2018) also shows that with
this partial derivative as gradient update and initial weight
W0 satisfies

∥∥W0 −W∗
∥∥
F
≤ cσK/(λκ

3K2), gradient
descent converges to ground truth W∗ in linear time. The
weight initialization requirement can be achieved by tensor
initialization that is discussed in Section 3.3.2.

3.2.2. CONVOLUTIONAL FILTER ARCHITECTURE

The defining characteristic of Convolutional Neural Net-
work (CNN) is its convolutional layer. Unlike fully con-
nected layer, convolutional layer relies on convolution filter,
or kernal, to extract features from original input. The mathe-
matical expression for convolutional shallow neural network
is described in Section 2.4. Based on the dimension of in-
put, we consider two general types of convolution – 1D
Convolution and 2D Convolution.

Definition 3.6. (Goel et al., 2018) Consider a 1D image
of dimension n. Let the patch size be r and stride be d.
Let the patches be indexed from 1 and let patch i start at
position (i − 1)d + 1 and be contiguous through position
(i− 1)d+ r. The matrix Pi of dimension r × n of patch i
looks as follows,

Pi = (0r×((i−1)d+1)Ir0r×(n−r−(i−1)d)) (26)

here 0a×b indicates all zero matrix of size a × b, and Ir
indicates identity matrix of size r. Let k = bn−rd c+ 1 The
structure of P is summarized as below.

Pi,j =

{
k − a if |i− j| = ad

0 otherwise
(27)

We bound extremal eigenvalue P =
∑k
i,j=1 PiP

>
j .

Definition 3.7. (Goel et al., 2018) Consider a 2D image of
dimension n1 × n2. Let the patch size be r1 × r2 and the
stride in both directions be d1, d2 respectively. Enumerate
patches such that patch (i, j) starts at position ((i− 1)d1 +
1, (i− 1)d2 + 1) and is a rectangle with diagonally opposite
point ((i−1)d2+r1, (j−1)d2+r2). Let k1 = bn1−r1

d1
c+1

and k2 = bn2−r2
d2
c + 1. Let Q(i,j) be indicator matrix of

dimension r1r2 × n1n2 with 1 at (a, b) if ath location of
patch (i, j) is b. Formally,

(Q(i,j))a,b = 1 (28)

for all a = pr2 + q + 1 for 0 ≤ p < r1, 0 ≤ q < r2, and
b = ((i− 1)d1 + p)n2 + jd2 + q + 1 else 0. The extremal
eigenvalue is bounded byQ =

∑k1
i,p=1

∑k2
j,q=1Q(i,j)Q

>
(p,q)

Notice that the above 1D Convolution and 2D Convolution
make no assumption on whether patches overlap or not. In
fact, if there is one patch P1 that does not overlap with
any other patches, the convergence analysis simplifies sig-
nificantly because the term PqP

>
j = P>j Pq = 0 for all

Pj 6= 1; in particular, the resulting expectation of loss in
non-overlapping case eliminates the bounding eigenvalue
terms comparing to overlapping case due to the orthogonal-
ity exhibited by PqP>j = P>j Pq = 0.

Another work by (Du et al., 2018a) considers patches with
”close relations”. Specifically, they show if the input patches

Different theory techniques for shallow neural networks(COMP414 Final Project)

are highly correlated θ(Zi, Zj) ≤ ρ for some small ρ > 0,
then gradient descent with random initialization recovers the
filter in polynomial time, and the stronger the correlation,
the faster the convergence rate. The high level approach is to
first divide input patches into 4 events, find average patch in
each event, and find max and min eigenvalues respectively.
Assume

max
w:θ(w,w∗)≤φ

λmax(E[ZSw,w∗
Z>Sw,−w∗

])

+ λmax(E[ZSw,w∗
Z>S−w,w∗

])

+ λmax(E[ZSw,−w∗
Z>S−w,w∗

]) ≤ Lcross

here ZSw,w∗
, ZSw,−w∗

, ZS−w,w∗
are patch average of four

events mentioned previously. The, if patch Zi and Zj
are very similar, then joint probability density of Zi ∈
S(w,w∗)i and Zj ∈ S(w,−w∗)j is small and implies
Lcross is small. If Lcross is small, then by

‖wt+1 − w∗‖22 ≤
(

1− η(γ(φt)− 6Lcross)

2

)
‖wt − w∗‖22

(29)
we have faster convergence rate in polynomial time.

3.2.3. RESIDUAL CONNECTION ARCHITECTURE

In Section 2.1.4, we have briefly introduce the mathematical
notations for residual connection network. In this section
we will convey some relevant analysis that leverages this
structure.

Definition 3.8. (Li & Yuan, 2017)If the loss function takes
form

L(W) = Ex[(
∑
i

ReLU(〈wi + wi, x〉)

−
∑
i

ReLU(〈ei + w∗i , x〉))2]
(30)

there exists γ > γ0 > 0 such that if x ∼ N (0, I),
‖W0‖2, ‖W∗‖2 ≤ γ0, d ≥ 100, ε ≤ γ2, then stochastic
gradient descent on L(W) will find W∗ by two phases:

• Phase I, setting step size η ≤ γ2

G2
2

, potential function

g =
∑d
i=1(‖ei + w∗i ‖2 − ‖ei + wi‖2) takes at most

1
16η steps to decrease to smaller than 197γ2

• Phase II, for a > 0 and ∀T s.t. T a log T ≥
36d

1004(1+a)G2
F

, if η = (1+a) log T
δT , then E‖WT −

W∗‖2F ≤
(1+a) log TG2

δ2T

The key observation here is that the residual network con-
verges to global minimum in two phases. In Phase I, the

potential function g is decreasing to a small value, and in
Phase II, g remains small, so L is one point convex and W
starts to converge to W∗. The proof of Phase I is fairly sim-
ple, by introducing an auxiliary variable s = (W∗ −W)u;
the proof of Phase II leverages Taylor expansion an controls
higher order terms.

Another work done by (Hardt & Ma, 2018) gives simple
proof that arbitrarily deep linear residual networks have no
spurious local optima. Specifically, they suggest that it is
sufficient for the optimizer to converge to critical points
of the population risk since all critical points are global
minima. If Bτ = {A ∈ Rl×d×d : |||A||| ≤ τ} where
|||A||| := max1≤i≤j ‖Ai‖, then

‖∇f(A)‖2F ≥ 4l(1− τ)2l−2σmin(Σ)(f(A)−Copt) (31)

equation 31 says the gradient has fairly large norm compared
to the error, which guarantees convergence if the gradient
descent to a global minimum if the iterates stay inside Bτ .
Here Copt is global minimum of f , and ‖∇f(A)‖2F denotes
Euclidean norm of∇f(A)

3.3. Conditions and assumptions

It is known that without any assumptions on the problem,
the learning in neural network is NP-hard. To reduce the dif-
ficulty of convergence analysis to a more reasonable work-
load, most of the works we focus on have made certain
assumptions on the problem setup. There are two particular
conditions that prevail in current works – input distribution
and weight initialization. We will discuss about different
input distribution in Section 3.3.1 and different weight ini-
tialization techniques in Section 3.3.2.

3.3.1. INPUT DISTRIBUTION

Neural network deals with enormous amount of data. Since
most optimization algorithms are not shift invariant, a good
input data distribution is critical to obtain good results and to
reduce significantly calculation time(Sola & Sevilla, 1997).
Through an extensive survey, though not exhaustive, we
discover that one of the most commonly used input assump-
tions is i.i.d Gaussian distribution.

Definition 3.9. (Li & Yuan, 2017) We say input data is
in standard i.i.d Gaussian distribution, if the input vector
x ∈ Rd is sampled from normal distribution N (0, I).

In (Li & Yuan, 2017), here the original derivative of loss
function is defined as

∇L(W)j = 2Ex[(
∑
i

ReLU(〈ei + wi, x〉)

−
∑
i

ReLU(〈ei + w∗i , x〉))x1〈ei+wj ,x〉≥0]

Different theory techniques for shallow neural networks(COMP414 Final Project)

This indicates that the original original loss function is not
well defined everywhere, and analysis is only valid for each
case. However, with the assumption of input is from Gaus-
sian distribution and some modifications of equation 13
from (Tian, 2017a), the derivative of loss function can be
rewritten as

−∇L(W)j =

d∑
i=1

(
π

2
(w∗i −wi) + (

π

2
−θi∗,j)(ei+w∗i)

− (
π

2
− θi,j)(ei + wi)

+ (‖ei + w∗i ‖2 sin θi∗,j − ‖ei + wi‖2 sin θi,j)ej + wj)

One key observation here is that, if we assume the condition
that the input x is from the standard Gaussian distribution,
the loss function is smooth and the gradient is well defined
every where. This idea conforms with (Tian, 2017a) in a
sense that the gradient is treated as a random variable that
can be expressed in terms of the expectation.

