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Abstract

The overall goal of this project is to develop novel
methodology for efficiently training graph con-
volutional networks (GCN). Recent researches
towards efficient GCN mainly focus on node
partition, which can be further divided into
two branches of layer sampling (e.g. Graph-
SAGE (Hamilton et al., 2017), FastGCN (Chen
et al., 2018), LADIES (Zou et al., 2019)) and
graph sampling (e.g. ClusterGCN (Chiang et al.,
2019), GraphSAINT (Zeng et al., 2019)), whereas
another path of model parameter partition is un-
derstudied. Our exploration will fall into three
steps: i) starting from parameter partition by
making connection with independent subnet train-
ing (IST) (Yuan et al., 2019); ii) integrating the
developed approach from parameter partition to
node partition, trying to developing novel sam-
pling/clustering methodologies; iii) building a
systematic distributed training system to support
the proposed method. This report mainly focus
on the first step, leaving the others further work.

1. Introduction
Deep neural networks (DNNs) have been dominating a large
quantities of tasks and even surpassed human-level perfor-
mance in many fields such as natural language process-
ing (Olsson, 2009; Schmidt & Wiegand, 2017) and com-
puter vision (Liu et al., 2017; Ioannidou et al., 2017; Alom
et al., 2018). One main component that contributing to
DNN’s significant achievement is that, the abundant real-
world information such as voice and pictures are presented
in a well-structured Euclidean space, where some impor-
tant operations (e.g. convolutions) can be easily performed.
However, Euclidean space is not applicable to all existing
data, as a large number of application relies on the data in a
graph structure. Representative applications include chem-
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Figure 1. Two mainstream pathways towards efficient and scalable
GCN. (Credit to (Zeng et al., 2020)). They both target on the
problem of overwhelming number of nodes. However, in this
paper, we focus on the alternative aspect in model parameter space

istry, where molecules are modeled as graphs, and more
obviously, social networking where every user is regarded
as node and edges exist when users have some social connec-
tions. To transfer the power of deep learning methods from
Euclidean space towards non-Euclidean space, researchers
attempted to developed several neural networks for graph
data, and most classic and popular model is graph convolu-
tional networks (Kipf & Welling, 2016), which generalizes
the classic convolutional operation for graph scenario, yield-
ing successful performance.

Although GCN is shown effective on various of tasks in-
cluding both node-level and graph-level classification (Kipf
& Welling, 2016), it is notorious on its disability of huge-
graph training. In practical, GCN training requires to save
the whole graph data and all hidden representation of all
nodes into memory. Even when the graph is huge, GCN is
still trained in full-batch manner, which is extremely vulner-
able to memory overflow problem.

To deal with the aforementioned problem, recent researches
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towards efficient GCN mainly focus on node partition,
which can be further divided into two branches of layer
sampling (e.g. GraphSAGE (Hamilton et al., 2017), Fast-
GCN (Chen et al., 2018), LADIES (Zou et al., 2019)) and
graph sampling (e.g. ClusterGCN (Chiang et al., 2019),
GraphSAINT (Zeng et al., 2019)). The main idea of these
individual path is depicted as Figure 1 and clarified in details
in Section 2.

Notice that the unified goal of node partition methods (both
layer and graph sampling) is, to seperate the huge graph
into multiple small graphs for mini-batch training. In this
case, GCN is not only trainable on large graph eventually,
but also open to distributed training.

Different from the previous two paths of efficient GCN
methods, which takes both memory costs and distributed
training into consideration (generally, they pay more atten-
tion on the memory problem), in this paper, we emphasize
on the distributed training for GCN, and more specifically,
we target on the understudied efficient GCN method that
trains the model in parallel by seperating/partitioning GCN
model parameters into sub-models. Hence, the goal of our
method is only for proposing a distributed method to accel-
erate GCN training in parallel. The method is originated
from independent subnet training (IST) method (Yuan et al.,
2019) and hope to be generalized into graph setting. There-
fore, we name our method as GCN-IST, or GIST for short.
The details of our methods will be introduced in Section 3.

Experimental results shows the feasibility of GCN-IST and
can achieve linear speed-up on small graph dataset. Further
work on deeper GIST with larger graph is awaiting.

Before we enter into the introduction of previous related
works and our method, we would like to highlight few over-
all evaluation on this topic here.

Some excitement from this topic: Generally, to authors’
knowledge, this work is the first attempt to generalize IST
into GCN settings. It shows that GCN can be trained by
multiple GPUs simultaneously, showing another way to ac-
celerate GCN training other than operations on node space.

Some concerns about this topic: However, considering the
initial motivation of IST work is that, current deep nerual
networks, such as ResNet, can be as deep as thousand of
layers, regarding the large model with a large number of
parameters that requires large memory, IST can significantly
alleviate the memory problem and also enable fast training
on small submodels. Whereas most of GCN models are
small and only have few hidden layers, the significance of
IST on GCN is generally not as great as original IST.

The following part of the paper is seperated into five parts.
We will first introduce the preliminary knowledge, including
GCN, IST and existing methods for distributed GCN in

Section 2. Our methods are then illustrated in details in
Section 3 The variant of our method is also mentioned in
the stated section. Section 4 shows the experiments results.
The paper is ended with a brief conclusion in Section 5.

2. Preliminary
In this section, we first introduce the basics of GCN and then
cover some existing methods for efficient GCN training.

2.1. Graph Convolutional Networks (GCN)

In this project, we focus on the Graph Convolutional Net-
works (GCN), the most standard model among all graph
neural networks. The forward propagation rule for a GCN
(Kipf & Welling, 2016) is defined as follows:

Ht+1 = σ(ĀHtθt) (1)

where σ is an activation function (e.g., ReLU), θt is a linear
projection matrix for a given layer t, Ā is the normalized
adjacency matrixA of the graph with added self-connections
as Ā = D̂− 1

2 ÂD̂− 1
2 , where Â = A + IN , and D̂ is the

diagonal degree matrix for Â. Finally, H0 = X where X is
the input data.

Later on, many variants and modifications emerges, such
as graph attention network (GAT) (Veličković et al.,
2017), Mask-GCN (Yang et al., 2019), Confidence-based
GCN (Vashishth et al., 2019). However, in this paper, we
only focus on the classic and standard GCN.

2.2. Efficient GCN Benchmark

The bottleneck of current efficient GCN methods is ma-
jorly on the massive quantity of nodes. To solve this prob-
lem, recent researches towards efficient GCN can be di-
vided into two branches of layer (node) sampling (Graph-
SAGE (Hamilton et al., 2017), FastGCN (Chen et al., 2018),
LADIES (Zou et al., 2019)) and graph (node) sampling
(ClusterGCN (Chiang et al., 2019), GraphSAINT (Zeng
et al., 2019)), as shown in Figure 1.

For layer sampling branch:

GraphSAGE (Hamilton et al., 2017): Most machine learn-
ing techniques on graphs are transductive in nature: they re-
quire knowledge of the entire graph during training. Graph-
SAGE presents an inductive formulation that can be gener-
alized to unseen graphs. GraphSAGE learns a set of aggre-
gator functions, which iteratively aggregate information in
a node’s local neighborhood. Aggregation continues for K
total steps. During each step, a node aggregates the represen-
tation of its neighbors, concatenates it with its own current
representation, passes it through a linear layer, and applies a
non-linear activation function. As nodes aggregate informa-
tion from their local neighborhood iteratively, the receptive
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field of the aggregation functions expands exponentially. In
practice, GraphSAGE only samples a fixed-size neighbor-
hood and only computes representations for nodes that fall
within the receptive field (i.e., smaller portions of the graph
can be considered at a time). The entire architecture can be
trained with gradient descent, and multiple choices exist for
the neighborhood aggregation function (e.g., max pooling,
averaging, summing, LSTM, etc.).

FastGCN (Chen et al., 2018): The embedding function
for each layer is defined as an integral over a probability
distribution parameterized by the nodes and edges within the
graph. This operation resembles a continuous representation
of the GCN forward propagations rule and is shown below:

h̃(l+1)(v) =

∫
Â(v, u)h(l)(u)θ(l)dP (u) (2)

To evaluate this integral in practice (i.e., compute the actual
note representation), a Monte Carlo approach is adopted.
In other words, they randomly sample a fixed-size group
of nodes from the graph and use this to compute the rep-
resentations of a given layer. Furthermore, an layer-wise
importance sampling scheme, based on connectivity nodes,
is adopted to favor sampling of nodes with high degree (i.e.,
this reduces the variance of the estimator). In comparison
to GraphSAGE, this method limits the number of nodes
considered to the sum of nodes sampled at each layer (i.e.,
the receptive field of GraphSAGE expands exponentially).
In practice, this method is implemented by using a forward
pass similar to the vanilla GCN, be only sampling a small
group of nodes to be considered at each layer of the model.
The probability distribution for such node sampling at each
layer of the GCN is weighted by the degree of each node.

LADIES (Zou et al., 2019): LADIES aims to solve two
problems: i) the exponentially expanding receptive field of
GCN; ii) the sparse connectivity in layer-wise sampling (i.e.,
as proposed in FastGCN). In particular, because FastGCN
samples nodes independently for each layer, this creates
sparsity in connections between layers. Therefore, LADIES
introduces a layer-conditional approach, where the nodes
selected depend on those selected in the layer above. This
importance sampling scheme is designed in a top down
manner, where nodes are randomly sampled at the top layer,
then each lower layer performs node sampling based on the
nodes that have been sampled in the layer above. The impor-
tance of nodes at a given layer is defined by the number of
connections is creates to active nodes in the layer above. In
practice, this can be implemented by simply sampling nodes
at each layer using this importance scheme, then perform-
ing a forward pass resembling the normal GCN forward
pass. However, only active nodes that were sampled are
considered.1

1It should be noted that for all node sampling schemes (e.g.,

For graph sampling branch:

ClusterGCN (Chiang et al., 2019): Cluster-GCN uses
graph clustering to sample a densely-connected subgraph
within a global graph. This subgraph is then considered
during the forward pass, while other nodes are not. Such
node partitioning allows the GCN memory footprint to be
minimized and also creates the possibility of developing
deeper GCNs by restricting the receptive field. The sub-
graph, in this case, is considered our mini-batch. So, we no
longer perform full gradient descent, but rather stochastic
gradient descent to train this algorithm. Once subgraphs
are created, the adjacency matrix is reconstructed into sev-
eral sub-matrices (i.e., all connections that are not within
a subgraph are zeroed out). The same procedure is fol-
lowed to divide the node features and weights accordingly
in a ”block-diagonal” fashion. To construct subgraphs, the
authors propose a procedure that maximizes connectivity
within each subgraph. To combat issues with removing links
or subgraphs being biased toward containing similar nodes,
the authors modify the procedure to produce a very large
number of clusters, and then randomly sample and union a
group of these clusters to form each subgraph/mini-batch.

GraphSAINT (Zeng et al., 2019): Similar to ClusterGCN,
GraphSAINT randomly samples a subgraph during each
iteration of training for the GCN forward pass, instead of
sampling a group of nodes at each layer of the GCN. Such
a formulation eliminates issues with receptive field expan-
sion. Deviating from ClusterGCN, GraphSAINT considers
the bias created by unequal probabilities of sampling nodes
during subgraph construction and proposes normalization
techniques to eliminate this bias. Given some sampling
method sample, they pre-process the graph to assign a
sampling probability to each node or edge (i.e., sampling
can be done based on node and/or edge probabilities). Many
choices exist for sample, but it should generally encourage
”similar” nodes to be within the same subgraph. A subgraph
is then sampled independently based on this probability dis-
tribution over nodes. Then, training is conducted using SGD
by processing each sub-graph as a mini-batch and updating
model parameters accordingly. During the forward pass,
each entry Au,v within the subgraph’s adjacency matrix is
scaled inversely by a normalization term αu,v =

p
u,v

p
v

(i.e.,
the upper term is a node probability and the lower term is
an edge probability). This normalization terms accounts
for the bias created by our sampling scheme. Variance is
minimized by developing samplers that are likely to sample
similar nodes within the same subgraph (i.e., this intuitive
idea is rigorously proven in the theory of the paper).

LADIES, FastGCN), the Laplacian matrices are reconstructed and
normalized after sampling occurs, which allows the neighboring
representations to be scaled appropriately (i.e., this accounts for
the presence of fewer active neighbors).
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Figure 2. Diagram of the proposed GCN-IST method. The method can be applicable to GCN models with arbitrary number of layers.
GCN-IST is featured by an active row-wise partitioning for any parameter θ starts from a row-wise partitioning for parameter θ1, which
performs as dividing node features into subnets.

The taxonomy is based on the phase when node partition
is determined. Obviously, these two categories is not mu-
tually exclusive, so some reasonable combination can be
beneficial.

Apart from huge node size, the high dimension of node
features is sometimes problematic. In this work, we also
consider feature partition for efficient GCN training. Ad-
mittedly, the problem could be simply solved by traditional
preprocessing ways such as dimensionality reduction and
therefore drawing little attention from GNN community, we
regard this setting as a simplest task to trigger our explo-
rations.

2.3. Independent Subnet Training (IST)

Independent subnet training (IST) is a novel distributed
training method for neural networks. By stochastically di-
viding the origin model, which is often large, into several
non-overlapping subnets, IST trains these subnets simulta-
neously. The computation of every single subnet saves a
lot of time and resources since a thinner model is allocated
to each worker. In this case, IST significantly accelerates
the training process comparing with standard data parallel
approaches for distributed learning, and IST scales to large

models that cannot be learned using standard data paral-
lel approaches. In this paper, we take the idea of IST and
generalize it to GCN setting.

3. GCN-IST: Applying IST to GCN
In this section, we will introduce the proposed method that
divides the origin GCN method into submodels (so-called
subnets) for IST training. The proposed method is depicted
in Figure 2, following a variant that also worth considering.
When encountering large graph, we rely on ClusterGCN for
node partition. Within every subgraph, we continue our stan-
dard GCN-IST implementation. The collaboration between
ClusterGCN and GCN-IST is explained in Section 3.3.

3.1. GCN-IST for Small Graph

Our proposed GCN-IST method can be clearly explained
assisted by Figure 2. As our initial goal is to create submod-
els for GCN, there are two ways to do partitioning on GCN
parameters. Namely, the θ matrix can be divided on the
dimension of either row or column. In our work, we choose
to actively split the weight matrix θ by row, leaving the
counterpart the variant of our proposed GCN-IST method.
As shown in Figure 2, if we only focus on 1st-layer splitting,
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that is, only θ1 is divided in row, in this case the input data
X will be inevitably partitioned according to the splitting
style of θ1 (due to matrix multiplication rule). In the figure,
parameter blocks with the same color will be put into identi-
cal subnet. Here, we find that, usually an active partition on
one weight matrix will cause some other matrices divided
accordingly. To rewind, for one-layer GCN-IST, when the
parameter θ1 is actively partitioned in row, the input matrix
X is passively partitioned in column accordingly, acting as
feature splitting (Every subnet only contains part of features
dimensions).

