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Abstract
The double descent curve is a recently identi-
fied phenomenon that extends the classical bias-
variance curve to a regime of purely monotoni-
cally decreasing loss, consistent with more recent
empirical results in deep neural networks. This
paper provides an overview of some of the no-
table developments towards understanding double
descent as well as establish its effect on learning
and optimizing machine learning models. We also
include a discussion on the bias-variance trade-
off and try to understand both its shortcomings
and the absence of double descent until recently.
We emphasize the critical and overparameterized
regimes of the double descent curve as charac-
terizing them helps inform the optimization and
analysis of modern neural network models. Ad-
ditionally, we outline some interesting future di-
rections regarding double descent and the overall
field of overparameterized machine learning.

1. Introduction
Deep neural networks (DNN) have been at the frontiers of
latest machine learning developments as methods of deep
learning have been employed to achieve high accuracy re-
sults in a wide range of scientific and engineering tasks. In
the classical bias-variance trade off, the expectation is that
larger models perform poorly due to an assumption that
overparameterization inherently leads to overfitting. How-
ever, contrary to this conventional notion, these DNNs have
only grown larger and larger in terms of parameter size rela-
tive to number of data samples yet still these models achieve
both high training and testing accuracy. This behavior has
spawned a modern notion of ”larger is better” that guides
the practice of deep learning.

The double descent curve, initially proposed in 2018
(Belkin et al., 2018), serves as a bridge between the classic
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bias-variance trade off and more recent experimental re-
sults. However, the introduced interpolation peak or critical
regime that occurs between the two settings entails some
non-intuitive behaviors that can impede or harm training
in practice. One such example is the non-monotonicity of
error with samples where at the critical regime test accuracy
becomes worse with more samples (Nakkiran et al., 2019).

Additionally, because of its particular relevance to neural
networks, we take special interest in the overparameterized
setting and examine some of the recent works regarding it.
In agreement with the more recent observations, there is a
notion that the overaparameterization is harmless, namely
that the overparameterized regime achieves the same test er-
ror as the underparameterized regime which would suggest
overparameterization does not degrade performance. How-
ever, these analyses primarily consider generalization but
not various other complementary measures such as mem-
orization or adversarial risk where larger models do not
necessarily perform better. Hence, an aim here is to assess
whether overparameterization is indeed harmless.

1.1. Contents of this paper

We begin by formalizing the bias-variance decomposition
and provide an analysis of the classical setting in Section 2.
In Section 3, we define the double descent curve, provide
a theoretical analysis based on a simple linear regression
problem, and some results on the behavior near the criti-
cal regime. Section 4 discusses two methods of mitigating
double descent to improve training performance, motivated
by the non-monotonic behavior at the critical regime. In
Section 5, we look at recent works on the overparameterized
setting such as on generalization, memorization, and adver-
sarial inputs to evaluate the notion that overparameterized
models are harmless. We discuss potential future directions
with regard to double descent and overparameterized models
in Section 6.

2. Background
A very general description of machine learning problems
is the goal is to learn a model that generalizes beyond the
training data. This aim is known as generalization. To define
generalization concretely we first establish the notation for
the problem setting.
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We are given a set of n data points xi and corresponding la-
bels yi X = {(xi, yi)}ni=1. Often X is partitioned between
the training set and testing set, denoted as Xtrain and Xtest.
Additionally, some training algorithms further partition with
a validation set, however it is used a supplement to the train-
ing set, namely as a method of regularization such as for
informing early stopping algorithms.

Given a loss function L(θ(xi), yi) where θ is a learned
model, the empirical risk (ER) is defined as

E[R(θ)] :=
1

n

n∑
i=1

L(θ(xi), yi) (1)

(1) is agnostic to whether the training or testing dataset is
used so we define similarly Rtrain and Rtest to represent the
corresponding ER for each dataset. Typically the learning
target is the following empirical risk minimization (ERM)

θ = argmin
θ

E[Rtrain(θ)]

A special case of the above is when the model is trained
such that Rtrain(θ) ≈ 0, which is called interpolation. As
we will discuss later interpolation, when empirical training
risk at or near 0, is associated with overparameterization.
Since the aim is to get the model to perform well on the
test dataset as well, we therefore define generalization as
Γ(θ) := E[Rtest(θ)].

2.1. Bias-Variance Trade-off

The empirical risk can be decomposed into three terms - the
bias, variance, and an irreducible error. This is a well-known
result in classical statistics (Hastie et al., 2001). Let θ∗ be
the ground-truth,

E[R(θ)] = (E[θ]− θ∗(x))2

+ E[(E[θ]− θ(x))2] + σ2 (2)

where the first, second, and third terms correspond to re-
spectively the bias, variance, and irreducible error. Note that
this decomposition is specific to the mean-square error loss
function. Other loss functions have similar bias-variance
decompositions of their empirical risk (Pfau, 2013; Yang
et al., 2020), but we will discuss them in the future works
section.

The bias and variance terms play a key role in the double
descent curve as the behavior in the different regimes are
governed by how these two terms vary with model complex-
ity. However, we must first establish the bias-variance trade
off and demonstrate its shortcomings to illustrate why dou-
ble descent emerged to describe modern machine learning
models.

The Bias-Variance Tradeoff was initially proposed in 1992
and here we state the result from that initial paper

Claim 1. (Geman et al., 1992) As model complexity in-
creases, bias decreases and variance increases monotoni-
cally

The intuitive reasoning behind this claim from this initial
paper is as follows: If the data labels are subject to ran-
dom noise and we apply a model that fits this data perfectly
(Interpolating) then the variance term in (2) becomes the
variance of the random noise which can be very large. On
the other hand a choice of a model that is independent of the
data completely eliminates the variance term but induces a
large bias. In other words, bias and variance are respectively
lack of and excessive dependence on the training dataset.
This leads to a U-shaped empirical risk curve relative to
model complexity. A corollary of the Bias-Variance Trade-
off is that larger, interpolating models are liable to have
high variance and poor generalization, a problem known as
overfitting.

However, the Bias-Variance Tradeoff proposed in the Ge-
man et al. paper was demonstrated primarily experimentally
and the neural networks considered in their experiments
had hidden units on the order of roughly 30. In contrast,
more modern architectures such as ResNet are magnitudes
larger (He et al., 2015). Belkin et al. in their inaugural
paper about double descent (2018) suggest the absence
of double descent in this classical setting can be attributed
to a focus on smaller and fixed set of features. Although
not using the exact same datasets, the experiments in the
Geman paper and the MNIST experiments in Belkin et al.
(2018) demonstrate the contrast where despite similar prob-
lem settings the larger models used in the latter can exhibit
the double descent curve while the former does not due to
not considering complex enough models. We show the plot
from Geman et al. in Figure 1 and the plot from Belkin et
al. in Figure 2 for this comparison.

3. Double Descent
More recent results in deep learning have achieved good gen-
eralization even with large numbers of parameters relative to
the dataset size, a characteristic of overparameterization. In
particular, Advani and Saxe (2017) contradict conventional
notions by showing that characteristics of overparamteriza-
tion such as interpolation and the related memorization do
not inherently lead to poor generalization. In their analysis,
Advani and Saxe argue that gradient descent and similar op-
timization algorithms avoid learning many of the spurious
dimensions which have zero gradient. Additionally, their
experimental results demonstrate the double descent curve,
though not explicitly stated, and note that the worst case
error occurs when sample and parameter size are similar,
which aligns with the ”critical regime” that we discuss later.

Belkin et al. (2018) describes the double descent curve as
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Figure 1. Plot of decreasing bias and increasing variance over num-
ber of hidden units in feedforward neural network. Trained on
handwritten numeral dataset (Geman et al., 1992)

follows

• An underparameterized ”classical” regime where test
error aligns with the Bias-Variance Tradeoff and ex-
hibits a U-shaped curve. Bias decreases while variance
decreases. The first descent is the region where the bias
term dominates where the error is initially decreasing.

• An overparameterized ”modern” regime where test
error decreases monotonically as model complexity
increases. Here both bias and variance decrease. The
second descent occurs during this monotonically de-
creasing error.

• An interpolation peak in between where model capacity
and dataset size are similar and where the variance
peaks. We refer to this region as the critical regime
per Nakkiran et al. (2019) as this region also exhibits
interesting behavior.

Figure 2 shows an example of the double descent curve.

3.1. Double Descent on Linear Regression

First, it is important to establish double descent for a sim-
plified problem. Nakkiran (2019) presents an analysis of

Figure 2. Plot of double descent for Random Fourier Features
model with 0-1 loss over the number of random fourier features
(×103). Trained on MNIST dataset (Belkin et al., 2018)

double descent on a simplified linear regression problem. In
this analysis, the problem setting is as follows:

We are given a ground-truth (x, y) ∈ Rd × R where
x ∼ N (0, Id) and y = ⟨x, β⟩ + N (0, σ2) and ∥ β ∥2≤ 1
where β is the true signal and σ2 is the variance of the ran-
dom noise. In other words, x obeys a Gaussian isotropic
distribution and y is linear on x with some observation noise.
We have n data points {(xi, yi)}ni=1 from this distribution
and want to learn an estimator β̂ that outputs fβ̂(x) = ⟨x, β̂⟩.
The data samples are represented as matrix X ∈ Rn×d and
the labels as y ∈ Rn. The objective of gradient descent is
the following empirical risk minimization:

min
β̂

∥ Xβ̂ − y ∥22

Gradient descent converges to a solution β̂ = X†y, the
Moore-Penrose pseudoinverse. Nakkiran presents two
claims, one of which is from Hastie et al. (2019), about
this estimator’s bias and variance terms, depending on the
an underparamterization factor γ = n

d . However, for our
purposes, we reframe these results in terms of the over-
paramterization factor ω = 1

γ .

Claim 2. Overparamterized regime (Nakkiran, 2019) If
ω > 1, then the bias, variance, and excess risk (empirical
risk without the irreducible error) are

B = (1− 1

ω
)2 ∥ β ∥22

V ≈ 1

ω
(1− 1

ω
) ∥ β ∥22 +σ2 1

ω − 1

E[R(β̂)] ≈ (1− 1

ω
) ∥ β ∥22 +σ2 1

ω − 1
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Claim 3. Underparamterized regime (Hastie et al., 2019)
If ω < 1, then the bias and variance are

B = 0

V ≈ ωσ2

1− ω

In both cases of the variance term, the terms with the noise
σ2, explodes asymptotically near ω = 1, at the critical
regime. This aligns with the classical intuition that high
variance leads to sensitivity to random noise. For the un-
derparameterized regime, ω ∈ [0, 1), the variance term is
strictly increasing which again aligns with the classical case
where variance is rising up to the critical interpolation peak.
In the overparameterized regime ω ∈ (1,∞), as ω increases,
the noise term vanishes while the other term decreases to
the limit of ∥ β ∥22 which is the monotonically decreasing
behavior expected in double descent. Hence these theoreti-
cal results demonstrate each of the three components of the
double descent curve in the linear regression setting.

3.2. Behavior near Critical Regime

Figure 3. Plot of double descent near the critical regime for trans-
former models of two different sizes on IWSLT’14 German-
English dataset. (Nakkiran et al., 2019)

One particularly non-intuitive behavior with the double de-
scent curve is that error can increase by adding data samples
around the critical regime. This result has been demon-
strated by theoretically in the simplified linear regression
setting (Nakkiran, 2019) and experimentally in CNN and

transformer models (Nakkiran et al., 2019). As shown in
Figure 3 and discussed in aforementioned works, this behav-
ior is due to a sample-wise double descent behavior where
varying the number of samples also exhibits the double de-
scent curve. This behavior comes from the notion of model
complexity also depending on the number of data samples
in addition to the parameter width. Moreover, this result
leads to potential issues in practice where even addition of
independent identically distributed data can lead to worse
performance as a priori knowledge of where in the double
descent curve the training has reached is not feasible.

4. Mitigation of Double Descent
Due to the behavior near the critical regime, there is interest
in mitigating this part of the double descent curve which re-
sults in a monotonically decreasing ”single-descent” curve.
Various regularization methods have been found both the-
oretically and experimentally to achieve this effect. The
classical interpretation is that regularization induces a bias
in the model by adding information not directly derived from
the data and thereby mitigating the variance term. Belkin
et al. notes that the historical absence of double descent
can be partly attributed to the common use of regularization
(2018). We examine two methods: ℓ2 regularization and
optimal early stopping.

4.1. ℓ2 Regularization

ℓ2 or ridge regularization is a commonly used method of
regularization by adding an ℓ2 norm penalty term in the
loss function. Nakkiran et al. (2021) demonstrate for the
ridge regression setting that optimal choice of ℓ2 coefficient
leads to monotonically decreasing empirical risk in both
model and sample size. The theoretical problem setting is
the same as the one in Section 3.1. However due to the ridge
regularization term, the minimization scheme becomes

min
β̂

∥ Xβ̂ − y ∥22 +λ ∥ β ∥22

Theorem 1. (Nakkiran et al., 2021) For optimal choice of
regularization coefficient λopt

d,n and corresponding estimator

β̂opt
d,n, where d is parameter width and n sample size, the

following hold for the expected test risk

E[R(β̂opt
d,n+1)] ≤ E[R(β̂opt

d,n)]

E[R(β̂opt
d+1,n)] ≤ E[R(β̂opt

d,n)]

While the above is only proven for the linear isotropic Gaus-
sian case and Nakkiran et al. mention counterexamples to
sample monotonicity outside of this case, they have also
shown experimentally that this monotonicity with sample
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and model size due to ridge regularization also occurs in
neural networks. As such there is interest in proving a more
general result due to these empirical observations.

4.2. Epoch-wise Double Descent and Optimal Early
Stopping

In addition to double descent over parameter width and sam-
ple size, it has also been observed that a double descent
curve exists over training time, known as epoch-wise dou-
ble descent and one explanation attributes this behavior to
model complexity being linked to training time (Nakkiran
et al., 2019). However, Heckel and Yilmaz (2021) show
instead that this double descent curve is the result of incon-
sistent learning rates along different features. As shown
in Figure 4, the different rates result in a superposition
of misaligned bias-variance U-curves that sum to a curve
resembling the double descent curve. The regularization
method that comes from this is to optimally tune learning
rates so that these bias-variance U-curves are in phase and
the resulting single U-curve can be minimized at some op-
timal stopping time, namely the optimal stopping time for
the single epochwise bias-variance curve, and is shown to
reduce testing risk through this synchronous minimization
for all features. These results were proven analytically on
both linear regression and in two-layer neural networks with
ReLU activations, as well as demonstrated empirically in
Convolutional Neural Networks and ResNet.

Figure 4. Plot demonstrating epoch-wise double descent and the
superposition of bias-variance curves that leads to it. (Heckel &
Yilmaz, 2021)

Heckel and Yilmaz (2021) note that the above method is
infeasible to execute exactly in practice due to difficulty
in determining the optimal learning rates for each feature.
Instead they suggest a sub-optimal alternative method of
tuning these learning rates as hyperparameters.

5. Overparameterization
As modern deep learning methods typically operate in the
overparameterized regime, there is interest in understanding
the benefits and risks of interpolating the training data. One
characterization is that interpolation is harmless, specif-
ically that although interpolation increases the error this
interpolation penalty asymptotically becomes 0 as model
overparameterization increases (Muthukumar et al., 2019).
Additionally, Muthukumar et al. notes that in empirical
results of the double descent phenomenon, the overparame-
terized regime has lower asymptotic error than the minimum
of the underparameterized regime.

5.1. Memorization

One mechanism to understand the harmlessness of overpa-
rameterization is memorization where the model learns but
does not generalize some training examples. It has been
shown that overparameterized deep neural networks have
both the capacity and tendency towards memorizing training
data (Zhang et al., 2017; Radhakrishnan et al., 2018). In
the bias-variance tradeoff perspective, memorization is a
sign of high variance and overfitting. However, Feldman
(2020) argues the opposite, that memorization can instead
be complementary to generalization and improve model per-
formance. Feldman notes that in practice datasets are not
distributed evenly and rare examples and labels are inher-
ently difficult to generalize. More precisely, datasets often
follow a long-tailed Zipf distribution. In these distributions,
Feldman shows that memorization becomes beneficial or
even necessary to model performance as a result of these
rare labels.

However, some security and privacy issues arise inherently
from memorization. Carlini et al. (2020) show language
models, primarily GPT-2, memorize training data that in-
cludes personally identifiable information and present a
practical attack that specifically target these privacy vul-
nerabilities. In particular, larger models (And therefore
overparameterized) memorize more data, and as such these
privacy preservation concerns become relevant in operating
in the overparameterized regime.

5.2. Adversarial inputs and Adversarial Risk

From the outset, we have emphasized generalization as a
key measure of model performance on new data. However,
work by Narang et al. (2021) suggests, at least in the classi-
fication problem setting, that overparameterized models are
vulnerable to small, adversarially perturbed inputs that pro-
duce degraded performance. In particular, these adversarial
inputs occur in the absence of other factors such as label
noise and model misspecification, and where the model has
good generalizability and decreasing test risk, but has high
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adversarial risk (Defined shortly).

In classification problems, a typical loss function is the
0-1 loss which leads to the empirical risk becoming the
probability a label is incorrect. The adversarial risk, for a
perturbation set X(x, ϵ) is defined as the following

Radv(θ) := E[ max
x̃∈X(x,ϵ)

I[sgn(θ(x̃)) ̸= sgn(θ∗(x))]]

Here, X and ϵ are chosen as X(x, ϵ) = {x̃ : |x− x̃| ≤ ϵ}
and ϵ = 2

n where n is the number of samples. In other
words, Radv measures the local worst case loss around some
neighborhood of a data point x.

The good generalization but high adversarial risk is at-
tributed to the fragility in the classification 0-1 loss func-
tion (Narang et al., 2021) that the mean-square loss used
in regression does not exhibit. Specifically, the 0-1 loss is
vulnerable when the model makes predictions, prior to tak-
ing the sgn, near the decision boundary. While the results
by Narang et al. currently only apply to a highly specific
problem setting, they lead to a question of whether simple
generalizability is an adequate measure of model perfor-
mance. In addition, the framework of adversarial risk can
be a useful tool to analyze local generalizability in learned
models as in many problems good local behavior is desir-
able.

6. Conclusion and Future Directions
We have presented an overview of some recent works on
double descent as well as some related topics in overpa-
rameterization. Part of our review highlighted the contrast
between the classical bias-variance tradeoff perspective and
more recent results. We focused primarily on works re-
lated to explaining and improving model performance at
the critical and overparameterized regimes. The study of
overparameterized models has great practical value in mod-
ern machine learning as many recent results have tried to
characterize their benefits and risks. In particular, the double
descent curve has proven to be a useful framework to under-
stand overparameterized models, just as the bias-variance
trade off has been useful in informing classical statistics and
machine learning.

Here we present a few directions for future inquiry both
related to the double descent phenomenon and in the general
area of overparameterization.

6.1. Analysis of Double Descent on non-regression
settings

Although cross-entropy loss is a commonly used loss func-
tion in machine learning problems, there is an absence of

theoretical analysis on its bias and variance as typically anal-
yses have focused on the linear regression setting instead
(Nakkiran, 2019; Yang et al., 2020; Heckel & Yilmaz, 2021).
Experimental results have shown that cross entropy loss also
exhibits double descent behavior (Nakkiran et al., 2019;
Yang et al., 2020). The generalized bias-variance decom-
position (Pfau, 2013) is a potential starting point for this
analysis.

6.2. Effect of data augmentation on double descent and
memorization

As emphasized in section 4, regularization techniques play
an important role in mitigating the undesirable effects near
the critical regime as well generally improving model perfor-
mance. As noted by Zhang et al. (2017), data augmentation
is another form of regularization and a potential route is
to examine the effects of data augmentation on the double
descent behavior and on memorization versus generaliza-
tion. An interesting question is whether data augmentation
tools can improve the generalizability of rarer examples and
labels.