The idea that having input data distribution simplifies and
improves convergence analysis is further supported by
(Brutzkus & Globerson, 2017) in No-Overlap Networks.
In particular, they derive the problem No-Overlap Networks
from set splitting problem and argues that its complexity is
NP-complete; however, if input x ∼ N (0, 1), No-Overlap
Networks is upper bounded by polynomial factors. This
claim comes from the observation that the if input condition
is satisfied, gradient descent will stay away from the degen-
erate saddle point. This claim highlights the importance
of input distribution being Gaussian distribution in a sense
of asymptotic bounds in convergence analysis. Empirical
experiments conducted by (Brutzkus & Globerson, 2017)
confirms that Gaussian input trial converges to global min-
imum while non-Gaussian input trial gets trapped in bad
local minimum.

3.3.2. WEIGHT INITIALIZATION

Weight initialization is crucial in practice, yet we have prim-
itive understanding on this subject(Goodfellow et al., 2016).
A natural idea is to have all weights initialized to be 0s.
However, this is very unfavorable because zero weights
initialization causes symmetry problem – all hidden units
are symmetric and different layers don’t learn different fea-
tures. Therefore, to break this symmetry, weight initial-
ization technique is necessary. There are several popular
choices of weight initialization. One common practice is
random weight initialization. This technique is fairly sim-
ple – randomly initialize weight parameters with standard
Gaussian distribution. (Du et al., 2018b) utilizes random
weight initialization and proves that gradient descent learns
one-hidden-layer convolutional neural network with non-
overlapping patches in polynomial time.

Another weight initialization technique is to randomly ini-

Algorithm 4 Tensor Initialization
procedure INITIALIZATION(set S)
S2, S3, S4 ← PARTITION(S, 3)
P̂2 ← ES2

[P2]
V ← POWERMETHOD(P̂2, k)
R̂3 ← ES3 [P3(V, V, V)]
{û}ii ∈ [k]← KCL(R̂3)
{ûi}i∈[k] ← RECMAGSIGN(V, {ûi}i∈[k], S4)

Return {w(T)
i , v

(0)
i }i∈[k]

end procedure

tialize weights with O(1/
√
d). This technique is commonly

known as ”Xavier initialization”(Glorot & Bengio, 2010) or
”He initialization”(He et al., 2015a). The difference between
”He initialization” and ”Xavier initialization” is trivial, and
we will not expand more on this topic due to the scope of
our paper. (Li & Yuan, 2017) utilizes this initialization tech-
nique and leverages the fact that spectral norm of random
matrix is O(1). This result justifies ‖W ∗‖2 = O(1).

Tensor Initialization proposed by (Zhong et al., 2017) is
fairly uncommon yet intriguing. Tensor initialization is a
derivation from tensor problem. Although in general tensor
problems are NP-hard(Hillar & Lim, 2013), by assuming
noiseless and Gaussian input conditions, the authors are
able to develop an efficient tensor method of weight initial-
ization algorithm described in Algorithm 4. The core idea
of tensor initialization is to leverage tensor decomposition
and tensor estimation after dimension reduction. By ap-
plying tensor initialization, (Zhang et al., 2018) are able to
prove that initial weight W 0 falls into small neighborhood
of ground-truth weight W ∗, thus leading to the proof of
linear convergence rate.

4. Discussion
We have provided rather brief introduction of different
theory techniques for shallow neural networks. We have
touched upon several commonly used architecture, e.g.
residual connection and covolutional filters, and optimiza-
tion techniques including gradient-based algorithm and al-
ternating minimization. Though not with too much proof
detail, we have deliver problem setup and analysis concep-
tually. Since our purpose is to inform and convey a bigger
scope of optimization in shallow neural networks in gen-
eral, our review does cover essential topic that are crucial to
understand.

However, we do notice that our literature review does not
cover all topics in shallow neural networks. For example,
we only consider simplified network where only input, hid-
den layer, and output present – we do not consider BN and
pooling. We also noticed that most papers assume this sim-

Different theory techniques for shallow neural networks(COMP414 Final Project)

plified version of network architecture as we do. So one
possible future direction would be a systematic and holis-
tic review on how BN/pooling/Dropout affect optimization
and convergence analysis in shallow neural network. Also,
we do not go into detail on theoretical definition of O/

√
d

weight initialization which is largely embraced by the com-
munity. Specifically how ”Xavier initialization” and ”He
initialization” differ in different network setting (for exam-
ple, empirically, He initialization works better on residual
connection). This input assumption based analysis is also
interesting for further investigation.

References
Blum, A. and Rivest, R. L. Training a 3-

node neural network is np-complete, 1989.
URL https://papers.nips.cc/paper/
125-training-a-3-node-neural-network-is-np-complete.
pdf.

Brutzkus, A. and Globerson, A. Globally optimal gradient
descent for a convnet with gaussian inputs, 2017.

Du, S. S., Lee, J. D., and Tian, Y. When is a convolutional
filter easy to learn?, 2018a.

Du, S. S., Lee, J. D., Tian, Y., Poczos, B., and Singh, A.
Gradient descent learns one-hidden-layer cnn: Don’t be
afraid of spurious local minima, 2018b.

Du, S. S., Zhai, X., Póczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. CoRR, abs/1810.02054, 2018c. URL http:
//arxiv.org/abs/1810.02054.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks,
2019.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. vol-
ume 9 of Proceedings of Machine Learning Research,
pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. JMLR Workshop and Conference Proceed-
ings. URL http://proceedings.mlr.press/
v9/glorot10a.html.

Goel, S., Klivans, A., and Meka, R. Learning one convolu-
tional layer with overlapping patches, 2018.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Hardt, M. and Ma, T. Identity matters in deep learning,
2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification, 2015b.

Hillar, C. J. and Lim, L.-H. Most tensor problems
are np-hard. 60(6), 2013. ISSN 0004-5411. doi:
10.1145/2512329. URL https://doi.org/10.
1145/2512329.

Jagatap, G. and Hegde, C. Learning relu networks via
alternating minimization, 2018.

Li, Y. and Yuan, Y. Convergence analysis of two-layer
neural networks with relu activation, 2017.

Livni, R., Shalev-Shwartz, S., and Shamir, O. On the com-
putational efficiency of training neural networks, 2014.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. On the expressive power of deep neural
networks, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. Imagenet large scale
visual recognition challenge, 2015.

Sola, J. and Sevilla, J. Importance of input data normaliza-
tion for the application of neural networks to complex
industrial problems. IEEE Transactions on Nuclear Sci-
ence, 44(3):1464–1468, 1997. doi: 10.1109/23.589532.

Soltani, M. and Hegde, C. Fast and provable algorithms
for learning two-layer polynomial neural networks. IEEE
Transactions on Signal Processing, 67(13):3361–3371,
2019. doi: 10.1109/TSP.2019.2916743.

Soltanolkotabi, M. Learning relus via gradient descent,
2017.

Tian, Y. Symmetry-breaking convergence analysis of cer-
tain two-layered neural networks with relu nonlinear-
ity. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net,
2017a. URL https://openreview.net/forum?
id=r1lVgRNtx.

Tian, Y. An analytical formula of population gradient for
two-layered relu network and its applications in conver-
gence and critical point analysis, 2017b.

Zhang, X., Yu, Y., Wang, L., and Gu, Q. Learning one-
hidden-layer relu networks via gradient descent, 2018.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neural
networks, 2017.

https://papers.nips.cc/paper/125-training-a-3-node-neural-network-is-np-complete.pdf
https://papers.nips.cc/paper/125-training-a-3-node-neural-network-is-np-complete.pdf
https://papers.nips.cc/paper/125-training-a-3-node-neural-network-is-np-complete.pdf
http://arxiv.org/abs/1810.02054
http://arxiv.org/abs/1810.02054
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/2512329
https://doi.org/10.1145/2512329
https://openreview.net/forum?id=r1lVgRNtx
https://openreview.net/forum?id=r1lVgRNtx

A Review of Some Second Order Optimization Methods for Machine Learning
Final project for COMP 514 (Fall 2020)

Anusha Sekar 1

Abstract
Underlying almost all machine learning (ML)
algorithms is an optimization problem, where
we minimize an objective function or loss func-
tion. There is usually a black box for computing
the value of this loss function given some input.
We are also usually given a method to compute
the gradient of the loss function for given input.
Given these black boxes, and data, we iteratively
solve for input parameters that will best fit the
given data.

For most modern ML methods, these optimization
problems are non-linear and the parameter space
dimension is high. One typical method to solve
these optimization problems is using gradient de-
scent, which involves following a sequence of
iterates which minimize the loss function locally.
The gradient of the loss function provides first
order information about the shape of the loss sur-
face, that is the slope of the surface at the current
iteration point in parameter space. In this review,
we will consider how gradient descent methods
can be improved using second order information
about the shape of the loss surface, the curvature.