Then, we come to 2-layer GCN-IST. Again, an active par-
tition on row dimension is performed on both θ1 and θ2,
correspondingly, apart from the feature splitting for input
X , θ1 is also separated column-wisely. Therefore, for θ1 in
Figure 2:2-Layer, only those intersection with pure color in
θ1 is allocated for subnets, i.e., for θ1 with 16 blocks, only
those 4 pure-orange blocks are for orange subnet and those
4 pure-blue blocks are for blue subnet, leaving the rest 8
blocks unchanged during this iteration.

Every time the active splitting results are different so that
with the stochastic partitioning and training process, we
suppose the final model trained by GCN-IST will converge
to that with standard but expensive training procedure.

3.2. A GCN-IST Variant

As mentioned in the last paragraph, there are two ways
to do partitioning on GCN parameters. apart from actively
splitting the weight matrix θ by row, there is another strategy
that actively partitioning θ by column. In appendix, Figure 5
shows the variant of our GCN-IST method. Complementary
to our active row-wise partitioning GCN-IST, this variant
uses active column-wise partitioning for any parameter θ
that also starts from a row-wise partitioning for parameter
θ1. Accordingly, other weight matrix in the next GCN layer
will be passively partitioned in row. We will compare these
two methods and find the superiority.

3.3. GCN-IST for Large Graph

For large graph, we use node partition method from standard
ClusterGCN to divide the entire graph into small sub-graph.
For every sub-graph, we use and explore our proposed GCN-
IST. The pipeline is shown in Figure 3.3. However, the
experimental result is still ongoing and not in this report.

3.4. Potential Directions

To further improve our method, a smart partitioning
strategy is wanted. For example, the magnitude of
weights/activations within the GCN could be used as an
approximation of importance, allowing the partitioning to
be conditioned on this importance. Two options exist for

Figure 3. Pipeline for large graphs using CluterGCN with GIST

this: i) Utilize the magnitude of weights within H to in-
form the partition (i.e., importance sampling based on H);
ii) Utilize the magnitude of weights within θ to inform the
partitioning (i.e., importance sampling based on θ). Both
of these methods could be tested empirically to determine
which works better. The exploration is left for further work.

4. Experiments
In this section, after introducing the dataset information,
we evaluate our GCN-IST by firstly on partitioning on first
GCN-layer only and then promote to the following layers.
Effects of local iteration is also explored.

4.1. Datasets

• Cora dataset (Sen et al., 2008) is a citation networks with
2708 nodes of machine learning paper. A standard stem-
ming and stop word removal process is performed. Words
with document frequency less than 10 are also removed
and 1433 distinct words are finally kept, forming the node
feature with 1433 dimensions. Edges exist between two
paper whenever they share the same author and form
5429 links. 7 categories of machine learning paper are
the label for the node classification task.

• Similar to Cora, CiteSeer dataset (Sen et al., 2008) has
3312 nodes of machine learning paper, 3703 distinct
words in the vocabulary for node features and 4732 links
in total for 6-class node classification task.

• Pubmed dataset (Sen et al., 2008) is another citation net-
work with 19717 nodes, 500 distinct words and 44338
links for 3-class node classification task.

4.2. On Feature Splitting

Table 4.2 shows for more than 2 workers, layer norm will
improve much the results, and IST in general can achieve
similar best test accuracy (¡2%) with linear speedup.
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Table 1. Experiments on GCN-IST with partitioning on first GCN layer only

IST? #subnets #Epoch LR LayerNorm? Val%Last Val%Best Test%Last Test%Best

False 1 400 0.1 False 82.00 84.67 82.9 83.8
True 2 200 0.025 False 82.33 84.67 83.8 84.6
True 4 100 0.05 True 80.67 83.33 77.6 82.1
True 8 50 0.05 True 78.00 84.67 77.6 81.8

Figure 4. Results across different number of local iterations and subnetworks for all datasets. Results are included for both one layer and
two layer IST. The hidden size for one layer and two layer IST were 16 and 64, respectively.

4.3. Incorporating Local Iterations

All results in Sec. 4.2 perform synchronization after ev-
ery epoch. To reduce communication requirements, local
iterations can be incorperated, allowing subnetworks to be
trained for multiple epochs between synchronization rounds.
Exact results over different number of local iterations are
presented in 5 and visualized in Fig. 4, where are results
are averages recorded across 5 trials. All tests use layer
normalization and have a hidden dimension of 16.

4.4. Splitting Both GCN Layers

For the above experiments, only the first layer of the GCN
was split. Although the first layer contains significantly
more parameters than the second layer (i.e., 24K parame-
ters vs. 150 parameters), splitting both layers of the GNN
is an important experiment, as it proves IST is extensible
to deeper architectures and architectures with larger hid-
den layers. Results are provided across multiple datasets

in Table 5 (i.e., each metric represents an average across
five trials). For these experiments, the hidden layer size
was increased to 64, which was needed to achieve better
performance with eight subnetworks (i.e., a hidden size of
16 would result in the hidden layer dimension becoming two
for each subnetwork). It should also be noted that, when
both layers are partitioned, layer normalization becomes
essential to the convergence of the global model (i.e., other-
wise the distribution of values within the hidden layer would
be unstable, which becomes an issue when the output layer
does not always see the entire hidden layer).

5. Conclusion and Further Work
This work focuses on distributed training efficient GCN
using independent subnet training. Around half of the work
is done and further work including i) ClusterGCN for large
graph; ii) Comparison with GCN-IST variant; and iii) real
distributed system is continuously undergoing.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Distributed Graph Convolutional Networks with Independent Subnet Training

References
Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S.,

Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A.
A. S., and Asari, V. K. The history began from alexnet:
A comprehensive survey on deep learning approaches.
arXiv preprint arXiv:1803.01164, 2018.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling.
arXiv e-prints, art. arXiv:1801.10247, January 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017.

Ioannidou, A., Chatzilari, E., Nikolopoulos, S., and Kompat-
siaris, I. Deep learning advances in computer vision with
3d data: A survey. ACM Computing Surveys (CSUR), 50
(2):1–38, 2017.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. arXiv e-prints, art.
arXiv:1609.02907, September 2016.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi,
F. E. A survey of deep neural network architectures and
their applications. Neurocomputing, 234:11–26, 2017.

Olsson, F. A literature survey of active machine learning in
the context of natural language processing. 2009.

Schmidt, A. and Wiegand, M. A survey on hate speech de-
tection using natural language processing. In Proceedings
of the Fifth International workshop on natural language
processing for social media, pp. 1–10, 2017.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Vashishth, S., Yadav, P., Bhandari, M., and Talukdar, P.
Confidence-based graph convolutional networks for semi-
supervised learning. International Conference on Artifi-
cial Intelligence and Statistics, 2019.
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Figure 5. Diagram of the variant of our GCN-IST method. Complementary to our active row-wise partitioning GCN-IST, this variant uses
active column-wise partitioning for any parameter θ that also starts from a row-wise partitioning for parameter θ1.
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Table 2. Full results for Table 1
Dataset # local iteration #subnets LR Test Best Val Best Test Last

CORA 1 2 0.05 79.32 78.84 76.26
1 4 0.01 79.80 78.68 76.28
1 8 0.05 79.40 77.88 75.64
5 2 0.1 79.80 78.44 75.54
5 4 0.05 79.56 77.48 77.28
5 8 0.05 78.20 76.60 77.56

10 2 0.1 79.48 78.44 77.70
10 4 0.01 78.80 77.80 76.88
10 8 0.005 77.66 76.84 77.44
20 2 0.1 79.24 78.08 77.16
20 4 0.1 78.30 77.32 76.92
20 8 0.01 77.22 75.24 76.94
30 2 0.05 78.26 77.40 76.32
30 4 0.01 78.18 76.76 78.08
30 8 0.01 76.44 74.68 76.44

CITESEER 1 2 0.05 75.38 75.26 69.32
1 4 0.1 75.89 75.12 68.35
1 8 0.05 75.93 75.14 71.85
5 2 0.1 75.63 74.42 69.60
5 4 0.1 75.39 75.06 72.20
5 8 0.05 75.06 74.42 72.91

10 2 0.1 74.90 74.26 72.35
10 4 0.1 74.93 74.62 73.22
10 8 0.005 74.06 73.90 72.78
20 2 0.1 74.18 73.54 71.47
20 4 0.1 73.55 72.96 72.86
20 8 0.005 73.51 73.20 72.66
30 2 0.05 73.35 73.36 71.84
30 4 0.1 72.95 72.82 72.71
30 8 0.005 72.33 72.00 72.33

PUBMED 1 2 0.05 76.31 76.56 70.95
1 4 0.05 76.51 76.55 71.55
1 8 0.05 76.03 75.92 72.05
5 2 0.1 76.38 75.69 71.15
5 4 0.1 75.89 75.88 72.98
5 8 0.05 74.91 74.97 72.98

10 2 0.1 75.45 75.12 72.89
10 4 0.1 75.45 75.45 73.93
10 8 0.005 74.58 74.44 73.56
20 2 0.1 74.89 74.61 72.72
20 4 0.05 73.91 73.45 73.24
20 8 0.05 73.99 73.81 73.21
30 2 0.05 74.22 74.33 72.93
30 4 0.1 73.87 74.05 73.33
30 8 0.005 72.84 72.91 72.75
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Table 3. Full results for Figure 4

Dataset # local iteration #subnets LR Test Best Val Best Test Last

CORA 1 2 0.1 80.24 78.92 76.64
1 4 0.01 80.56 79.24 78.34
1 8 0.01 76.34 74.60 69.98
5 2 0.005 80.18 79.04 76.50
5 4 0.01 79.34 77.56 77.86
5 8 0.005 74.14 72.00 72.86

10 2 0.05 80.06 79.00 77.80
10 4 0.01 78.76 76.80 77.86
10 8 0.005 73.22 72.20 73.18
20 2 0.005 79.84 78.44 77.02
20 4 0.005 79.24 77.68 78.84
20 8 0.005 75.88 74.76 75.26
30 2 0.05 79.44 78.88 78.14
30 4 0.005 79.16 77.92 78.12
30 8 0.05 76.16 74.40 60.72

CITESEER 1 2 0.05 76.28 76.10 70.87
1 4 0.01 76.63 75.70 73.16
1 8 0.01 74.82 73.44 70.23
5 2 0.1 75.96 75.42 71.15
5 4 0.005 75.55 74.98 73.72
5 8 0.005 72.61 71.50 71.74

10 2 0.1 76.11 74.96 73.43
10 4 0.01 75.37 74.16 73.31
10 8 0.005 71.94 71.08 71.92
20 2 0.01 74.82 73.64 70.90
20 4 0.1 74.99 74.20 74.10
20 8 0.005 72.75 71.98 72.43
30 2 0.1 74.62 74.06 73.01
30 4 0.05 73.93 73.36 72.68
30 8 0.005 71.76 70.80 71.65

PUBMED 1 2 0.1 77.02 77.20 69.97
1 4 0.05 76.61 76.67 73.75
1 8 0.01 74.32 73.93 70.37
5 2 0.1 76.27 76.20 72.60
5 4 0.01 75.99 75.76 74.90
5 8 0.01 72.57 72.05 70.75

10 2 0.1 76.31 75.71 73.80
10 4 0.01 75.62 75.03 73.73
10 8 0.005 70.97 70.80 70.79
20 2 0.01 75.41 75.00 72.08
20 4 0.1 75.40 74.83 74.43
20 8 0.005 72.63 72.55 71.93
30 2 0.1 75.26 74.88 73.72
30 4 0.1 74.82 74.72 71.06
30 8 0.01 72.02 71.60 69.62
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Dataset # local iteration #subnets LR LayerNorm? Val%Best Test%Last Test%Best

CORA 1 2 0.05 True 79.40 76.64 80.64
1 4 0.05 True 78.36 76.28 79.60
1 8 0.05 True 72.72 60.48 73.70
10 2 0.1 True 79.24 76.86 79.18
10 4 0.01 True 75.04 75.60 76.38
10 8 0.01 True 60.36 61.56 62.08
20 2 0.05 True 78.32 77.78 78.90
20 4 0.01 True 74.80 76.56 76.56
20 8 0.01 True 54.40 57.00 57.00

CITESEER 1 2 0.1 True 75.64 70.72 71.02
1 4 0.05 True 74.68 72.43 75.82
1 8 0.01 True 71.28 66.80 72.47
10 2 0.1 True 75.26 72.60 74.96
10 4 0.01 True 72.94 72.05 73.10
10 8 0.01 True 63.00 63.16 63.77
20 2 0.1 True 73.88 72.80 74.14
20 4 0.01 True 71.36 71.63 72.67
20 8 0.01 True 57.44 58.67 58.67

PUBMED 1 2 0.05 True 76.51 72.54 76.57
1 4 0.1 True 75.67 71.55 75.52
1 8 0.05 True 72.96 65.15 73.03
10 2 0.1 True 75.73 73.53 75.52
10 4 0.01 True 73.83 73.14 74.05
10 8 0.01 True 65.55 64.81 65.51
20 2 0.1 True 74.88 73.61 74.83
20 4 0.01 True 73.08 72.51 73.45
20 8 0.01 True 61.12 59.41 62.12
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Abstract
Low-rank matrix completion is an important prob-
lem with many applications, but existing algo-
rithms are tested on many different datasets in non
standardized ways, making true empirical com-
parisons between algorithms all but impossible.
The first part of this paper surveys the existing
algorithms for low rank matrix completion. The
second part describes a tool we built to bench-
mark matrix completion algorithms in a standard-
ized way. Using the tool, we examine the perfor-
mance of low rank matrix completion algorithms
on both synthetic matrices parameterized by size,
rank, condition number, and percent of the matrix
shown and on matrices with real world data.

1. Introduction
Low-rank matrix estimation (1) is a fundamental problem in
computer science and machine learning, with far reaching
applications in almost any big-data problem setting.

min
M :rank(M)≤r

f(M) (1)

Low-rank matrix completion (2) is one of the most studied
and influential sub-classes of this problem, with applications
in recommendation systems, image recovering and com-
pression, as well as compressed sensing (Candes & Plan,
2010). The efficient solution to this problem is important to
practitioners in a wide variety of fields, as, for example in
2009, the Netflix contest awarded a prize of $1 million dol-
lars to the team which most accurately solved their matrix
completion problem, delivering movie recommendations to
customers based on limited preference data.

In many applications, the problem can quickly grow massive
in size, with millions of individual entries in the underlying

*Equal contribution 1Computer Science Department, Rice Uni-
versity, Houston, Texas, United States 2Computational and Applied
Mathematics Department, Rice University, Houston, Texas, United
States. Correspondence to: Joshua Engels <jae4@rice.edu>,
Richard Morse <rmm13@rice.edu>.