6.3. Double Descent and Generalizability on Transfer
Learning

Transfer learning is a task in machine learning of using an
existing model for one task and applying it to a different
but similar task (Dar & Baraniuk, 2021). Current analyses
of double descent tend to assume the training and test data
come from the same distributions (Nakkiran, 2019; Narang
et al., 2021). Transfer learning is interesting because it
can introduce some degree of incongruity between training
and test data and we are interested in how this can affect
generalization. Some work in this area has been done by
Dar & Baraniuk (2021) in the case of transfer between two
linear regression tasks.
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Abstract
Distributed stochastic gradient descent (SGD) is
essential for scaling the machine learning algo-
rithms to a large number of computing nodes.
However, the infrastructures variability such as
high communication delay or random node slow-
down greatly impedes the performance of dis-
tributed SGD algorithm, especially in a wireless
system or sensor networks. In this literature re-
view project, we focus on algorithms that aim to
address the time cost problem in distributed opti-
mization, and analyze the pros and cons of them.
Experiments on synthetic data also show the ef-
fectiveness and performance of some distributed
optimization methods.

1. Overview
Classical SGD was designed to be run on a single comput-
ing node, and its error-convergence has been extensively
analyzed and improved in optimization and learning
theory(Dekel et al., 2012). Distributed optimization with
stochastic gradient descent (SGD) is the backbone of the
state-of-the-art supervised learning algorithms, especially
when training large neural network models on massive
datasets (Liu et al., 2019; Radford et al., 2019). The
widely adopted approach now is to let worker nodes
compute stochastic gradients in parallel, and average them
using a parameter server (Li et al., 2014) or a blocking
communication protocol ALLREDUCE (Goyal et al., 2017).
Then, the model parameters are updated using the averaged
gradient. This classical parallel implementation is referred
as fully synchronous SGD. However, in a wireless system
where the computing nodes typically have low bandwidth
and poor connectivity, the high communication delay and
unpredictable nodes slowdown may greatly hinder the
benefits of parallel computation (Vogels et al., 2019; Dutta
et al., 2018; Ferdinand et al., 2019; Amiri & Gündüz, 2019).
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It is imperative to make distributed SGD to be fast as well
as robust to the system variabilities.

A promising approach to reduce the communication over-
head in distributed SGD is to reduce the synchronization fre-
quency among worker nodes. Each node maintains a local
copy of the model parameters and performs τ local updates
(only using local data) before synchronizing with others.
Thus, in average, the communication time per iteration is
directly reduced by τ times. This method is called Local
SGD or periodic averaging SGD in recent literature (Zhou
& Cong, 2018; Stich, 2019; Yu et al., 2019) and its vari-
ant federated averaging has been shown to work well even
when worker nodes have non-IID data partitions(McMahan
et al., 2017). However, the significant communication re-
duction of Local SGD comes with a cost. As observed in
experiments (Wang & Joshi, 2019), a larger number of local
updates τ requires less communication but typically leads
to a higher error at convergence. There is an interesting
tradeoff between the error-convergence and communication
efficiency.

Instead of simply averaging the local models every τ itera-
tions, Elastic-averaging SGD (EASGD) proposed in (Zhang
et al., 2014) adds a proximal term to the objective function
in order to allow some slack between the models – which
is an idea coming from the Alternating Direction Method
of Multipliers (ADMM) (Boyd et al., 2011) Although the
efficiency of EASGD and its asynchronous and periodic
averaging variants has been empirically validated (Duchi
et al., 2011), its convergence analysis under general convex
or non-convex objectives is an open problem. The original
paper only gives an analysis of vanilla EASGD for quadratic
objective functions

A novel algorithm named OverlapLocal-SGD(Wang et al.,
2020) further improves the communication efficiency of Lo-
cal SGD and achieves a better balance in the error-runtime
tradeoff. The key idea in Overlap-Local-SGD is introducing
an anchor model on each node. After each round of local
updates, the anchor model use another thread/process to
synchronize. Thus, the communication and computation are
decoupled and happen in parallel. The locally trained mod-
els achieve consensus via averaging with the synchronized
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anchor model instead of communicating with others.

Overall, we organize our report as follows: we first intro-
duce the basic ideas of distributed SGD and the reasons for
the need of efficient algorithms in distributed SGD. Second,
we look into the algorithms that makes up the evolution of
such efficient algorithms, which includes PASGD, EASGD
and OverlapSGD. Third, we show the experiments that
compare those optimization methods, and also experiments
designed by ourselves which are conducted on synthetic
dataset and ran locally. Last, we summarize the algorithms
and analyze the pros and cons of them.

2. Basic Literature review
2.1. Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an algorithm that
performs well in practice, which can accelerate the perfor-
mance of gradient descent method by computing less per
iteration. The iteration can be represented in the form:

xt+1 = xt − η∇f(xt)

where η > 0 is the step size.

Though SGD has great performance in many scenarios, it
may have some problems when dealing with big model
and big data, as well as data privacy issue. First of all,
for extremely large training datasets, training on a single
machine takes a lot of time. Secondly, it also has some
disadvantages of data privacy. For example, for a task that to
predict which photos are most likely to be viewed or shared
multiple times in the future, the potential training data are
the photos that a user takes and other user interactions with
their photo apps. To train a general model for this task in a
data center, all the photos and user interactions should be
gathered from client ends to the data center, which can be
privacy sensitive. These issues make executing SGD on a
single machine not suitable for some kinds of work.

2.2. Distributed SGD

To solve the issues mentioned before, an alternative setting
called Federated Learning for solving them has been pro-
posed. The main idea of this model is to decouple the ability
to do machine learning from the need to store the data in
the cloud. One way to do so is to keep data locally in client
ends and update the shared global model. (Konečný et al.,
2017) The training process is made up of two parts. One
part is training model on client ends and the other part is
averaging model in the data center. One classic algorithm
for Federated Learning is Fully synchronous SGD. We will
discuss the details in the following paragraphs.

Many Federated Learning tasks have particular characters.
First and foremost, Federated Learning has distinct privacy

advantages compared to optimizing models by gathering
training data in the data center. Since the training part is
totally executed on client ends and the source of the updates
is not needed for the averaging part, users’ privacy is greatly
protected and not accessed by the data center. Due to the
specific process of Federated Learning, training data also
have some typical properties. First of all, these training data
are non-I.I.D. data since these data for each client end are
based on each user’s behavior on each device. Besides, due
to the same reason, these data are unbalanced, which means
the amounts of training data are different among devices
(McMahan et al., 2017).

To address these key issues, (McMahan et al., 2017;
Konečný et al., 2017) proposed the synchronous update
scheme which proceeds in rounds of communication. One
typical round of this algorithm consists of 4 steps: (1) Select
a subset of existing clients and download the current model
to each selected client; (2) Each selected client updated their
model based on local data; (3) Send updated models to the
central server; (4) The server aggregates these models (a
most common way is averaging) to update the global model.

From those we discussed above, the algorithm is split into
two parts, the computation part, which executes on client
ends (workers), and the communication part, which executes
on the central server.

Consider a network of n worker nodes, each of which
only has access to its local data distribution Di, for all
i ∈ {1, ...,m}. Our goal is to use these n worker nodes
to jointly minimize an objective function F(x), defined as
follows:

F (x) :=
1

m

m∑
i=1

Es∼Di
ℓ(x; s)

where ℓ(x; s) denotes the loss function for data sample s,
and x denotes the parameters in the learning model.

One worker node perform local steps can be denoted as:

xk − ηg(xk; ξ
(i)
k )

And the averaging step can be denoted as:

xk+1 =
1

m
Σm

i=1[xk − ηg(xk; ξ
(i)
k )]

where m is the number of worker nodes, g(xk; ξ
(i)
k ) repre-

sents the stochastic gradient evaluated on ξ
(i)
k ∼ Di, and η

is the learning rate.

The wall-clock time schematic diagram and the vector il-
lustration are separately shown as Figure 1 and Figure 2,
where the blue arrows in the diagrams represent gradient
computation steps and the red blocks (arrows) represent
communication steps.
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Figure 1. Wall-clock time of fully synchronous SGD

Figure 2. Vector illustration of fully synchronous SGD

2.3. Existing Problems

Though the classic fully synchronous SGD algorithm has
the advantages of protecting data privacy and has good per-
formance on non-IID datasets, it still has some problems. In
general, the communication efficiency of fully synchronous
SGD algorithm doesn’t perform well.

As we mentioned before, since data for each client end is
based on each user’s behavior on each device, the amounts
of training data are unbalanced. Therefore, the gradient
computation times for each device in each round are differ-
ent. Besides, due to the character of Federated Learning
that the source of the updates is not accessed for the aver-
aging part, the communication step should execute after all
gradient computation on client ends finishes. Therefore, it
causes a waste of time. Moreover, the asymmetric property
of Internet connection speeds between uplink and downlink
also limits the communication efficiency.(Konečný et al.,
2017)

As shown in Figure 3, 11 iterations without communication
steps can be executed in a time period while 7 iterations
with communication steps can be executed in practice in the
same period.

This problem inspired some improvements to the fully syn-
chronous SGD algorithm. In the next section, we will dis-
cuss 3 different improved algorithms on this issue.

Figure 3. Comparison of Wall-clock time

Figure 4. Vector illustration of local SGD

3. Methodologies
3.1. Local SGD

As we discussed in the last section, the scheme of fully
synchronous SGD often suffers from large network de-
lays and bandwidth limits. Therefore, to improve the ef-
ficiency of communication, a new algorithm called Local
SGD(Konečný et al., 2017) came out. Local SGD runs SGD
on different workers (client ends) and averages the model
on each worker only once in a while. This means that it first
runs tau iterations on each worker, and then averages the
updated model on each worker to obtain an updated global
model. The vector illustration of this algorithm is shown
in Figure 4. This algorithm increases communication effi-
ciency intuitively by reducing the times of communication.

Still considering the network we mentioned in 2.2, in Local
SGD, each node performs mini-batch SGD updates in paral-
lel and periodically synchronizes model parameters. For the
model at i-th worker x(i), we have that for x(i)

k+1:{
1
m

∑m
j=1[x

(j)
k − γjgi(x

(j)
k ; ξ

(j)
k )] for (k + 1)%τ = 0

x
(i)
k − γigi(x

(i)
k ; ξ

(i)
k ) for otherwise
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where gi(x
(i)
k ; ξ

(i)
k ) represents the stochastic gradient evalu-

ated on a random sampled mini-batch ξ
(i)
k ∼ Di, and γ is

the learning rate.

3.2. Elastic SGD

Elastic Averaging SGD method(EASGD) is inspired by
quadratic penalty method. The basic idea of EASGD is
that each worker maintain its own local parameter while
the communication and coordination of work are based on
an elastic force which links to the center variable. The
center variable itself is calculated as a moving average of
the parameters computed by local workers.

3.2.1. EASGD UPDATE RULE

The EASGD update formulas are listed as follows

xi
t+1 = xi

t − η(git(x
i
t) + ρ(xi

t − x̃t))

˜xt+1 = x̃t + ηΣp
i=1ρ(x

i
t − x̃t)

where git(x
i
t) denotes the stochastic gradient of F in regard

to xi evaluated at iteration t, xi
t and x̃t denote respectively

the value of xi and x̃ at iteration t, and η is the learning rate.
The center variable x̃ is computed as the moving average
taken over time. Let α = ηρ and β = pα, then the above
equation become

xi
t+1 = xi

t − ηgit(x
i
t)− α(xi

t − x̃t))

˜xt+1 = (1− β)x̃t + β(
1

p
Σp

i=1x
i
t)

Let β = pα leads to an elastic symmetry in the update rule.
There also exists an symmetric force equal to α(xi

t − x̃t)
between the update of each xi and x̃. Let α = ηρ, where
the magnitude of ρ represents the extent of exploration in
the model. Small ρ means more exploration is allowed in
the model because xi could fluctuate more from the center.
The main idea of EASGD is to allow the local workers
to perform more exploration(small ρ) and the master to
perform exploitation.

3.2.2. ASYNCHRONOUS EASGD

Last section we talked about the update rule of synchronous
EASGD. In this section, we will discuss its asynchronous
variant. Same as synchronous version, the local workers
are responsible for updating the local variables xi while the
master is updating the center variable x̃. Each worker main-
tains its own clock ti, which starts from 0 and is increased
by 1 after each stochastic gradient update of xi. We define
τ as the communication period, which is the frequency of
communication between local worker and the center. The
master will update whenever the local workers finished one
communication period. From the Algorithm 1 below we

Figure 5. EASGD

can see that, whenever τ divides the local clock of the ith

worker, the worker communicates with the master and gets
the current value of center variable. The worker then waits
the server to send back the value and computes the elastic
difference α(x− x̃).

Algorithm 1 Asynchronous EASGD:
Input: learning rate η, moving rate α, communication
period τ
Initialize: x̃ is initialized randomly, xi = x̃, ti = 0
repeat

x← xi

if τ divides ti then
a) xi ← xi − α(x− x̃)
b) xi ← xi − α(x+ x̃)

end if
xi ← xi − ηgiti(x)
ti ← ti + 1

until forever

The merits of EASGD is that it provides fast convergent
minimization and outperforming other baseline approaches
in practice. Meanwhile, it reduces the communication over-
head between local workers and the server. This algorithm
applies to deep learning settings such as parallelized training
of convolutional neural networks.

The limitation here is that EASGD only converges in
quadratic objective function and the choose of elastic pa-
rameter α need to be tested.

3.3. Overlap SGD

Overlap-Local-SGD introduces an anchor model on each
node. After each round of local updates, the anchor model is
synchronized using another thread/process. Therefore, the
communication and computation are decoupled and happen
in parallel. The locally trained models achieve consensus
via averaging with the synchronized anchor model instead
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Figure 6. Overlap Local SGD

Figure 7. pipeline of Overlap Local SGD

of communicating with others.

Figure 6 and 7 presents a brief illustration of Overlap-Local-
SGD. After each τ updates, the local model will be pulled
towards the anchor model. We have the following update
rule for the local models:

x
(i)

k+ 1
2

= x
(i)
k − γgi(x

(i)
k ; ξ

(i)
k )

x
(i)
k+1 =

 x
(i)

k+ 1
2

− α(x
(i)

k+ 1
2

− zk) for (k + 1)%τ = 0

x
(i)

k+ 1
2

for otherwise

where α is a adjustable parameter. A larger α means that
the local model is pulled closer to the anchor model z. After
pulling back, the nodes will start the next local update, and
the anchor threads on each node will concurrently synchro-
nize the current local model and store the average into the
anchor model, as shown below:

z
(i)
k+1 =

{
1
mΣm

i=1x
(i)
k+1 for (k + 1)%τ = 0

zk for otherwise

From the formula above we can see that the anchor model
zατ will only be used when updating xi

(α+1)τ . This algo-
rithm could hide the communication latency if the parallel
communication time is smaller than τ steps computation
time.

Overlap Local SGD further improves the communication
efficiency of Local SGD, achieving a better balance in the
error-runtime trade-off. The author also provide a conver-
gence analysis to show that this algorithm could converge
to a stationary point of non-convex objectives and achieve
the same convergence speed as fully synchronous SGD.

4. Experiments & Discussions
4.1. Local experiments on synthetic data

Due to the limitation of computing resources and devices,
we implement a system of distributed optimization that can

be ran locally on a computing mode. The difference between
”local“ distributed optimization and classical distributed opti-
mization is that, without ability to run local updates simulta-
neously, local distributed optimization runs local updates in
a prefixed order and then communicate to get global model.
Also because of that, it is unreasonable to run the efficient
algorithms we mentioned above. Thus in this subsection we
design a new group of experiments to explore the non-iid
problem in federated learning.

4.1.1. SYNTHETIC DATA

To generate synthetic data, we follow a similar setup to
that in (Li et al., 2020), additionally imposing heterogene-
ity among devices. In particular, for each device k, we
generate samples (Xk, Yk) according to the model y =
argmax(softmax(Wx+b)), x ∈ R60,W ∈ R10×60, b ∈
R10. We model Wk ∼ N(uk, 1), bk ∼ N(uk, 1), uk ∼
N(0, α);xk ∼ N(vk,Σ) where the covariance matrix Σ
is diagonal with Σj,j = j−1.2. Each element in the mean
vector vk is drawn from N(Bk, 1), Bk ∼ N(0, β). There-
fore, α controls how much local models differ from each
other and β controls how much the local data at each de-
vice differs from that of other devices. We vary α, β to
generate two heterogeneous distributed datasets, denoted
Synthetic(α, β). We also generate one IID dataset by setting
the same W, b on all devices and setting Xk to follow the
same distribution. Our goal is to learn a global W and b.
We set (α, β) = (0,0) and (2,2) respectively to generate three
non-identical distributed datasets. For all synthetic datasets,
there are 8 devices in total and the number of samples on
each device follows a power law.

4.1.2. EXPERIMENTAL DETAILS AND RESULTS

We design two group of experiments, and here we present
the details of the setting and hyperparameters:

• Group 1:Local update learning rate 0.01, mini-batch
size 10, local updates step 1(which equals to fully syn-
chronous SGD), total communication rounds 200;

• Group 2:Local update learning rate 0.01, mini-batch
size 24, local updates step 20, total communication
rounds 100;

Both experiments utilize an learning rate scheduler which
decays learning rate by 10 at half and 3

4 of total communica-
tion rounds, that is, for group 1, learning rate becomes 0.005
at communication round 100 and 0.0025 at communication
round 150.

And the result of the first group is shown in figure 8, 9 with
the second group corresponds to 10, 11. From both cases,
it is easy to draw the conclusion that heterogeneous in the
model and data brings larger variance in the training and
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Figure 8. Round 100 test error v.s. rounds
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Figure 9. Round 100 training loss v.s. rounds
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Figure 10. Round 200 test error v.s. rounds
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Figure 11. Round 200 training loss v.s. rounds

performance, and sometimes lead to a worse performance.

4.2. Comparison of efficient distributed optimization
methods

As for the algorithms discussed in the report, we compare
them through a group of experiments done in the original
paper.

4.2.1. EXPERIMENT SETTINGS

In this experiment, there are four algorithm that are taken
into consideration. They are: Fully synchronous SGD, Lo-
calSGD(PASGD), PowerSGD(Vogels et al., 2019) and Over-
lapSGD. It is worth noting that PowerSGD is state-of-the-art
efficient distributed optimization method which focuses on
boosting the process by compressing the gradients commu-
nicated between the server and local nodes. The details of
the experiment are: it is performed on CIFAR-10 image
classification task (Krizhevsky et al., 2009). We train a
ResNet-18 (He et al., 2016) for 300 epochs following the
training schedule as the mini-batch size on each node is
128 and the base learning rate is 0.1, decayed by 10 after
epoch 150 and 250. The first 5 epochs use the learning rate
warmup schedule as described in (Goyal et al., 2017). There
are 16 computing nodes in total. The training data is evenly
partitioned across all nodes and not shuffled during training.
And the results are shown in Fig 12, 13

4.2.2. ANALYSIS OF THE RESULTS

As shown in Figure 9, Overlap-Local-SGD outperforms
the rest when comparing the best test accuracy with re-
spect to additional synchronous time per epoch. It also
reveals that when the number of local update steps is lim-
ited, Overlap-Local-SGD still needs to wait for either the
peer or the central server. Also, with proper techniques uti-
lized, both Overlap-Local-SGD and Local SGD can achieve
comparable or even better performance comparing to Fully
synchronous SGD.

And for the results shown in Figure 10, when the x-axis
is changed to Wall-clock time, Overlap-Local-SGD still
reaches the minima at the fastest rate. Although other al-
gorithms in the figure are more or less worth than Overlap-
Local-SGD, one can expect that as the x-axis extends, it is
possible for them to surpass Overlap-Local-SGD.

5. Conclusion
As a conclusion, in this project we explore the efficient al-
gorithms in the distributed optimization. The reason for
developing such methods is that, since the original topic
focuses on a faster training regarding big model and big
data, communication/computation overhead should be mini-
mized. We mainly look into four algorithms, and below we
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Figure 12. Test accuracy v.s. additional synchronous time per
epoch. The fully synchronous methods is noted as the cross in the
figure, since its local updates is always1.