We will review ideas from three main papers,
[Agarwal et al., 2017], [Yao et al., 2020] and
[Thiele et al., 2020], to illustrate some possible
ways of using second order information to im-
prove the optimization.

1. Introduction
Let us begin this review by setting up some notation. For
this review, we will restrict our attention to ML methods
that have an optimization problem of the form

Find x∗ = arg min
x
f(x) = arg min

x

n∑
i=1

fi(x). (1)

1Chevron, Houston, Texas, USA. Correspondence to: Anusha
Sekar <Anusha.Sekar@chevron.com, as244@rice.edu>.

Submitted as final project report for COMP 514, Fall 2020

Gradient descent methods to solve (1) can be generally
written as

xt+1 = xt − ηt∇f(xt) (2)

where xt is the current iteration, ηt is an appropriate step
size taken in the descent direction. The descent direction is
computed using the gradient of the objective (loss) function,
∇f(.). For the most part, optimization algorithms using
gradient descent perform quite well. They are simple to
understand and implement and are usually the first choice
of algorithm that we would try. As the complexity of the
optimization problem grows, however, we need to find ways
to make gradient descent more efficient. For a certain class
of function, vanilla steepest descent methods do converge
to the solution, but may take a meandering path to get there.

For ML problems, we have an added complexity. Typically
the data size is quite big and it is impractical to compute
the full gradient. Instead, in practice, we take advantage of
the separable form that the loss function has (

∑
i fi) and

use only some of the data components (It ⊂ {1, · · ·n})
to compute the gradient. This method is called Stochastic
Gradient Descent (SGD) if we use only one piece of the data
and Mini-Batch SGD when we use several data components
simumtanenouly. That is, in each iteration, we update xt as
follows

xt+1 = xt − ηt
∑
i∈It

∇fi(xt) (3)

In fact, it can be shown that the total work required to obtain
a desired ε-optimality (error less than a desired ε) isO(1/ε),
which can be much faster than regular gradient descent for
large n. See section 4 of [Bottou et al., 2018] for example.
Any improvements we make to the basic steepest descent
algorithm must also work well in this stochastic framework!

There are several ways to improve upon gradient descent
methods. One way, which is quite popular in the optimiza-
tion community is to condition the descent direction (gradi-
ent) before taking a step in that direction. Mathematically,
we can write this down as

xt+1 = xt − ηtB(xt)∇f(xt) (4)

This is sometimes referred to as preconditioning. If we
knew that some parameters were more important than others,

Second Order ML

we could choose a preconditioner, B(xt), which encodes
this information and forcibly change the path taken by the
iterates. ”Adaptive” methods (e.g. Adagrad, Adam) do
precisely this using first order information. Recently there
has been some interest in the ML optimization community
to see if we can do better by using second order information
and there are very good reasons for this.

Using second order information in optimization is not a new
concept. In fact, using B(xt) as the inverse of the Hessian
operator for f at xt is the classical Newton’s method ([No-
cedal & Wright, 2006], [Nesterov, 2004]). It is well known
that Newton’s method leads to local quadratic convergence.
The Hessian operator can be written as a matrix H with
entries Hi,j(xt) = ∂2f

∂xi∂xj
. The Hessian encodes informa-

tion about the curvature of the loss function f . In gradient
descent each iteration steps in the direction the negative of
the gradient points to. If the loss surface is such that it has a
narrow valley, steepest descent step can overshoot the valley.
When we we precondition by the inverse of the Hessian,
the update direction points more towards the center of the
valley. See figure 1 for an illustration.

Figure 1. Contours for function x2+y2/5. Black arrow is the orig-
inal negative gradient direction. Red arrow is the preconditioned
gradient direction

Given that using the Hessian can get us to the solution faster,
there are reasons why this method has not gained immediate
traction within the ML community. Computing the Hessian
is usually quite expensive. One can come up with patha-
logical examples where data is noisy and the local Hessian
information is actually detrimental to the optimization. It
is also not immediately clear how the Hessian will interact
with the stochastic framework. In order to introduce second
order information into a stochastic framework, ideally, we
would like to have a method that looks like

xt+1 = xt − ηt
∑
i∈It

Bi(xt)∇fi(xt) (5)

The main question is what should we use for Bi(xt).
Naively, we might want to use the inverse of the Hessian
of each component, but this does not produce good results.
In the following sections, we will look at three different
methods that use different approaches to overcome these
hurdles and successfully combine second order information
with stochasticity. The first method directly approximates
the inverse of the full Hessian matrix to obtain an ”approx-
imate Newton” method, (section 2). The second method
further simplifies by approximating only the diagonal of
the Hessian matrix, (section 3). The third method splits
the Hessian into two parts and ignores higher order terms
to obtain a Gauss-Newton approximation to the Hessian
matrix, (section 4).

2. Approximate Hessian: LiSSA
Key Paper: Second-Order Stochastic Optimization for Ma-
chine Learning in Linear Time, [Agarwal et al., 2017]

LiSSA stands for Linear (time) Stochastic Second-order
Algorithm. LiSSA and some of its variations were proposed
by Agarwal and others in [Agarwal et al., 2017]. For self-
concordant functions (see [Nesterov, 2004] for definition),
LiSSA has O(d) runtime, where d is the dimension of the
space of parameters we are inverting for, which is on par
with steepest descent! In this section, we will look at the
key ideas behind this algorithm.

One of the main reasons SGD has favorable convergence
properties is due to the fact that ∇fi(x) is an unbiased es-
timator of ∇f(x). That is, the gradient of a single data
sample is an unbiased estimator of the full gradient. As
a result, if we have enough samples, we can get a statis-
tically ”good” estimate of the full gradient. The first key
observation of the authors of LiSSA is that while ∇2fi(x)

is an unbiased estimator of∇2f(x),
[
∇2fi(x)

]−1
is not an

unbiased estimator for
[
∇2f(x)

]−1
. The authors derive an

unbiased estimator as follows.

Any linear operator (matrix) A with ||A|| < 1 is invertible
and has the infinite series expansion A−1 =

∑∞
j=0(I −A)j

By normalizing, we can use this series expansion for B =[
∇2fi(x)

]−1
as well. Let

B(k) =

k∑
j=0

(I −∇fi(x))j (6)

for some fixed k. We can show that B(k) is an unbi-
ased estimator of the Hessian inverse and that E

[
B(k)

]
→[

∇2f(x)
]−1

as k →∞. We can now use B(k) in (5) after

Second Order ML

we pick a suitable k. In fact, we can use a recursive formula,

B(0) = I

B(j)∇fi(xt) = ∇fi(xt) + (I −H(xt))B
(j−1)∇fi(xt)

(7)

Notice that the recursive formula only uses products of the
form H(xt)z given a z. As long as we have a ”black-box”
or ”oracle” which can compute Hessian vector products, we
can form the inversion using the recursion. The full matrix
of the Hessian is never formed.

Recall that Newton method only promises convergence if
the starting point is close enough to the true solution. LiSSA
also includes within it a ”warm start” – A suitable first order
algorithm is run until xt is within the region where it is pos-
sible to get linear convergence for its second order method.
We will paraphrase and state the main convergence theorem
(Theorem 7) from [Agarwal et al., 2017] for this method
here without proof. We need the following definitions. Let

βmax = max
i
λmax

(
∇2fi(x)

)
;

αmin = min
i
λmin

(
∇2fi(x)

)
κ̂l = max

x

βmax
λmin (∇2f(x))

; κ̂maxl = max
x

βmax
αmin

Theorem 2.1 Let f be α-strongly convex and β-smooth
and a generalized linear model (GLM). Let κ̂l and κ̂maxl be
the local condition numbers of f as defined above. Let T1
be the time taken for the first order method to achieve an
error of 1

4κ̂lM
. Let S1 = O

(
(κ̂maxl)2 ln

(
d
δ

))
, and S2 ≥

2κ̂l ln
(
4̂κl
)
, then for every t ≥ T1,

P

(
‖xt+1 − x∗‖ ≤

1

2
‖xt − x∗‖

)
= 1− δ

Moreover, each step of the algorithm takes at most O(md+
(κ̂maxl)2κ̂ld

2), where d is dimension of model parameter
space. As a result, LiSSA returns a point xt such that

f(xt) ≤ min
x∗

f(x∗) + ε

in total time, O
(
(m+ S1κl)d log(1

ε)
)

Notice that S1, the number of samples in a mini-batch and
S2, the number of terms of the recursive series Hessian
approximation, both depend on the condition number of the
problem. For a well conditioned problem, we can get away
with smaller numbers. For an ill-conditioned problem, with
small α and large β, we have to use more terms of the series,
which will increase the cost of each iteration.