”ground truth” matrix. This burden makes exact solutions
of the problem often computationally intractable. Hence
the study of matrix completion turns from exact recovery to
efficient solutions which approximate the ground truth ma-
trix well, where the success of the approximation is defined
by the problem setting. Moreover, in the general setting of
full rank matrices, matrix completion is impossible; luckily,
in the real world most ground truth matrices are low rank.
Hence, the matrices have limited independent measurements
and can be recovered using bounded space and time. The
problem then changes into the form of finding a low-rank
matrix, which is as close to the ground truth matrix as pos-
sible, in the space of the measured entries. The space of
the measured entries is defined by the masking operator PΩ,
which permits that some fraction (generally small) of the
ground truth matrix is observed. This problem is formulated
as (2).

min
M :rank(M)≤r

1

2
||PΩ(M −M∗)||2F (2)

There exist many different algorithmic methods of approxi-
mately solving the matrix completion problem. Many algo-
rithms such as (accelerated) factored gradient descent (Zhou
et al., 2020), alternating (steepest) descent (Tanner & Wei,
2016), and power factorization, factorize the original matrix
into smaller matrices, and solve the minimization problem
on the factors. These methods have the advantage of incor-
porating the low-rank and positive semi-definite constraints
of the original problem inherently into the new problem, and
simplify the overall computations, but can require careful
bookkeeping to keep the problem from diverging. Other
algorithmic techniques such as Reimann methods (Mishra &
Sepulchre, 2013), and iterative hard thresholding (Kyrillidis
& Cevher, 2014) (Tanner & Wei, 2013), project the solution
iterates onto a particular low-rank subspace to maintain the
low-rank constraint, but work in the size and scope of the
original matrix.

With proper initialization and careful selection of hyper-
parameters, these methods can perform well in various set-
tings, however direct comparisons between methods can
prove difficult. Authors can provide theoretical bounds for
the performance of their algorithm under specific conditions,
however, the important question still remains of how these
algorithms perform in the real world.

To help answer this question, authors will often implement

https://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-contest/
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their algorithm using informed techniques, such as care-
ful initialisation and selection of hyper-parameters, for the
problem at hand. In general, these implementations are
quite effective, and allow the new algorithm or technique to
demonstrate its potential for real world adoption. However,
the empirical testing and comparison of these algorithms is
seriously lacking. Implementations are often only tested on
a small number of specific datasets, and only compared to a
small number of specific algorithms, usually those closely
related to the one of interest. As different papers compare
different algorithms on different datasets, it is hard to know
how the overall landscape of algorithms compare, in any
sort of objective sense. This seriously hinders practitioners
and readers alike. Algorithm designers cannot discern how
their algorithm or its implementation compare in the broad
scope of the problem, and have a difficult time objectively
verifying their results. Meanwhile, readers might seriously
doubt the reproduciblility or impartially of an algorithms
testing, given the limited scope of any individual papers
empirical analysis. If an interested reader were looking for
an algorithm to solve their particular problem, it would be
quite difficult to make an informed decision of which one to
use.

In this paper, we aim to remedy the issue by proposing a
benchmarking tool for the low-rank matrix completion prob-
lem. Our MATLAB framework provides a standardized way
for algorithmic implementations to be benchmarked and
compared in various settings. The framework has already
been used to compare several algorithms, and is designed
for new algorithms to be easily integrated into it. The frame-
work is built so that algorithms can be benchmarked using
various comparison metrics, however the popular metric of
time-constrained error was used in our analyses.

Such an idea is not entirely new: we were inspired
by other comparison tools in the literature, such as the
ANN-benchmarking tool for approximate nearest-neighbour
search (Aumüller et al., 2020). The need for these tools is
clear, and we hope that our framework can help bridge the
gap in the low-rank matrix estimation setting.

In section 2 we overview some of the current literature in
efficiently solving the low-rank matrix completion prob-
lem, explaining the popular algorithms which we test in
our framework. In section 3, we introduce our tool and its
functionality. In section 4, we show some empirical results
demonstrating the use of our framework. In section 5 we
conclude and provide points for future work, where the func-
tionality and scope of our framework can be expanded to
broaden its reach.

Please note that while we hope to empirically test algorithms
we are in fact only testing implementations of algorithms.
To properly compare algorithmic concepts, testing of mul-
tiple distinct implementations of an algorithm might be

necessary; extensively optimizing just a single algorithm to
perform well in benchmarking is a research project of its
own. Despite this limitation, by testing multiple algorithms
(directly from their authors) which use the same algorith-
mic approach, such as factorization-based or projection-
based approaches, we can robustly compare these classes
of algorithms, and illuminate their relative advantages and
disadvantages of these larger algorithmic classes.

2. Existing Algorithms
We first introduce and examine the current state of low rank
matrix completion algorithms.

2.1. Factorization Based Approaches

2.1.1. FACTORED GRADIENT DESCENT

The first algorithm we explore is a sort of ”old faithful” of
factored matrix completion approaches, factored gradient
descent.

• Factored Gradient Descent
The general idea behind factored gradient descent
(FGD), like all factorization based approaches, is to
break down the original problem into a smaller, sim-
pler problem by factorizing the solution matrix and
minimizing over the factor(s) as opposed to the orig-
inal matrix. In FGD, we factorize the matrix to be
minimized, M ∈ Rm×m, as M = UUT : U ∈ Rm×r,
and then substitute (2) with the following minimization
problem.

min
U∈Rm×r

||PΩ(M∗ − UUT )||2F (3)

Note that by the nature of using only one factor, FGD
only works on square matrices. By factorizing the input
problem as such, any low rank or positive semi-definite
(PSD) constraint on M is intrinsically satisfied. For
each step we move in the direction of the gradient of
(3) w.r.t. the factor U, which simplifies to scaling the
gradient of (2) by U.

• Accelerated Factored Gradient Descent
Based off factored gradient descent, this method at-
tempts to apply Nesterov Acceleration to FGD. This
cannot be easily done because Nesterov Accelerated
Gradient Descent (NAG), requires strong convexity
in the objective to achieve an accelerated linear rate
of convergence, but in factorizing the objective, we
don’t even have convexity guaranteed in the new prob-
lem. To overcome this hurdle, accelerated factored
gradient descent (Zhou et al., 2020) proposes a varia-
tion of FGD, where Nesterov acceleration is applied
in each step, and then the solution iterate is projected
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onto a special set where restricted strong convexity
holds. In this way, the algorithm is able to main-
tain the factorization of FGD along with the guar-
antees of NAG. The special set takes the form of
Ω(U0) = {U ∈ Rm×r : UTU0 � 0}, which is the
set of all matrices that are positive semi-definite when
multiplied into the initial matrix U0. With careful ini-
tialization of U0, this algorithm achieves impressive
theoretical guarantees, however its empirical compar-
ison to a broader class of algorithms needs to deter-
mined.

2.1.2. ALTERNATING MINIMIZATION

While similar in concept to factored gradient descent, alter-
nating minimization approaches use two factors instead of
one to decompose the original problem.

min
X∈Rm×r,Y ∈Rr×n

||PΩ(M∗ −XY )||2F (4)

This allows alternating approaches to apply more generally
to rectangular matrices and to be more robust in the types
of problems they can solve.

• (Scaled) Alternating Steepest Descent
The first alternating approach we examine is alternat-
ing steepest descent (ASD) as well as its slight variant,
scaled alternating steepest descent (ScaledASD) (Tan-
ner & Wei, 2016). The base of this algorithm is the
simple alternating descent approach, where one factor
is updated, and then the updated factor is used to take
a step along the other factor, meaning factor updates
occur in alternating succession. The updates for each
factor are done via gradient descent with gradients
computed as:

∇fX(Y ) = −XT (PΩ(M∗)− PΩ(XY ))

∇fY (X) = −(PΩ(M∗)− PΩ(XY ))Y T

Alternating steepest descent veers from alterning de-
scent in that it takes the steepest step at each iteration as
opposed to one defined by a pre-determined step-size.
The steepest step is solved for using basic calculus, and
is found to be:

tx =
||∇fY (X)||2F

||PΩ(∇fY (X)Y )||2F
, ty =

||∇fX(Y )||2F
||PΩ(X∇fX(Y ))||2F

,

In the scaled variant of this algorithm, each gradient is
scaled by an inverse factor as follows

dx = −∇fY (X)(Y Y T )−1

dy = (XTX)−1∇fX(Y )

This scaled variant is a quasi-newton method where
the scaling factor serves as approximation of the objec-
tive’s second order information and works to accelerate
the algorithm, in theory.

• Low-rank Matrix Fitting (LMaFit) Low-rank matrix
fitting (Wen et al., 2012) is an alternating method that
can be seen as a relaxation of traditional alternating
descent. Rather than take the ground truth matrix as a
given, LMaFit parameterizes this input as a variable,
and allows it to be optimized over throughout the prob-
lem (5).

min
X,Y,M

||PΩ(M−XY )||2F : PΩ(M) = PΩ(M∗) (5)

This allows for easier closed form solutions to the
subproblems within each alternating step, with lim-
ited to no loss in solution accuracy. This algorithmic
idea forms the basis of LMaFit, however the algorithm
also comes with another twist. Each step of LMaFit
is weighted using the last iterate of the algorithm in
a form of alternating acceleration. However, this ac-
celeration is done quite carefully, with the weights
initialised to 0, increased slowly when the algorithm
stagnates, and then reset to 0 if the algorithm regresses.
LMaFit performs quite well on traditionally difficult
problems, where exact (or near exact) solutions are un-
tenable. Taking advantage of its low per-iteration com-
plexity, LMaFit is able to converge reasonably quickly,
even when effective algorithmic descent proves diffi-
cult.

2.2. Projection Based Approaches

2.2.1. ITERATIVE HARD THRESHHOLDING

Iterative Hard Thresholding is a proection based approach
that is popular in a wide variety of matrix problems. The
general idea is to use projected gradient descent, where
vanilla gradient descent is augmented through a projection
onto a low-rank subspace in each step. In this way, the solu-
tion iterates are kept low-rank, and ”convex” guarantees are
maintained through the powerful (rank) restricted isometry
property (RIP) on the low-rank subspace.

(1− λ(A))||X||2F ≤ ||A(X)||22 ≤ (1 + λ(A))||X||2F

where A is a linear operator, which would be the masking
operator in the general matrix completion setting.
The exact subspace and projection step can vary between
specific algorithms, but in the vanilla case the idea is to
project onto a space of the top r singular vectors of the
solution iterate, to maintain the rank-r constraint on the
solution.

• Normalized Iterative Hard Thresholding
The distinction between normalized and vanilla itera-
tive hard thresholding is the selection of the step size at
each iteration (Tanner & Wei, 2013). While the typical
step size selection may be some constant or decreasing
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function of the iteration number, in NIHT, the step size
is carefully chosen as a function of the current solution
iterate and its projection operator:

uj =
||P j

UA
∗(b−A(Xj))||2F

||A(P j
UA
∗(b−A(Xj)))||22

where A∗ is the adjoint operator of the sensing matrix,
which is a surrogate for the masking operator.

• Conjugate Gradient Iterative Hard Thresholding
Conjugate gradient IHT veers from the standard imple-
mentation, not in its selection of step size, but in its
computation of the gradient at each step. As opposed
to exactly computing the gradient in each iteration,
which can be an exeedingly costly operation as the
size of the problem grows, CGIHT pulls from the idea
of conjugate gradient descent, computing a close ap-
proximation of the gradient. The close approximation
is done using conjugate directions (Hager & Zhang,
2005) which are easy to compute and work quite well in
maintaining descent throughout the algorithm. Hence,
while each individual update step might not be as good,
the time saved in computing the gradient allows more
steps to be taken, and if the approximation is good
enough this can improve the overall computation. This
algorithm can work as an extension of iterative hard
thresholding to massive matrix problems, where find-
ing exact gradients and ”best” update steps can be
computationally prohibitive.

2.2.2. RIEMANN METHODS

The class of Riemann methods all pull from the general idea
of projecting the original matrix completion problem onto a
Riemann manifold, which provides a new space and metric
to optimize over.

• R3MC
The general idea behind R3MC is to project the orig-
inal problem onto the quotient space, which is de-
fined by the equivalence class: X = URV T =
(UO1)OT

1 RO2(V O2), where O1 and O2 are two or-
thogonal r x r matrices. This equivalence class is aug-
mented with a metric for the new space, one which is
induced by the block approximation of the problem,
where distances are now computed using the outer prod-
uct of the inner R matrices. With equivalence class and
metric in hand, the Rieman manifold has been defined,
and the transformation of the problem onto this mani-
fold reduces the problem space by a factor of r2. The
low-rank minimization problem is then solved on the
Reiman manifold, and the solution is projected back to
the original space, which is a trivial operation.

2.2.3. LEAST-SQUARES METHODS

• MatrixIRLS
MatrixIRLS, while not as popular as some of the above
algorithms, was examined due to its effectiveness in
solving statistically hard problems, i.e. matrix comple-
tion problems with only a very small fraction of entries
shown, as well as matrices with very high condition
number.

MatrixIRLS is an iteratively reweighted least squares
(IRLS) algorithm, with the addition of second-order
Newton smoothing to escape local saddle points. The
trick of this algorithm is that it is applied to the non-
convex log-det objective,

∑
i = 1dσi(X + εI), where

ε > 0, is the smoothness parameter of the objective.
In contrast to the original problem (1), this objective
improves the scalability of the algorithm to commonly
intractable problems, while giving up the convexity
and smoothness of the original objective function. The
non-convexity (and non-smoothness) of the new objec-
tive is dealt with through carefully smoothed steps and
gradient updates. The algorithm proceeds by using the
conjugate gradient method to solve a weighted least
squares problem, with weights determined through
the singular value decomposition of the solution iter-
ate. The update step is then smoothed and the weights
are updated for the next iteration. By improving the
problem defining weights in this manner, the quadratic
upper bounds on the log-det objective are improved
at each iteration, providing a descent in the objective,
even if no direct descent of the solution iterate is avail-
able. Furthermore, the smoothness parameter, ε, of
the objective is maintained and updated throughout the
algorithm, ensuring smooth convergence guarantees.

3. Benchmarking Tool
If one thing is clear from this literature review, it is that
there are many different algorithms for low rank matrix
completion. As we hinted at above, however, we found no
real centralized source for algorithm comparison.

We remedied this problem by building a centralised open
source benchmarking tool. The repository is hosted
at https://github.com/Matrix-Benchmarks/
Low-Rank-Completion and the website itself is
hosted at https://matrix-benchmarks.github.
io/Low-Rank-Completion/.