Figure 13. Test Accuracy v.s. wall-clock time.

summarize their pros and cons:

• Fully Synchronous SGD. As the most basic method, it
brings about the idea of distribute model and/or data to
local worker nodes. However, it suffers from commu-
nicating with the central server every step, especially
when the communication time needed is high;

• Local SGD(PASGD). This algorithm comes up with
one of the most important ideas in efficient methods,
that is workers should allow local updates before com-
municating with each other. It greatly reduce the time
needed on communication, however, convergence is
not guaranteed and there is still waiting time for the
local nodes;

• EASGD. To solve the convergence problem, this algo-
rithm suggests pulling back towards an anchor model
before starting the next stage. Also, momentum is
finely used in it to achieve competitive performance.
Nevertheless, convergence analysis is only provided
when the objective function is in quadratic form, and it
is hard to decide the elastic parameter α;

• Overlap-Local-SGD. In this method, local updates
and anchor model are all utilized and it comes up with
the idea of acting the communication of computation
at the same time. Although it somehow sacrifices the
freshness of the global model, it dramatically saves the
communication time and thus lead to a more efficient
solution overall.
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Abstract

Due to increased advancements in areas of deep
learning, the choices in optimization techniques
play a key role in training the deep neural net-
work. The process of hyperparameter search and
tuning can be prohibitive in time and costs (1).
Thus, it is critical to explore and use state-of-art
techniques for efficiency and accuracy in both
academia and industry. In this literature review,
we will dive into the different scheduling in deep
learning, from learning rates (2) and momentum
(1) to quantization (3).

1. Introduction
Neural networks are getting larger both in size and in num-
ber of parameters. Models exist and are being trained with
billions of parameters like (4), (5). Large models cost more
capital and time for training. There is a need for solutions
which can help to decrease both the costs and the time of
training these networks. In this paper, we will discuss a vari-
ety of techniques which leverage learning rate, momentum
and quantization to reduce costs and increase performance.

The learning rate is a hyperparameter that controls how
much to change the model’s weights in response to the es-
timated error during the model evaluation. Choosing the
learning rate is challenging as a value too small may result
in an extremely slow convergence rate, whereas a value
too large may result on non convergence. To improve neu-
ral network results and optimize the available budget, it is
common practice to use learning rate schedules, with large
learning rates to get faster to the local/global minima, and
lower learning rates to avoid overshooting.

The momentum algorithm accumulates an exponentially
decaying moving average of past gradients and continues
to move in their direction (6). Momentum was designed to
speed up learning in directions of low curvature, without
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becoming unstable in directions of high curvature (1).

The main motivation for quantization is to decrease the
memory that is needed to train and run the network without
impacting its performance and improving it if possible.

In Section 2, we will discuss REX (2) and compare widely-
used learning rate schedules. In Section 3, we will discuss
Demon (1) and compare widely-used learning rate and mo-
mentum schedules, along with various popular optimization
algorithms. In section 4, we will discuss quantization (3),
and future work in Section 5.

2. Learning Rate
Many different types of schedules have been studied:

• Constant ηt = η0

• Step schedule ηt = γt ·η0, where γt is piecewise linear.

• Decay on Plateau (7) is a particular case of step sched-
ule, where the learning rate is decayed when the val-
idation loss does not improve for a preset number of
epochs.

• Linear schedule: ηt = (1− t/T ) · η0

• Cosine schedule (8) ηt = η0

2 ·
(
1 + cos(π·tT )

)
• Exponential schedule (7) ηt = η0 · eγt/T

• OneCycle schedule (9)

ηt =


η1 + (η2 − η1)

(
t

T/2

)
η0, t/T < 1/2

η1 + (η2 − η1)

(
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T/2

)
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(1)
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(
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• REX ηt = η0 ·
(

1−t/T
1/2+1/2·(1−t/T )

)
. This schedule will

be explained in more detail below.
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All these learning rate schedules can be applied either
equally to all the weights in the neural network, using, for
example, Stochastic Gradient Descent, or they can be ap-
plied adaptively, using other types of optimizers such as
Adagrad, Adadelta, RMSprop, Adam, etc.

We have not found theoretical proof of which learning rate
schedule to use in which model/application. To have an idea,
it can be observed empirically by training many models
(ResNet, MobileNet, GPT3) etc, with different datasets, and
comparing the accuracy results of different schedules. It is
observed in REX. To determine which one is the best, one
way to do so is to compare empirically, by training several
different neural networks on different datasets, as done so
in (2). The schedule REX proposed in the aforementioned
algorithm is of special interest, as it outperforms in most of
the experimental setups.

2.1. REX

To formalize the process of identifying a good learning rate
schedule, the authors decompose the learning rate schedule
as a combination of a profile curve and a sampling rate on
that curve.

The profile is the function that models the learning rate
schedule, while the sampling rate is how frequently the
learning rate is updated according to the profile. The sam-
pling rate can be either each iteration, or it can be done only
once or twice during the whole training.

The profile chosen for REX is motivated by the empirical
observation that the linear schedule sometimes performs bet-
ter when keeping it constant at the beginning and delaying
the linear decay after several iterations. Indeed, observing
the update equation

ηt = η0 ·
(

1− t/T

1/2 + 1/2 · (1− t/T )

)

we can observe that for small t, the factor is closer to one.

2.2. Experimental setup

The experiments were performed on the models and dataset
listed on the table. The schedules used during training are
the ones listed above, excluding the constant learning rate
schedule. Also, the optimizers used for training were SGD
with momentum and Adam, totaling in 98 models trained.

2.3. Results

In all cases, REX schedule had the highest top-1 or top-3
performance for both Adam and SGD with Momentum, and
all budgets, which shows a great learning rate schedule to
use in applications. In the figure below the average rank
across all experiments is shown, where we can see that REX
has consistently the best rank.

3. Momentum
3.1. DEMON

Gradient descent based algorithms are popular for deep
neural networks training (6). Numerous optimization algo-
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rithms exists, however SGDM (6) and Adam (10) remain at
the forefront of both research and industry (6) (1). In order
to achieve optimal performance and reduce computational
costs, hyperparameters tuning of momentum, learning rate
(LR), learning rate decay, weight decay, amongst others are
some of the approaches (1). In DEMON (1), we will dis-
cuss the model performance and hyperparameter robustness
of the decaying momentum rule on SGDM and Adam with
respect to its vanilla counterparts, alternative optimization
algorithms, and SGDM/Adam plus a variety of widely-used
schedulers (1).

DEMON is a decaying momentum rule that decays the
total contribution of the gradient to all future gradient up-
dates (1). Consider a gradient at a particular timestamp
gt contributing η

∑
i β

i of its ’energy’ to all future gradi-
ent updates, where as t tends towards infinity, we get the
geometric sum,

∑∞
i=1 β

i = β
∑∞

i=0 β
i = β/(1 − β) (1).

By decaying the cumulative momentum β/(1− β) linearly
to 0, we get DEMON (1). Thus, the authors designed the
decaying routine, βt/(1− βt) = (1− t/T )βinit/(1− βinit),
with notations of current step t, total step T, and initial β
as βinit (1). Additionally, the fraction (1− t/T ) refers to
the proportion of iterations remaining (1). DEMON has
shown to stabilize the growth of weights across training
by preventing the weights from growing too quickly (1).
Subsequently, DEMON speeds up in the early phases of
training, but delaying the decay throughout training (1).

3.2. Experiment Setup

Numerous optimization techniques were evaluated across
28 relevant combinations of models-epochs-datasets-
optimizers experiments (1). Some of the methods include
AdamW (11), which decouples weight in Adam, YellowFin
(12), which is an automatic tuner for learning rate and mo-
mentum in SGDM motivated by a quadratic model analysis
and robustness properties, QHM (13), which decouples the
momentum term from the current gradient’s contribution
when updating the weights, QHAdam (13), which is an
adaptive learning rate extension of QHM, AMSGrad (14),
which uses the maximum of the exponential moving average
of squared gradients, and AggMo (15), which is a variant
of momentum that combines multiple velocity vectors with
different β parameters (1).

The architectures analyzed include Convolutional Networks
(CNN) with Residual architecture (ResNet 20 (16), ResNet
56 (16), Wide ResNet 16-8 (17), Non-Residual architecture
(VGG-16) (18), Recurrent Neural Networks (RNN) with
LSTM (19), Variational AutoEncoders (VAE) (20), Capsule
Network (21), Noise Conditional Score Network (NCSN)
(22), and BERT (23); with datasets including MNIST, FM-
NIST, CIFAR-10, CIFAR-100, STL-10, Penn Treebank
(PTB), Tiny ImageNet, GLUE benchmark (24) (1), figure 1.

Figure 1. Summary of experiment settings (1).

The authors compared DEMON with the following popular
learning rate and momentum schedules: Step, OneCycle (9),
Cosine (8), Linear, Exponential (7), and Decay on Plateau
(7). In addition to the hyperparameters specialized to the
particular schedule, the authors tuned both the learning rate
in multiples of 3, the momentum ∈ {0.9, 0.95, 0.97}, and
weight decay (1).

3.3. Results

Figure 2. Top-1 and Top-3 performances (%) of different schedules
ranked, out of a total of 28 experiments (1).

After 28 relevant experiments, results demonstrated in fig-
ures 2, 5, and 6 show that DEMON outperforms all the
learning rate and momentum schedules tested, with Top-
1 finishes at 39% and Top-3 finishes at 85% (1). Further,
DEMON applied optimizers performed better than other
optimization techniques mentioned. Ignoring SGDM and
Adam optimizers, DEMON SGDM and DEMON Adam out-
performed almost all and attained competitive error against
other optimization techniques including AggMo plus LR
Step, QHM plus LR Step, YellowFin, AMSGrad, AdamW,
and QHAdam (1). Tuning only the learning rate for both DE-
MON Adam and Adam plus LR linear schedule following
huggingface (25) implementation in BERTBASE-GLUE,
DEMON Adam yielded a slight improvement, see figure 4



Submission and Formatting Instructions for ICML 2021

(1). In figure 4, the results of DEMON against the effec-
tive learning rate adjusted SGD demonstrated that DEMON
cannot be accurately approximated with SGD ELR (1).

In figure 3, the heatmaps display optimal performance of
each optimizer over the full range of possible hyperparam-
eters (1). As opposed to its vanilla counterparts of Adam
and SGDM with LR Step schedule (bottom 3 heatmaps),
DEMON applied optimizers (top 3 heatmaps) have larger
bands of lighter color, indicating better performance for a
wide range of hyperparameters (1). The results suggest that
both DEMON Adam and DEMON SGDM are more robust
and less sensitive to hyperparameter tuning, which are cru-
cial for training neural network in practice (1). DEMON
can be applied to any gradient descent algorithms that has a
momentum parameter (1). Thus, DEMON is easy to imple-
ment and has many benefits such as not requiring additional
tuning, incurring almost no extra computational costs, and
outperforming its vanilla counterparts (1).

4. Quantization
Neural networks are generally trained with FP32 or FP64
weights in order store information and to be precise. Since
neural networks these days consist of billions of parameters
like the GPT 3 (29), Megatron (4) using high precision num-
bers causes the weights to have a size of multiple GigaBytes.
This in turn then requires several GPU’s (30) to train a single
model. This leads to increased costs of training. The idea
of quantization is to use weights with less precision, which
require substantially lesser space than FP32, FP64 and try
to maintain the accuracy of the network if not improve it
while doing so. In this paper we will discuss a method for
quantization called Cyclic Precision Training (3).

Works like (31) suggest that noise can help in training of the
neural networks, (32) shows that a large learning rate helps
Neural Networks to learn more general patterns. The conjec-
ture from the paper CPT (3) is that a low precision behaves
like a high learning rate and helps the Neural Networks to
explore, while accurate updates with high precision helps
the Neural Networks to converge. The authors of CPT (3)
show with experimental backing that lowering the precision
has a similar effect to having a large learning rate.

Figure 9. Here we can see static precision training on the left side
and the method proposed by the authors CPT (3) on the right side.

The main idea behind Cyclic precision training is to change
the precision of the weights of the network cyclically be-
tween a lower bound and an upper bound instead of using
fixed precision. The authors of CPT (3) suggest that we
can implement cyclic precision with any cyclic scheduling
method, but they use the cosine implementation throughout
the experiments.

Bn
t = ⌈Bn

min +
1

2
(Bn

max −Bn
min)(1− cos(

t%Tn

Tn
π))⌋

Bn
t is the precision at the global step t. The bounds Bi

min

and Bi
max can be found by a precision range test (3). Here

% is the mod operation. Each cycle has a length of Tn.
Tn is defined to be the total number of epochs divided by
the N which is the total number of cycles of the precision
schedule.

4.1. Results

The authors of CPT (3) performed experiments across many
different tasks like CIFAR 10 (33), Imagenet (34), WikiText
- 103 (35). They tested many different neural network archi-
tectures like Resnets, MobileNets (36), Tansformer(37) and
LSTM (38). The precision lower bounds for each neural
network are found using the precision range test though the
upper bounds are fixed to be 8 (the precision of the baseline
that the models are compared to). The periodic cycles (N)
is set to 32.

Figure 7 explains the results of different SOTA baselines and
compare it to the results of CPT. The experiment was per-
formed on CIFAR 10 with the baselines being (DoReFa (26),
WAGEUBN (27), SBM (28). We can see from the figure
that across all the tests, CPT gains performance anywhere
from 0.2 to 1.25 percent when compared to its baselines.
While maintaining this performance, CPT also reduces the
BitOps from 20 up to 37 percent. This reduction in bitOps
and increased accuracy gives the CPT technique a win win
situation over the SOTA baselines.

To test the scalability of CPT the authors test it on models
like Resnet (16) 18,34,50 on Imagenet (34). While main-
taining the accuracy it succeeds in reducing the Bitops up
to 20 percent. For further testing CPT was trained on lan-
guage models and was benchmarked on Wikitext-103 (35).
Figure 8 shows us that CPT can be applied to language
models. It again decreases the BitOps by 20 - 30 percent
while maintaining or increasing the accuracy of the models.
These result suggests that CPT is scalable to more complex
models and data.

5. Future work
Learning rate, momentum and quantization schedules im-
prove accuracy and efficiency. However, using them to-
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Figure 3. Error rates for WRN-STL10-DEMONSGDM-50epoch (top-left), VGG16-CIFAR100-DEMONSGDM-100epoch (top-middle)
and RN20-CIFAR10-DEMONAdam-100epoch (top-right), WRN-STL10-SGDM-50epoch (bottom-left), VGG16-CIFAR100-SGDM-
100epoch (bottom-middle), and RN20-CIFAR10-Adam-100epoch (bottom-right). Light-colored patches indicate better performance (1).

Figure 4. Results of BERTBASE-GLUE, Adam plus LR Linear Schedule follows the huggingface (25) implementation, and DEMON
Adam (1).

gether does not always give the best performance. The
correlation of quantization and momentum is still an open
question, and we want to address it in future work by observ-
ing empirically its performance during training. In addition
to that, and motivated by REX, we aim to find the “best”
quantization schedule, as CPT only analyzes cyclic cosine
schedule.
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Figure 5. Generalization Errors for RN20-CIFAR10, WRN-STL10 and RN56-TINYIMAGENET. Ignoring non SGDM and Adam
optimizers, red indicates Top-1 performance and bold indicates Top-3 performance (1).



Submission and Formatting Instructions for ICML 2021

Figure 6. Generalization Errors for VGG16-CIFAR100 and CAPS-FMNIST, LSTM-PTB generalization perplexity, and VAE-MNIST
generalization loss. Ignoring non SGDM and Adam optimizers, red indicates Top-1 performance and bold indicates Top-3 performance
(1).
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Figure 7. Results of CPT (3) with baselines of DoReFa, (26) , WAGEUBN (27) and SBM (28) for different ResNet Models and
MobileNetV2 model on CIFAR 10 and 100

Figure 8. Results of CPT (3) on language model tasks with baselines of SBM (28)
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Literature Review on Lottery Ticket Hypothesis

Shijie Fan 1 Yuchen Gu 1 Hannah Lei 1

Abstract

Deep Neural Network (DNN) is becoming
popular in multiple applications due to its record-
breaking predictive performance. However, this
usually comes with prohibitive costs in training,
storage, and inference due to the large scale of
training data and model parameters. Pruning,
which eliminates unnecessary weights from neu-
ral networks, is a standard method to lower costs
of storage and inference by reducing parameter
counts and still maintaining comparable accuracy.
The lottery ticket hypothesis states that there
exists a subnetwork in a randomly-initialized,
dense neural network that can reach a matching
accuracy of the full network in the same or
fewer iterations when trained alone. Beyond
pruning, this hypothesis suggests an exciting
potential opportunity to further improve training
performance and reduce its cost. This review will
examine the Lottery Ticket Hypothesis, identify
its problems and show current improvements.
Finally, a practical implementation of the Lottery
Ticket Hypothesis, called Early-Bird Ticket, will
be introduced.

1. Introduction
Deep Neural Network (DNN) is gaining popularity in multi-
ple applications due to its record-breaking predictive perfor-
mance. However, due to the large scale of data and model pa-
rameters, the performance of Deep Neural Network (DNN)
usually comes with prohibitive costs in training, storage,
and inference (You et al., 2020). The recent trend of improv-
ing DNN’s accuracy vs. cost efficiency involves compress-
ing the models using pruning, a technique that eliminates
unnecessary weights from neural networks. The standard
approach consists of reducing parameter counts by pruning
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after training and retraining in order to restore comparable
accuracy. Although pruning can reach a matching accuracy
after removing a significant number of parameters, as it
often happens late in the training or after the training, the
training cost is still high. In addition, recent experiences
show that the sparse architectures yielded by pruning are dif-
ficult to train from the beginning, (Frankle & Carbin, 2019)
which prevents further improvement in DNN’s efficiency.

But, (Frankle & Carbin, 2019) found out that a standard
pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively.
Based on this observation, they articulate the Lottery Ticket
Hypothesis, which states that there exists a subnetwork in a
randomly-initialized, dense neural network that can reach
a matching accuracy of the full network in the same or
fewer iterations when trained alone. This subnetwork is the
winning ticket of the lottery and the hypothesis suggests
a new possibility to reduce the cost of training if we can
locate this winning ticket efficiently.

In the same paper that the hypothesis is proposed, the al-
gorithm to find such a winning ticket is given and it still
requires multiple rounds of training and pruning. The win-
ning ticket is only found after fully training a dense neural
network. Beyond this, the Lottery Ticket Hypothesis does
not work well on every dataset and network. This review
will cover current investigations into these problems and
their corresponding proposed improvements such as rewind-
ing techniques and Early-Bird Ticket.

In conclusion, the Lottery Ticket Hypothesis does present
an exciting potential opportunity to further improve training
performance and reduce its cost (Frankle & Carbin, 2019).

2. The Lottery Ticket Hypothesis
2.1. Definition

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) :
A randomly-initialized, dense neural network contains a
subnetwork that is initialized such that—when trained in
isolation—it can match the test accuracy of the original
network after training for at most the same number of
iterations.

The formal definition is (Frankle & Carbin, 2019):
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Consider a dense feed-forward neural network f(x; θ)
with initial parameters θ = θ0 ∼ Dθ. When optimizing
with stochastic gradient descent (SGD) on a training set,
f reaches minimum validation loss l at iteration j with
test accuracy a. In addition, consider training f(x;m⊙ θ)
with a mask m ∈ {0, 1} on its parameters such that its
initialization is m ⊙ θ0. When optimizing with SGD on
the same training set (with m fixed), f reaches minimum
validation loss l′ at iteration j′ with test accuracy a′.

The lottery ticket hypothesis predicts that ∃m for
which j′ ≤ j (commensurate training time), a′ ≥ a
(commensurate accuracy), and ∥m∥0 ≪ ∥θ∥ (fewer
parameters). These trainable subnetworks f(x;m⊙ θ) are
called winning tickets.

2.2. Identification

The paper (Frankle & Carbin, 2019) shows the method to
identify a winning ticket from a dense network. It is as
follows:

1. Randomly initialize a neural network f(x; θ0)

2. Train the network for j iterations and have θj
3. Prune p% of θj by creating a mask m

4. Reset the remaining parameters to their values in θ0,
creating the winning ticket f(x;m⊙ θ0)

Random reinitialization: instead of resetting the remaining
parameters to θ0 at step 4, random reinitialization randomly
samples a new initialization θ′0 for the pruned subnetwork
to be reset to.

The one-shot pruning technique is to prune p% of parame-
ters and reset after training once. The iterative method will
be pruning p

1
n% of parameters and reset after each of the n

total rounds of training.