The authors also include several additions to this basic algo-
rithm. Consider the quadratic

Qt(y) = f(xt−1) +∇f(xt−1)T y +
1

2
yT∇2f(xt−1)y

If we were to run any first order gradient descent algorithm
to minimize this quadratic form for a fixed xt, we will get
the update

yj+1
t = yjt −∇Qt(y

j
t) = (I−∇2f(xt))y

j
t +∇f(xt) (8)

The authors notice that (8) is the same as the recursion
formula (7) with yj = B(j)∇f(xt), so we can replace
the recursion formula with any first order gradient descent
method of our choice. In particular, the authors choose to
use a method that reduces variance. In the regime where
m >> d, that is we have more data samples than we have
model parameters, the authors are able to choose a fast
quadratic solver to accelerate the inner loop that computes
the Hessian approximation. For each sub-problem, lever-
aging the fact that the Hessian approximations are positive
semi definite, they improve upon existing techniques of
matrix-sampling/sketching and combine with accelerated
SVRG (variance reduced SGD) to accelerate convergence.
Although these are necessary to arrive at the O(d) conver-
gence rate they derive, we will omit details from this report
since it is not directly related to second order ML methods.

3. Diagonal of the Hessian: AdaHessian
Key Paper: AdaHessian: An Adaptive Second Order Opti-
mizer for Machine Learning [Yao et al., 2020]

As we mentioned in the introduction, we can think of B∇f
as scaling and rotating the gradient vector, that is ”condition-
ing” the gradient vector, before taking a step in the scaled
and rotated direction. In many cases, we may be able to
get almost all the advantages of the Hessian by using only
the diagonal of the Hessian matrix for this. The diagonal
of the Hessian ignores any cross correlations between dif-
ferent model parameters, but focuses on the scaling of each
model parameter itself. If the loss surface had some ”steep”
directions and some ”flat” directions, gradient descent steps
tend to ”ping pong” in alternating directions. This curvature
information is encoded in the diagonal of the Hessian matrix.
Scaling by it’s inverse lets us take longer steps in directions
which are flatter, avoiding the ”ping pong effect”, which
helps us get to the optimal solution faster.

Authors of the paper [Yao et al., 2020] take advantage of
this fact and present an algorithm AdaHessian, [Gholami].
Two key ideas of the algorithm are the use of approximate
iterative methods to compute the diagonal of the Hessian
and the use of exponential averages of the diagonal similar
to Adam. Let us take a look at both of these ideas now.

AdaHessian does not directly compute or store the diagonal
of the Hessian matrix. Instead it uses Hutchinson’s diagonal
algorithm [Bekas et al., 2007], which can compute the diag-
onal of a matrix given a black box that can perform matrix
vector multiplies. Hutchinson’s method picks a random vec-

Second Order ML

tor zk whose entries are 1 or −1 with equal probability. The
Hessian black box is used to compute wk = Hzk. After a
few iterations, taking the average of wk over k gives us an
approximation of the diagonal of the Hessian. Since this is
a diagonal matrix, computing it’s inverse is simply taking
the reciprocal of each element. In practice, AdaHessian
seems to only compute one iteration of Hutchinson’s algo-
rithm, and also suggest only changing the Hessian every few
iterations of the gradient descent to reduce cost.

AdaHessian is also adaptive similar to the Adam method.
Recall the Adam method [Kingma & Ba, 2015] with updates
of the form

xt+1 = xt − ηtmt/vt (9)

where mt is a bias corrected version of the gradient and vt
is a bias corrected preconditioner to the gradient. In Adam,
updates for mt and vt can be written as

mt =
(1− β1)

∑t
j=1 β

t−j
1 ∇fj(xt)

1− βt1

vt =

√
(1− β2)

∑t
j=1 β

t−j
2 ∇fj(xt)�∇fj(xt)
1− βt2

where j in∇fj(xt) is the index picked up by the stochastic
gradient descent in the previous time step. We can think
of the 1/vt as a preconditioning term for the gradient de-
scent. AdaHessian replaces this preconditioning term with
an unbiased version of the approximate Hessian.

vt =

√
(1− β2)

∑t
j=1 β

t−j
2 Dj(xt)�Dj(xt)

1− βt2
(10)

where Dj is the diagonal of the Hessian approximated using
Hutchinson’s method. The authors consider this step cru-
cial since it is computing a moving average of the Hessian
approximation over many iterations and this smoothes out
noisy local curvature information, focussing on the global
curvature information, much like what Adam’s precondi-
tioner does with gradients.

A third piece of the algorithm is that the authors also
smooth spatially in the parameter space, which helps re-
duce variations between different convolutional layers for
instance. Several results are shown where AdaHessian per-
forms slightly better or on par with Adam. However the
main advantage of AdaHessian seems to be in it’s robust-
ness to learning rate variability. As with Newton’s method,
approximate Newton’s methods are also usually robust to
changes in learning rate. That is, we do not need extensive
tuning to figure out the correct learning rate. Reproducing
here table 5 from [Yao et al., 2020] as figure 5 that shows
this robustness. While AdaHessian can be twice as expen-
sive per epoch compared to Adam, we can save actual time

Figure 2. Training loss curves for Adam and AdaHessian for ma-
chine translation benchmark datasets, IWSLT14 and WMT14

by not having to run several rounds of tuning to find the best
learning rate.

Finally, the authors also show a proof of convergence in
the appendix. Using almost the same arguments as one
would use for proving convergence of the Newton method,
they first show that for α-strongly convex and β-smooth
functions with αI � ∇2f(x) � βI , if we define updates of
the form ∆xt = H−kt gt, then with the proper learning rate,
we get

f(xt+1)− f(xt) ≤ −
αk

2β1+k
‖∇f(xt)‖2 (11)

Here H−k is defined for any k : 0 ≤ k ≤ 1 as H−k =
UTΛ−kU , using the eigen value decomposition of the H .
This result is more general than the result in many textbooks
(e.g.[Nesterov, 2004]) where it is shown for k = 1, which is
Newton’s method. Using the fact that the diagonal elements
of H can be written as Di,i = eTi Dei = eTi Hei where ei
are the unit vectors for the standard basis on the parameter
space, they get that α ≤ Di,i ≤ β. As a result, they can
show (11) when H is replaced by it’s diagonal.

Second Order ML

Figure 3. The numbers reported for each method are BLEU scores
on the IWSLT14 machine translation dataset.Top row is the learn-
ing rate and we can see that while the scores change drastically for
Adam with learning rate, they change very little with AdaHessian

4. Stochastic Quasi-Gauss-Newton: SQGN
Key Paper: Deep Learning with a Stochastic Quasi-
Gauss–Newton Method, [Thiele et al., 2020]

When our loss function is of the form of a sum of squares
(usually arising from a least squares minimization problem),
there is another approximation that one can use for the Hes-
sian. If f(x) = 1

2 (h(x)− d)T (h(x)− d), where d is some
given data, then the gradient is∇f(x) = ∇h(x)T (h(x)−d)
and the Hessian is of the form∇2f(x) = ∇h(x)T∇h(x) +
∇2h(x)T (h(x) − d). We can ignore the second term and
take only the first term as an approximation to the Hessian,

∇2f(x) ≈ ∇h(x)T∇h(x) (12)

which gives us the classic Gauss Newton method. That is

xt+1 = xt − ηt
[
∇h(x)T∇h(x)

]−1∇h(x)T (h(x)− d)
(13)

This idea can be easily generalized to distance functions that
are not least squares as well. If f = l ◦ h, then ∇2f(x) ≈
∇h(x)T∇2

l (h)∇h(x). Note that in this case,∇l2(h) is the
Hessian of l as a function of h. This is usually easy to
compute and has closed form solution for many distance
functions. Computing h(x) and it’s gradient and Hessian
are the expensive operations in this process. The Gauss
Newton update is of the form

xt+1 = xt − ηt
[
∇h(x)T∇l2(h)∇h(x)

]−1∇h(x)T∇l(h)
(14)

Neither the matrix nor its inverse is formed in this approach.
Usually there is an inner loop optimization which iteratively
solves[

∇h(x)T∇l2(h)∇h(x)
]
δx = ∇h(x)T∇l(h) (15)

The iterative approach only requires a black-box implemen-
tation of how a gradient and it’s transpose act on vectors.
We can also take advantage of the fact that we do not need
to solve this inner problem perfectly and can sub-sample
and use a much smaller sample of the data to compute this
approximate Hessian inverse. this This method has been
used successfully for ML in [Martens & Stuskever, 2011].

Also see section 6.1 of [Bottou et al., 2018] for a summary
and some discussion.