3.1. Tool Overview

The design of our benchmarking system is relatively simple,
as it remains mostly a proof of concept. Building off the
framework of (Kümmerle & Verdun, 2020), we designed
a system to run matrix completion algorithms through a

https://github.com/Matrix-Benchmarks/Low-Rank-Completion
https://github.com/Matrix-Benchmarks/Low-Rank-Completion
https://matrix-benchmarks.github.io/Low-Rank-Completion/
https://matrix-benchmarks.github.io/Low-Rank-Completion/
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variety of test matrices. The current algorithm testing frame-
work itself is contained within MATLAB. Each algorithm is
implemented in MATLAB as well, with each implementa-
tion based off author specifications and source code where
available. We added instrumentation into each algorithm to
integrate it into our framework, and give it the capability to
be tested in the various ways we desire.

We made a decision early on to only care about one aspect of
performance: how well the algorithm converges to the real
matrix over time. In other words, as an experimental project
we do not care about number of iterations to convergence
or any other metric besides raw efficiency of the algorithm;
otherwise, it is extremely difficult to compare completely
different types of algorithms. One of the nice things about
this idea is that in the future, individual algorithms within
the framework can be tuned, so the performance of each
algorithm represents the absolute best that the algorithm can
do on the test matrices, and the best algorithm on a given
matrix is the clear choice for a practitioner given a matrix
of that type.

We strove to test every algorithm we discussed in our first
section. Unfortunately, we were unable to get the acceler-
ated factored gradient descent algorithm working. It seems
that perhaps the algorithm only works on some specific ini-
tilizations, or we just had something slightly wrong in our
setup. Additionally, we are in the process of testing Matrix
ALPS (Kyrillidis & Cevher, 2012). While Matrix ALPS
shows promise so far, unfortunately we were not able to
finish testing in time for this deadline (see our Github for
current status). Other than these caveats, we met out goal of
testing every algorithm listed above.

3.2. Test Data

The test matrices fall into 2 categories: real data and syn-
thetic data.

• Real data: for now we have 2 types of real data we
test with: image completion problems, where the algo-
rithms get random pixels from a png image and guesses
the others; and recommendation problems, where the
algorithms get part of a user rating matrix and guess
what the unknown ratings are. Specifically, we test
with lena.png and the Movielens 1M dataset (Harper
& Konstan, 2015), both standards in their respective
fields.

• Synthetic data: we test the algorithms with random
square matrices with all combinations of the following:

– Size: 1000, 10000
– Rank: 2, 20, 200
– Percent of matrix ”visible”: 5, 10, 20, 40
– Condition number: 2, 200, 20000

3.3. Running Experiments

Across both real and synthetic data, there are a total of 74
different parameter combinations. We skip 9 of these be-
cause the parameters of the matrix are below the information
theoretic limit for low rank matrix recovery (Riegler et al.,
2016), leading to a total of 65 different test matrices. We
run each of the 11 algorithms described in section 2 for 1
minute on each matrix; thus a complete run to generate all of
the performance data takes at minimum 12 hours. However,
we also need to find the distance between each iteration of
each algorithm and the goal matrix, which depending on the
number of iterations and the size of the matrix can take just
as long (e.g. finding the Frobenius distance between 1000
iterations of size 1000 matrices with a goal matrix takes on
the order of a billion subtractions).

For each algorithm and matrix, we print out a time and dis-
tance pair to a file for each iteration. We then generate plots
using Python’s matplotlib that compare the performance of
each algorithm on every matrix. Finally, we save all of these
images as pngs in our github repository and then create a
statically hosted github website from the repository allowing
anyone to view the results. Note also that anyone can easily
fork the repo and verify our results, or like we stated earlier
try to improve the performance of an algorithm on a specific
matrix (or include their own algorithm for comparison).

4. Benchmarking Results
We found that different algorithms perform better on differ-
ent matrices; there is no single algorithm that is the universal
best choice. Because we tested on too many matrices to
individually examine here, we restrict our analysis below to
a few ”interesting” matrices and parameter regions, where
”interesting” means examples where we can derive some
useful observation about comparative algorithmic perfor-
mance (matrices where every algorithm failed to make any
progress at all or every algorithm quickly succeeded are usu-
ally much less ”interesting”, although they are still available
on our website and we do analyze one in Figure 3).

We first will examine performance on synthetic matrices.
For example, in Figure 1 we show an example from a re-
gion of hyperparemeters where MatrixIRLS dominates. We
found that for small matrices (size = 1000), MatrixIRLS was
able to converge to the real matrix on almost every example.
It did so faster than other algorithms when the condition
number was high, and in some cases like in Figure 1 it was
the only one to converge at all. On larger matrices, on the
other hand, MatrixIRLS sometimes was only able to run for
a couple of iterations before the 1 minute timer ran out, and
so performed the worst out of all algorithms (see Figure 2).
This MatrixIRLS case study shows clearly how algorithmic
performance can differ across the parameter space.
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Figure 1. Benchmark of performance on a high condition number
low rank matrix (size 1000, rank 2, the algorithm ”sees” 5% of the
matrix, condition number 200). MatrixIRLS clearly outperforms
every other algorithm in these conditions.

Figure 2. Benchmark of performance on a low condition number
low rank matrix (size 10000, rank 2, the algorithm ”sees” 40% of
the matrix, condition number 2). Alternating descent and Riema-
nian methods perform the best.

Another interesting observation is the sharp frontier between
synthetic matrices that are ”solvable” and matrices where
the algorithms make almost no progress at all. If we look
at Figure 2, we see that nearly every algorithm converges
almost exactly to the hidden matrix, and the ones that do not
would probably converge in the next few minutes of running
the algorithms. Contrast that to Figure 3, where almost no
algorithm makes any progress towards the goal at all.

In fact, in Table 1, we see that almost every paramaterized

Figure 3. Benchmark of performance on a high condition number
medium-low rank matrix (size 10000, rank 20, the algorithm ”sees”
10% of the matrix, condition number 20000). No algorithm makes
any real progress.

synthetic matrix either has an algorithm converge within a
Frobenius distance of 10−10 or has no algorithm converge
within even a Frobenius distance of 100. This result implies
that there might be fundamental limits to our current low
rank matrix completion methods; some matrices seem to
be easily solvable, but others remain intractable, and there
is very little in between. The matrices we observed all of
our algorithms to struggle with were large matrices (size =
10000) with medium-high rank and medium-high condition
number.

Table 1. Let d be the log base 10 of the closest distance any algo-
rithm got on a matrix M . This table reports counts and percents
of how many of our 63 synthetic testing matrices had d within a
certain range.

LOG 10 FROBENIUS DISTANCE d COUNT PERCENT

−17 < d < −10 36 ≈ 57%
−10 ≤ d ≤ 0 7 ≈ 11%
0 < d < 4 20 ≈ 32%

Finally, the last result we analyze here is the performance
of the algorithms on real datasets. For now, on real datasets
our algorithm looks at how closely the matrix recovery
algorthims can predict the unknown entries. This approach
differs from the synthetic matrix testing procedure (where
we find the Frobenius norm of the difference between the
goal matrix and the algorithm’s predicted matrix) because
we do not always have the entire goal matrix in the real data
case. For example, take the MovieLens dataset (algorithm
results shown in Figure 4). The dataset is simply a set of
(user, movie, rating) tuples, and not all users rate all movies.
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We instead recreate a full matrix of size (number of users ×
number of movies), where each cell is filled in as the rating
that a user gives to that movie. Then we give 30% of the
entries of that matrix that we know to the algorithm (this is
much smaller than 30% of the entire imagined matrix), and
compare how well it predicts the other 70%. Note too that
here we truncate the number of users from 6000 to 4000 to
create a square matrix (there are 4000 movies); several of
our tested algorithms do not work on rectangular matrices.

Figure 4. Benchmark of performance on the MovieLens 1M
dataset. The algorithms are shown 30% of the known entries
(around 2% of the entire matrix), and asked to predict the other
known entries (error is the Frobenius distance of the predictions).

There are a few interesting aspects to Figure 4. The first is
that all of the algorithms reach about the same minimum
convergence distance. Indeed, we saw similar results for our
main other real data application, image completion. Data
in the real world seems fundamentally different from our
synthetic data, though it is not immediately clear how we can
remedy this problem so that our synthetic data is similarly
difficult.

The second is that many of the algorithms actually get worse
over time. We hypothesize this is because the actual matrix
is not actually a low rank matrix, but that it is just approxi-
mated by one. Peoples’ preferences are not actually deter-
mined by exactly 20 factors, so the algorithms overfit to the
observed entries. Both observations point to the importance
of testing with real world data, and perhaps developing new
methods that can handle noisy and non-perfect low rank
data.

5. Conclusions & Future Work
We have presented a tool that potentially offers an open
source centralized repository for benchmarking matrix com-
pletion algorithms. If adopted widely, it will revolutionize
low rank matrix completion, allowing students, practitioners,
and researchers easy access to cutting edge matrix comple-
tion benchmarks.

There are a number of improvements we would like to make
to our tool to speed it towards wide adoption.

• Expand the problem domain past matrix completion
to the wider domain of matrix recovery. Not all of
the algorithms we are testing right now will work in
that wider domain, but we could have categories on
the website for matrix recovery and for the specific
category of matrix completion.

• Take the framework out of MATLAB. Right now the
framework is heavily integrated with the algorithms
themselves; we rely on the algorithms to correctly re-
port intermediate results and timing. Ideally each al-
gorithm could be written in any language, not just
MATLAB, and would have an API allowing the bench-
marking framework to pass in a matrix. The framework
could then cut off the program after a minute. This
change would lead to better separation between the
framework and the algorithms (not to mention not hav-
ing to deal with MATLAB’s quirks). A more modular
framework means that people can more easily improve
and understand individual algorithms, as well as imple-
ment their own algorithms.

• Add more algorithms and datasets. For synthetic
datasets, we want to test larger matrices and matri-
ces with noise, as we hypothesize these will represent
real world problems better. For real datasets, we want
to expand the number of standard datasets we test with.
Finally, we would like to add any other important al-
gorithms from the literature or the matrix completion
community, because this tool’s usefulness directly re-
lies on its completeness.

Ultimately, we believe that our tool can already provide
interesting insights into how different matrix completion
algorithms compare.
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Abstract
Federated learning (FL) is an emerging distributed
ML paradigm that trains a model across a large
number of mobile devices with the assistance of a
central server. The key challenges in FL include
large communication overhead and synchroniza-
tion across devices. However, both these chal-
lenges can be efficiently solved by deploying FL
over wireless networks a.k.a. wireless FL. In this
report, we consider a digital wireless FL setup and
design ‘channel-aware’ local and global model
quantization schemes that optimally utilize the
available wireless channel resources. We first de-
rive the effect of joint uplink-downlink quantiza-
tion on the convergence rate of FedAvg, and show
that uplink is the primary performance bottleneck
in wireless FL. We then design a ‘channel-aware’
uplink-downlink budget allocation scheme that
results in a fair budget allocation across all users.

1. Introduction
Federated learning (FL) (McMahan et al., 2017; Kairouz
et al., 2019) is an emerging distributed machine learning
(ML) paradigm that trains a ML model across a large num-
ber (e.g. O(1010)) of mobile devices with the assistance of
a central server. To ensure user privacy, the model is peri-
odically broadcast by the server to the devices; the devices
perform local updates to the model and send model updates
back to the server for model aggregation. This is contrast to
centralized ML, where users’ local datasets are aggregated
at the server prior to training/inference.

The typical FL work-flow consists of - (i) local training
at the devices, (ii) uplink communication of local model
updates from the devices to the central server, (iii) model
aggregation and global model updates at the central server,
and (iv) downlink communication of global model updates

1Department of Electrical and Computer Engineering, Rice
University, Houston, Texas, USA. Correspondence to: Nishant
Mehrotra <nm30@rice.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, Vienna, Austria, 2021. Copyright 2021 by the author(s).

from the central server to the devices. The distributed and
iterative nature of the FL work-flow leads to (Kairouz et al.,
2019) (a) non-IID local dataset distributions at the devices,
(b) model aggregation and synchronization issues at the
server, (c) uplink and downlink communication overhead,
and (d) large-scale deployment issues.

A possible solution for (b), (c) and (d) above is to deploy FL
over wireless networks a.k.a. wireless FL. The wireless set-
ting allows for natural ‘over-the-air’ aggregation due to the
inherent broadcast nature of analog wireless transmissions,
robustness to synchronization issues (with digital schemes),
as well as the opportunity to support a very large number
of devices via backhaul networks (e.g. cellular). However,
the wireless medium is susceptible to random, time-varying
packet drops due to fading and noise. In addition, wireless
links have bandwidth and latency constraints that must be
satisfied to guarantee reliability (error-free decoding).

Therefore, the key challenge in wireless FL is to design
communication-efficient local and global model update
schemes that optimally utilize the wireless channel resources
while guaranteeing model convergence.

1.1. Prior Work

Prior work on wireless FL can be categorized by the wireless
transmission schemes used - (i) digital schemes have high
reliability, are inherently robust to synchronization issues,
are compatible with commonly used wireless hardware, but
require sequential decoding of users’ transmissions, (ii) ana-
log schemes allow for natural ‘over-the-air’ aggregation of
simultaneous transmissions, but have low reliability and
tight synchronization requirements, and are generally in-
compatible with commonly used wireless hardware. Al-
though analog schemes generally perform better in terms
of model convergence over digital schemes (Mohammadi
Amiri & Gündüz, 2020; Amiri & Gündüz, 2020; Sery & Co-
hen, 2020), in this work we focus on digital schemes due to
their compatibility with commonly used wireless hardware.

The bulk of prior work has focused on designing digital
uplink quantization and rate allocation schemes for wire-
less FL; in (Mohammadi Amiri & Gündüz, 2020; Amiri &
Gündüz, 2020) a fixed digital uplink quantization scheme
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based on sparsification is presented, and user rate alloca-
tion is performed in a multi-user setup by adaptively tuning
the users’ uplink quantization budgets in a ‘channel-aware’
manner (Amiri et al., 2020a; Dinh et al., 2020; Chang &
Tandon, 2020). Similarly, there has been prior work on
designing downlink quantization and model compression
schemes, such as in (Khaled & Richtárik, 2020; Yuan et al.,
2020), where fixed digital downlink model compression
schemes based on sparsification are presented. However,
there has been very limited prior work on the more practi-
cally relevant joint uplink-downlink quantization scenario
except for (Amiri et al., 2020b), where a ‘channel-aware’
downlink rate allocation scheme is presented (with fixed up-
link budgets). To the best of our knowledge, there has been
no prior work on ‘channel-aware’ joint uplink-downlink
quantization and budget allocation for wireless FL.

1.2. Our Contributions

The main goal of this work is to design ‘channel-aware’ joint
uplink-downlink quantization schemes that allow both the
users and the server to allocate optimal quantization budgets
depending on the channel conditions to optimally utilize
the shared wireless channel. As a first step towards this
goal, we first quantify the effect of joint uplink-downlink
quantization on the convergence rate of FedAvg (McMa-
han et al., 2017) for a single-user setup with and without
wireless constraints. We show that uplink is the primary
performance bottleneck, and thus uplink resource allocation
must be performed more carefully compared to downlink
resource allocation. We verify this insight via simple sim-
ulations for the single-user setup. Finally, we consider the
more practically relevant multi-user setup with joint uplink-
downlink quantization, and present a basic formulation for
the ‘channel-aware’ quantization budget allocation problem.