Figure 1: Early-stopping iteration and accuracy of Lenet
under one-shot and iterative pruning. Average of five trials;
error bars for the minimum and maximum values (Frankle
& Carbin, 2019).

As in Figure 1 the iterative method produces higher train
and test accuracy with a earlier stopping iteration, the paper

(Frankle & Carbin, 2019) focuses on the iterative pruning
method.

2.3. Performance

2.3.1. FULLY-CONNECTED NETWORK

Figure 2: Test accuracy on Lenet (iterative pruning) as
training proceeds. Each curve is the average of five trials.
Labels are the fraction of weights remaining in the network
after pruning. Error bars are the minimum and maximum of
any trial (Frankle & Carbin, 2019).

Figure 2 shows how winning tickets (networks with 51.3%
and 21.1% of weights remaining) arrive at higher test ac-
curacy in fewer training iterations. It also shows that when
the percentage of remaining weights is below 21.1%, the
performance is deteriorating and is at the same level as the
original full network when only 3.6% of weights remain.
This result suggests that there exist a significant number of
unnecessary parameters in a dense network, which can be
removed without hurting the performance. In addition, it
also implies that aggressive pruning might lead to a worse
result as it might damage the structure of the subnetwork.

The right plot in Figure 2 also includes a comparison be-
tween subnetworks discovered by following steps in 2.2 and
subnetworks discovered by using random reinitialization
mentioned in 2.2. These two random reinitialized subnet-
works use the same pruning rates that yield two winning
tickets but they learn slower and produce worse accuracy
than the original full network, which shows the importance
of the initialization of the winning ticket.

2.3.2. CONVOLUTIONAL NETWORK

The same trend also holds in the convolutional networks
shown in Figure 3. Before the pruning goes too aggressive,
the pruned subnetworks learn faster and produce more ac-
curate test results. All three networks remain above their
original average test accuracy when more than 2% of param-
eters remain. Random reinitialized subnetworks still learn
slower and produce worse test accuracy.
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Figure 3: Early-stopping iteration and test accuracy of the
Conv-2/4/6 architectures when iteratively pruned and when
randomly reinitialized. Each solid line is the average of five
trials; each dashed line is the average of fifteen reinitializa-
tions (three per trial) (Frankle & Carbin, 2019).

3. Problems of the Lottery Ticket Hypothesis
3.1. Performance on VGG-19

Figure 4: Test accuracy (at 30K, 60K, and 112K iterations)
of VGG-19 when iteratively pruned (Frankle & Carbin,
2019).

The original method mentioned in 2.2 fails to identify any
winning ticket for VGG-19 network on CIFAR-10. As
Figure 4 shows, when using 0.1 as the learning rate, the
subnetwork performs the same as random reinitialized ones
and cannot reach a matching accuracy as the full network.
When using a smaller learning rate, 0.01, the subnetwork
does perform better but still cannot match the original ac-
curacy, which means that it is not a winning ticket as well.
More importantly, the early accuracy advantage disappears
gradually as the training goes due to the small learning rate.

In order to locate a winning ticket for this network, (Fran-
kle & Carbin, 2019) applied a linear learning rate warmup
technique, where the learning rate goes from 0 to the initial
learning rate (0.1) linearly in 10000 iterations. Although
using this technique can successfully find a winning ticket,
the long learning rate warmup step is still a large training
cost.

3.2. Performance on Resnet-18

The performance on Resnet-18 on CIFAR-10 is similar to
that on VGG-19. Notably, (Frankle & Carbin, 2019) cannot
find a winning ticket even with the learning rate warmup for
learning rate 0.1.

Figure 5: Test accuracy (at 10K, 20K, and 30K iterations)
of Resnet-18 when iteratively pruned (Frankle & Carbin,
2019).

3.3. Explanation by SGD Instability Analysis

The stochastic gradient descent (SGD) noise is caused by
SGD’s inherent randomness as training data are presented
to the network in a random mini-batch order within each
epoch (Frankle et al., 2020a). The stability to this noise
can be measured by training two copies of a network with
different SGD noises at a certain iteration and comparing
the similarities of the two resulting networks. (Frankle et al.,
2020a) uses the line between the two resulting networks
on the optimization landscape to measure this stability. If
there is no increase in the error along the path, it means that
two networks find the same minimum and the network is
stable to the SGD noise at this point. If there is a significant
increase of error (”a barrier of increased error” (Frankle
et al., 2020a)), it indicates that two resulting networks are
in different minimums and the network is still unstable to
SGD noises.

Figure 6: Error when linearly interpolating between net-
works trained from the same initialization with different
SGD noise. Lines are means and standard deviations over
three initializations and three data orders (nine samples to-
tal). Trained networks are at 0.0 and 1.0 (Frankle et al.,
2020a).

Figure 6 shows that at the initialization, only Lenet on
MNIST is stable as it does not see an increasing error along
the line between two separately trained networks. This ex-
plains why the Lottery Ticket Hypothesis works well on
Lenet but not on VGG or Resnet.

In Figure 7, both VGG and Resnet gradually become stable
at around iteration 1000. Experiments by (Frankle et al.,
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Figure 7: Linear interpolation instability when starting from
step k. Each line is the mean and standard deviation across
three initializations and three data orders (nine samples in
total) (Frankle et al., 2020a).

2020a) in Figure 8 show an interesting coincidence that if
rewinding to weights at around iteration 1000 instead of
resetting to the initialization as 2.2, both VGG and Resnet
can produce a matching test accuracy as the full original
network early in the training. As the networks from random
pruning and random reinitialization show an higher test error
rate at the same time, the importance of both the structure
(pruning) and the initialization (rewinding) of the winning
ticket is shown.

4. Improvements on the Lottery Ticket
Hypothesis

The Lottery Ticket Hypothesis shows that pruning early in
training with sub-networks trained in isolation can reach full
accuracy. The sub-networks are as small as those found by
inference-focused pruning methods after training, making
it possible to maintain the sparsity level for most of the
training. But this does not suggest we can find these sub-
networks without first fully training the network. To find
the sub-networks efficiently, several methods have been
proposed.

4.1. Early-Bird Ticket

4.1.1. OVERVIEW

To close the gap between the winning ticket observation
and the goal of more efficient training, (You et al., 2020)
presented the Early-Bird (EB) ticket: the winning tickets
that can be identified at an early training stage with low-cost
training algorithms. These EB tickets can be detected with
a mask distance without accessing the ground-truth winning
tickets (i.e. the original tickets drawn after full training).
After the identification, re-training these tickets can result
in comparable or even better accuracies.

Figure 8: Test error of subnetworks created using the state
of the full network at step k and applying a pruning mask.
Lines are means and standard deviations over three initial-
izations and three data orders (nine in total). Percents are
weights remaining (Frankle et al., 2020a).

4.1.2. DEFINITION

Similar to the lottery ticket hypothesis, the EB ticket states
that:

Consider a dense randomly-initialized network f(x; θ) and a
subnetwork f(x;m⊙θ), where m ∈ {0, 1} is the mask rep-
resenting the pruned and unpruned connections in f(x; θ).
When optimized with SGD on the same training data set,
f(x; θ) reaches the minimum validation loss floss with test
accuracy facc at i th iteration; f(x;m⊙θt) reaches the min-
imum validation loss f ′

loss with test accuracy f ′
acc, where

θt) denotes the weights at the t th iteration. The EB tickets
hypothesis states that ∃f s.t. f ′

acc ≈ facc (even ≥) with
t ≪ i (e.g., early stopping) and a sparse m (i.e., much
reduced parameters).

4.1.3. FINDINGS

Following the main idea of the lottery ticket hypothesis but
instead pruning the networks trained at a much earlier stage,
the authors observe that 1) there consistently exist EB tickets
drawn at certain early epoch ranges that outperform those in
later stages, even the ground-truth winning ticket. 2) some
EB tickets are able to outperform even their unpruned, fully-
trained models potentially due to the sparse regularization
learned by EB tickets. The authors also show that large
learning rates are important to the emergence of EB tickets,
even extending to EB tickets. Also, they observed that low-
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precision training does not destroy EB tickets, which leads
to cost saving in finding EB tickets, since low-precision
updates can aggressively save energy compared to their
full-precision baseline.

4.1.4. IMPLEMENTATION

Mask Distance By denoting the pruned channels as 0 while
the kept ones as 1, the original network can be mapped
to a binary mask of the drawn ticket. Hamming distance
is used to calculate the mask distance between any two
subnetworks pruned from the same dense model. Through
the experiments of different models, the authors observe
patterns of the pairwise mask distance matrices as shown in
Figure 9.

Each (i, j)-th element in a matrix denotes the mask distance
between subnetworks drawn from the i-th and j-th epochs
in that corresponding experiment. The diagonal line has
the lowest value since it is the epoch’s mask compared
with itself. Therefore, the more an element deviates from
the diagonal, the more distant the two epochs are away
from each other. In the matrix, a lower value (close to 0)
indicates a smaller mask distance and is highlighted with a
warmer color. It demonstrates that the EB tickets perform
consistently: 1) the mask distances change rapidly at first,
which is represented by the colors change from yellow to
green from the diagonal to off-diagonal; 2) after around 10
epochs, the mask distance changes mildly, which is marked
by the off-diagonal elements changes to yellow as well; 3)
after around 80 epochs, the mask distance remains almost
unchanged.

Figure 9: Visualization of the pairwise mask distance matrix
for VGG16 and PreResNet101 on CIFAR-100 (You et al.,
2020).

EB Train Algorithm 1 (You et al., 2020) describes the steps
of searching the EB tickets. The returned EB ticket will be
retrained further to reach the target accuracy. The training
of EB tickets differs from the lottery ticket hypothesis in
that EB train uses the unpruned weights from the drawn
EB ticket instead of rewinding to the original initialization.
This is marked by (Frankle et al., 2020b)’s work showing
that deeper networks are not robust to reinitialization with

Algorithm 1 The Algorithm for Searching EB Tickets

Initialize the weights W , scaling factor r, pruning ratio p,
and the FIFO queue Q with length l;
while t (epoch) ≤ tmax do

update W and r using SGD training;
Perform structured pruning based on rt towards the
target ratio p;
Calculate the mask distance between the current and
last subnetworks and add to Q.
t = t+ 1
if MAX (Q) ≤ ε then
t∗ = t
Return f(x;m∗

t ⊙W ) (EB ticket);
end if

end while

untrained weights.

4.1.5. SIGNIFICANCE

EB ticket is an actual implementation of the lottery ticket
hypothesis and it is the first time showing how winning
tickets can be selected at an early stage. The authors have
demonstrated that EB tickets exist in both the standard train-
ing and in lower-cost schemes. Moreover, EB train with
low-precision search may provide more insights in future
areas of efficient training.

4.2. Stabilizing the Lottery Ticket Hypothesis

4.2.1. OVERVIEW

In this section, we will explore the idea of modifying Itera-
tive Magnitude Pruning (IMP) to search for sub-networks
that could have been obtained by pruning early in training
rather than at iteration 0 (Frankle & Carbin, 2019).

4.2.2. CLARITY

Rewinding. The authors demonstrate that there exist sub-
networks of deeper networks (i.e., Resnet-50, Squeezenet,
Inception-v3) at early points in training (0.1% to 7%
through) that are 50% to 99% smaller and that can com-
plete the training process to match the original network’s
accuracy (Liu et al., 2018). The authors show this in Figure
10 by modifying IMP to rewind pruned sub-network weights
to their former values at iteration k rather than resetting them
to iteration 0.

Stability. To explain why IMP fails when resetting to it-
eration 0 and improves rapidly when rewinding later, they
introduce sub-network stability: the distance between two
trained copies of the same sub-network subjected to different
noise. In particular, they focus on the noise introduced by
pruning (comparing the trained weights of the full network
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Figure 10: Rewinding to iterations early in training produces
sub-networks that outperform the original networks, even
when resetting to iteration 0 does not.

and sub-network) and data order (comparing the weights of
two sub-networks trained with different data orders). They
hypothesize that improved stability to pruning means that
a sub-network comes closer to the original optimum and
thereby accuracy; improvements in stability to data order
mean the sub-network can do so consistently in spite of the
noise intrinsic to Stochastic Gradient Descent.

4.2.3. SIGNIFICANCE

The significance of the paper is the act of pruning earlier in
training. Doing so could make it possible to reduce the cost
of training networks by substantially reducing parameter-
counts for most or all of training. Specifically, they find
that, for many networks, there is an iteration early in train-
ing after which pruning can result in sub-networks with far
higher accuracy than when pruning at initialization. The
results with IMP expand the range of known opportunities
to prune early in training that—if exploited—could reduce
the cost of training. With better techniques, they expect this
range could be expanded even further because our results
are restricted by IMP’s limitations. Namely, it is possible
that there are equally-capable sub-networks present at ini-
tialization, but IMP is unable to find them.

4.2.4. NOVELTY

The novelty of the paper is that they are the first to show
that it is possible to prune (1) so early in training (2) to
such extreme levels of sparsity (3) on such large-scale tasks.
The lottery ticket hypothesis hints at future techniques that
identify small, trainable sub-networks capable of matching
the accuracy of the larger networks they typically train. To
date, this and other related research have focused on com-
pressing neural networks before training. In this work, they
find that other moments early in the training process may
present better opportunities for this class of techniques. In

doing so, they shed new light on the lottery ticket hypothesis
and its manifestation in deeper networks through the lens of
stability

4.3. Pruning at Initialization

4.3.1. OVERVIEW

Besides IMP, many other works have explored the possibility
of pruning neural networks at initialization. By accessing
the methods such as SNIP, GrasSP, SynFlow, and magnitude
pruning, this paper (Frankle et al., 2021) shows how per-
layer choice of the fraction of weights to prune can replace
the per-weight pruning decisions. This property provides
more insights into the pruning heuristics and the desire to
prune at initialization.

4.3.2. METHODS

A baseline used in this paper is magnitude pruning after
initialization, which is a standard one-shot pruning that
prunes the weights at the end of training. By comparing
and evaluating the early pruning methods at initialization,
Figure 11 shows the performance of magnitude pruning
(green), SNIP (red), GraSP (purple), and SynFlow (brown)
at initialization. It also includes the accuracy of magnitude
pruning after training (blue), random pruning at initializa-
tion (orange), and the unpruned network (gray).

Figure 11: Accuracy of early pruning methods when pruning
at initialization to various sparsities (Frankle et al., 2021).

Overall, these early-pruning methods generally outperform
random pruning, but cannot match magnitude pruning after
training in terms of either accuracy or the sparsities at which
they match full accuracy.

4.3.3. FINDINGS

To analyze why these methods perform differently than
the baseline, magnitude pruning after training, the authors
adopted ablation studies and evaluate the information that
each method extracts about the network.
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Through random shuffling, the authors find that all methods
can maintain equal or even higher accuracy. Thus, random
shuffling is not heavily affected by the weights to remove,
but related to the layerwise proportion by which to prune
the network. The authors then utilize reinitialization to in-
vestigate whether the methods are sensitive to the specific
weights at initialization. Still, all of these early pruning tech-
niques are insensitive to reinitialization and can maintain
the same accuracy. This finding shows that it’s possible to
reinitialize or layerwise shuffle unpruned weights without
hurting accuracy, so the useful part is the layerwise propor-
tion instead of the specific weights. However, in broader
pruning literature, such as magnitude pruning after training,
shuffling and reinitialization may lead to lower accuracy.
So the current finding raises the question of whether the
insensitivity to shuffling or initialization may pose a limit to
these early pruning techniques that restricts performance.

4.3.4. SIGNIFICANCE

While pruning at initialization leads to lower accuracy than
magnitude pruning after training, this accuracy is invariant
to ablations that hurt the accuracy of magnitude pruning
after training. The authors seek to distinguish whether these
behaviors are (1) intrinsic to the pruning methods or (2)
specific to using the pruning methods at initialization. The
authors eliminate (1) by showing that when pruned later in
training, Magnitude, SNIP, and SynFlow improve as training
progresses, so the accuracy becomes higher than pruning at
initialization, and thus they are sensitive to ablations.

In conclusion, the authors show that these methods are in-
sensitive to the specific weights and are specific to using the
pruning methods at initialization. These generalized find-
ings may be able to identify subnetworks efficiently. While
there are still many challenges ahead, the future step for
pruning is to continue to explore the trade-off between the
training cost and training accuracy.

5. Conclusion
The Lottey Ticket Hypothesis finds the subnetworks that
are comparable to the original network when retrained in
isolation. However, winning tickets are harder to find when
the size of the model grows larger. (Frankle & Carbin, 2019)
proposed that using smaller learning rates or using learn-
ing rate warmup might help find winning tickets in large
networks. Further studies (Frankle et al., 2020a) show an
potential explanation using stability to SGD noise about
this behavior, which also provides a starting point for fur-
ther improvements such as rewinding (Renda et al., 2020),
Early-Bird tickets (You et al., 2020) and different pruning
heuristics (Frankle et al., 2021).

The Lottery Ticket Hypothesis speeds up the training by find-

ing a good initialization for faster convergence. It challenges
the conventional wisdom in neural network training because
it shows optimal neural network structures can be learned
from the start, therefore increasing the training efficiency.
This finding contrasts with the previous work showing that
training pruned sparse networks from the beginning often
leads to lower accuracy. It also raised interest in the explo-
ration of pruning heuristics, which may further improve the
hypothesis and extend to other network discoveries.
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Abstract

Mixture of Experts (MoE) is an ensemble learn-
ing technique that implements the idea of training
experts on subtasks of a predictive modeling prob-
lem. MoE solves the problems in a divide-and-
conquer manner, seperating the problem space
between different experts and assigning the prob-
lem under the supervision of a gating network.
The first part of this paper surveys modeling and
mathametical background of MoE. The second
part will be focused on MoE’s recent advance-
ment in combination with deep neural networks.
Finally, a MoE image segmentation model is put
forward and test on neurological cell images.

1. Introduction
In 1991, Hinton and Jacob first introduced the idea of Mix-
ture of Experts in their paper Adaptive mixtures of local
experts (Jacobs et al., 1991). The Mixture of Experts (MoE)
model is a type of ensemble learning which uses a combi-
nation of simpler learners to improve the prediction. It is
usually used as a classification or regression model. The
model is constructed with two parts, one is a gating net-
work which use the same input to compute the contribution
of each expert. The other part is a set of expert networks.
One individual expert node can be a simple linear model
or a complicated deep neural network. Later, to improve
the MoE performance, Hierarchical Mixture of Experts
(HMoE) came out (Jordan & Jacobs, 1994). HMoE is a
tree-structured model, which is similar to the decision tree.
HMoE has more than one level of experts and one gating
network for each subset of expert networks. Each bottom
level expert network takes the original data as input, and
the upper level experts will take the combination of the ex-
pert network output with probability output from the gating
network as its input. In 2012, Bishop and Svensen found
a better way to do the HMoE which is applying Bayesian
treatment to reduce the possibility of overfitting (Bishop &
Svensén, 2012). They modeled the parameters in both the
gating network and experts network with Gaussian distribu-
tion.

Figure 1. Structure of MoE

1.1. Ensemble Learning

The basic idea of ensemble learning algorithm is construct-
ing a set of ensembles in different ways then using a
weighted vote of the ensembles to find the best match of
the data (Dietterich et al., 2002). This method works well
when there is a representational problem. When each single
model alone does not approximate the true function f well,
it is possible that the weighted voting of the models can be
a more accurate approximation(Dietterich et al., 2002).

Mixture of experts is an ensemble learning approach. It
combines a set of simpler models to improve the accuracy
of predictions. Some models face an issue that while the
data set is too large to fit into the model, it may decrease the
accuracy of the prediction. The algorithm behind the mix-
ture of experts model is divide-and-conquer, which breaks a
complex task into several simpler and smaller subtasks, and
individual experts are trained for different subtasks to keep
the accuracy.

This model consists of two parts, the gating network and the
expert network. According to the input, the gating networks
will compute a possibility for each expert with specific
subtasks, then decide which expert should be assigned for a
specific subtask. The expert networks are constructed with
different types of models.

The goal of the gating and expert networks is helping each
other to find the optimization. Each expert should find the
best match gating function. Based on the gating function,
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train each expert to reach the best performance (Avnimelech
& Intrator, 1999). With this gating network and expert net-
work structure, a mixture of experts model train all experts
at the same time and the current result will decide which
dataset will be assigned to the experts in the future, which
largely affect the results.