Let us switch gears for a minute and talk about Limited
memory BFGS (L-BFGS), which has been the workhorse
of optimization for several decades. L-BFGS forms an
approximation of the Hessian by building it up over several
iterations by taking differences between gradients at current
and past iterates. L-BFGS comes from a class of methods
referred to as quasi-Newton methods. Without going into
the actual iteration details (see [Nocedal & Wright, 2006]),
we recall that L-BFGS computes terms of the form

st = xt+1 − xt; vt = ∇f(xt+1)−∇f(xt) (16)

It is immediately obvious that it is not easy to extend this to
a stochastic framework. When we only use some of the data
samples in computing the gradient at an iteration, LBFGS
has the form

st = xt+1 − xt; vt =
∑
i∈It+1

∇fi(xt+1)−
∑
i∈It

∇fi(xt)

(17)
vt is the difference between two terms which could have
come from possibly disjoint samples of the data and tends
to be ”noisy”. Taking differences between two ”noisy” ob-
jects does not help the optimization. One of the methods
proposed is to take an average of the gradients over several
iterations, but this does not seem to improve the situation
either. A method proposed by [Byrd et al., 2016] is to define

st = xt+1 − xt; vt =
∑
i∈It

∇2fi(xt)st (18)

Using (18) in an L-BFGS method does seem to converge
faster and improve the optimization. The cost of the Hessian
is amortized over many iterations. This can be confusing
since we were trying to avoid computing the Hessian’s in
the first place! However, once we know that we can use (18),
we can replace the Hessian computation in it with any of
the approximations we have been discussing! For instance
[Byrd et al., 2016] use a sub-sampling technique.

In [Thiele et al., 2020], the paper we are considering now,
authors combine the ideas of Gauss Newton and stochastic
L-BFGS and use the Gauss Newton approximation (12)
in (18). The idea was first proposed by [Liu et al., 2019],
and the authors in this paper have augmented it by using
a SVRG-like variance reduction. They call this method
Stochastic Quasi Gauss Newton (SQGN).

While the mathematics in this paper [Thiele et al., 2020] is
not completely new, what makes this paper interesting is
that the authors are trying to solve a problem which would
traditionally be solved using a partial differential equations
(PDE) constrained optimization. The authors are treating
this as a ML problem and the comparison to first order

Second Order ML

methods is interesting. Seismic tomography or seismic full
waveform inversion (FWI) are classic optimization prob-
lems that arise in geophysics for oil exploration or studies
of the earth’s mantle [Fichtner, 2011]. The problem is to
reconstruct the earth’s subsurface structure (velocities) from
seismic measurements on the surface. This is a non-linear
optimization problem and since we only have data at the
surface, there are known issues like non-uniqueness (”cycle-
skipping”) and limited depth penetration of seismic signals,
especially in the presence of salt in the subsurface. Some-
times the PDE used as a constraint does not model all the
physics of the problem and as a result there is now some
interest in the geophysics community to use ML to solve
this problem and leave the physical modeling out.

Figure 4 shows the training loss and testing accuracy of
Adam and SQGN. We immediately notice that Adam out-
performs SQGN in both metrics. The figure shows results
from five different runs. SQGN is also reported to be 2.5
times as expensive as Adam. Once again, however, the ad-
vantage is in hyper-parameter tuning. SQGN was applied
to this new problem using the same hyper-parameters that
the author used for a different ML problem. They did not
need to tune their algorithm for this new setting or new data.
They also point out that there is little variation between the
results of five runs shown in the figure.

Figure 4. Figure 2 from [Thiele et al., 2020]. Convergence rate
and accuracy of Adam are better, but there is less variation in the
result from SQGN

One can still argue that Adam has performed quite well for
the seismic tomography problem. However, the image pro-

duced by SQGN is more realistic. The metrics we normally
use to compare different algorithms like the structural simi-
larity index do not seem to highlight that the SQGN image
is more realistic. This suggests that for this type of problem,
we may need newer metrics to evaluate the performance of
ML methods. We should point out that the experiments in
this paper have been performed using synthetic seismic data
and it has not been proven that this technique will perform
well with real seismic data.

Figure 5. Figure 4 from [Thiele et al., 2020]. Left panel: Reference
(True) solution. Middle panel: Result from Adam. Right panel:
Result using SQGN. Although metrics seem to show the Adam
performs better, for this problem there are fewer physical artifacts
when using SQGN as compared to Adam

5. Discussion
We have seen three different approaches to using second
order information for ML. There are some common features
among all three

• None of them form the actual Hessian matrix or use
it’s functional representation

• All of the approximate the Hessian using iterative meth-
ods and some of the speed up is related to how well
this inner problem can be solved

• All of them have to include some variance reduction
techniques to reduce the effect of noisy local Hessians
from corrupting the optimization

• All methods show a robustness to hyper-parameters,
which might be the key advantage of second order
methods.

ML algorithms differ from classical optimization problems
in that we have to worry about generalization of recovered
models as well. In classical optimization, we have achieved
success once we are able to fit a model to the given data
within some error tolerance. However, for ML algorithms, it
is not enough to determine a model within error tolerance on
the given training data, the model needs to work well enough
to predict on new data as well. That is, our optimization
algorithm must reduce the loss function, but must do it in

Second Order ML

such a way that we do not lose accuracy on test data (and
future unknown data). Since second order methods do a
very good job of reducing the loss function, there is always
the danger of over-fitting the training data and not achieving
required accuracy. There is still a lot of research that can be
done!

While it is not immediately clear whether second order
methods are good at generalization, there do seem to be
several advantages in using them. One key advantage is
their robustness to learning rate, which can avoid expensive
tuning runs for new problems. Another advantage of second
order methods is their ability to resolve cross talk [Pan &
Innanen, 2016] which is evident in non ML applications (
where first order methods struggle). When we are simulata-
neously solving for multiple parameters, using limited data,
we could have two solutions that minimize the data misfit in
the similar ways. Second order methods have the ability to
mitigate some of these non-uniqueness issues. It is not clear
yet whether this is an issue for ML or not, since methods
like Adam can mitigate cross talk to some extent. Since
all nonlinear problems are different, this may be a future
research possibility.

This report only touched on some of the research on this
topic. There are several other flavors of second order meth-
ods. [Dong et al., 2019] use the Hessian in a different way
to reduce the memory footprint of neural networks. Several
other authors are pursing stochastic L-BFGS variations as
well, see [Bollapragada et al., 2018], and [Meng et al., 2020].
Second order information has also been used to reduce di-
mensionality of problems via matrix-sketching in [Berahas
et al., 2019], [Berahas et al., 2020]. We also recommend
the review paper, [Bottou et al., 2018] for a holistic view of
second order methods in machine learning.

5.1. Citations and References

References
Agarwal, N., Bullins, B., and Hazan, E. Second-order

stochastic optimization for machine learning in linear
time. Journal of Machine Learning Research, VOL 18, p
1-40, 2017.

Bekas, C., Kokiopoulou, E., and Saad, Y. An estimator for
the diagonal of a matrix. Applied Numerical Mathematics,
VOL 57, p 1214-1229, 2007.

Berahas, A. S. et al. An investigation of newton-sketch and
subsampled newton methods. ArXiv preprint, 2019.

Berahas, A. S. et al. Quasi-newton methods for deep learn-
ing: Forget the past, just sample. ArXiv preprint, 2020.

Bollapragada, R. et al. A progressive batching l-bfgs method
for machine learning. Proceedings of the 35th Int. Conf.
on Machine Learning, 2018.

Bottou, L., Curtis, F., and Nocedal, J. Optimization methods
for large-scale machine learning. SIAM Review, 2018.

Byrd, R. et al. A stochastic quasi-newton method for large-
scale optimization. SIAM Jou. on Optimization, 26(2),
2016.

Dong, Z. et al. Hessian aware trace-weighted quantization
of neural networks. ArXiv preprint, 2019.

Fichtner, A. Full Seismic Waveform Modeling and Inversion.
Springer, 2011.

Gholami, A. Adahessian. URL https://github.com/
amirgholami/adahessian.

Kingma, D. and Ba, J. A method for stochastic optimization.
International Conference on Learning Representations,
2015.

Liu, J. et al. Accelerating distributed stochastic l-bfgs by
sampled 2nd-rder information. Proc. 33rd conf. on Neural
Inf. Proc. Sys., 2019.

Martens, J. and Stuskever, I. Learning recurrent neural
networks with hessian-free optimization. Proc. of 28th
Int. Conf. on Machine Learning, 2011.

Meng, S. Y. et al. Fast and furious convergence: Stochastic
second order methods under interpolation. Proc. of the
23rd Int. Conf. on AI and Stats., 2020.

Nesterov, Y. Introductory Lectures on Convex Optimization,
A Basic Course. Kluwer, 2004.

Nocedal, J. and Wright, S. J. Numerical Optimization, 2nd
edition. Springer, 2006.

Pan, W. and Innanen, K. A summary of several challenges
facing multi-parameter elastic full waveform inversion.
CSEG Recorder, VOL. 41 NO. 08, 2016.

Thiele, C., Araya-Polo, M., and Hohl, D. Deep learning with
a stochastic quasi-gauss–newton method. Proceedings
of 37th International Conference on Machine Learning,
2020.