1.3. Organization of the Report

We first present certain preliminaries and assumptions that
we use throughout the report in Section 2. In Section 3,
we consider the single-user setup with and without wireless
constraints, and present our main theoretical result on the
convergence rate of FedAvg with joint uplink-downlink
quantization. In Section 4, we extend the model to the multi-
user setting and formulate the ‘channel-aware’ quantization
budget allocation problem. We present numerical evaluation
of our results in Section 5. Finally, we conclude the report
with some directions for future work in Section 6.

1.4. Notation

We use bold uppercase for matrices (e.g. X), bold lowercase
for vectors (e.g. x), and non-bold lowercase for scalars
(e.g. x). Standard vector and matrix norms are denoted by
‖ · ‖ (with appropriate subscripts), and the inner product

is denoted by 〈·, ·〉. Other operations, such as the absolute
value | · | and the sign function sgn (·), are assumed to be
element-wise unless otherwise mentioned.

2. Preliminaries & Assumptions
2.1. Federated Learning

The goal of federated learning is to collaboratively solve the
optimization problem (Khaled & Richtárik, 2020),

x∗ ∈ arg min
x∈Rd

{
f (x) =

1

n

n∑
i=1

fi (x)

}
, (1)

where fi is the loss function at the ith user, d is the di-
mension of the model, and n is the number of users. The
FedAvg algorithm (McMahan et al., 2017) solves (1) by
performing parallel SGD steps at the users followed by a
model aggregation step at the central server,

x̃k,i = Qd (xk)− γ · ∇fi (Qd (xk)) , (2)

xk+1 =
1

n

n∑
i=1

Q(i)
u (x̃k,i) , (3)

where Q(i)
u denotes the uplink quantization operator at the

ith user, andQd denotes the downlink quantization operator
at the central server.

2.2. Quantization

Throughout, we consider the quantization operators to be
unbiased and to have bounded variance.

Property 1. A quantization operator Q : Rd → Rd is
unbiased if

EQ [Q (x) |x] = x.

Property 2. A quantization operator Q : Rd → Rd has
bounded variance (with variance factor ω) if

EQ
[
‖Q (x)− x‖22 |x

]
≤ ω · ‖x‖22 .

Intuitively, ω = 0 above implies infinite quantization,
whereas a large value of ω implies coarse quantization.

Henceforth, we use the following stochastic quantization
scheme from (Alistarh et al., 2017; Chang & Tandon, 2020),

Q (xi) = ‖x‖2 · sgn (xi) · ξ
(
|xi|
‖x‖2

, k

)
, (4)

where k is the number of quantization levels. Given xi

‖x‖2
∈

[ lk ,
l+1
k ], ξ

(
|xi|
‖x‖2

, k
)

is defined as follows,

ξ

(
|xi|
‖x‖2

, k

)
=


l
k w.p.

(
1 + l − |xi|

‖x‖2
· k
)

l+1
k w.p.

(
|xi|
‖x‖2

· k − l
) . (5)
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Note that Q in (4) satisfies Properties 1 and 2 with ω =
d

4k2 (Alistarh et al., 2017; Chang & Tandon, 2020). Also,
similar to (Alistarh et al., 2017), we assume that to send
Q (x), the tuple (‖x‖2 , sgn (x) , ξ) is sent with ‖x‖2 and
sgn (x) sent using fixed, pre-determined 32 and 2 bit repre-
sentations respectively. In contrast, variable length encoding
using d · log2 (k) bits is assumed for sending ξ.

2.3. Single-User Wireless Channel Model

We consider an idealized digital channel model that imposes
a quantization budget K below which error-free recovery is
guaranteed (e.g. using capacity-achieving channel codes),
but above which only a noisy recovery is possible,

Qch (yi) =

{
yi k ≤ K
ξ
(
[yi + wi][0,1] , k

)
k > K

, (6)

where yi ∈ [0, 1], wi ∼ N
(
0, 1

4K2

)
is a channel noise

term dependent on the quantization budget K, and [·][0,1]
is the clipping operator over the [0, 1] interval. Note that
we only consider the effect of wireless channels on sending
ξ; for simplicity, it is assumed that ‖x‖2 and sgn (x) are
always recovered exactly at the destination. Also, note that
on passing ξ

(
|xi|
‖x‖2

, k
)

through Qch, the output becomes
unbiased when k > K due to the additive channel noise.

2.4. Multi-User Wireless Channel Model

To model the effect of multiple users transmitting over a
shared wireless channel, we consider the well-known multi-
ple access (MAC) and broadcast channel models for uplink
and downlink respectively. Given n users, we represent
multi-user wireless channels by sum rate constraints over all
possible subsets of {1, · · · , n} (Cover & Thomas, 2006),∑

i∈S
d · log2

(
k(i)
)
≤ R(S), S ⊆ {1, · · · , n}, (7)

which is equivalent to the following budget constraints,∏
i∈S

k(i) ≤ K(S), S ⊆ {1, · · · , n}. (8)

Note that in general, the sum rate constraint for any subset
of {1, · · · , n} is smaller than the sum of the constraints for
the individual users in the given subset. Thus, the feasible
rate region is a convex polytope in general. For example,
the feasible region for a two-user setup is shown in Figure 1.

3. Single-User Uplink-Downlink Quantization
We begin by analyzing the convergence guarantees of Fe-
dAvg for a single user setup with joint uplink-downlink
quantization under two settings - (a) the error-free setting

Figure 1. Feasible rate region for two-user wireless channel model.

with no quantization budget and no wireless channel noise,
and (b) the wireless setting with the channel model dis-
cussed in Section 2.3. Note that in the single-user case, the
FedAvg iterations in (2) and (3) collapse to gradient descent
iterations with uplink and downlink model quantization.

3.1. Error-Free Setting

In the error-free setting, we obtain the following result -

Theorem 1. ForL-smooth, µ-strongly convex loss functions
f(·), single-user FedAvg with constant step-size γ satisfies

rk ≤
(
1− µγ + 4ωu

(
1 + γ2L2

)
(1 + 2ωd)

)k · r0+
2 ‖x∗‖22 · (C1 + C2)

µγ − 4ωu (1 + γ2L2) (1 + 2ωd)
,

for all valid quantization operators that satisfy

4ωu
µ
≤ γ

(1 + γ2L2) · (1 + 2ωd)
,

4ωd
µ
≤ 1− 2γL

2γL2 + 2
γ + L− µ

,

where rk+1 = EQu,Qd

[
‖xk+1 − x∗‖22 |xk, x̃k

]
for x̃k de-

fined as in (2), C1 = γωd (L− µ) + 2ωd
(
1 + γ2L2

)
and

C2 = 2ωu + 4ωuωd
(
1 + γ2L2

)
.

Proof. See Appendix A.

Corollary 1. In contrast to downlink-only model compres-
sion/quantization schemes (Khaled & Richtárik, 2020; Yuan
et al., 2020) that satisfy the following guarantees,

rk ≤ (1− µγ)k · r0 +
2 ‖x∗‖22 · C1

µγ
,

FedAvg with joint uplink-downlink quantization converges
at a slower rate (by a factor of 4ωu

(
1 + γ2L2

)
(1 + 2ωd))
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to a larger error neighborhood (due to the additive
term C2 in the numerator and the subtractive term
4ωu

(
1 + γ2L2

)
(1 + 2ωd) in the denominator).

Note that on substituting ωu = 0 in Theorem 1, we read-
ily obtain Corollary 1; thus, our results are more general
compared to (Khaled & Richtárik, 2020; Yuan et al., 2020).

Theorem 1 and Corollary 1 imply that uplink is the pri-
mary performance bottleneck in wireless FL system designs.
For a numerical comparison between uplink-only versus
downlink-only quantization, consider the parameter values
γ = 1

4L and ωu = ωd =
1

73κ , where κ = L
µ is the condition

number; while a convergence rate of O
(
4κ · ln

(
1
ε

))
to an

error neighborhood of size O
(

4‖x∗‖22
1387

)
is achieved with

downlink-only quantization, with uplink-only quantization
we achieve slower convergence at a rate O

(
5.2κ · ln

(
1
ε

))
to a much larger error neighborhood of size O

(
2‖x∗‖22

7

)
.

However, we note that the conditions in Theorem 1 imply
more stringent downlink quantization constraints as com-
pared to uplink i.e. in general, finer downlink quantization is
required compared to uplink to satisfy the conditions in The-
orem 1. We further explore this implication in the multi-user
‘channel-aware’ budget allocation problem formulation.

3.2. Wireless Setting

For the stochastic quantization scheme in Section 2.2 and
all valid uplink and downlink quantization budgets KU and
KD that satisfy the conditions in Theorem 1, in the wireless
setting we make the following preliminary observations -

• When ku ≤ KU and kd ≤ KD, we expect Theorem 1
with ωu = d

4k2u
and ωd = d

4k2d
to always hold. Here,

the available channel resources are under-utilized.

• When ku > KU and kd > KD, we expect Theorem 1
with ωu = d

4K2
U

and ωd = d
4K2

D
to serve as a lower

bound on the sample complexity. Here, the available
channel resources are over-utilized.

4. Multi-User ‘Channel-Aware’ Quantization
In an actual wireless FL deployment with multiple users, it
is important to allocate uplink and downlink quantization
budgets to users and the server prior to every FedAvg iter-
ation to alleviate the communication overhead while also
optimally utilizing the available wireless channel resources.
In the context of the multi-user wireless channel model pre-
sented in Section 2.4, this corresponds to solving for the
individual users’ quantization budgets k(i), i ∈ {1, · · · , n}
in (8) for both uplink and downlink. In the wireless FL set-
ting, we formulate the ‘channel-aware’ quantization budget

Figure 2. Convergence plots for single-user error-free FedAvg.

allocation problem as

min
{k(i)u ,k

(i)
d }

n
i=1

n∑
i=1

 2 ‖x∗‖22 ·
(
C

(i)
1 + C

(i)
2

)
µγ − 4ω

(i)
u (1 + γ2L2)

(
1 + 2ω

(i)
d

)

(9)

s.t.
∏
i∈S

k
(i)
u/d ≤ K

(S)
U/D, S ⊆ {1, · · · , n}, (10)

where from among all feasible budgets, the optimal uplink
and downlink budgets are found such that the sum of the
error neighborhoods over all users is minimized. Note that in
addition to the sum rate constraints in (10), the quantization
operator conditions in Theorem 1 must also be satisfied; as
per the discussion in Section 3.1, the feasible user budget
region is expected to be larger for uplink versus downlink.

5. Numerical Evaluation
5.1. Single-User Uplink-Downlink Quantization

We begin by comparing the performance of single-user
uplink-only versus downlink-only quantization in the error-
free and wireless settings. As per Theorem 1, we expect
linear convergence to a larger error neighborhood around
the optimal solution with uplink-only versus downlink-only
quantization. Throughout, we simulate a well-conditioned
linear regression problem with κ = 2.

5.1.1. ERROR-FREE SETTING

In the error-free setting, we plot the convergence plots for
full-precision, 8 bit and 16 bit uplink-only and downlink-
only quantization in Figure 2. As expected from Theo-
rem 1, we observe a linear convergence to an error neigh-
borhood dependent on the number of quantization lev-
els. For example, with downlink-only quantization we ob-
serve an error neighborhood difference ofO

(
log10

(
28
))

=
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Figure 3. Convergence plots for single-user wireless FedAvg when
ku/d ≤ KU/D .

O
(
log10

(√
κωd|kd=28

))
− O

(
log10

(√
κωd|kd=216

))
between the 8 bit and 16 bit downlink-only plots. We also
observe an increase in the error neighborhood size with
uplink-only versus downlink-only quantization as expected.

5.1.2. WIRELESS SETTING

In the wireless setting, we plot the convergence plots for
uplink and downlink quantization budgets of KU = 8 bits
and KD = 8 bits in Figures 3 and 4. We compare the
performance of uplink-only and downlink-only quantization
when (i) the user’s quantization budget is smaller than the
link’s available budget i.e. ku/d ≤ KU/D, and (ii) the user’s
quantization budget exceeds the link’s available budget i.e.
ku/d > KU/D.

When ku/d ≤ KU/D, as per Section 3.2 we expect linear
convergence to an error neighborhood dependent on ku/d.
In Figure 3, we plot the convergence plots for all four combi-
nations of 4 bit and 8 bit uplink and downlink quantization.
We observe that the best performance is achieved when
ku/d = KU/D i.e. the available channel resources are opti-
mally utilized. In addition, we observe that the performance
deteriorates a lot more on under-utilizing the uplink channel
versus under-utilizing the downlink channel. This reinforces
our conclusion from Theorem 1 that uplink is the primary
performance bottleneck in wireless FL; therefore, uplink
channel resources need to always be optimally utilized.

When ku/d > KU/D, as per Section 3.2 we expect worsen-
ing performance as the link budgets KU/D are exceeded. In
Figure 4, we plot the convergence plots for all four combi-
nations of 8 bit and 16 bit uplink and downlink quantization.
We observe that the best performance is achieved when
ku/d = KU/D i.e. the available channel resources are op-
timally utilized, and that the performance deteriorates by
an amount proportional to the additive channel noise in

Figure 4. Convergence plots for single-user wireless FedAvg when
ku/d > KU/D .

Section 2.3 on over-utilizing the channels. In addition, we
observe that performance deteriorates more on over-utilizing
the uplink channel versus over-utilizing the downlink chan-
nel. This reinforces our conclusion from Theorem 1 that
uplink is the primary performance bottleneck in wireless
FL. On comparing Figures 3 and 4, we also observe that
under-utilization of channel resources leads to a greater
performance loss compared to over-utilization of channel
resources. Thus, optimal allocation of user budgets is of
great relevance to practical wireless FL system deployment.

5.2. Multi-User ‘Channel-Aware’ Quantization

Finally, we solve the ‘channel-aware’ budget allocation
problem formulated in Section 4 for two users with uplink-
only and downlink-only quantization. For brevity, we solve
only the uplink-only quantization problem analytically, for
which the Lagrangian function takes the form

L = J
(
k(1)u , k(2)u

)
+ λs ·

 ∏
i∈{1,2}

k(i)u −K
(s)
U


+ λ1 ·

(
k(1)u −K

(1)
U

)
+ λ2 ·

(
k(2)u −K

(2)
U

)
, (11)

where J
(
k
(1)
u , k

(2)
u

)
is the objective function in (9)

i.e. J
(
k
(1)
u , k

(2)
u

)
=
∑2
i=1

[
2‖x∗‖22·

(
C

(i)
1 +C

(i)
2

)
µγ−4ω(i)

u (1+γ2L2)
(
1+2ω

(i)
d

)].