One of the important benefits of the Mixture of Experts
model is, in the expert networks, it may contain various
types of models, from simple linear models to deep neural
networks. For example, Hu did an experiment on using MoE
to improve the Electrocardiology (ECG) beat classification
result. In this MoE model, they use two classifiers. Two
artificial neural networks are used in the classifies, one is
Self-Organization Map and Learning Vector Quantization
(Hu et al., 1997). These two classifiers are combined by
MoE to find a better performance.

Mixture of experts models are also frequently used in multi-
modal contexts. Goyal et al. do dynamic motion prediction
in movies with MoE. They used two experts in this MoE
based fusion model, one is used for audio features and the
other is used for video features. Then the gating function
decides the contributions of each expert. They found that
with MoE applied, the result is better than only using au-
dio/video models or using Late/Early fusion model (Goyal
et al., 2016).

The other benefit of MoE is that a big model may be costly,
however, when decomposing the big model into several
subtasks, it can decrease the cost. In addition, while the
model needs some modifications, it is much easier to change
it in a small sub model, rather than change one big model
which is almost impossible.

2. MoE Architecture
In this section, we will introduce the detail of architecture
of MoE and the architecture of Mixture of Gaussian (MoE)
as well. MoG has a better cost function to help improve the
prediction with mixing proportion.

2.1. Mixture of Experts

In the previous Section we have mentioned that MoE can be
separated into two parts. One is individual expert networks,
and the other is the gating network. In each network, it has
its own parameters. We will use a mixture of N simple linear
experts with input data X as an example to show the details.

In expert networks, there are N experts, each expert can
compute an output yi with its own parameter θei . The
output of each expert model is

yi = θeiX

In the gating network, it has its output pi and this is the
probability of picking the ith expert for this subtask. Since
we are using the softmax function as the gating function in
this example

pi =
exi∑
j e

xj

The output of the MoE model is

y =

n∑
i=1

pi(X)yi(X)

The cost function we are using in this example is

E =
∑

pi(d− yi)
2

where d is the target result we want to find.

When we do the differential with respect to yi, which is the
output of the expert, we get

∂E

∂yi
= pi(d− yi)

It means that if the result is small, the parameters inside
that expert won’t get disturbed by that training case. This
parameter will wait to be used when this expert has a higher
contribution.

When we do the differential with respect to pi, which is the
output of the gate, we get

∂E

∂pi
= pi[(d− yi)

2 − E]

This means if the expert i makes a lower probability than
the average, we need to raise its probability. if the expert
i makes a higher probability than the average, we need to
reduce its probability. This process is called specialization
(Jacobs et al., 1991).

2.2. Mixture of Guassian

In the example above, we use softmax as the cost function
which is the simplest one. To improve the prediction, Ja-
cob has a better cost function for the MoE which connects
Gaussian distribution and maximum likelihood with MoE
(Jacobs et al., 1991).

Hinton uses two different Gaussian distribution curve as an
example to show his idea. These two Gaussian distribution
curves represent each of the experts’ (neural network) output.
Both experts are trying to find their own predictor y1 and y2,
so they make a Gaussian prediction around their predictors
which is the maximum likelihood of these predictors.
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Then the gating network will draw a curve which is the
sum of these two Gaussian distribution curves, to decide
the contribution of each expert. This process of scaling
down Gaussian is called mixing proportion and the total
contribution should equal to 1. The next step is maximizing
the log probability at the target value. This model is called
a mixture of Gaussian model (Jacobs et al., 1991).

The probability of the target is

p(d) =
1√
2πσ

e−
(d−y)2

2σ2

. In Gaussian distribution σ should equal to 1, and we want
to find the probability of the desired output in case c, so this
probability becomes to

p(dc|MoG) =
∑
i

pci
1√
2π

e−
||dc−oc

i
||2

2

In the above function, pci is the mixing proportion for expert
I in case c. oi is the output of expert i.

3. Statistical inference of MoE
In this section, an overview of methods used in MoE infer-
ence step is provided. In addition, we give the algorithm
outline of MoE inference with expectation maximization
algorithm under mixture of Gaussian assumption. A simple
example using simulated data is attached to delineate the
calculation process.

3.1. Overview of MoE inference methods

Before introducing some variations of MoE framework,
common approaches for inference of MoE will be intro-
duced. (Jordan & Jacobs, 1994) and (Jacobs et al., 1991)
used the expectation-maximization (EM) algorithm to com-
pute the maximum likelihood estimates (MLEs) for MoE
models, which has become a classic way of performing
MoE inference. (Gormley & Murphy, 2008) deployed very
similar expectation minorization maximization (EMM) al-
gorithm in his series of studies on election. Another cate-
gory of MoE inference methods uses the Bayesisan frame-
work. (Peng et al., 1996), (Gormley & Murphy, 2010) and
(Fröhwirth-Schnatter & Kaufmann, 2008) applied Markov
chain Monte Carlo (MCMC) (Tanner, 2012) to do estimate
the parameters; (Bishop & Svensén, 2012) use variational
methods in within Bayesian paradigm to perform inference
for a hierarchical mixture of experts model.

3.2. MLE with EM algorithm under mixed Gaussian
assumption

The expectation maximization (EM) algorithm (Dempster
et al., 1977) provides a suitable tool for maximum likelihood

estimation (MLE) calculations in MoE models. The EM
algorithm is most effective and most commonly used in sit-
uations where data under study has complicated distribution
and when optimization of the likelihood could be explicitly
expressed if an additional group of variables were known.

The EM algorithm consists of two steps: expectation (E)
step followed by a maximization (M) step. The two steps
are executed in a iterative manner. Generally, during the E
step the conditional expectation of the complete data log
likelihood is computed, given the data and current param-
eter values. In the M step the expected log likelihood is
maximized with respect to the model parameters. The im-
putation of latent variables often makes maximization of
the expected log likelihood more feasible. The parameter
estimates produced in the M step are then used in a new E
step and the cycle continues until convergence or a certain
termination condition is reached. The parameter estimates
yielded on convergence are the ones that achieve a stationary
of the log likelihood function of the data, which is a local
maximum, but could be a saddle point.

Consider the basic mixture of experts model based on the
following conditional mixture:

P (y | x,Θ) =

K∑
j=1

gj(x, ν)P (y | x, θj)

P(y | x, θj) = 1
(2π)n/2|Γj |1/2

exp
{
− 1

2 [y − fj (x,wj)]
T
Γ−1
j [y − fj (x,wj)]

}
where x ∈ Rn, and Θ consists of ν, {θj}K1 , and θj consists
of {wj}K1 , {Γj}K1 . The vector fj (x,wj) is the output of
the j-th expert net. The scalar gj(x, ν), j = 1, · · · ,K is
given by the softmax function:

gj(x, ν) = eβj(x,ν)/
∑
i

eβi(x,ν)

In this equation, βj(x, ν), j = 1, · · · ,K are the outputs
of the gating network. The parameter Θ is estimated by
Maximum Likelihood (ML), where the log likelihood is
given by L =

∑
t lnP

(
y(t) | x(t),Θ

)
. The ML estimate

can be found iteratively using the EM algorithm as follows.
Given the current estimate Θ(k), each iteration consists of
two steps.

(1) E-step. For each pair
{
x(t), y(t)

}
, compute

h
(k)
j

(
y(t) | x(t)

)
= P

(
j | x(t), y(t)

)
, and then form a set

of objective functions:

Qe
j (θj) =

∑
t h

(k)
j

(
y(t) | x(t)

)
lnP

(
y(t) | x(t), θj

)
, j = 1, · · · ,K

Qg(ν) =
∑

t

∑
j h

(k)
j

(
y(t) | x(t)

)
ln g

(k)
j

(
x(t), ν(k)

)
(2). M-step. Find a new estimate Θ(k+1) =

{{
θ
(k+1)
j

}K

j=1
, ν(k+1)

}
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(a) EM, mixed Gaussian at
iteration 2

(b) EM, mixed Gaussian,
convergence

Figure 2. Inference of 3 linear experts MoE

with:

θ
(k+1)
j = argmax

θj
Qe

j (θj) , j = 1, · · · ,K;

ν(k+1) = argmax
ν

Qg(ν).

In certain cases where the experts fj (x,wj) are linear in
the parameter wj , maxθj Q

e
j(θj) can be solved by setting

gradient to 0; for nonlinear experts, the maximization cannot
be performed analytically. Moreover, since the softmax
gating function is nonlinear, maxν Q

g(ν) cannot be solved
analytically (Xu et al., 1995). A conventional technique
used to tackle this problem is using gradient descent.

The complete algorithm starts by (usually randomly) initial-
izing parameters of both expert nets and the gating net, and
then perform E step and M step iteratively until convergence
or some termination condition is reached.

Figure 2 is from an example of an MoE consisting 3 linear
experts and a softmax gating network. The task is to the the
model to data points generated along three lines at different
input regions with Gaussian noise. With the EM algorithm
scheme, this model fits the data well with few parameters
and less than 20 iterations.

4. Hierarchical Mixture of Experts
Hierarchical mixture of experts (HMoE) was first intro-
duced by Jacobs and Jordan in 1994. HMoE is a supervised
learning algorithm, often considered as a ”soft-division” al-
ternative of decision trees. The input data is divided into
a nested set of regions and the boundary is “soft” which
means some points can lie in different regions at the same
time (Jordan & Jacobs, 1994).

HMoE has a tree structure containing at least two levels
of the expert networks (Bishop & Tipping, 1998). In our
report, we will use a two levels HMoE as the example. The
Gating network is assigned to each group of child nodes.
Expert network is the leaf node. If we assume this is a binary
tree, two experts will be a set under their parent node. The

Figure 3. Tree-structured hierarchical mixture of experts.

lower-level expert still takes X as the input and produce a
new parameter µi, and gating network also takes input X
and produce a new parameter gi

ξi = v⊤i X

gi =
eξi∑
k e

ξk

Where the v is a weight vector. The above is the gating
network parameter at lower level

gi =
eξij∑
k e

ξik

This is the parameter at higher level. Both the lower level
and higher-level gating network use softmax as an error
function.

µi =
∑
j

gj |iµij

This is the output of the expert at a lower level.

µ =
∑
i

giµi

And the output of expert networks at a higher level.

4.1. Hierarchical Mixture of Experts with
Expectation-Maximization

HMoE usually works along with EM algorithm to adjust
the parameters(Jacobs et al., 1991). After applying EM to
HMoE, the probability model, the probability distribution
becomes

P (y(t), z
(t)
ij |x(t), θ) = gi(t)g

(t)
j|iPij(y

(t))

Where t is the target value.
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Figure 4. Evolution of recommendation model structures

4.2. Bayesian Hierarchical Mixture of Experts

However, this EM algorithm may cause data overfitting
issues. Furthermore, EM does not help with determining
the number of experts in each branch because the maxi-
mum likelihood prefers a more complex model (Bishop &
Svensén, 2012). Bishop introduces a new Bayesian hierar-
chical mixture of experts to solve the above problems. For
each gating network node, a Gaussian prior distribution is
defined independently over the parameter v, which as we
mentioned before, v is the weight vector.

p(vi|βi) = N(vi|0, β(−1)
i I)

For each expert network, do the similar thing to its parameter
θ.

p(θj |αj) = Πt
k=1N(θjk|0, α−1

j I)

Where t is the dimension of the target value.

5. Deep learning applications of MoE
In this section, we focus the recent advancement of MoE
on its ability to massively scale up the number of parame-
ters in deep learning models without introducing too much
computation overhead.

5.1. Multi-gate Mixture of Experts (MMoE)

Multi-task learning refers to the machine learning methods
that utilizes a model to solve multiple tasks simultaneously.
The assumption is that by learning to complete multiple
correlated tasks with the same model, that the performance
of each task will be higher than if we trained individual
models on each task.

Figure 4 illustrates the development process of recommen-
dation models. The shared-bottom model in Figure 4(a) is
the simplest multi-task learning architecture, in which the
model has a common base, and one single representation
is used for different tasks. The second structure, shown in
Figure 4(b), uses mixture-of-experts architecture to improve
the raw shared-bottom model. However, the model towers
in the upper part are still receiving weighted information
from the same gate.

Figure 5. Average performance of MMoe, omoe, and shared- Bot-
tom on synthetic data with different correlations

The MMoE architecture proposed in (Ma et al., 2018) fur-
ther modifies the structure by having an individual gating
network for each task, rather than a single one for the entire
model. This allows the model to learn the weighting of each
expert network on task and sample basis, instead of only
per-sample weighting. More specifically, the MMoE learns
to model the relationships between different tasks. Tasks
which have little in common with each other will result in
very different weight distribution in the gating networks.

The authors of the MMoE prove the theory by comparing the
three architectures on synthetic datasets with varying levels
of task correlation, shown in Figure 5. The performance
gap between the MoE and MMoE models decreases as task
correlation increases. This structure is first deployed in
Youtube video recommendation system (Zhao et al., 2019).

5.2. Sparsely gated MoE layer

Based on the MMoE work, researchers found that the mix-
ture of experts model has one other major advantage: it
has highly parallelizable structure. The individual experts
can be trained independently of one another. The combined
”topped” model assemblage can then be further trained and
optimized (Ma et al., 2018). This is leads to further scaling
up of the number of experts.

Sparsely gated MoE layer (Shazeer et al., 2017) uses MoE
as a replacement layer structure for vanilla feed forward
network. This work’s baseline contains 2048 experts in each
MoE layer, making the training extremely computational-
heavy. To relieve this issue, sparsity constraint is introduced,
forcing the gating network to only ”activate” a small fraction
of the experts.

The gating and selecting function can be written as y =∑n
i=1 G(x)iEi(x), and when gate output G(x)i = 0, ex-

pert Ei is not activated. The sparsity constraint is imple-
mented by modifying the softmax gate.

G(x) = Softmax(KeepTopK(H(x), k))

Where H(x)i = (x ·Wg)i + StandardNormal() ·
Softplus ((x ·Wnoise)i) is a matrix multiplication on x
plus an additional noise-modeling term. And function
KeepTopK(v, k)i ranks vector v’s elements, keeps k
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Figure 6. A MoE layers embedded with a language model

Figure 7. Illustration of a Switch Transformer encoder block

largest elements and set the others to −∞ (making them 0
after softmax).

In Figure 7, the sparse gating function selects two experts
to perform computations. This paper puts forward an ap-
proach to massively increase the capacity of deep networks
by employing conditional computation. Although some im-
plementation details (e.g. batching schemes, load-balancing
loss) may be replaced in the future, the authors’ main con-
tribution, as they claim, is proving by example that efficient,
general-purpose conditional computation with MoE in deep
networks is possible and very beneficial. Training instability
is resolved by adding a 0.3-0.4 ratio dropout.

5.3. Switch Transformer

Starting from the sparse gate, the Switch Transformer uses
a further modified MoE algorithm called Switch Routing:
instead of activating multiple experts and combining their
output, Switch Routing chooses a single expert to handle a
given input. This simplifies the routing computation, and
reduces communication costs since individual expert models
are hosted on different GPU devices.

The team used Mesh-TensorFlow (MTF) to train the model,
taking advantage of data- and model-parallelism. To investi-
gate the performance of the architecture at different scales,
the team trained models of different sizes, from 223M pa-

Figure 8. Mixture of image segmentation networks

Figure 9. metrics of experts by epoch

rameters up to 1.6T parameters, finding that the ”most ef-
ficient dimension for scaling” was the number of experts.
Model performance on pre-training and downstream NLP
tasks was compared to T5 models requiring similar FLOPs
per sample, which is shown in the table.

6. Experiment: Mixture of image segmentation
networks for cell instance segmentation

MoE has also been used in computer vision problems. Previ-
ously in cell image segmentation task, Hiramatsu et al. used
a mixture of U-Nets and an autoencoder gating network to
perform cell semantic segmentation task(Hiramatsu et al.,
2018).

Recently, LIVECell, a neurological cell image dataset con-
taining 9 different cell types has been released. Neuron cells
are highly variant but has intra-class consistency, making it
appropriate to use different experts to segment different cell
types. We used similar workflow of (Hiramatsu et al., 2018)
but with more complicated instance segmentation experts.

We can see from Figure 9 that the experts (Mask-RCNNs)
are able to learn the characteristics of various cell tyes and
converge at a similar pace. Quantitative result shows that
under mAPIOU metric, MoE achives solid performance gain
for different backbone sizes of experts, demonstrate the idea.
For example, with ResNext 101 backbone, the mAPIOU of
ensembling vs. single goes from 0.286 to 0.297. Our current
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rank on the Kaggle cell instance segmentation competition
is 67/1349(∼5%).

7. Conclusion
In this review, we first introduce the structure of MoE and
its inference, and survey the development to Hierachical
MoE and Bayesian HMoE. In addition, we provide a review
of important recent developments on using MoE as a model
up-scaling technique.

The MMoE-based YouTube recommendation algorithm is a
good example of modern core-infrastructure machine learn-
ing model. It is huge in size, contains an ensemble of
different models, does not optimize for a single specific
task but instead for a blend of different metrics, and works
with sparse data inputs. Google has named this type of
production-scale model ”Wide Deep Learning” models
(Cheng et al., 2016).

Mixtures of Experts have distinct advantages: they can
respond to particular circumstances with greater specializa-
tion, allowing the network to display a greater variety of
behaviors; experts can receive a mixture of stimuli, inte-
grating data from diverse sensors; and when the network is
in operation, only a few experts are active, saving the pro-
cessing power. As neural networks become more complex,
there is an increasing need of integrating data from different
modalities, and supplying a greater variety of responses, and
Mixture of Expert models will dominate.
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On the Use of Momentum in Stochastic Methods

Wu Li 1 Edward Nguyen 1

Abstract

Deterministic momentum methods have been
proven to have an exponential rate of convergence
when applied to strongly convex and smooth prob-
lems (Nesterov, 2014), (Polyak, 2020). This ac-
celerated rate cannot be attained by the standard
gradient descent method. However, in many large
scale optimization problems, using deterministic
optimization methods is infeasible as calculating
the full gradient can be computational expensive
when the amount of data is very large. Hence,
stochastic gradient methods have been employed
to reducing the iteration complexity. A natural
step would then be to modify deterministic mo-
mentum methods to use stochastic gradients re-
sulting in stochastic momentum methods. How-
ever, proving that stochastic momentum methods
have accelerated convergence rates in compari-
son to vanilla SGD is not straightforward. In this
literature review, we provide the current state-of-
the-art convergence rates of stochastic momentum
methods for different function classes and also an-
alyze the use of stochastic momentum methods
for decentralized optimization and online opti-
mization problems.

1. Overview of the project
Consider the following minimization problem:

min
x∈χ

f(x), (1)

where χ ⊆ Rn is the feasible set. Denote by S the set of the
minimizers, denoted as x∗, of f(x).

The gradient-based methods provide a class of efficient ways
to address (1), attempting to find a minimizer, say x∗, of (1)
by generating a sequence {xk} via an iterative procedure.

*Equal contribution 1Rice University, Houston, Texas, USA.
Correspondence to: Wu Li <awl@rice.edu>, Edward Nguyen
<en18@rice.edu>.

Project report for COMP414/514, Rice CS. Copyright 2021 by the
author(s).

They can be unified into:

xk+1 = Πχ(xk − αkzk)

zk+1 = βkgk+1 + γk
xk − xk+1

αk
(2)

with both x0 and z0 given as initial conditions, where all
nonnegative constants αk and βk are the step-sizes and mo-
mentum parameters, respectively.

In (2), Πχ denotes the orthogonal projection onto χ, gk is
an estimate or approximate of the (sub-)gradient ∇f(x) of
f(x) at x = xk and zk is the searching direction vector. In
fact, as to be seen the Nesterov’s accelerated gradient (AG)
method can also be brought into the umbrella of (2).