Yao, Z., Gholami, A., Shen, S., Keutzer, K., and Mahoney,
M. Adahessian: An adaptive second order optimizer for
machine learning. Arxiv preprint, 2020.

https://github.com/amirgholami/adahessian
https://github.com/amirgholami/adahessian

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

Byungjun Kim 1

Abstract

Traditionally, there has been a gap of knowledge
between discrete solvers and continuous methods.
As machine learning grows in importance to prob-
lems such as image classification and segmen-
tation, the incompatibility between continuous
methods and discrete problems becomes apparent,
and the discreteness of problems severely inhibits
their utility to machine learning advancement. We
will explore some real examples of discrete opti-
mizer relaxations to use as layers in continuous
methods, and their effects on algorithm function-
ality or optimality, as well as a comparison with
current leading algorithms. In particular, we dis-
cuss a relaxed SAT solver to train a neural net-
work to solve sudoku puzzles (as well as image
identification and classification) and a differential
mask matching network to address image segmen-
tation and identify distinct moving objects within
multiple frames of videos.

1. Introduction
What exactly are discrete solvers and continuous methods?
What makes them irreconcilable? In order to understand the
relationship between discrete optimization and continuous
methods, we first define the two fields, and elaborate on
their key differences that cause tension between them.

1.1. Discrete Solvers/Optimizers

Discrete solvers, which involve algorithms that solve prob-
lems on discrete variables, typically require integer con-
straints, and are good for solving purely discrete models.
That is, they compute a model’s next simulation time step,
and thus do not compute continuous states. A classic ex-
ample of a discrete optimizer, and one that we will discuss
further today, is the sudoku puzzle. The puzzle consists of
a structure of numbers defined by ”rules”, i.e. constraints,
that apply digits 1-9 into various boxes in the 9x9 sudoku
board. Some other noteworthy discrete solvers include ILP,
the knapsack problem, and graph algorithms, like traveling
salesman. Typically, discrete solvers require knowledge
of the various constraints necessary to solve the problem,

and thus require an extensive and comprehensive infras-
tructure for the algorithm to properly execute. This can
be costly to implement, and does not fare well with low-
info/unsupervised learning, such as image classification.

1.2. Continuous Methods

Continuous methods represent models that use continuous,
differentiable data as input. The traditional example of a
continuous method is a neural network, or any ML model
dealing with continuous data, like using gradient descent.
Continuous methods are highly advantageous in solving
problems where the problem is not completely defined, or
when one wants to look for patterns or trends in the data.
However, continuous methods are not applicable to discrete
data, and have long been unable to solve ILP or sudoku-like
problems with integer constraints. Consequently, contin-
uous methods like neural networks are not able to solve
discrete problems, thus creating this tension between dis-
crete solvers and continuous methods.

1.3. Resolving Differences

To explore possible solutions to apply discrete solvers to
continuous methods, we will discuss two experimental im-
plementations of discrete solver relaxation to obtain a con-
tinuous, differentiable stream that can be used in continuous
methods. In particular, we will explore the following two
papers, with supplemental insight from many others:

• SATNet: Bridging deep learning and logical rea-
soning using a differentiable satisfiability solver by
Wang et al. (2019).

• DMM-Net: Differentiable Mask-Matching Net-
work for Video Object Segmentation by Zeng et al.
(2019).

In analyzing these papers, we will discuss key factors the
authors used to apply relaxed discrete solvers to their respec-
tive continuous methods, and seek to define those character-
istics that might further bridge discrete solvers to continuous
method, hopefully clarifying a solution for resolving their
tension.

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

2. MAXSAT Relaxation
SAT, or boolean satisfiability, is a well known problem in
computer science and logic, in which a solution is sought (if
there exists one) using the logical operator constraints pro-
vided. A simple example is the N Queens problem, which
solves the maximum number of queens allowed on a stan-
dard 8x8 chess board such that the queens cannot attack each
other. This problem can be represented as a set of integer
constraints of each queen’s ”range” and position encoding.
This problem can then be fed as input as an algorithm to
determine solutions that satisfy all of the boolean clauses.

Figure 1. A valid solution to the N Queens problem

The discrete solver used to solve the sudoku problem is
the MAXSAT solver, or ”Maximum Satisfiability”. Similar
to SAT, MAXSAT aims to solve a given set of boolean
operators, but instead of finding unique solutions that satisfy
ALL boolean clauses, MAXSAT determines those solutions
that satisfy the greatest number of clauses. In a typical
SAT sudoku solver implementation, the 9x9 sudoku board is
encoded in bit representation, with its rules and relationships
defined in the encoding. However, for relaxed MAXSAT, a
looser approach is taken, without all of the rules to sudoku
explicitly represented in the data.

2.1. SDP Relaxation

In order to obtain a continuous, differentiable MAXSAT
variation, the authors apply a fast coordinate descent
approach to solving a Semidefinite Programming (SDP)
relaxation to MAXSAT (Wang et al., 2017). This SDP
relaxation produces strong approximation guarantees for
MAXSAT, while producing a differentiable optimization-
based MAXSAT solver that can be used as a layer in a
machine learning algorithm.

Consider a MAXSAT instance with n variables and m
clauses. If we let ṽ ∈ {−1, 1}n denote binary, integer

assignments to the problem variables, where ṽi is assigned
the truth value of variable i ∈ {1, ..., n}, and s̃ ∈ {−1, 0, 1}
for i ∈ {1, ..., n} where sij denotes the sign of ṽi in clause
j ∈ {1, ...,m}, then we can present the MAXSAT problem
as

maximize
ṽ∈{−1,1}n

m∑
j=1

n∨
i=1

1{s̃ij ṽi > 0}.

To form an SDP relaxation of the above MAXSAT equation,
we relax the discrete variables ṽi into continuous variables
vi ∈ Rk, ‖vi‖ = 1, with respect to some ”truth direction”
v> ∈ Rk, ‖v>‖ = 1, with coefficient vector s̃> = {−1}m
associated with v>. The continuous variable vi relates to
the discrete ṽi by P (ṽi = 1) = cos−1(−vTt v>)/π, an
approach determined by randomized rounding (Goemans &
Williamson, 1995). The SDP relaxation yields

minimize
V ∈Rk×(n+1)

〈
STS, V TV

〉
, subject to

‖vi‖ = 1, i = >, 1, ..., n

where V ≡ [v> v1 ... vn] ∈ Rk×(n+1) and
S ≡ [s̃> s̃1 ... s̃n] diag(1√

4|s̃j |
) ∈ Rm×(n+1).

Which represents a continuous, differentiable variation of
MAXSAT that can be fed as a layer in a deep network, as
we describe in the following section.

2.2. SATNet Layer

Using the relaxed SDP MAXSAT solver, we can create a
deep network layer to aid in training. We start by defining
I ⊂ {1, ..., n} as the indices of MAXSAT variables with
known assignments and O ≡ {1, ..., n} I the indices of
variables with unknown assignments. Then, our layer takes
our relaxed probabilistic inputs zi ∈ [0, 1] and produces the
assignments of unknown probabilistic variables z0 ∈ [0.1].
Using these inputs Zi, a forward pass is computed using
our coordinate descent algorithm and the weights of the
layer are determined from SDP.

From the relaxed outputs from our forward pass, we convert
these outputs to discrete/probabilistic variable assignments
Z0, or assignments to our unknown variables, by random-
ized rounding. For every vo, o ∈ O, we take some random
hyperplane r from the unit sphere and assign

This randomized rounding procedure, with the correct
weights S, assures an optimal expected approximation ratio
for our MAXSAT solver (Goemans & Williamson, 1995;

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

Figure 2. Results for 9x9 Sudoku experiments.

Wang & Kolter, 2019). In essence, this aids in obtaining the
correct zo boolean solution that maximizes our MAXSAT
objective, or solve the sudoku puzzle.

Now that we have our forward pass computed, the authors
derive the backward pass updates to integrate our SATNet
layer with the deep network. The backward pass, which I
will not go into but leave in the appendix to explore, takes a
coordinate descent approach that applies gradients with re-
spect to output relaxations to a modified coordinate descent
algorithm. The algorithm uses rank-one updates to maintain
and modify Φ, a variable key in making the algorithm’s
runtime O(nmk).

2.3. Experimental Results

The relaxed MAXSAT-deep network integration was tested
in three categories for sudoku, each with 9K training exam-
ples and 1K test examples:

• Bit representation, with locality structure implicitly
built into the data stream

• Bit representation, but permuted in order to remove
any and all locality that may have been used

• Visual representation of a sudoku board with
filled/”empty” squares.

To compare results of SATNet, two alternate, deep learning
options display results alongside SATNet:

• ConvNet, a standard implementation of a convolutional
neural network

• ConvNetMask, a modified CNN that receives a binary
mask indicating those bits that must be learned.

The goal of each sudoku puzzle representation is to demon-
strate SATNet’s ability to learn the rules of the game and
to complete each board accurately without being explicitly

told the relationships between variables, and to demonstrate
SATNet’s flexibility in learning from various streams and
methods of data, as well as its efficiency and competitive-
ness against other neural networks.