From the rate region in Figure 1, it is clear that the con-
straint

∏
i∈{1,2} k

(i)
u ≤ K(s)

U must be satisfied with equality
in order to result in maximal channel utilization (Cover &
Thomas, 2006; Chang & Tandon, 2020). However, this im-
plies that the individual constraints k(i)u ≤ K(i)

U , i ∈ {1, 2}
aren’t satisfied with equality; thus, λ1 = λ2 = 0. Thus,
the optimal budgets are found by setting the partial deriva-
tives of the Lagrangian with respect to the user budgets
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Table 1. Optimal uplink and downlink two-user budget allocation.

(
K

(1)

U/D,K
(2)

U/D,K
(s)

U/D

)
UP

(
ku ≥ 25.37

)
DN

(
kd ≥ 26.43

)
(29, 26, 214) (28, 26) -
(29, 27, 214) (27, 27) (27, 27)
(29, 28, 214) (27, 27) (27, 27)
(29, 29, 214) (27, 27) (27, 27)
(29, 210, 214) (27, 27) (27, 27)

k
(i)
u , i ∈ {1, 2} to zero and solving for the variable λs. This

results in

k
(1)
u

k
(2)
u

=

µγ − 4ω
(2)
u

(
1 + γ2L2

) (
1 + 2ω

(2)
d

)
µγ − 4ω

(1)
u (1 + γ2L2)

(
1 + 2ω

(1)
d

)
×

√√√√√µγ + 4ω
(1)
u (1 + γ2L2)

(
1 + 2ω

(1)
d

)
µγ + 4ω

(2)
u (1 + γ2L2)

(
1 + 2ω

(2)
d

) , (12)

which in conjuction with
∏
i∈{1,2} k

(i)
u = K

(s)
U results in

the optimal user budget allocation {k(1)u , k
(2)
u }. Note that in

addition to the constraints in (10), the quantization operator
conditions in Theorem 1 must also be satisfied; as per the
discussion in Section 4, we expect a larger feasible user
budget region for uplink as compared to downlink.

We numerically evaluate the optimal uplink-only and
downlink-only user budgets for the two-user setup; the re-
sults are tabulated in Table 1. For simplicity, we keep the
user 1 and joint link budgets constant at K(1)

U/D = 29 and

K
(s)
U/D = 214 respectively and vary user 2’s link budget

from 26 to 210 in order to quantify the effect of varying
link budgets on the optimal user budget values. We observe
that the optimal user budgets are allocated fairly across

both users to the value
√
K

(s)
U/D = 27 for all link budget

values that satisfy K(i)
U/D ≥

√
K

(s)
U/D = 27, i ∈ {1, 2}.

Otherwise, the feasible pair closest to the maximally fair

pair
(√

K
(s)
U/D,

√
K

(s)
U/D

)
= (27, 27) gets allocated. In

addition, as expected, we note that the feasible user budget
region is larger for uplink as compared to downlink.

6. Concluding Remarks
In this report, we considered the design of ‘channel-aware’
quantization schemes for wireless FL. We first extend prior
convergence analysis of FedAvg from the downlink-only
model compression/quantization setting to joint uplink-
downlink quantization; for a single-user setup, our results

demonstrate that uplink is the primary performance bot-
tleneck in wireless FL system designs. Therefore, uplink
channels must be maximally utilized in a practical wireless
FL system design to result in the best system performance.
However, an advantage of joint uplink-downlink quanti-
zation is that the uplink quantization constraints are less
stringent compared to the corresponding downlink quanti-
zation constraints outlined in prior work. Therefore, in a
multi-user wireless FL system, the feasible user budget re-
gion is larger for uplink as compared to downlink. We verify
this insight by solving for the optimal ‘channel-aware’ user
quantization budgets in uplink and downlink; in addition to
a larger uplink feasible user budget region, we demonstrate
that for the stochastic quantization scheme we use in this
work, ‘channel-aware’ quantization results in a fair user
budget allocation across all users in uplink and downlink.

Some drawbacks of our current setup are that (i) FedAvg
converges only to a large error neighborhood around the
optimal solution with joint uplink-downlink quantization,
and (ii) our ‘channel-aware’ user budget allocation problem
formulation does not take into account the ’informativeness’
of the users’ local model updates. As part of future work, we
intend to (i) derive generic lower convergence bounds across
a large class of wireless FL algorithms (similar to Nesterov’s
ower bounds for convex optimization), (ii) jointly design
the optimization algorithms (e.g. FedAvg) along with the
wireless access schemes (e.g. uplink-downlink quantiza-
tion operators) that achieve the lower bounds derived in (i),
and (iii) design more generic quantization schemes (similar
to (Chang & Tandon, 2020)) that take the ’informativeness’
of users’ local model updates into account. In addition, from
a more theoretical perspective, it would be interesting to
explore whether insights from lossy compression in infor-
mation theory (rate-distortion theory) can be applied to the
design of wireless FL update schemes.
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A. Proof of Theorem 1
We follow the general proof strategy in (Khaled & Richtárik,
2020); for brevity, we only outline the key arguments that
differ in our setting as compared to theirs.

Proof. Let rk+1 = EQu,Qd

[
‖xk+1 − x∗‖22 |xk, x̃k

]
,

where x̃k = Qd (xk)− γ · ∇f (Qd (xk)). We have,

‖xk+1 − x∗‖22 = ‖Qu (x̃k)− x∗‖22 (13)

= ‖Qu (x̃k)− x̃k + x̃k − x∗‖22 , (14)

which on expanding, taking expectations with respect toQu
and Qd, and using Property 1 results in

rk+1 = EQu,Qd

[
‖Qu (x̃k)− x̃k‖22 |xk, x̃k

]
+

EQd

[
‖x̃k − x∗‖22 |xk

]
.

(15)

The second term in (15) may be upper bounded via the main
results of (Khaled & Richtárik, 2020; Yuan et al., 2020),

EQd

[
‖x̃k − x∗‖22 |xk

]
≤ (1− µγ) · rk + 2 ‖x∗‖22 · C1,

(16)
and to upper bound the first term in (15), we use Property 2,

EQu,Qd

[
‖Qu (x̃k)− x̃k‖22 |xk, x̃k

]
≤ ωu·EQd

[
‖x̃k‖22 |xk

]
.

(17)

Via the triangle inequality, Lemma 3 in (Khaled & Richtárik,
2020) (with y = x∗), and Property 2, we have

‖x̃k‖22 ≤ 2·
(
‖x̃k − xk‖22 + 2 · ‖xk − x∗‖22 + 2 · ‖x∗‖22

)
,

(18)

EQd

[
‖x̃k − xk‖22 |xk

]
≤ 4ωd

(
1 + γ2L2

)
· ‖x∗‖22 +(

2γ2L2 + 4ωd
(
1 + γ2L2

))
· ‖xk − x∗‖22 . (19)
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From (15), (16), (17), (18) and (19), we obtain

rk+1 ≤
(
1− µγ + 4ωu

(
1 + γ2L2

)
(1 + 2ωd)

)
· rk+

2 ‖x∗‖22 · (C1 + C2) , (20)

where C1 = γωd (L− µ) + 2ωd
(
1 + γ2L2

)
and C2 =

2ωu + 4ωuωd
(
1 + γ2L2

)
. On unrolling (20), we obtain

the desired result. Note that for (20) to behave as a contrac-
tion, we require 4ωu

(
1 + γ2L2

)
(1 + 2ωd) ≤ µγ which

directly leads to the uplink quantization operator condition
in Theorem 1. The downlink quantization operator condi-
tion follows from the discussion in (Khaled & Richtárik,
2020) leading to (16).
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1 Introduction

1.1 Definition of SDP

A semidefinite program (SDP) is an optimization problem of the form

min 〈C,X〉
s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X � 0

The optimization variable is X ∈ Sn,, where Sn denotes the set of all n×n symmetric matrices, and
the problem data are A1, . . . , Am, C ∈ Sn and b ∈ Rm.

The dual problem of SDP is

max b>y

s.t.

m∑
i=1

yiAi + S = C

S � 0

The optimization variables are S and y.

1.2 Applications of SDP

1.2.1 Combinatorial optimization: The MAX CUT problem

SDP has wide applicability in combinatorial optimization. A number of NP-hard combinatorial opti-
mization problems have convex relaxations that are semidefinite programs. The MAXCUT problem
is an example that demonstrates the use of SDP in combinatorial optimization [10].

Let G be an undirected graph with node set N = {1, . . . , n} and edge set E. Let wij = wji e
the weight of edge (i, j), for (i, j) ∈ E. Assuming that wij > 0 for all (i, j) ∈ E,, the MAX CUT
problem aims to determine a subset S of the nodes N for which the sum of the weights of the edges
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that cross from S to its complement N \ S. Let xj = 1 for j ∈ S and xj = −1 for j ∈ N \ S. The
MAX CUT problem can be formulated as

max

n∑
i=1

n∑
j=1

wij(1− xixj)

s.t. x ∈ {−1, 1}, j = 1, . . . , n

Let Y = xx> and W be a matrix whose (i, j)th entry is wij . The MAX CUT problem can be
equivalently formulated as

max

n∑
i=1

n∑
j=1

wij − 〈W,Y 〉

s.t. Y = xx>, Yjj = 1, j = 1, . . . , n

The matrix Y = xx> is a symmetric rank-1 positive semidefinite matrix. By removing the rank-1
restriction, we can relax the problem into the following semidefinite program [10].

max

n∑
i=1

n∑
j=1

wij − 〈W,Y 〉

s.t. Y � 0, Yjj = 1, j = 1, . . . , n

The MAX CUT problem has direct applications in modern machine learning. For example, in graph-
based clustering, each node in a fully-connected graph is a data point. The weight of each edge is
some measure of dissimilarity between data points. Solving the MAX CUT problem is equivalent to
bipartitioning the data and maximizing inter-cluster distance.

1.2.2 Low-Rank Matrix Completion

SDP also has a variety of applications in Low-Rank Matrix Completion. One notable application is
the Netflix Problem which is given a matrix Z ∈ Rmxn, with rows i = [1, 2, ..., n] corresponding to
users and columns j = [1, 2, ..., m] corresponding to shows, the matrix represents what rating user
i gives to user j, the matrix is partially incomplete (some entries needs to be filled) the task then is
to infer what are the values of the missing entries. Given the current set-up any value is valid for
the missing entries, so another constraint is added which is the assumption that user base satisfy a
finite number of segments k (s.t k ¡¡n) Hence we can assume that the Matrix Z has a low-rank and
our problem is defined formally as:

min
X∈Rm×n

∑
i,j

(Xi,j − Zi,j)
2

s.t. rank(X) ≤ r

Such that Z is the matrix with data we already know. The indices i,j range over this data we already
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know. The problem can then be reduced to an SDP problem by relaxing the constraint on the rank,
and changing it into a constraint on the Nuclear Norm. This is defined formally as:

min
X∈Rmxn,W1∈Sm,W2∈Sn

∑
i,j

(Xi,j − Zi,j)
2

s.t. Tr

[
W1 X
XT W2

]
≤ r,

[
W1 X
XT W2

]
� 0

The Low-Rank Matrix Completion problem has many other applications such as IoT Locatlization:
The problem arises in IoT sensor networks. The goal is to recover the sensor map in Euclidean space
from a set of pairwise distances. Thus it is an instance of a matrix completion problem with rank
n if the sensors are located in an n-Dimensional Space (Usually n = 2, or 3 hence it is actually an
instance of Low-Rank Matrix completion)

1.3 Low-Rank Solutions to SDP

This review focuses on low-rank solutions to SDP. Some cases such as the Netflix problem constrain
feasible solutions to low-rank matrices. However, in some other problems, low-rankness is not an
explicit constraint, and the optimal solution to the SDP problem may in fact have high rank. In
these cases, methods of finding low-rank solutions to SDP are still relevant, as it has been shown
that if an SDP has m constraints and an optimal solution, then it also has a rank-r optimal solution
[8] with

r(r + 1)

2
≤ m

For an SDP problem without low-rank constraints, searching for a low-rank optimal solution can lead
to significant gains in computational time and storage without severely compromising the accuracy
of the solution.

2 Burer-Monteiro based methods

A n×n positive semi-definite matrix X has rank r ≤ n if and only if it can be written as X = V V >,
where V ∈ Rn×r. The key idea of Burer-Monteiro based methods is to factor the decision variable
X as V V > where V ∈ Rn×r. Using this factorization, we can rewrite as

min
V ∈Rn×r

Tr(CV V >)

s.t. Tr(AiV V
>) = bi, i = 1, · · · ,m

2.1 Augmented Lagrangian method

While the factorization X = V V > effectively eliminated the constraint X � 0, the difficult con-
straints Tr(AiV V

>) = bi remain [2]. The augmented Lagrangian method account for them by
ignoring the constraints all together and including additional terms that penalize infeasible points
[2]. Penalization alone, however, can lead to ill-conditioning in the optimization, so another fea-
ture of the augmented Lagrangian method is the introduction of Lagrange multipliers, one for each
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constraint [2]. The augmented Lagrangian object function is given by

L(R, y, σ) = 〈C, V V >〉 −
m∑
i=1

yi(〈Ai, V V
>〉 − bi) +

σ

2

m∑
i=1

(〈Ai, V V
>〉 − bi)2

For an appropriate, fixed choice (y∗, σ∗), finding an optimal solution R∗ is equivalent to minimizing
L(R, y∗, σ∗) with respect to R only. To determine a suitable (y∗, σ∗), the augmented Lagrangian al-
gorithm alternates minimizing L(R, y, σ) over R and (y, σ). This is done by minimizing L(R, yk, σk)
with respect to R to find its optimal solution Rk and then using (Rk, yk, σk) to determine a new
pair (yk, σk) at each iteration.

Algorithm 1: Augmented Lagrangian Algorithm

compute v =
m∑
i=1

(〈Ai, V V
>〉 − bi)2

if v < µv then

yk+1
i = yki − σk(〈Ai, V V

>〉 − bi), for all i;
σk+1 = σ;
vk+1 = vk

else

yk+1
i = yki for all i;
σk+1 = γσ;
vk+1 = vk

A key component of the algorithm is performing the unconstrained minimization of L(R, yk, σk)
with respect to R. In the original study, the authors used a quasi-Newton’s method, limited-memory
BFGS algorithm [2]. There is no theoretical guarantee regarding convergence to global minima. the
algorithm is observed to experimentally return the global minimum and reported strong computa-
tional results, a speed-up factor of nearly 500 over the second fastest algorithm at the time, based
on the fact that the function and gradient evaluations of the augmented Lagrangian function [2].

Later, the authors developed a perturbed augmented Lagrangian algorithm and proved theoreti-
cal convergence [3]. The perturbed algorithm is formulated as

min
R∈Rn×r

L(R, y, σ) + µdet (R>R)

where {µk} ⊂ R+ is a sequence converging to 0. The extra term µdet (R>R) is needed for theoretical
convergence but not for practical convergence [3]. One may theoretically choose µk > 0 as small as
one wishes, with the only exception being that µk −→ 0 [3].