We note that with χ = R and γk = 1 − βk, (2) yields the
standard form of (unconstrained) gradient descent method
with momentum (GDM)

xk+1 = xk − αkzk

zk+1 = βkgk+1 + (1− βk)zk. (3)

An alternative form of the GDM is the so-called heavy ball
(HB) methods:

xk+1 = xk − µkgk + νk(xk − xk−1), (4)

where

µk = αkβk−1, νk =
αk(1− βk−1)

αk−1
. (5)

Comment 1.1: We note that with γk = 0 and βk = 1, zk =
gk, (3) is the standard gradient descent (GD) method. Thus,
the GDM is a generalization of GD, which shares almost
the same order of complexity as GD but yields a better
performance in terms of convergence. This is due to the fact
that it uses an improved searching direction vector zk that
takes into account of the gradient gk as well as the previous
estimates xk and xk−1. To visualize the use of momentum
in practice, we observe that standard GD often zigzags,
but with some momentum from the previous direction, the
algorithm becomes “biased” and could possibly take on a
more direct trajectory towards the stationary point.

In many applications, especially those related to learning
from a set of J data samples, the cost function f(x) is the
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mean of a sequence of functions {fj(x)}Jj=1. The inter-
est in efficiently solving (1) has grown due to the signifi-
cant increase in data sets, in which J can be exceedingly
large. In this context, computing the gradient ∇f(x) ev-
ery iteration like what is done for deterministic methods
can be costly and sometimes is unrealistic. The stochas-
tic gradient methods have the same form as (2) or (4) but
with gk generated randomly in a very simple way. For
example, gk can be taken as gk = ∇fjk(xk), where jk
is randomly taken from [J ] := {1, 2, · · · , j, · · · , J} with
an identically independent distribution (i.i.d.). Clearly, the
latter is much easier to compute as it depends only on the
jkth sample. Thus, the corresponding (2) and (4) are re-
ferred to as stochastic gradient method with momentum
and stochastic heavy ball (SHB) method. These stochas-
tic approaches have been shown empirically very effective
and have become the state-of-the-art. However, analysis
explicitly showing the improved performance of stochastic
momentum methods compared to vanilla SGD is lacking or
nonexistent.

The main objective of this project is to study a class of
stochastic GDM-based algorithms by reviewing the three as-
signed papers (Assran & Rabbat, 2020) - (Mai & Johansson,
2021) and (Liu et al., 2020) that we selected for extra read-
ing and determine current state-of-the-art rates for stochastic
momentum based methods for different classes of functions.
In addition, we will examine other variants of stochastic
momentum methods applied to the decentralized stochastic
optimization case (Ying et al., 2021) and the online stochas-
tic optimization case (Yuan et al., 2016).

2. Main results in the related papers
In this section, we will summarize related papers by present-
ing in order

• the objective function and the algorithm;

• the assumptions;

• the main results.

After the presentation of the individual papers, we will
collect and summarize the results into a table containing the
convergence rates for different methods in different settings.

2.1. Assran & Rabbat: On Nesterov’s Accelerated
Gradient Method in Stochastic Settings

This paper (Assran & Rabbat, 2020) deals with Nesterov’s
accelerated gradient (AG) method with constant step-size
and momentum parameters in two settings, namely, the
stochastic approximation setting for quadratic functions and
the finite sum setting.

2.1.1. f(x) and algorithm

The objective function f(x) for this paper is given by

f(x) :=
1

J

J∑
j=1

fj(x), (6)

where the feasible set χ is the entire Rn.

The corresponding minimization problem is addressed with
the following algorithm:

yk = xk + δ(xk − xk−1)

xk+1 = yk − ϱgk. (7)

where gk, an estimate of ∇f(y), is a random vector. In
general, (7) is referred to as accelerated stochastic gradient
(ASG).

Note that inserting the 1st equation of (7) into the 2nd one
yields

xk+1 = xk − [ϱgk + δ(xk−1 − xk)] := xk − zk,

where zk = ϱgk + δ(xk−1 − xk). Comparing it with (2),
where χ = Rn, we realize that (7) is a special case of (2)
with

αk = 1, βk = ϱ, γk = δ, ∀ k. (8)

Comment 2.1: Let f(x) be L-smooth and µ-strongly con-
vex, denote Q = L/µ. Some previous results regarding the
convergence of (7) include.

• Deterministic case:

1. As shown in (Polyak, 2020), for GD, i.e., ϱ = 0,
with δ = 2

L+µ , we have

f(xk)−f(x∗) ≤ L
2
(
Q− 1

Q+ 1
)2k||x0−x∗||22. (9)

2. As shown in (Nesterov, 2014), for the AG with
δ =

√
Q−1√
Q+1

and ϱ = 1
L , we have

f(xk)− f(x∗) ≤ L(
√
Q− 1√
Q

)k||x0 − x∗||22.

(10)
• Stochastic case

In this case, some of existing works are summarized
below.

1. It was shown in (Yang et al., 2016) that under
bounded gradient (BG) assumption that the ASG
converges with a rate of O( 1√

k
) in the smooth

strongly convex setting via a diminishing step-
size;

2. In (Kulunchakov & Mairal, 2019), it was shown
that with gradients that are unbiased and bounded
variance (BV), the ASG converges to a neighbor-
hood in the smooth strongly convex setting with
constant step-size and momentum.
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2.1.2. Assumptions

It is assumed throughout this paper that, for all j ∈ [J ],
there exist L > 0 and µ > 0 such that Q := L

µ < 1 and for
all x,y ∈ Rn,

• A1.1 µ-strongly convex:

fj(y) ≥ fj(x)+ < ∇fj(x),y − x > +
µ

2
||x− y||22

• A1.2 L-smooth:

fj(y) ≤ fj(x)+ < ∇fj(x),y − x > +
L
2
||y − x||22

Clearly, f(x) has a unique minimizer x∗ under these as-
sumptions.

2.1.3. The results

I. Stochastic approximation setting:

In this setting, we have unbiased gradients with bounded
variance, that is,

E[gk] = ∇f(yk) − unbiased

and

E[||gk−∇f(yk)||22] ≤ σ2 − bounded variance, ∀ k.

It is shown that Nesterov’s method converges at an
accelerated linear rate (i.e. same accelerated rate as in the
deterministic setting) to a neighborhood of the optimal
solution for smooth strongly-convex quadratic problems.
This can be seen in the following corollary and theorem
where the corollary assumes a smooth strongly-convex
quadratic problem and the theorem is more general and
only assume L-smooth and µ-strongly convex functions.

Corollary 1.1 Suppose that α = 1
L and β =

√
Q−1√
Q+1

.
Then for and all k

E[f(yk+1)]− f∗ ≤ L

2
(

√
Q− 1√
Q

+ ϵk)
2k∥x0 − x∗∥2

+ Cϵ
5Q2 + 2Q3/2 +Q

2L(2
√
Q− 1)(

√
Q+ 1)2

σ2

where ϵk ∼ (
√
k
k
− 1) and Cϵ is some constant that

depends on ϵ > 0 and choice of norm.

Theorem 1.1 Let f be L − smooth, µ-strongly con-
vex, and twice continuously-differentiable (not necessarily
quadratic). Suppose that α = 2/(µ+ L) and β = 0. Then
for all k

E[f(yk+1)]− f∗ ≤ L

2

(
Q− 1

Q+ 1

)2k

∥x0 − x∗∥2 + Qσ2

2L

The second theorem is for the vanilla SGD case. Clearly,
Stochastic Nesterov Accelerated Gradient Method not only
converges at an accelerated rate for quadratic functions but
also converges to a solution of less error in comparison to
SGD.

II. Finite sum setting:

In this setting, we arbitrarily sample a subset of the terms of
(6), which is viewed as approximating the gradient with a
mini-batch gradient

gk =

m∑
i=1

ωk(i)∇fi(xk), ∀ k, (11)

where 0 < m ≤ J and ωk ∈ Rm is a random vector with

E[ωk(i)] =
1

m
, ∀ i, k. (12)

The contributions of this paper in this setting include

• It is shown that Nesterov’s method may diverge even
if all the functions fi are assumed to quadratic, which
implies the significance of the BV assumption that
holds in the stochastic approximation setting but not
necessarily in the finite sum setting.

• Step-size and momentum parameters to guarantee con-
vergence are proposed, with which, however, accelera-
tion is not guaranteed.

2.2. Sebbouh, Gower & Defazio: On Convergence of
Stochastic Heavy Ball

This paper (Sebbouh et al., 2020) intends to provides a
comprehensive analysis of the stochastic heavy ball method
and deals with iteration dependent step-size and momentum
parameters.

2.2.1. f(x) and algorithm

The objective function f(x) considered in the 2nd paper is
of the same form as (6), where the feasible set χ is the entire
Rn.

As mentioned in Section 1, the stochastic heavy ball (SHB)
method is given by

xk+1 = xk − µkgk + νk(xk − xk+1) (13)

where gk = ∇fωk
(x) with fωk

(x) the an averaged version
of {fj(x)} via the vector ωk ∈ Rm randomly generated at
the kth iteration as described by (11) - (12) for the finite sum
setting. It is a special case of the GDM (3) with (µk, νk)
related to (αk, βk) via (5)
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In this paper, m = J is used, that is

∇fωk
(x) :=

J∑
j=1

ωk(j)∇fj(x). (14)

Note that E[ωk(j)] = 1/J, ∀ j, k. Then,

E[∇fωk
(x)] = E[

J∑
j=1

ωk(j)∇fj(x)] (15)

=

J∑
j=1

E[ωk(j)]∇fj(x)

=
1

J

J∑
j=1

∇fj(x) = ∇f(x).

Thus, ∇fωk
(x) is a unbiased estimate of ∇f(x).

2.2.2. Assumptions

For all j ∈ [J ], there exists Lj > 0 such that for x,y ∈ Rn,
the following holds:

• A2.1 convex

fj(y) ≥ fj(x)+ < ∇fj(x),y − x >

• A2.2 L-smooth

fj(y) ≤ fj(x)+ < ∇fj(x),y−x > +
Lj

2
||y−x||22

Let S denote the set of the minimizers of f(x) by (6). As
f(x) is convex, any of its stationary points, i.e., those x
such that ∇f(x) = 0, is a global minimizer. We have the
following important results due to (Gower et al., 2018):

Lemma 1 Let S be the solution set of (1) with f(x) given
by (6) and ω be an averaging random vector defined above.
Then, under the assumptions A2.1 and A2.2 we have

• There exists a L > 0 such that

E[||∇fω(x)−∇fω(x
∗)||22] ≤ 2L[f(x)− f(x∗)]

∀ x∗ ∈ S

and with the residual gradient noise

σ̄2 := max
x∗∈S

E[||∇fω(x
∗)||22], (16)

we have

E[||∇fω(x)||22] ≤ 4L[f(x)− f(x∗)] + 2σ̄2. (17)

2.2.3. The results

The key point of the analysis in this paper is to examine the
SHB method from an iterative averaging viewpoint. More
specifically, the convergence of (13) is analyzed via the
following iterative-moving average (IMA) method (Taylor
& Bach, 2020):

yk = yk−1 − ϕk∇fωk
(xk)

xk+1 =
φk+1

φk+1 + 1
xk +

1

φk+1 + 1
yk (18)

with x0 = z0.

The authors showed that this IMA formulation is in fact
equivalent to the original SHB and provided analysis based
on this equivalent IMA formulation. The proof of equiv-
alence is provided in the supplementary material, which
states that the sequence {xk} generated with (18) is exactly
the same as the one generated with (13) when we set

µk =
ϕk

φk+1 + 1
, νk =

φk

φk+1 + 1
, ∀ k. (19)

Based on the above, the paper mainly provided two impor-
tant results as two corollaries from a generalized theorem.
The two results are

• Assuming A2.1 and A2.2, this paper is able to prove
that the function values at the last iterate of SHM con-
verges almost surely at a rate close to o(1/

√
k) which

can be improved to o(1/k) in the overparameterized
case. Note that this does not require the additional
assumptions of bounded gradients and bounded noise.
The overparameterized case happens when σ2 = 0

• With the proposed scheme of decreasing step sizes,
exact convergence to the minimum, as opposed to con-
vergence to a neighborhood around the minimum, is
guaranteed at a rate of o( 1∑k−1

t=0 ηt
) where ηt is a mem-

ber of the sequence of step-sizes. Note that this only
requires assumptions A2.1 and A2.2. This means that in
the general stochastic case, SHB has the same almost
sure convergence rate as SGD with averaging (instead
of the last iterate).

2.3. Mai & Johansson: On Stochastic Gradient Descent
for Non-smooth and Non-convex Objectives

This paper (Mai & Johansson, 2021) deals with stochastic
gradient methods with momentum and establishes the con-
vergence rate for a class of ρ-weakly convex and constrained
optimization problems.
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2.3.1. f(x) and algorithm

In this paper, the objective function f(x) is defined as1

f(x) := E[f(x, S)] =
∫
s∈Ψ

f(x, s)dFS(s), x ∈ χ (20)

where χ is a closed convex set, S is a random variable with
a CDF FS(s) defined on the set Ψ . Furthermore, such a
f(x) is assumed to belong to the class of ρ-weakly convex
function but defined over some closed and convex χ that
may be different from Rn - this setting is more complicated
than in the previous two papers analyzed.

The algorithm proposed to solve (1) with f(x) given by (20)
is 2

xk+1 = Πχ(xk − αzk)

zk+1 = βgk+1 + (1− β)
xk − xk+1

α
, (21)

where β ∈ (0, 1] and gk+1 = ∂f(xk+1, Sk+1) with
Sk the kth sample of S. Moreover, we note that (21) is
a special case of (2) with αk = α, βk = β, γk = 1−β, ∀ k.

2.3.2. Assumptions

Denote subdifferentials/subgradients ∂f(x, S) and ∂f(x).
The convergence is analyzed in the this paper under the
following assumptions:

• A3.1 E[gk] ∈ ∂f(xk), ∀ k;
• A3.2 Bounded Gradient

∃ G > 0 s.t. E[||gk||22] ≤ G,∀ xk ∈ χ;

• A3.3 Bounded Variance

E[||gk −∇f(xk)||22] ≤ σ2, ∀ k.

2.3.3. The results

I. Weakly-convex functions

Assuming A3.1 and A3.2, which is standard in analysis of
stochastic optimization of non-smooth functions, it is shown
that SHB for minimization of weakly convex functions has
a convergence rate of O( 1√

K
), or equivalently, a sample

complexity of O( 1
ϵ2 ). According to the authors, this is the

first complexity guarantee, obtained in a parameter-free
and single time-scale fashion, for a stochastic method with
momentum on non-smooth and non-convex problems.

II. Extension to smooth non-convex functions

1In practice, f(x) is given by averaging a set of samples
f(x, sj): f(x) = 1

J

∑J
j=1 f(x, sj).

2Note xk+1 = argminx∈χ{< zk,x − xk > + 1
α
||x −

xk||22}. When χ = Rn, xk+1 = xk − αzk.

• In the unconstrained case, under assumptions A3.1,
A3.3 and that the objective function has a bounded
gradient, a similar complexity of O( 1

ϵ2 ) was obtained
without needing to form a batch of samples at each
iteration.

• In the constrained case, one only needs assumptions
A3.1 and A3.3 only (without the bounded gradient
assumption) to show a complexity of O( 1

ϵ2 ).

2.4. Liu, Gao & Yin: On Stochastic Gradient Descent
with Momentum

This paper (Liu et al., 2020) provides new convergence
analysis for stochastic gradient descent with momentum
(SGDM) and Multistage SGDM.

2.4.1. f(x) and algorithm

This paper mainly deals with minimizing the function of the
same form as (6) using the standard SGDM (3), i.e.,

xk+1 = xk − αkzk

zk+1 = βkgk+1 + (1− βk)zk (22)

with both x0 and z0 given as initial conditions, where αk >
0 is the step-size and βk ∈ (0, 1], as mentioned before, is
called momentum parameter/weight, while zk is the search
direction vector, and gk is the stochastic (sub-)gradient
∂f(x) of f(x) at x = xk.

Traditionally, the parameters αk and βk are constant, inde-
pendent of k. Nowdays, SGDM used in deep learning is
a scheme, which often comes with parameter tuning rules.
Essentially, the multistage SGDM requires that a constant
stepsize be applied for a long period before being dropped
by some constant factor, while the momentum weight is
either kept unchanged or gradually increasing.

2.4.2. Assumptions

The following assumptions are made effective throughout
the analysis, which are standard in stochastic optimization
studies:

• A4.1 - unbiasedness:

E[gk] ∈ ∂f(xk), ∀ k

• A4.2 - independence of the samples used for comput-
ing the stochastic gradients {gk} are independent.

• A4.3 - bounded variance: for some σ2 > 0

E[||gk −∇f(xk)||22] ≤ σ2, ∇f(xk) ∈ ∂f(xk),∀ k.

• A4.4 - L-smooth and differentiable with L ≥ 0:

f(y) ≤ f(x)+ < ∇f(x),y − x > +
L
2
||y − x||22,

for all x,y.
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2.4.3. The results

First, it is worth noting that, the analysis of the convergence
of the standard SGDM is motivated by a new observation
that the update direction has a controllable deviation from
the current full gradient and possesses a smaller variance.
Exploiting this observation, a new Lyapunov function is
constructed to take advantage of the reduced variance, and
the convergence results are therefore obtained.

We now list the results of this paper.

• For both strongly convex and nonconvex objectives,
SGDM has the same convergence bound as SGD. This
convergence bound is an improvement from previously
existing bounds, and the analysis for it applies not
only to least squares and does not assume uniformly
bounded gradient.

• The first known convergence guarantee for the multi-
stage is obtained, and it is also shown that the multi-
stage setting is more beneficial than using fixed param-
eters.

More specifically,

• For SGDM with the 4 assumptions,

E[||∇f(xout
k )||2] ≤ O(

1

kα
+ ασ2);

• For SGDM with the 4 assumptions plus strongly con-
vexity of f(x),

E[f(xk)− f(x∗)] ≤ O((1− αµ)k + ασ2);

• For multistage SGDM the 4 assumptions,

E[||∇f(xout
k )||2] ≤ O(

1

nA2
+

1

n

n∑
l=1

αlσ
2),

where n is the number of stages, αl is the step-size of
the lth stage, and A2 = αlTl is constant, where Tl is
the length of the lth stage, for all 1 ≤ l ≤ n, and hence
k =

∑n
l=1 Tl.

2.5. Comparison of the momentum-based methods

We now summarize the results obtained in the four papers
studied in this project in terms of convergence analysis. The
methods involved are SGDM , SAG and SHB, specified in
(22), (7), and (13), respectively, and the multi-stage SGDM.
The first three methods are very easy to implement, while
the pseudocode of multi-stage SGDM can be found in (Liu
et al., 2020).

The bounds of convergence of the four methods under dif-
ferent assumptions are given in the table below.

Note that in the table η, γ and ϵk are all small positive
constants and in the bounds of SGDM, derived in (Mai
& Johansson, 2021), k̄ is a (integer) random variable, uni-
formly distributed within [0, k] and Fλ(x) is the Moreau
envelope of F (x) is defined as F (x) := f(x) + Iχ is used
in the analysis, where Iχ is the indicator function of χ. An-
other important note is that an accelerated rate for stochastic
momentum methods is actually only proven for quadratic
function when using SAG. Besides that, all other rates for
the various variants of stochastic momentum methods for
different classes of functions can only be proven to be com-
parable to SGD, not accelerated.

3. Extension to Online & Decentralized
Settings

In this section, we will briefly discuss the application of
stochastic momentum methods in Decentralized and Online
settings.

3.1. Ying, Yuan, Chen, Hu, Pan & Yin Paper: Stochastic
Momentum Methods in Decentralized Setting

3.1.1. PROBLEM FORMULATION

This paper (Ying et al., 2021) discusses the use of a vari-
ant of stochastic momentum methods called Decentralized
Momentum Stochastic Gradient Descent (DmSGD) to solve
decentralized optimization problems for two specific net-
works. In decentralized optimization, a set of n agents seek
to collaborate to solve an optimization problem. Agents
have a local objective function that are all of the same form
that is modeled based on their local data. An additional
restriction is that agents are not permitted to share their
data and are only permitted to communicate their param-
eters with their neighbors. After sufficient iterations of
a decentralized algorithm, agents are expected to reach a
“consensus” which means they all share the same parameter.
This decentralized consensus optimization problem can be
formally expressed as

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x)

where
fi(x) := Eξi∼DiF (x; ξi)

Function fi(x) is local to agent i and random variable ξi
denotes the local data following distribution Di. These n
agents will determine a common decision variable x ∈ Rd.
fi : Rd → R is local and private to agent i. There are some
assumptions on the loss function that are mentioned below.