2.3.1. BIT REPRESENTATION (ORIGINAL SUDOKU)

The bit representation of a sudoku puzzle tests SATNet’s
ability to learn to solve sudoku puzzles without hard-coded
relationships between the bits. In SATNet, the input is vec-
torized, and does not rely on locality structures or other
to learn to solve puzzles. Referring to the table displayed
above, SATNet outperforms both ConvNet and ConvNet-
Mask by a great margin, as expected. These results demon-
strate SATNet’s massive advantage in learning rules to previ-
ously discrete problems that continuous methods struggled
to learn and solve. In fact, the standard CNN performed
dismally, as it cannot learn the rules of the discrete problem
without guidance. The masked CNN performs better, given
its reliance on the bit mask to determine bits to learn, but
still nowhere near SATNet.

2.3.2. PERMUTED BIT REPR. (PERMUTED SUDOKU)

In order to remove any locality structure that may be taken
advantage of in the bit representation, a permutation is ap-
plied to the representation such that the relationship between
bits is maintained, but order is scrambled and locality ef-
fectively erased. CNN, predictably, performs just as poor
as previously. In fact, it performs even worse now that any
inkling of additional information it had used before has been
removed. ConvNetMask previously had been provided a bit
mask marking those bits to be learned, but now that the bits
have been scrambled, the binary mask is not particularly
useful without the locality structure, and it’s clear that CNN
and ConvNetMask are not able to learn the underlying rules
of the game. SATNet, on the other hand, does not rely on the
structure of the bit representation, but rather the relationship
between the bits themselves, and is thus able to perform
exactly the same as before permutation, showing strong
evidence of superiority in learning using discrete solvers.

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

Figure 3. An example of a MNIST digit-filled sudoku board, with
0s representing spaces to be filled.

2.3.3. VISUAL SUDOKU

Visual sudoku, as displayed above, is a visual representation
of a sudoku board, where cells are filled with given num-
bers 1-9, and spaces to be filled are represented with zeroes.
This requires additional layers and combining multiple net-
work layers to process the MNIST digits and convert the
visual representation to some readable, logical stream, so
that the sudoku algorithm can compute and solve the puzzle.
Traditionally, neural network architectures are not able to
represent this complexity well, and the results show exactly
that, with CNN performing poorly per usual. ConvNetMask
performs well during the training phase, but ultimately over-
fits and cannot convert its results to the test phase. SATNet,
however, performs well in both training and testing, and
demonstrates its clear ability to learn the ”rules of the game”
directly from visual input that previously had been unheard
of with both discrete solvers and neural network architec-
tures.

2.4. Conclusion

SATNet has a clear advantage in processing and accurately
solving a variety of input types compared to traditional
continuous methods. Additionally, it has a runtime that
outperforms most discrete solvers, and does not require
computational ”hand-holding” with a hefty infrastructure
and the need for many constraints and rules. Instead, SAT-
Net utilizes the discrete, optimization aspects of discrete
solvers and applies them to continuous methods so that they
can learn the rules and constraints, and produce accurate
and efficient results, taking the best of both sides. We will
see in the following section that a similar process ensues for
image segmentation.

3. DMM-Net Image Segmentation
Differentiable Mask-Matching Network, or DMM-Net, is a
novel solution to video object segmentation that applies
relaxation to a discrete optimizer and integrates it as a
layer in a continuous method. Specifically, using a Mask-R-
CNN backbone, the Mask-R-CNN extracts mask proposals
per video frame and create matches between the object
templates and proposals as a linear assignment problem
(LAP)(He et al., 2017). DMM-Net resolves its LAP by
unrolling a projected gradient descent algorithm, whose
projection exploits Dykstra’s projection algorithm (not to
be confused with Dijkstra’s Algorithm). This algorithm
relaxes the LAP to a continuous and differentiable model,
which is applied as a layer in the Mask-R-CNN to achieve
competitive video segmentation mask-matching results.

3.1. Introduction

Video segmentation, exampled below, is the process of par-
titioning a video frame into background and objects in the
foreground, typically that draw significant attention. This is
an incredibly important task in computer vision, especially
with its use in security/surveillance, autonomous driving,
video editing, and more.

Figure 4. An example of DMM-Net’s video object segmentation:
The runner, cart, and rider are all determined ”objects” while the
background is not.

DMM-Net applies to semi-supervised video object segmen-
tation (VOS), which means instance masks are provided for
the first few frames of the test videos. With just this informa-
tion, the algorithm must process the information frame by
frame and maintain a tight representation of the object(s) in
focus throughout the video (i.e. we want the same mask to
apply to the same object over multiple frames, whether the
object moves in frame or not). Currently existing VOS algo-
rithms, which leverage pretrained deep neural network for
object masks, cannot integrate DMM-Net’s optimal match-
ing algorithm that provides more accurate masks due to its
inherent non-differentiable nature. This is a key advantage
with DMM-Net that we will see when comparing results
with competitive algorithms.

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

DMM-Net first extracts mask proposals with a pre-trained
Mask-R-CNN (similar to other leading deep networks), and
then matches those proposals against the mask templates
provided (i.e. the template for the first frames, then every
subsequent computed template), assigning matching costs
of each proposal. While similar to a standard deep network
VOS model, the key difference is DMM-Net’s leverage of
the linear cost assignment problem, and its relaxation that
makes the cost assignment problem differentiable and thus
includable as a layer in the network.

3.2. Mask Matching

There are two main classes of image matching: Pixel-level
matching and Mask-level matching. While both are viable
options for video object segmentation and determining
instance masks, pixel-level matching is quite memory and
computation intensive and does not utilize nor address the
optimal matching algorithm used in DMM-Net. Because of
this, DMM-Net uses mask-level matching instead.

DMM-Net’s mask-level matching involves tracking the ob-
ject parts in the video by computing similarity scores be-
tween the proposal and templates in the reference frame,
solving the matching problem with an iterative solver, a
verifiably better solution opposed to many other models that
rely on a greedy algorithm that takes the greatest score.

3.3. Model

DMM-Net’s novelty arises from its differentiable mask
matching (DMM) and its method for mask refinement,
involving an iterative discrete-relaxed matching algorithm.
First, as input for the DMM stage, the model extracts
mask proposals per frame with a COCO-pretrained Mask
R-CNN, selecting the top 50 proposals. Then, using a
CNN fθ, where θ denotes learnable parameters for the
mask matching cost, we extract features for the given mask
proposals P t and templates R (proposals from time t,
templates taken from the first frame).

Once the proposals and templates have been identified, we
can determine the features for both; that is, we can compute
fθ(ri) and fθ(ptj), where i and j denote the ith and jth

template and proposal, respectively. DMM-Net’s matching
cost matrix, Ct, utilizes cosine similarity and Intersection-
over-Union (IoU) to compute the difference cost between
masks:

Cti,j = (λ− 1) cos
(
fθ(p

t
j), fθ(ri)

)
− λIoU(ptj , ri)

Where 0 < λ < 1 is a hyperparameter determined by
the user to control the learning process. The result of this
applied to our mask proposals and templates is the cost

matrix Ct, of size n × mt, where each row and column
reference a template and mask proposal, respectively.

3.4. Cost Matching Problem

The discrete solver DMM-Net uses is a well known inte-
ger linear programming problem, the bipartite matching
problem. To summarize, bipartite matching is a typically
graphical problem that entails partitioning a vertex set into
two smaller sets such that no edge exists between two ver-
tices in the same set. For DMM-Net’s purposes, we focus
on minimum-cost bipartite matching, or determining the
maximum cardinality matching that has minimum cost.

Figure 5. An example of a bipartite graph, where no two vertices
on either the left nor right have edges between themselves

Algorithmically, minimum cost bipartite matching can be
expressed as the following ILP problem:

Where X ∈ Rn×m is a boolean assignment matrix (hence
the last line), and 1n, 1m are one vectors of size n and m,
respectively. Using this discrete solver directly for VOS
would give us a time complexity of O(m3), which is far too
large, and would also not back propagate easily. Addition-
ally, a pure discrete solver would supply exact matchings,
which are not necessary in VOS - a real, closely approxi-
mated assignment matrix would suffice for mask matching.
Thus, DMM-Net proposes the following linear program-
ming relaxation:

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

Figure 6. DMM-Net process from template to predictions; Proposals and templates are generated, assignment matrix is computed, masks
are matched, refined, and predictions are outputted.

Namely, the differences being that instead of Xi,j ∈ {0, 1},
i.e. binary, we drop that clause entirely, such that Xi,j ∈ R.

With this relaxed problem, DMM-Net introduces the pro-
jected gradient descent algorithm below, where Ngrad and
Nproj are the number of gradient descent steps and pro-
jection steps, respectively. At each iteration, X is updated
following the negative gradient direction, as is typical, but
to compute the projection of the updated X onto the con-
straint set, DMM-Net exploits a cyclic constraint projection
method, Dykstra’s projection algorithm, which is guaranteed
to converge, and as a bonus, is straightforward to implement
(Dykstra, 1983).