2.2 Block-coordinate maximization method

Coordinate-descent methods were originally proposed to solve SDP instances with constraints only
on the diagonal entries of the matrix:

min
X�0
〈C,X〉

s.t. Xii = 1, i = 1, · · · , n
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Applying low-rank factorization,

min〈C, V V >〉
s.t. ‖v‖2 = 1, i = 1, · · · , n

Here we focus on unit diagonal constraints, the methods we discuss can be easily extended to
arbitrary positive numbers. Coordinate or block-coordinate descent methods (BCD) select a subset
of variables to update at each iteration, reducing the computational complexity at each iteration.

2.2.1 The Mixing Method

The mixing method is one of the earliest block-coordinate maximization algorithm for solving SDP
[9]. The mixing method applies a coordinate power iteration routine, updating each column of V in
sequence [9]. The objective terms that depend on vi are given by v>i (

∑n
j=1 Cijvj). Since ‖v‖2 = 1,

we can assume that Cii = 0 without affecting the solution of the problem. Thus, the problem is
equivalent to simply minimizing the inner product v>i gi, where gi =

∑n
j=1 Cijvj , subject to the

constraint that ‖v‖2 = 1. This update is given by

vi :=
−
∑n

j=1 Cijvj

‖
∑n

j=1 Cijvj‖2

Theoretical analysis of the mixing method constitutes four main convergence properties [9]:

• The Mixing Method is strictly decreasing in objective value and always converges to a first-
order critical point over iterations.

• A variant of the Mixing Method with a proper step size converges to a global optimum almost
surely under random initialization without any assumptions

• The Mixing Method converges linearly to the global optimum when the solution is close enough,
regardless of the existence of nearby non-optimal critical points.

• For a rank k >
√

2n, all non-optimal critical points V ∈ Rk×n are unstable for the Mixing
Method.

2.2.2 Coordinate selection rules

In the original mixing method, the blocks vkik that are updated at each iteration are chosen deter-
ministically, as each block is updated in sequence. There are three coordinate selection rules, two of
which are randomized [4].

• Uniform sampling: ik = i with probability pi = 1/n

• Importance sampling: ik = i with probability pi =
‖gk

i ‖∑n
j=1 ‖gk

j ‖

• Greedy coordinate selection: ik = arg maxi(‖gki ‖ − 〈vki , gki 〉)

5



The greedy selection rule yields the following global convergence guarantee [4]

min
k∈[K−1]

‖∇f(V k)‖2F ≤
2n‖A‖1(f(V ∗)− f(V 0))

K

.
The randomized selection rules yield a convergence guarantee as the following [4]

min
k∈[K−1]

E‖∇f(V k)‖2F ≤
2L(f(V ∗)− f(V 0))

K

where L = n‖A‖1 for uniform sampling and L = ‖A‖1 for importance sampling. Hence, uniform
sampling attains the same sublinear convergence rate in expectation as greedy coordinate selection,
and importance sampling enjoys a higher convergence rate [4].

2.2.3 Adding momentum to the mixing method

The classical technique for momentum acceleration is the heavy ball method:

wt+1 = wt − η∇f(wt) + β(wt − wt−1)

where w represents the variable vector, f is a differentiable loss function, η is the learning rate,
and β is the momentum term. However, in power iteration, there is no notion of step size, and the
update rule is oblivious to the previous estimate location wt−1. To account for these differences, the
following update rule has been used to incorporate momentum in a power iteration algorithm for
PCA:

wt+1 = normalize(Cwt − βwt−1)

Naively adapting this update rule for the mixing method:

vi = normalize(

n∑
i=1

Cijvj − βvi)

However, vi has a norm of 1 but
∑n

i=1 Cijvj may have a norm much greater than 1. The contribution
of the momentum term may end up infinitesimal. To ensure that

∑n
i=1 Cijvj and vi are comparable

in magnitude, an additional projection step is added, resulting in the Mixing Method++. The
Mixing Method++ has similar convergence rate as the original Mixing Method in theory, but in
practice, the Mixing Method++ provides significant speed-up.

3 Frank-Wolfe based methods

An n×n positive semi-definite matrix X has rank r ≤ n if and only if it can be written as X = V V >,
where V ∈ Rn×r. The key idea of Frank-Wolfe is it minimizes a constrained function resulting in
an optimization problem of the form minx∈S f(x) such that S is a convex set, and f is a convex
L-smooth function. Frank-Wolfe progresses in two steps first, it approximates the function f(x)
locally with a linear function using its First-order Taylor expansion:

min
x∈RP

f(xt) + 〈f(xt), x− xt〉

s.t x ∈ S

6



Then to obtain a solution yt to this problem, we solve the following optimization problem:

min
x∈RP

f(xt) + 〈f(xt), x〉

s.t x ∈ S

Moreover, using the solution yt one can find the direction of descent dt = yt − xt Hence we derive
the following descent iteration:

xt+1 = xt + ηtdt

= (1− ηt)xt + ηtyt

s.t ηt =
2

t+ 2

Hence the Motivation for using Frank-Wolfe algorithm as a back-bone for many algorithms to obtain
a low-rank matrix SDP solution is that if the algorithm is initialized with a matrix of rank 1 and if
each minimizer is a matrix of rank 1, then the kth iteration result is the matrix A s.t rank(A) ≤ k.
This is crucial in order to be able to control the rank of the output solution.

3.1 Hazan’s Algorithm

The first example of a Frank-Wolfe-based algorithm is Hazan’s algorithm.
Hazan’s algorithm provides low rank solutions to SDP problems of the form defined in Section 1.1:

min
x∈S
〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X � 0 and Tr(x) ≤ t

Suppose Q is the set of matrices of the form {X � 0, T r(X) = 1}, Hazan’s algorithm then tries to
optimize this problem:

min
X∈Q

f(X)

For the appropriate choice of function f(X), this optimization is equivalent to finding low-rank
solutions to the SDP problem defined earlier in this section [6].

7



Hazan’s Algorithm is defined as following:

Algorithm 2: Hazan’s Algorithm

Input: A1, ..., Am ∈ Rnxn, b1, ..., bm ∈ R: Set of Constraints, k: The desired maximum
rank for the solution,

Output: X: 1
k -Approximation to the optimization problem s.t f(X) ≤ f∗ + Ω( 1

k ) with rank
at most k

1 Let M ← klog(m)

2 Initialize X0 to be an arbitrary matrix v0v
T
0 with rank 1 (Tr(X0) = 1)

3 let f(X) ← − 1
M log(

m∑
i=1

eM(Tr(Ai,X−bi)))

4 for i ← 1; i ≤ k; i = i+ 1 do
5 Compute vi corresponding to the max Eigenvalue of ∇f(Xi) written in Matrix form

6 set ηi ← min(1, 2i )

7 set Xi+1 ← Xi + ηiviv
T
i − ηiXi

8 return Xk

Observe that in line 5 in the algorithm, the maximum Eigenvalue and it’s corresponding Eigenvector
are calculated. However, These are, in fact, approximations rather than exact values, and can by
computed in linear time, using the Lanczos algorithm [7] with a random start.

Hazan’s algorithm, presented above is guranteed to produce a 1
k -approximation to the solution

of rank at most k, with at most O(k2) iterations for general SDPs and at most O(k) iterations
for optimization over the bounded SDP cone [6] yielding convergence rates of O( 1

k2 ) and O( 1
k )

respectively. It’s worth noting that this algorithm applied to general SDPs, produces virtually
identical results to the multiplicative weights update algorithm [1], with the same guarantees.

3.2 In-Face Extended Frank-Wolfe

The problem with Hazan’s Algorithm is that despite the fact that the rank of the final solution
might be low, the ranks of the intermediate matrices don’t increase monotonically up to the desired
rank before termination, rather they might grow larger than the desired rank in an intermediate
step then start decreasing towards the desired rank before termination.

A problem that consequently arises is the Computational and Storage requirements for the high-
rank intermediate iteration returns. In this section we introduce the In-Face Extended Frank-Wolfe
method which avoids this problem by instead of moving towards the ”regular” Frank-Wolfe direction
every iteration which might include iterations that result in High-rank matrices, it chooses between
the aforementioned ”regular FW” direction and moving into a direction that, while still getting it
closer to the optimal solution, keeps it ”In-Face” meaning in a region - which will be defined below
- that keeps the rank of the resulting iteration matrix low. Problems that can be solved using this
method are usually of the following type:

min
x∈Rnxd

f(AX)

s.t.||X||∗ ≤ 1

8



Such that f : Rm → R is convex and differentiable, ||.||∗ denotes the Nuclear norm, and A : Rnxd →
Rm maps X to (Tr(A1X), ...,Tr(AmX))T . Hence Given this setup we can apply Frank-Wolfe, in
particular the extend In-Face Frank-Wolfe.
the initial value X0 is a rank-1 matrix, and at each iteration i, the algorithm decides between two
steps as aforementioned.

First, the regular step which is comprised of computing the direction of descent by finding a pair
(vi, wi) of singular vectors coresponding to the maximum singular value of A∗(∇f(AXi)) s.t A∗ :
Rm → Rnxd is the adjoint operator to A. Then the new iterate is constructed by:

Xi+1 = Xi − ηXi − ηwiv
T
i

Second, the ”In-Face step” Which moves into the direction of the minimal face of the nuclear norm
unit ball to which Xi belongs to (Denoted F(Xi)). One method to move in the ”In-Face” direction
is to minimize the following:

Tr((A∗∇f(AXi))
TX)

s.tX ∈ F(Xi)

The resultant matrix from this minimization Yi produces the next iteration of Extended In-Face
Franke-wolfe as following:

Xi+1 = Xi − ηXi + ηYi

The second, ”In-Face” step, is the main idea behind the Extended algorithm, because it keeps the
rank of the matrix below a desired k if the choice between Regular and In-Face steps was made
appropriately.

Finally, it’s shown in [5] a 1
k -approimation solution can be obtained after O(k) iterations yielding

a convergence rate of O( 1
k ), with the rank of the iterate steps always being below k (resolving the

storage and computation issues raised earlier by Hazan’s algorithm)
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4 Discussion

SDP techniques has a wide variety of applications in many fields. In this paper we focused on
introducing the current state-of-art techniques in generating low-rank solutions to SDP problems.
The first family of methods that we discussed is the Burer-Monteiro methods. This family of methods
use low-rank factorization to remove the low-rank positive definite constraint. Within this family of
methods, the augmented Lagrangian method uses penalization and Lagrange multipliers to account
for constrains of the form Tr(AiV V

>) = bi, i = 1, · · · ,m, while the block coordinate maximization
methods account for diagonal constraints using projection for each coordinate. Both classes of
methods achieve theoretical and practical convergence. The momentum-accelerated mixing method
shows acceleration over existing methods experimentally. For future works, we will try to connect
its experimental performance with theory.
The second family of methods that we discussed is the Frank-Wolfe based methods. This family
of methods uses Frank-Wolfe algorithm as a back-bone for their computation. The two algorithms
presented in this family of methods are Hazan’s Algorithm, and Extended In-Face Frank-Wolfe
Algorithm. A problem that was noticable with Hazan’s algorithm was it’s high-rank intermediate
iteration returns, which was the main motivation for creating the In-face Frank-Wolfe algorithm’s
to fix this problem.
Despite low-rank solutions being the main focus of the paper, we also argued that these techniques
are still applicable in general; since low-rank solutions are plausible candidates for approximating
general SDP solutions. Another possible future direction is to characterize the global minima of
SDPs after low-rank factorization and relate them to the global minima of the original problem.
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Cross-Device Federated Learning: Progress and Open Challenges
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Abstract
Federated Learning (FL) is a very hot research
topic for a long time. It requires the collaboration
between many areas (System, Security/Privacy,
Machine Learning). There are two kinds of feder-
ated learning: 1. cross-device federated learning
2. cross-silo federated learning. This survey will
mainly talk about the researches span across dif-
ferent sub areas of cross device federated learning.

1. Introduction
Federated Learning (FL) is a distributed machine learning
approach that can be trained on a large amount of device,
like cell-phones and IOT devices. Decentralized data resi-
dents on these devices. FL is a more general example ”Bring
model into the data instead data to model” and solves the
underlying problem privacy, ownership, and data locality.

Many efforts have recently been devoted to implement-
ing federated learning algorithms to support effective ma-
chine learning models. Specifically, researchers try to
support more machine learning models with different
privacy-preserving approaches, including deep neural net-
works (NNs) [(Liu et al., 2020), (Yurochkin et al., 2019),
(Bonawitz et al., 2019), (Ryffel et al., 2018), (McMahan
et al., 2017)], gradient boosted decision trees (GBDTs) [(Li
et al., 2020), (Cheng et al., 2019), (Li et al., 2019)], logistics
regression [(Nikolaenko et al., 2013)] and support vector
machines (SVMs) [(Smith et al., 2018)]. For instance, Niko-
laenko et al. and Chen et al. propose approaches to conduct
FL based on linear regression. Hardy et al. [(Hardy et al.,
2017)] implement an FL framework to train a logistic regres-
sion model. Since GBDTs have become very successful in
recent years [(Chen & Guestrin, 2016), (Wen et al., 2020)],
the corresponding Federated Learning Systems (FLSs) have
also been proposed by [(Zhao et al., 2018)], [(Cheng et al.,
2019)], [(Li et al., 2019)]. Another popular ensemble
method of decision trees, i.e., random forests, has also been

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

extended to support privacy-preserving [144], which is an
important step towards supporting FL. Moreover, there are
many neural network based FLSs. Google proposes a scal-
able production system which enables tens of millions of
devices to train a deep neural network. Yurochkin et al. de-
velops a probabilistic FL framework for neural networks by
applying Bayesian nonparametric machinery. Several meth-
ods try to combine FL with machine learning techniques
such as multi-task learning and transfer learning. Smith et
al. combine FL with multi-task learning to allow multiple
parties to complete separate tasks. To address the scenario
where the label information only exists in one party, Yang
et al. [197] adopt transfer learning to collaboratively learn a
model.

One important design principle of federated learning infras-
tructure is whether choose asynchronous or synchronous
training algorithm. Although there are many successful
work on asynchronous federated learning, recently there is
one trend on large batch synchronous distributed training.
There is somehow close to the setting of distributed training
in data-centers.

Apart from the issue of long training time of deep learning
models, the conventional training approach requires the en-
tire training dataset has to be stored in the same location.
This raises the privacy concern as the data owners do not
want their data to leave their premises, especially the data
contains sensitive information such as medical records, bank
transactions, security logs, etc. This privacy concern pre-
vents the data owners from contributing their data to the
training process even though they might know that their
data could improve the model performance. This motivates
us to develop a novel training framework that allows the
model to be trained on different private datasets without
relocating/gathering them to the same location. Without
trusting any third parties including training coordinator and
data owners, such a training approach needs to ensure that
there is not any sensitive data leaked, thus preventing a data
owner or training coordinator from inferring the data of
other owners.