• A5.1 - smoothness: Each fi(x) is L-smooth, i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥ for any x, y ∈ Rd.
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Table 1. Comparison of convergence behavior of different methods

Method Assumptions Convergence bound
SGDM A4.1-A4.4 E[||∇f(xout

k )||2] ≤ O( 1
kα + ασ2)

SGDM A4.1-A4.4 plus µ-strongly convexity E[f(xk)− f(x∗)] ≤ O((1− αµ)k + ασ2)
Multi-SGDM A4.1-A4.4 E[||∇f(xout

k )||2] ≤ O( 1
nA2

+ 1
n

∑n
l=1 αlσ

2)

SAG Quadratic Functions E[f(xk)− f(x∗)] ≤ O((
√
Q−1√
Q

+ ϵk)
2k + ησ2)

SHB A4.4 plus convexity E[f(xk)− f(x∗)] ≤ o( 1√
k
)

SGDM A4.1-A4.3 plus A3.2 & weakly convex E[||∇Fλ(x̄k̃)||22] ≤ O( 1√
k+1

)

SGDM A4.1-A4.3 plus A3.2 & smooth non-convex E[||∇Fλ(x̄k̃)||22] ≤ O( 1√
k+1

)

• A5.2 - data heterogeneity: It holds that
1
n

∑n
i=1∥∇fi(x)−∇f(x)∥2 ≤ b2 for any x ∈ Rd.

Another important note is that the local objective functions
fi(x) are allowed to be non-convex. The data heterogeneity
assumption is important because data from different local
agents can come from varying distribution. This can affect
the convergence of decentralized algorithms.

Each agent i is able to calculate a noisy sample gi =
∇F (xi; ξi) of the true gradient at each iteration. There is
an additional assumption made on the stochastic gradients.

• A5.3 - gradient noise: The random sample ξki is in-
dependent of each other for any k and i. We also
assume E[∇F (x; ξi)] = ∇fi(x) and E∥∇F (x; ξki )−
∇fi∥2 ≤ σ2.

3.1.2. NETWORK MODEL

In general decentralized optimization problems, all agents
are assumed to be connected according to a directed or
undirected network topology. wij is the weight scaling
information flowing from agent j to agent i that is defined
formally as

wij =

{
> 0 if agent j is connected to i, or i = j;

0 otherwise

Ni = {j|wij > 0} is defined as the set of neighbors of
agent i which also includes agent i itself. The weight matrix
W := [wij ]

n
i,j=1 ∈ Rn×n is a matrix that stacks the weights

of all agents. The weight matrix is also allowed to be time-
varying. Another assumption is made related to the network
topology.

• A5.4 - weight matrix: The weight matrix W k is doubly-
stochastic, i.e. W k1 = 1 and 1TW k = 1T . If W k ≡
W , we assume ρ(W ) := maxλi(W ) ̸=1{∥λi(W )∥} ∈
(0, 1) where λi(W ) is the i-th eigenvalue of the matrix
W .

Note that 1− ρ(W ) is called the spectral gap and it charac-
terizes the connectivity of the graph. 1− ρ(W ) → 1 means
the graph is very well connected while 1−ρ(w) → 0 means
the graph is more sparse.

This specific work considers the specific decentralized case
in which the topology can be controlled at every iteration,
there is no agent failure, and each agent has similar compu-
tational ability. While this setting may seem unrealistic, it
is actually a realistic setting that can be seen in high power
computing. Individual GPUs or servers that hold a stack
of GPUs can be abstracted as agents of a graph. The con-
nections between individual GPUs or various servers can
be changed with relatively little cost. In addition, the con-
nection between these “agents” are high bandwidth and are
tolerant to failure. Abstracting high computing resources in
this manner has proven fruitful in the accelerated training
of deep neural networks. According to this formulation,
each agent will have the same deep neural network model
but the training data set is split among multiple agents to
be processed in parallel. Hence, this situation is adept in
training deep neural networks using extremely large data
sets.

A natural question that stems from this scenario is what
is the best topology or series of topologies to use for the
decentralized algorithm. If the topology is too sparse, then
communication cost can be saved but this can come at the
cost of additional iterations of the decentralized algorithms
to reach a consensus or converge to a good solution. If
the topology is too connected, there could be an extremely
large communication cost that slows the overall wall clock
speed of the decentralized algorithm but fewer iterations are
needed to reach a consensus or converge to a good solution.
Seeing this tradeoff, the paper focuses on a specific type of
graph called the exponential graph.

The exponential graph is defined as a graph where each
agent is assigned an index from 0 to n − 1 and will have
a one way directed communication to neighbors that are
20, 21, · · · , 2⌊log2(n−1)⌋ hops away. With maximum degree
⌈log2(n)⌉ neighbors, partial averaging over the static expo-
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Figure 1. An example of the static exponential graph and the one-
peer exponential graph for 6 agents.

nential graph requires Ω(log2(n)) communication time per
iteration. The weight matrix of the static exponential graph
is defined as follows:

wexp
ij =


1

⌈log2(n)⌉+1 if log2(mod(j − i, n))

is an integer or i = j

0 otherwise

(23)

The paper also provides a proof of this particular graph’s
spectral gap. This is formally stated in the following
proposition.

Proposition 1. (Spectral Gap of Static Expo) The
spectral gap for the static exponential graph defined by the
above weight matrix is defined as

1− ρ(W exp)

{
= 2

1+⌈log2(n)⌉
, when n is even number

< 2
1+⌈log2(n)⌉

, when n is odd number
(24)

In addition, we have ∥W exp − 1
n11

T ∥2 = ρ(W exp) for
exponential graphs.

Because the exponential graph incurs Ω(log2(n)) commu-
nication overhead per iteration, the paper also covers the
case where the static exponential graph is decomposed into
a sequence of one-peer graphs. Each part of this sequence
has each agent cycle through all its neighbors resulting in
each agent communicating only to a single neighbor per
iteration. These one-peer realizations have Ω(1) commu-
nication costs which matches with a ring or grid topology.
The time-varying weight matrix at iteration k describing
this sequence can be formally described as follows where
τ = ⌈log2(n)⌉

wk
ij =


1
2 if log2(mod(j − i), n)) = mod(k, τ)
1
2 if i = j

0 otherwise
(25)

Examples of the static exponential graph and the one-peer
exponential graph can be seen in figure 1.

This paper then attempts to establish that applying this
sequence for a long enough duration can allow agents to
reach a consensus. This is formally established in the

following lemma:

Lemma 1 (Periodic Exact Averaging) Suppose
τ = log2(n) is a positive integer. If W k is the weight
matrix defined as above over the one-peer exponential
graphs, it then holds that each W k is doubly-stochastic.
Furthermore, it holds that

W k+lW k+l−1 · · ·W k+1W k =
1

n
11T (26)

for any integer k ≥ 0 and l ≥ τ . Also, the consensus
residue form holds that

(W k+1− 1

n
11T )(W k+1−1− 1

n
11T ) · · · (W k− 1

n
11T ) = 0

3.1.3. ALGORITHM

The decentralized algorithm analyzed in this particular paper
is Decentralized Momentum Stochastic Gradient Descent
(DmSGD). The algorithm is as follows:

Algorithm 1 DmSGD
1: Input: γ, x0

i ,m
0
i = 0, β ∈ (0, 1)

2: for k = 0, 1, ..., T − 1, every agent i do
3: Sample weight matrix W k

4: Update gradient gki = ∇F (xk
i ; ξ

k
i )

5: mk+1
i =

∑
j∈Ni

wk
ij(βm

k
j + gkj )

6: xk+1
i =

∑
j∈Ni

wk
ij(x

k
j − γmk

j )
7: end for

The intuition behind this algorithm is quite simple. First,
the network topology for the current iteration is determined.
Then, each agent samples from its local data distribution to
calculate the stochastic gradient for the current iteration. Af-
terwards, this stochastic gradient is used to update the local
momentum parameter. Agents communicate this new local
momentum parameter with their neighbors and perform par-
tial averaging with the momentum parameters they receive
from their neighbors with their own local momentum pa-
rameter. This new partially averaged momentum parameter
is used to update the local model parameters. Finally, agents
communicate their newly determined local model parame-
ters with their neighbors and perform partial averaging with
the model parameters they receive from their neighbors with
their own local model parameters. This process is repeated
for a specified number of iterations.

Note that a key difference between traditional optimization
algorithms and decentralized consensus optimization algo-
rithms is that a stopping criteria cannot be easily established.
This is because evaluating the quality of the solution de-
pends on all the local parameters from all agents. However,
aggregating all the local model parameters from all agents
in one location is not always feasible due to the network
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structure. This means determining whether consensus has
been achieved or evaluating the quality of the solution is
generally difficult. Hence, the normal stopping criteria is
the number of iterations.

3.1.4. THE RESULTS

The paper seeks to establish a relationship between the
convergence of DmSGD for the static exponential graph
and the one-peer exponential graph. This is done in the
following corollary and theorem.

Corollary 5.1. Under Assumptions 5.1-5.4 and for

the static exponential graph, if γ =

√
n(1−β)3√

T
, DmSGD

will converge at

1

T

T∑
k=1

E∥∇f(x̄k)∥2 = O

(
σ2√

(1− β)nT

+
n log2(n)(1− β)σ2

T
+

n(1− β)b2 log22(n)

T

) (27)

In addition, the transient iteration complexity of DmSGD
over static exponential graphs is O(n3 log22(n)) for
the data-homogeneous scenario and O(n3 log42(n)) for
data-heterogeneous scenario.

For DmSGD with one-peer exponential graph, the
following theorem is found.

Theorem 5.1. We assume τ = log2(n) is a positive
integer, and the time-varying weight matrix is generated
as according to the previous definition of the time-varying
weight matrix for the one-peer exponential graph. Under

Assumptions 5.1-5.4 and γ =

√
n(1−β)3√

T
, DmSGD will

converge at

1

T

T∑
k=1

E∥∇f(x̄k)∥2 = O

(
σ2√

(1− β)nT

+
n(1− β)σ2τ

T
+

n(1− β)b2τ2

T

) (28)

In addition, the transient iteration complexity of DmSGD
for one-peer exponential graph is O(n3 log22(n)) for the
data-homogeneous scenario and O(n3 log42(n)) for data-
heterogeneous scenario.

Looking at the rates determined by Corollary 1 and Theorem
1, it is apparent that DmSGD run for the static exponential
graph and for one-peer exponential graph converges exactly
as fast in terms of the established rate bounds. Also, both
graphs will have DmSGD have the same transient iteration
complexity. The transient iteration complexity is the num-
ber of iterations such that the first term of both rates given

Figure 2. Convergence curves for both Top-1 Accuracy and Train-
ing Loss recorded during the training of ImageNet. The blue curve
is for the one-peer exponential and the red curve is for the static
exponential. The network was formed using 8 servers each with 8
GPUs.

in Corollary 1 and Theorem 1 will dominate. When this
first term dominates, this is called linear speedup. This can
be understood as follows. The domination of the first term
results in there needing to be T = Ω(1/(nϵ2)) iterations
to reach a desired accuracy ϵ. Hence, there is an inverse
relationship between the desired accuracy ϵ and n which
means that the number of agents participating linearly re-
duces the overall number of iterations required to converge
to a solution of accuracy ϵ.

One of the experiments performed in the paper to evaluate
the theoretical claims is the training of ImageNet using 8
servers which are then abstracted as agents. Each of these
8 servers have 8 GPUs. The training is done on both the
static exponential graph and the one-peer exponential graph.
Results of this experiment can be seen in the figure 2.

From the extremely close similarity between the curves and
the theory, it is clear that the use of one-peer exponential
graphs may be more beneficial in comparison to the static
exponential graph because they converge exactly as fast in
terms of establish rate bounds but the one-peer exponential
graph requires less communication per iteration.

3.2. Yuan, Ying, & Sayed: Stochastic Momentum
Methods in Online Setting

3.2.1. PROBLEM FORMULATION

This paper (Yuan et al., 2016) discusses the online case of
stochastic optimization and the use to stochastic momentum
methods to solve such a problem. Under these circum-
stances, data is constantly streaming in and the new data can
change the overall data distribution. Another typical added
condition is that older data that is processed is deleted or
disallowed from being accessed because of memory con-
straints.

Formally, stochastic optimization problems can be formu-
lated as

min
x∈Rd

f(x) := Eξ∼D[F (x; ξ)]
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ξ is a random variable that denotes the data drawn from the
distribution D. For stochastic optimization problems, the
data distribution D is unknown and we have data samples
denoted as ξi where i is the sample index available to esti-
mate the data distribution. There are several assumptions
made on this model. Note that gradient noise is defined
by si(xi−1) := ∇xF (xi−1, ξi) − ∇xE[F (xi−1; ξi)] and
Fi−1 := {x−1, x0, x1, ..., xi−1} which is the filtration (past
history) generated by the random process xj for j ≤ i− 1.

• A6.1 - µ-strongly convex and L-smooth: f(x) is
twice differentiable and its Hessian matrix satisfies
0 < µId ≤ ∇2f(x) ≤ LId

• A6.2 - conditions on gradient noise:

E[si(x)|Fi−1] = 0

E∥si(x)∥2|Fi−1 ≤ γ2|x∗ − x∥2 + σ2
s

• A6.3 - conditions on gradient noise:

E[si(x)|Fi−1] = 0

E[∥si(w)∥4|Fi−1] ≤ γ4
4∥x∗ − x∥4 + σ4

s,4

where γ2, σ2
s , γ4

4 , and σ4
s,4 are some nonnegative con-

stants
• A6.4 - momentum parameter: The momentum parame-

ter β is a constant that is not too close to 1, i.e., there
exists a small fixed constant ϵ > 0 such that β ≤ 1− ϵ.

• A6.5: Consider the iterates zi−1 and xi−1 generated
by the momentum recursion and stochastic gradient
recursion. It is assumed that the noise process satisfies
for some constants ϵ1 and ϵ2.:

E[∥si(zi−1)− si(xi−1∥2|Fi−1] ≤ ϵ1∥zi−1 − xi−1∥2

E[∥si(zi−1)− si(xi−1∥4|Fi−1] ≤ ϵ2∥zi−1 − xi−1∥4

• A6.6: The Hessian of the loss function f(x) is Lips-
chitz continuous, i.e., for any two variables x1, x2 ∈
domf(x), it holds that ∥∇2

xf(x1) − ∇2
xf(x2)∥ ≤

κ∥x1 − x2∥ for some constant κ ≥ 0.

Techniques such as Stochastic Gradient Descent are used
to solve stochastic optimization problems. Recall that an
iteration of Stochastic Gradient Descent is as follows:

xi = xi−1 − η∇xF (wi−1; ξi), i ≥ 0

where η > 0 is the step-size parameter.

Two popular choices for the step-size in stochastic methods
such as SGD are decaying step-sizes and constant step-sizes.
An example of a decaying step-size is η(i) = τ/i for some
constant τ and i indicating the iteration of the algorithm. De-
caying step-sizes have the advantage of ensuring asymptotic

convergence towards the optimal solution. However, there
is a trade-off in which the convergence rate is only of the or-
der O(1/i) for strongly-convex loss functions. This means
there is a sublinear convergence rate for decaying step-sizes.
On the other hand, a constant step-size allows for an expo-
nential convergence rate of O(αi) for some α ∈ (0, 1). This
advantage comes at the downside of convergence towards
a solution within the neighborhood of the optimal solution
instead of almost-sure convergence meaning there is loss
in the accuracy of the solution. To be exact, the algorithm
converges, in the mean-square-error sense, to a neighbor-
hood around the optimal solution x∗ of radius on the order
of O(η). The failure to converge to the exact solution is
argued to be acceptable in certain circumstances due to mod-
eling errors when formulating the optimization problem or
improving the generalization ability of a model by prevent-
ing it from overfitting to the data. In any case, constant
step-sizes are the preferred choice for stochastic algorithms
used for online stochastic optimization problems because it
allows the algorithm to continue to adapt and correct itself
based off of the incoming data which can potentially change
the overall distribution of the data. In comparison, using
decaying step-sizes prevents the algorithm from properly
adapting and learning as more iterations pass as the step-size
will approach 0 as i → ∞. Hence, this paper focuses on
constant step-sizes in its analysis of stochastic momentum
methods.

3.2.2. ALGORITHM

The paper notes the benefit of acceleration that momentum
methods have for solving deterministic optimization prob-
lems that are µ−strongly convex and L-smooth. Hence, the
paper focuses on developing stochastic momentum methods
for solving online stochastic optimization problems. The
stochastic momentum method they develop is as follows:
Here ηm is some constant step-size. Note that this gen-

Algorithm 2 General Momentum Stochastic Gradient
Method

1: Input: x−2 = z−2 = initial states;
x−1 = x−2 − ηm∇xF (x−2; ξ−1);
β1, β2 ∈ [0, 1) are momentum parameters

2: for i = 0, 1, ..., T − 1 do
3: zi−1 = xi−1 + β1(xi−1 − xi−2)
4: xi = zi−1 − ηm∇xF (zi−1; ξi) + β2(zi−1 − zi−2)
5: end for

eral form encompasses both Nesterov’s accelerated gradient
method and the heavy-ball method. When β1 = 0 and
β2 = β, the method simplifies to the heavy-ball method.
When β2 = 0 and β1 = β, the method simplifies to Nes-
terov’s accelerated gradient method. β1 and β2 satisfy
β1 + β2 = β and β1β2 = 0.
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3.2.3. RESULTS

The paper finds that the benefits of momentum methods
found for deterministic optimization problems do not neces-
sarily carry over when these methods are adapted for online
stochastic optimization problems while employing constant
step-sizes. For small enough step-sizes η and ηm, where
η is the step-size parameter for SGD and ηm is the step-
size parameter for the momentum method, that satisfy the
relation

η =
ηm

1− β

while having β not be that close to 1, any advantage by
using momentum can be achieved by vanilla SGD by us-
ing a larger step-size. Formally, this can be stated as follows.

Under A6.1,A6.2,A6.4, having sufficiently small step-sizes,
and having the above relation hold, the following limit
holds for quadratic loss functions

E∥xm,i − xi∥2 = O(η2), i = 0, 1, 2, ... (29)

where xm,i and xi represent the iterates at time i by the
General Momentum Stochastic Gradient Method and SGD
algorithms respectively

Under A6.1,A6.3,A6.4,A6.5,A6.6, having sufficiently
small step-sizes, and having the above relation hold, the
following limit holds for general loss functions

E∥xm,i − xi∥2 = O(η3/2), i = 0, 1, 2, ... (30)

Note that these results hold for every i and not just asymp-
totically. These two limits explicitly state the trajectories
of stochastic momentum and vanilla SGD methods remain
within O(µ3/2) for general loss functions and O(µ2) for
quadratic loss functions. This means that the trajectories
,in terms of mean-square-error, remain very close and are
“equivalent” in that sense. In addition, it can be interpreted
that the General Momentum Stochastic Gradient Method is
essentially the same as running vanilla SGD with a larger
step-size.

The paper further confirms their results in the following
empirical result by solving the regularized logistic regres-
sion problem over the Adult Data Set. Note that in this
case ηm = µm and η = µ. ρ is the regularization param-
eter. The following parameters are used ρ = 0.1, η =
0.1, β = 0.9, and ηm = (1− β)η = 0.01. The green curve
represents using a decaying momentum parameter where
ηm = 0.1 and β(i) decreases in a stair-wise manner, i.e.,
when i ∈ [1, 200], β(i) = 0.9; when i ∈ [201, 400], β(i) =
0.9/2000.3; when i ∈ [401, 600], β(i) = 0.9/4000.3; ...;
when i ∈ [1801, 2000], β(i) = 0.9/(18000.3). The black
curve represents SGD with a decaying step-size that sat-
isfies η(i) = ηm/[1 − β(i)]. The results can be seen in

Figure 3. Empirical Results of SGD and Stochastic Momentum
Methods for the regularized logistic regression problem.

Figure 3. The blue and pink curves which show SGD and
the stochastic momentum method that satisfy the relation
overlap almost completely. The green and black curve that
show the stochastic momentum method with a decaying
momentum parameter and constant step-size and SGD with
a decaying step size that satisfy the relation also overlap ex-
actly and have an expected accelerated rate. Hence, if SGD
and the stochastic momentum method satisfy the relation
η = ηm

1−β , then the algorithms run almost exactly the same.