3.5. Mask Refinement

After matching according to the projected gradient descent
algorithm, for each mask template, DMM-Net outputs
one mask that is fed to the final refinement stage before
prediction. After obtaining the optimal assignment X̂ , we

compute a weighted combination of the proposal masks P
to refine our mask.

First, we resize the mask proposals such that the proposals’
resolutions match that of the image. Then, we paste the
proposals onto empty images such that the proposal, P̃ , is
now the same size as the input image. Then, to obtain the
cost-matched mask P̂ , we take the tensor product of the cost
matrix and the corrected proposal:

P̂ = X̂ ⊗ P̃

where X̂ ∈ Rn×m, P̃ ∈ Rm×H×W , P̂ ∈ Rn×H×W , and
H andW denote the height and width of the input image. P̂
is a matrix containing the matched masks, where each H ×
W slice in P̂ represents the matched mask corresponding
to a particular template. With the matched masks given
in P̂ , we refine them against the corresponding templates,
and run them through the rest of the deep network’s four
ConvLSTM refinement layers to generate our final VOS
predictions(Shi et al., 2015).

3.6. DMM-Net Results

The dataset used for training and validation are YouTube-
VOS(Xu et al., 2017), DAVIS 2017(Perazzi et al., 2016),
and SegTrack v2. Some primary metrics the authors used to
score different models are

• mIoU∗, the mean Intersection-over-Union over all
frames, used for the SegTrack dataset

• GM, the average match score between a model’s predic-
tion and actual object instance, used for YouTube-VOS
and DAVIS 2017

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

Figure 7. Results of running various models on YouTube-VOS, DAVIS 2017, and SegTrack v2, respectively. Subscripts S and U stand for
”Seen” and ”Unseen”, referring to object categories in the validation set that have previously been seen in the training set or not. Subscript
M refers to mean. Measurement is taken on each table by the Jaccard Index, or IoU.

In addition, some supplemental metrics offer more depth to
each model’s efficacy:

• mIoU†, the mean IoU over all instances of appearance

• J , the region score of the prediction, computed as
a Jaccard Index (IoU) of the pixels within the mask
(Pont-Tuset et al., 2017)

• F , the boundary (contour) score of the prediction, com-
puted as IoU of pixels at the spatial extent of the mask.

Referring to the table above, each score reported tracks
the IoU score for each outputted prediction against the ac-
tual instance, meaning a higher score reflects a more accu-
rate prediction. For the YouTube-VOS dataset(left), while
DMM-Net underperforms S2S, a sequence-to-sequence
RNN driven deep network (Xu et al., 2018), it ranks as
one of the highest scores in the table. For DAVIS 2017,
DMM-Net outperforms other models significantly, and for
SegTrack v2, DMM-Net tends toward the higher scores.
Outside of accuracy, we compare runtime and computa-
tional efficiency with other models. DMM-Net achieves
competitive results in half of S2S’s time. Additionally, for
the backbone used for feature extraction, using a different
backbone (i.e. ResNet-50, ResNet-101, ResNet-152, or
other) could significantly improve DMM-Net’s accuracy.

3.7. Conclusion

DMM-Net achieves competitive results for video object seg-
mentation with significant advantages in runtime. These
results are obtained by use of a discrete solver relaxation,
i.e. modified minimum cost bipartite matching. The relaxed
discrete solver applied to a deep network as a layer allows
improved speeds without sacrificing much accuracy, if any.
Additionally, DMM-Net’s novelty offers room for growth,
perhaps by using different backbones to obtain accuracy im-
provements, or selecting a multi-partite matching problem

rather than bipartite. Overall, DMM-Net establishes itself as
a solid competitor in VOS, and introduces the capabilities of
a differentiable relaxed discrete solver in a computer vision
setting, opening the door for novel solutions in the discrete
solver-continuous method field.

4. Discussion
SATNet and DMM-Net share the core concept of relaxing
a discrete solver for use as a layer in neural networks,
a continuous method. Though the two algorithms deal
with separate problem sets — Sudoku puzzle-solving for
SATNet and video object segmentation for DMM-Net —
both algorithms successfully and competitively accomplish
their tasks as novel solutions to a difficult problem. In both
instances, relaxing a discrete problem to a continuous, dif-
ferentiable one allowed significant runtime improvements,
and were more applicable to machine learning’s acceptance
of fewer rules and correctness.

For SATNet, that meant modifying a MAXSAT problem,
which traditionally runs until exhaustion to find the
maximum satisfying set, to accept approximations that,
though not 100% accurate, provide reasonably close results
for a fraction of the time. For DMM-Net, that meant
relaxing a traditionally ILP problem, the minimum cost
bipartite matching problem, to an LP problem by allowing
real numbers in the cost matrix, rather than exhaustively
computing the single unique cost matrix binary solution.

Utilizing this relaxed discrete solver as a layer in a contin-
uous method allows the model to tackle traditionally unre-
solvable differences between discrete solvers and continu-
ous methods. SATNet blazes a path for solving previously
high-infrastructure demanding problems with low guidance
neural networks, whereas DMM-Net introduces using re-
laxed discrete solvers to solve problems that may not need

Exploring the Effects of Discrete Optimizers as Layers of Continuous Methods

100% accuracy. Overall, discrete solvers for continuous
methods is a burgeoning field in optimization and machine
learning, and is one we expect to make large advancements
to ways we approach problems in the future.

References
Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-

mization as a layer in neural networks. arXiv preprint
arXiv:1703.00443, 2017.

Dykstra, R.L. An algorithm for restricted least squares re-
gression. Journal of the American Statistical Associa-
tion, 78(384):837–842, 1983

Fernandez-Moral, E., Martins, R., Wolf, D., and Rives, P.
A new metric for evaluating semantic segmentation:
leveraging global and contour accuracy. Workshop on
Planning, Perception and Navigation for Intelligent Ve-
hicles, PPNIV17, Sep 2017, Vancouver, Canada.

Goemans, M. X. and Williamson, D. P. Improved approxi-
mation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of
the ACM (JACM), 42(6):1115–1145, 1995.

Gomes, C. P., van Hoeve, W.-J., and Leahu, L. The power
of semidefinite programming relaxations for max-sat.
In International Conference on Integration of Artifi-
cial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming, pp. 104–118.
Springer, 2006.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. Mask
R-CNN. In ICCV, 2017.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollar, P., and Zitnick, C.L. Microsoft
coco: Common objects in context. In ECCV, 2014.

Palm, R. B., Paquet, U., and Winther, O. Recurrent relational
networks. arXiv preprint arXiv:1711.08028, 2017.

Park, K. Can neural networks crack sudoku?, 2016. URL
https://github.com/Kyubyong/sudoku.

Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L.,
Gross, M., and Sorkine-Hornung, A. “A benchmark
dataset and evaluation methodology for video object
segmentation,” in CVPR, 2016.

Pont-Tuset, J., Perazzi, F., Caelles, S., Arbelaez, P.,
Sorkine-Hornung, A., and Van Gool, L. The 2017
DAVIS challenge on video object segmentation. arXiv
preprint arXiv:1704.00675, 2017.

Selsam, D., Lamm, M., Bunz, B., Liang, P., de Moura,
L., and Dill, D. L. Learning a sat solver from single-bit
supervision. arXiv preprint arXiv:1802.03685, 2018.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K.,
and Woo, W.-C. Convolutional lstm network: A ma-
chine learning approach for precipitation nowcasting.
In NIPS, 2015.

Vlastelica, M., Paulus, A., Musil, V., Martius, G., and
Rolı́nek, M. ”Differentiation of Blackbox Combinato-
rial Solvers,” in ICLR, 2020.

Wang, P.-W. and Kolter, J. Z. Low-rank semidefinite pro-
gramming for the max2sat problem. In AAAI Confer-
ence on Artificial Intelligence, 2019.

Wang, P.-W., Donti, P.L., Wilder, B., and Kolter, J. Z.
SATNet: Bridging deep learning and logical reason-
ing using a differentiable satisfiability solver. arXiv
preprint arXiv:1905.12149, 2019.

Wang, P.-W., Chang, W.-C., and Kolter, J. Z. The mixing
method: coordinate descent for low-rank semidefinite
programming. arXiv preprint arXiv:1706.00476, 2017.

Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang,J.,
and Huang, T. Youtube-vos: A large-scale video
object segmentation benchmark. arXiv preprint
arXiv:1809.03327, 2018.

Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y.,
Price, B.L., Cohen, S., and Huang, T.S. Youtube-vos:
Sequence-to-sequence video object segmentation. In
ECCV, 2018.

Zeng, X., Liao, R., Gu, L., Xiong, Y., Fidler, S., and
Urtasun, R. DMM-Net: Differentiable Mask-Matching
Network for Video Object Segmentation. arXiv preprint
arXiv:1909.12471, 2019.