In this report, we will mainly talk about two aspects of
federated learning. One is federated aggregation algorithm.
The other is the systems for support cross-device/cross-silo
federated learning.
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1.1. Algorithms for Federated Learning

Robust Estimation: Robust estimation was pioneered by
Huber. Robust median-of-means approaches were intro-
duced. Robust mean estimation, in particular, received much
attention. These works consider the statistics of robust es-
timation in the i.i.d. case, while we focus on distributed
optimization with privacy-preservation.

Geometric Median Algorithms: The classical algorithm
of Weiszfeld [63] has received much attention [7, 34, 36,
62]. However, all these variants are not numerically stable,
while our variant is (cf. Remark 8). A landmark theoret-
ical construction led to a nearly-linear time algorithm for
the geometric median [20], but its practical applicability is
unclear.

Byzantine Robustness: Byzantine robustness, resilience to
arbitrary, even adversarial behavior of some devices [37],
has been studied in in gradient based updates [3, 11, 16,
17, 65]. In this work, we consider a more nuanced and
less adversarial corruption model because cryptographic
protocols which make up secure aggregation require faithful
participation of the devices and thus, Byzantine robustness
is a priori not possible without additional assumptions. In
addition, our setting requires faithful participation of devices
in the aggregation loop — see Sec. 2 for examples of its
practical relevance. Further, it is unclear how to securely
implement the nonlinear aggregation algorithms of these
works. Lastly, we note that the use of, e.g., secure enclaves
[61] in conjunction with the approach proposed here could
guarantee Byzantine robustness in FL.

1.2. Systems for Federated Learning

MapReduce: For datacenter applications, it is now com-
monly accepted that MapReduce (Dean Ghemawat, 2008)
is not the right framework for ML training. For the prob-
lem space of FL, MapReduce is a close relative. One can
interpret the FL server as the Reducer, and FL devices as
Mappers. However, there are also fundamental technical
differences compared to a generic MapReduce framework.
In our system, FL devices own the data on which they are
working. They are fully self-controlled actors which at-
tend and leave computation rounds at will. In turn, the FL
server actively scans for available FL devices, and brings
only selected subsets of them together for a round of com-
putation. The server needs to work with the fact that many
devices drop out during computation, and that availability
of FL devices varies drastically over time. These very spe-
cific requirements are better dealt with by a domain specific
framework than a generic MapReduce.

Distributed ML There has been significant work on dis-
tributed machine learning, and large-scale cloud-based sys-
tems have been described and are used in practice. Many

systems support multiple distribution schemes, including
model parallelism and data parallelism, e.g., Dean et al.
(2012) and Low et al. (2012). Our system imposes a more
structured approach fitting to the domain of mobile devices,
which have much lower bandwidth and reliability compared
to datacenter nodes. We do not allow for arbitrary distributed
computation but rather focus on a synchronous FL protocol.
This domain specialization allows us, from the system view-
point, to optimize for the specific use case. A particularly
common approach in the datacenter is the parameter server,
e.g., Li et al. (2014); Dean et al. (2012); Abadi et al. (2016),
which allows a large number of workers to collaborate on
a shared global model, the parameter vector. Focus in that
line of work is put on an efficient server architecture for
dealing with vectors of the size of 109 to 1012. The pa-
rameter server provides global state which workers access
and update asynchronously. Our approach inherently cannot
work with such a global state, because we require a specific
rendezvous between a set of devices and the FL server to
perform a synchronous update with Secure Aggregation.

Alternative Approaches Pihur et al. (2018) proposes an
algorithm that learns from users’ data without performing
aggregation on the server and with additional formal pri-
vacy guarantees. However, their work focuses on general-
ized linear models, and argues that their approach is highly
scalable due to avoidance of synchronization and not re-
quiring to store updates from devices. Our server design
described in Sec. 4, rebuts the concerns about scalability of
the synchronous approach we are using, and in particular
shows that updates can be processed online as they are re-
ceived without a need to store them. Alternative proposals
for FL algorithms include Smith et al. (2017); Kamp et
al. (2018), which would be on the high-level compatible
with the system design described here. In addition, Feder-
ated Learning has already been proposed in the context of
vehicle-to-vehicle communication (Samarakoon et al., 2018)
and medical applications (Brisimi et al., 2018). While the
system described in this work as a whole does not directly
apply to these scenarios, many aspects of it would likely
be relevant for production application. Nishio Yonetani
(2018) focuses on applying FL in different environmental
conditions, namely where the server can reach any subset of
heterogeneous devices to initiate a round, but receives up-
dates sequentially due to cellular bandwidth limit. The work
offers a resource-aware selection algorithm maximizing the
number of participants in a round, which is implementable
within our system.

2. Aggregation Algorithms
To protect user privacy, the main responsibility of server is
to aggregation all the models uploaded by random selected
devices. To achieve the goal towards fairness, privacy, better
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device personalization and better accuracy, there are many
ways to do aggregation.

2.1. FedAvg

In the federated setting, there is little cost in wall-clock time
to involving more clients, and so for our baseline we use
large-batch synchronous SGD; experiments by (?) [8] show
this approach is state-of-the-art in the data center setting,
where it outperforms asynchronous approaches. To apply
this approach in the federated setting, we select a C fraction
of clients on each round, and compute the gradient of the
loss over all the data held by these clients. A typical imple-
mentation of FedSGD with C = 1 and a fix learning rate η
has each client k compute gk = ∇Fk (wt), the average gra-
dient on its local data at the current model wt, and the cen-
tral server aggregates these gradients and applies the update
wt+1 ← wt−η

∑K
k=1

nk

n gk, since
∑K
k=1

nk

n gk = ∇f (wt).
We term this approach Federated Averaging (FedAvg).

2.2. q-Fair Federated Learning (q-FFL)

Inspired by fair resource allocation in wireless networks,
a novel optimization objective is proposed - q-Fair Feder-
ated Learning (q − FFL). This objective encourages the
fair resource allocation across devices in federated learn-
ing environment. To help solve the qFFL objective, a
communication-efficient method q−FedAvg is proposed.

min
w
fq(w) =

m∑
k=1

pk
q + 1

F q+1
k (w) (1)

2.3. Scaffold

Scaffold is a solution uses control variates (variance reduc-
tion) to correct for the client-drift in device local updates.
SCAFFOLD requires significantly fewer communication
rounds and is not affected by data heterogeneity or client
sampling. Further, we show that (for quadratics) SCAF-
FOLD can take advantage of similarity in the client’s data
yielding even faster convergence. The latter is the first re-
sult to quantify the usefulness of local-steps in distributed
optimization.

yi ← yi − ηl (gi (yi) + c− ci) (2)

Here ηl is the local step-size. Then the clients’ updates
yi − x are aggregated to form the new server model using a
global step-size ηg as:

x← x+
ηg
|S|
∑
i∈S

(yi − x) (3)

2.4. FedProx

To tackle both the system heterogeneity and statistical het-
erogeneity in federated learning, a new federated learning

framework is introduced - FedProx. FedProx can be viewed
as a generalization and re-parametrization of FedAvg. While
this re-parameterization makes only minor modifications to
the method itself, these modifications have important ramifi-
cations both in theory and in practice. Practically, FedProx
allows for more robust convergence than FedAvg across a
suite of realistic federated datasets. Here, ||w − wt||2 is the
regularizer.

min
w
hk
(
w;wt

)
= Fk(w) +

µ

2

∥∥w − wt∥∥2 (4)

3. Personalized Federated Learning
In federated learning, each user can solve its local problem
defined without any exchange of information with other
users; however, the resulted model may not generalize well
to new samples as it has been trained over a small number
of samples. If users cooperate and exploit the data available
at all users, then their local models could obtain stronger
generalization guarantees. However, the aggregated model
cannot guarantees that it will also achieve good performance
on the user local data. So it is very important to incorporates
personalization. There are many ways to realize personal-
ization.

3.1. Adaptive Personalized Federated Learning

The study of the degree of personalization in the joint learn-
ing algorithm shows that only maximum the performance
of the global model limits the ability of the local model to
personalize. A adaptively personalized federated learning
algorithm is proposed (APFL). In this algorithm, each cus-
tomer trains them local model, while contributing to the
global model. The generalization bound of mixture of local
and global models is also derived, and find the optimal mix-
ing parameter. Each device will maintain three models: 1.
Global model wti , 2. Local model vti 3. Mixed personalized
model v̄ti = αiv

t
i + (1− αi)wti . During each communica-

tion round, it will update all three models following the rules:
w

(t)
i = w

(t−1)
i − ηt∇fi

(
w

(t−1)
i ; ξti

)
, v(t)i = v

(t−1)
i −

ηt∇vfi

(
v
(t−1)
i ; ξti

)
, v(t)i = αiv

(t)
i + (1− αi)w(t)

i .

3.2. pFedMe

One challenge associated with FL is statistical diversity
among clients, which restricts the global model from deliv-
ering good performance on each client’s task. To address
this, an algorithm is proposed to realize personalized FL
(pFedMe) using Moreau envelopes as clients’ regularized
loss functions, which help decouple personalized model
optimization from the global model learning in a bi-level
problem stylized for personalized FL. pFedMe updates the
global model similarly to the standard FL algorithm such
as FedAvg. Similar to FedProx, each local global will also
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have a regularizer.

min
w∈Rd

{
F (w) :=

1

N

N∑
i=1

Fi(w)

}

where Fi(w) = min
θi∈Rd

{
fi (θi) +

λ

2
‖θi − w‖2

}
3.3. FL+MAML

Federated Learning wants to train models across multiple
computing units (users). This mechanism exploits the com-
putational power of all users and allows users to obtain a
richer model as their models are trained over a larger set of
data points. However, this scheme only develops a common
output for all the users, and, therefore, it does not adapt the
model to each user. This is an important missing feature,
especially given the heterogeneity of the underlying data
distribution for various users. A personalized variant of the
federated learning is proposed to help find an initial shared
model that current or new users can easily adapt to their
local dataset by performing one or a few steps of gradient
descent with respect to their own data. This approach keeps
all the benefits of the federated learning architecture, and,
by structure, leads to a more personalized model fo each
user. Inspired by Model-Agnostic Meta-Learning (MAML)
framework, a personalized variant of the well-known Feder-
ated Averaging algorithm is adapted.

min
w∈Rd

F (w) :=
1

n

n∑
i=1

fi (w − α∇fi(w))

4. Backdoor Attack
Federated models are created by aggregating model updates
submitted by participants. To protect confidentiality of the
training data, the aggregator by designing has no visibility
into how these updates are generated. We show that this
makes federated learning vulnerable to a model-poisoning
attack that is significantly more powerful than poisoning
attacks that target only the training data.

4.1. How To Backdoor Federated Learning

4.2. Attack of the Tails

Due to its decentralized nature, Federated Learning (FL)
lends itself to adversarial attacks in the form of backdoors
during training. The goal of a backdoor is to corrupt the
performance of the trained model on specific sub-tasks (e.g.,
by classifying green cars as frogs). A range of FL back-
door attacks have been introduced in the literature, but also
methods to defend against them, and it is currently an open

question whether FL systems can be tailored to be robust
against backdoors. In general case, robustness to backdoors
implies model robustness to adversarial examples, a major
open problem in itself. Furthermore, detecting the presence
of a backdoor in a FL model is unlikely assuming first order
oracles or polynomial time. An edge-case backdoor forces
a model to misclassify on seemingly easy inputs that are
however unlikely to be part of the training, or test data, i.e.,
they live on the tail of the input distribution. We explain
how these edge-case backdoors can lead to unsavory failures
and may have serious repercussions on fairness, and exhibit
that with careful tuning at the side of the adversary, one
can insert them across a range of machine learning tasks
(e.g., image classification, OCR, text prediction, sentiment
analysis).

4.3. Distributed Backdoor Attacks

Backdoor attacks aim to manipulate a subset of training data
by injecting adversarial triggers such that machine learning
models trained on the tampered dataset will make arbitrarily
(targeted) incorrect prediction on the testset with the same
trigger embedded. While federated learning (FL) is capable
of aggregating information provided by different parties for
training a better model, its distributed learning methodology
and inherently heterogeneous data distribution across parties
may bring new vulnerabilities. Distributed backdoor attack
(DBA) — a novel threat assessment framework developed
by fully exploiting the distributed nature of FL. DBA de-
composes a global trigger pattern into separate local patterns
and embed them into the training set of different adversarial
parties respectively. Compared to standard centralized back-
doors, we show that DBA is substantially more persistent
and stealthy against FL on diverse datasets such as finance
and image data.

5. Semi-supervised Federated Learning
While existing federated learning approaches mostly require
that clients have fully-labeled data to train on, in realistic
settings, data obtained at the client side often comes with-
out any accompanying labels. Such deficiency of labels
may result from either high labeling cost, or difficulty of
annotation due to requirement of expert knowledge. Thus
the private data at each client may be only partly labeled,
or completely unlabeled with labeled data being available
only at the server, which leads us to a new problem of Fed-
erated Semi-Supervised Learning (FSSL). This new prob-
lem of semi-supervised learning under federated learning
framework, and propose a novel method to tackle it, which
we refer to as Federated Matching (FedMatch). FedMatch
improves upon naive federated semi-supervised learning
approaches with a new inter-client consistency loss and de-
composition of the parameters into parameters for labeled
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and unlabeled data. Through extensive experimental valida-
tion of our method in two different scenarios, we show that
our method outperforms both local semi-supervised learn-
ing and baselines which naively combine federated learning
with semi-supervised learning.

`final (θ) = `s(θ) + `u(θ) (5)

6. Other Ideas
6.1. FL with Heterogeneous Architectures

Sharing model updates is typically limited only to homo-
geneous FL architectures, i.e., the same model is shared
with all participants. It would be interesting to study how
to extend FL to collaboratively train models with heteroge-
neous architectures [Gao et al., 2019; Chang et al., 2019],
and whether existing attacks and privacy techniques can be
adapted to this paradigm

6.2. Decentralized Federated Learning

Decentralized FL where no single server is required in the
system is currently being studied [Yang et al., 2019b; Lyu et
al., 2019]. This is a potential learning framework for collab-
oration among businesses which do not trust any third party.
In this paradigm, each party could be elected as a server
in a round robin manner. It would be interesting to investi-
gate if existing threats on server-based FL still apply in this
scenario. Moreover, it may open new attack surfaces. One
possible example is that the last party who was elected as the
server is more likely to effectively contaminate the whole
model if it chooses to insert backdoors. This resembles the
fact in server-based FL models which are more vulnerable
to backdoors in later rounds of training nearing convergence.
Similarly, if decentralized training is conducted in a “ring
all reduce” manner, then any malicious participant can steal
the training data from its neighbors
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