3.3. Conclusion

It is still unproven in terms of analysis that stochastic mo-
mentum methods have definite accelerated rates in compari-
son to vanilla SGD. In many cases, the convergence rates of
stochastic momentum methods can only be shown to be as
good as those found for vanilla SGD for various classes of
loss functions. Hence, there is still a significant amount of
work to show that the accelerated rates seen in deterministic
momentum methods carries over for stochastic momentum
methods. This means that the underlying reasons of the
benefits of stochastic momentum methods seen empirically
are still not well understood or none. On the other hand, it
has still been yet to be proven that stochastic momentum
methods do not have accelerated rates in comparison to
vanilla SGD. Lastly, the application of momentum based
methods to decentralized optimization and online learning
is still new and more empirical and theoretical work can be
done to determine the potential benefits, lack of benefits, or
drawbacks.
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A Review of Recent Algorithmic Advances on Generalized Additive Models
(GAMs) and Explainable AI

Franklin Zhang 1

Abstract
Generalized additive models (GAMs) encompass
a broad and powerful class of statistical algo-
rithms. A mainstay in statistical learning toolkits
since their introduction, GAMs have been exten-
sively studied for both classification and regres-
sion tasks and are popular for both their express-
ibility and interpretability. This document reviews
recent literature in combining GAMs with modern
machine learning methods, such as deep neural
nets (DNNs) and gradient-boosted trees, to both
augment their efficacy while also recovering inter-
pretability and re-opening these infamous “black
boxes”. We first explore the background and the-
ory behind GAMs, explainable AI (XAI), and
popular black-box models; we then examine re-
cent proceedings in using GAMs to craft “glass-
box” models; finally, we make a brief foray into
efforts to explain existing black-box models using
GAMs.

1. Introduction
The modern-day machine learning landscape is dominated
by powerful learning techniques such as boosted or bagged
trees, SVMs transformed with dimensionality-augmenting
kernels, or deep neural nets (Lou et al., 2013). While excel-
lent in predicting a variety of complex and high-dimensional
problem landscapes, these “black-box” models are notorious
for their complexity and lack of interpretability.

The black-box moniker stems from the fact that these ma-
chine learning models are too complicated for any human
to understand. These models are difficult to troubleshoot
for developers, difficult to interpret for practitioners, and
thus difficult to trust for the layman user. Indeed, these
models often predict the right answer for the wrong reason
(the “Clever Hans” phenomenon) — taking advantage of
confounding factors in datasets to achieve high performance

1Department of Computer Science, Rice University, Houston,
Texas. Correspondence to: Franklin Zhang <yfz1@rice.edu>.

(Schramowski et al., 2020). This phenomenon makes rely-
ing excessively on black-box machine learning models ex-
cessively dangerous, especially in fields where high-stakes,
life-altering decisions are being made, such as medicine and
the criminal justice system.

Figure 1. The trade-off between accuracy and interpretability in
statistical learning models nowadays. Figure adapted from (Nori
et al., 2019).

In pursuit of explainable AI (XAI), there has been a grow-
ing wave of interest in transforming these opaque machines
into “glass-box” models — retaining their power while re-
capturing understandability. Spearheading one frontier in
this field is a classic yet powerful statistical model, known
as the generalized additive model (GAM), where the aim is
to construct glass-box models from the get-go. In another
direction, we seek to retrospectively explain black-box mod-
els using post hoc analyses. In this review, we will see both
approaches, though we primarily focus on the former.

2. Background
2.1. Supervised Learning Problems

Supervised learning problems are a cornerstone problem of
statistical machine learning. A typical supervised learning
problem, defined on a dataset D = {(xi, yi)}Ni=1, of features
xi ∈ X and labels yi ∈ Y , seeks to estimate the response
variable y given the set of observed features x1, . . . , xN .
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We do so by seeking a function f such that

E[y|x1, . . . , xN ] = f(x1, . . . , xN ).

In other words, given a set of labeled observations, we
seek a function f that captures the relationship between the
predictor space X and the response space Y , conditioned on
our observations so far. In a statistical sense, this definition
captures the intuition behind teaching a model to learn some
data.

It is common to formalize this notion of learning as an
optimization problem: we define a loss function, denoted
L : Y × Y → R, that measures how correctly our function
f predicts Y given X , and look to solve the optimization
problem

min
f∈F

E[L(yi, f(xi))]

where F is the Hilbert space of all possible functions on X
(Hastie et al., 2001; Lou et al., 2013).

2.2. Generalized Additive Models

Generalized Additive Models (GAMs) are a family of su-
pervised learning models that takes the form

g(E[y|x1, . . . , xN ]) = β+s1(x1)+s2(x2)+· · ·+sN (xN ),

where si(·) are arbitrary smooth functions on X , colloqui-
ally termed shape functions, and g(·) is another smooth,
usually invertible function called the link function (Hastie &
Tibshirani, 1986). Intuitively, we can understand the si(·)
as either learned or pre-crafted functions that capture some
complex behavior in feature xi, while the link function g(·)
can be thought of as one last transformation of the model
output into something that fits our problem domain. For
example, it is common for g to be the identity function for
regression problems, where Y ⊆ R, or the logistic function
for binary classification problems, where Y = {−1, 1}.

To build some quick intuition: let us explore how we recover
other statistical models through the massaging the definition
of a GAM.

• Taking si to be linear and g to be identity, we recover
ordinary linear regression.

• Taking si to be linear and g to be logistic, we recover
logistic regression.

• Taking si to be classification or regression trees
(CARTs), we recover a boosted or bagged tree model.

• Taking g to be (the inverse of) a smooth activation func-
tion (e.g. tanh, sigmoid, etc.), we recover a hidden-
layer node in a feed-forward neural network.

Now that we are experts, we proceed to the literature review.

3. Literature Review
3.1. Explainable Boosting Models

To the author’s knowledge, the introduction of Explainable
Boosting Models (EBMs) by (Lou et al., 2012; 2013), and
implemented by Microsoft Research in (Nori et al., 2019) as
the InterpretML framework, reinvigorated confidence
in GAMs as a competitive modern machine learning model
and popularized the rush of GAM-based XAI models.

An EBM is a GAM — that is, it takes the form

g(E[y|X]) = β +
∑

si(xi) (1)

where g is the link function that adapts the GAM to the
problem domain, such as regression or classification. The
value of the EBM, however, draws from the modernization
in formulation, fitting, and analysis.

Firstly, in contrast to using low-order polynomial splines or
analytically-derived “scatterplot smoothers,” as traditionally
recommended by (Hastie & Tibshirani, 1986), EBMs use
modern-day non-linear methods, such as classification and
regression trees (CARTs), for their shape functions si(·) on
the features xi. With this heightened complexity, the tradi-
tional fitting algorithm of (penalized) iterative re-weighted
least squares is exchanged for modern machine learning
techniques as well, such as gradient boosting and bagging,
to ensemble the shape functions into a GAM.

EBMs are constructed from a tree-ensemble boosting pro-
cedure (Nori et al., 2019; Lou et al., 2012). The fitting
procedure is as follows:

1. Construct a GAM by fitting and boosting boosting
CARTs on one feature at a time, in a round-robin fash-
ion to mitigate the effects of co-linearity; the learning
rate is set very low, so that feature order does not mat-
ter.

2. Repeat a large (e.g. 10,000-1,000,000) amount of
times, collecting a variety of boosted shape functions
to learn the full feature landscape.

3. Bag all learned shape functions together to obtain the
final EBM — each shape function sj thus becomes
a gradient-boosted ensemble of bagged trees (Chang
et al., 2021).

The intuition behind the explainability of an EBM comes
from the simple observation that correlational relationships
are aptly summarized by 2D-plots or heatmaps. Shape func-
tions can be plotted to summarize local feature effects on the
response, and after initial fitting, each function fj can act
as a lookup table per feature, returning a term contribution
(Nori et al., 2019). Thus, after making use of black-box
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Figure 2. Test set AUCs (%) across ten satasets, averaged over five runs. Best number in each row is in bold. Figure adapted from (Chang
et al., 2021).

methods to construct each sj , predictions can be made by
simply querying the lookup for term contributions, adding
them up, then passing them through the link function g to
compute the final prediction. In this way, we transform the
model into a glass-box EBM.

Figure 3. A synthetic example of visualizing univariate shape func-
tions. Figure adapted from (Lou et al., 2012).

However, pairwise interactions can also be rendered as
heatmaps of sij(xi, xj) on the two-dimensional xi, xj-
plane (Lou et al., 2013). One drawback of Equation (1)
is that it does not model any interactions between features,
since each si(·) is univariate. Expanding the model to the
form

g(E[y|X) = β +
∑

si(xi) +
∑

sij(xi, xj) (2)

gives us Generalized Additive Models plus Interactions
(GA2M). Efficient algorithms exist to detect non-spurious

pairwise interactions without the quadratic explosion of
brute-force comparisons (Lou et al., 2013).

The simplistic, additive nature of GAMs aids us in inter-
pretability, but it has also historically limited the power of
GAMs to model high-dimensional problems with complex,
non-linear interactions. Empirical results tell us that the
performance of GAMs, using traditional low-order shape
functions, lie somewhere in-between simple models, such
as linear or logistic regression, and full-complexity mod-
els, such as gradient-boosted trees, random forests, or deep
neural nets (Lou et al., 2012).

However, EBMs escape this problem, likely by encapsulat-
ing model complexity in the shape functions while retain-
ing interpretability through additivity. Recent benchmarks
show that EBMs perform approximately as well as the best
black-box models (e.g. XGBoost for gradient-boosted trees)
(Wang et al., 2021; Chang et al., 2021).

3.2. Neural Additive Models

We alluded above how the shape functions sj can be arbi-
trarily complex. By choosing each sj to be a deep neural
net (DNN), we dial this notion to the max. In Neural Ad-
ditive Models (NAMs), introduced for classification and
regression in (Agarwal et al., 2021) and learning-to-rank
(LTR) in (Zhuang et al., 2020), we create a GAM where
each individual feature is trained on a separate DNN. Each
network is trained in parallel using backpropagation; since
neural networks are universal approximators, these individ-
ual feature networks can learn arbitrarily complex shape
functions (Hornik et al., 1989). The final model becomes a
linear combination of the individual feature networks.
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Figure 4. Comparison of NAM vs. other popular models on single-task learning tasks. Means and standard deviations are reported from
5-fold cross validation. Higher AUCs (classification) and lower RMSEs (regression) are better. Figure adapted from (Agarwal et al.,
2021).

Figure 5. NAM architecture for classification models with sigmoid
link function. Each input variable is handled by a different DNN.
Figure adapted from (Agarwal et al., 2021).

As with EBMs, after fitting the shape functions transform
into lookup tables, and we toss away the bulky DNNs in fa-
vor of these interpretable feature-to-response graphs. These
graphs are not just heuristic; they are, in fact, exact de-
scriptions of how the NAM computes its prediction, as the
univariate shape functions map out the entirety of each net-
work’s feed-forward range (Agarwal et al., 2021).

Benchmarks show that NAMs remain competitive against
full-complexity models, while also matching EBMs in both
regression and classification tasks (Agarwal et al., 2021).
However, there are a few key differences between the orig-
inal boosted-tree EBMs and DNN-based GAMs, where
NAMs distinguish themselves:

• The deep-learning community is much larger than the
one for tree-based GAMs.

• NAMs are applicable to various settings that prove
problematic for boosted CARTs. In particular, it has
been shown that NAMs can be extended to multitask,
multiclass, or multi-label learning without any changes
to model formulation, training, or composability.

• Boosted-tree EBMs require a huge (e.g. up to millions)
ensemble of decision trees to accurately map out each
shape function (Nori et al., 2019; Lou et al., 2012);
NAMs reduce this footprint to only a handful (2 - 100)
of NNs (Agarwal et al., 2021).

• By taking advantage of GPUs, TPUs, and other special-
ized hardware for deep-learning, and in combination
with the above point, NAMs become much more scal-
able than EBMs (Agarwal et al., 2021).

• Because NNs are differentiable via backpropagation,
NAMs can be encoded as components of contextual pa-
rameter generators, enabling context-sensitive param-
eterized models (Agarwal et al., 2021; Zhuang et al.,
2020). Agarwal et al. apply this for estimating person-
alized treatment benefits for Covid-19 patents under
patient context.

In particular, the last point above enables NAMs — as
a differentiable, nonlinear additive model — to be espe-
cially suited for the learning-to-rank problem (Zhuang et al.,
2020).

3.3. GAMs for Learning-to-Rank

The supervised learning-to-rank (LTR) problem is defined a
bit differentially than traditional classification or regression
tasks. In the LTR problem, a dataset becomes a set of tuples
D = {(q,X, y)}Ni=1, where for any given tuple (q,X, y):
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Figure 6. Architecture for a context-absent NAM. Note the simi-
larities with Figure 5. Figure adopted from (Zhuang et al., 2020).

• q = (q1, . . . , qm)T is an m-vector of contextual feature
signals (e.g. query features in search tasks,

• X = (x1, . . . , xp)
T is a p-vector of data items. If xj

is also a vector, as is commonly the case, then X is a
matrix; and so on for higher-order tensors.

• y = (y1, . . . , yp)
T is a p-vector of relevant labels,

where yi ∈ R labels xi. A higher yi indicates that
item xi is more relevant.

In the supervised LTR problem, we wish to learn a ranker
φ on D to estimate a ranking π̂ ∈ Π on X , where Π is
the set of all permutations of X . As with other supervised
learning problems, we would like the estimate π̂ to be as
close as possible to the ground-truth ranking π⋆ ∈ Π, where
the optimal ranking can always be obtained by sorting xi

on relevance labels yi from highest to lowest (Zhuang et al.,
2020). Because we would like φ to predict on unseen items
X and context q, where we do not have the luxury of access
to labels y, we need a way of estimating the rankings ŷi.

A common construction of φ has the ranker learn a scoring
function F to estimate ŷi ∈ R. If F takes both context
features q and individual data items X , then φ provides an
context-present ranking. If F only takes individual data
items X , then φ provides a context-absent ranking.

In (Zhuang et al., 2020), a ranking GAM model is proposed
for F , where context features encode importance weights
for each item-level feature:

ŷi = F (q, xi) =

p∑
j=1

m∑
k=1

wjk(qk) · fj(xij) (3)

Figure 7. Architecture for a context-present NAM, where con-
texts q are encoded as importance weights. Figure adopted from
(Zhuang et al., 2020).

where wjk(·) and fj(·) are both arbitrary univariate func-
tions to be learned. For constructing importance functions
wjk and shape functions fj , Zhuang et al. compared tree-
based GAMs against neural-based GAMS (i.e. a NAM).
Their results are reproduced in Figure 8.

Figure 8. Performance comparison (%) on three ranking tasks,
where the evaluation metric is Normalized Discounted Cumulative
Gain (NDCG) parameterized on k = 1, 5, 10. The best result per
column is bolded; results that are statistically significantly better
(p < 0.01) than Tree RankGAM are starred. Figure adapted from
(Zhuang et al., 2020).

As with EBMs and NAMs, the novelty of using GAMs for
crafting interpretable LTR models comes from our ability
to extract feature relationships from additivity and visualize
them directly. For context-absent rankings, these visualiza-
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tions are identical to those described for EBMs and NAMs —
feature-response shape functions and pairwise feature inter-
actions. For context-present rankings, we can also describe
how context ascribes importance to each feature. In Fig-
ure 9, we see an example of how users of a ranking GAM
can visualize the patterns between item features and context-
attributed importance. In particular, it’s clearly apparent
that the model has learned geographical and/or cultural sim-
ilarities between the contexts — for example. regions US
and UB share similar importance weight distributions for
the same set of features, as do AU and NZ.

Figure 9. A heatmap of context feature importance, as learned and
explained by GAMs. Each row is a specific context feature value;
each column is a learned shape function an item fj(xj). We see
context clusters on geographic and/or cultural proximity. Figure
adapted from (Zhuang et al., 2020).

3.4. SHapley Additive exPlanations (SHAP)

So far, we have primarily explored how GAMs enable us
to construct “glass-box”, informative models for supervised
learning tasks. An orthogonal pursuit in the field of XAI,
however, is the attempt to explain existing black-box models
via post hoc methods. In this last section, we venture briefly
in this direction and explore the notion of SHAP values for
feature attribution in black-box models.

The SHAP framework was conceived and introduced by
Lundberg & Lee for interpreting predictions by attributing
feature importance in a black-box model. As the name
suggests, SHAP values borrow the concept of Shapley val-
ues from game theory, devised by Shapley. SHAP is a
unification of prior black-box explanatory methods (Bach
et al., 2015; Datta et al., 2016; Lipovetsky & Conklin, 2001;
Ribeiro et al., 2016; Shrikumar et al., 2017; Aas et al., 2020),
many also using Shapley values.

In the game-theoretic definition (Shapley, 1953), we are
interested in attributing the contributions of a set of players
P towards the payoff of a coalitional or cooperative game.
For the set of players P , we define a characteristic function
v : 2P → R, with v(∅) = 0, that measures the expected
sum of payoffs that a coalition S ⊆ P can obtain by cooper-
ating in this game. The Shapley value for player p is thus

defined:

ϕp(v, P ) =
∑
S⊆P

|S|! (N − |S| − 1)!

N !
(v(S)− v(S \ {p}))

(4)

Intuitively, we read Equation 4 as the marginal contribution
an actor p adds when joining coalition S, averaged over all
possible permutations of forming S.

To transpose from a game-theoretic to statistical setting,
we simply define the set of “players” as the set of features
{x1, . . . , xN}, and the “coalitional game” as the supervised
learning problem. Thus, feature attribution becomes intu-
itively mapped to the marginal contribution of these “play-
ers” towards our cooperative game objective.

Before we arrive at the SHAP framework, we briefly dis-
cuss one crucial result that makes Shapley values especially
desirable as an explanatory method. When explaining black-
box models, it is usually the case that the original model
does not explain itself well given its complexity; thus, we
must use a simpler explanation model, defined as an inter-
pretable approximation of the original model (Lundberg &
Lee, 2017). We say an explanation model is an additive
feature attribution method, when it is a linear combination
of binary variables

g(z′) = ϕ0 +

N∑
i=1

ϕiz
′
i, (5)

where z′i ∈ {0, 1}, N is the number of (simplified) input
features, and ϕi ∈ R is an attribution score. In other words,
an additive feature attribution method is precisely we use a
GAM as our explanatory model — note the similarity with
Equation 1.

It is desirable for explanatory models to satisfy the following
properties:

1. Local accuracy. When approximating the original
black-box model f for specific input x, the explana-
tory model g should at least match the output of f for
simplified input x.

2. Missingness. All features missing in the original input
should also have no impact in the explanatory model.

3. Consistency. The attribution for a feature should be
monotonically increasing with respect to its contribu-
tion (i.e. the explanation should not penalize features
for improving the model).

An astonishing result is that the Shapley value is the only
additive feature attribution method that satisfies all three
properties above (Young, 1985)! That is — when explain-
ing black-box models using GAMs, it is uniquely correct to
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Figure 10. An illustration of how SHAP values attribute contribution scores to features. They score each feature by the marginal change
in expected model prediction when conditioned on adding a new feature to the existing feature set. The diagram above shows a single
ordering of adding features. Figure adapted from (Lundberg & Lee, 2017).

attribute feature contributions with Shapley values. Unfor-
tunately, it has been shown that computing Shapley values
is NP-Complete, in general (Deng & Papadimitriou, 1994).
However, model-agnostic methods exist to approximate lo-
cal values via sampling methods (Ribeiro et al., 2016; Lund-
berg & Lee, 2017), as do model-specific methods leveraging
extra knowledge about our model, such as the recursive
compositional nature of DNNs, to improve Shapley value
computation (Lundberg & Lee, 2017).

Figure 11. A visualization of the DeepSHAP algorithm for comput-
ing Shapley values on compositional models, such as deep neural
nets. Figure adapted from (Lundberg & Lee, 2017).

Finally, we describe SHAP values. In definition, SHAP
values are precisely Shapley values — that is, an attribution
metric over the powerset of inputs {x1, . . . , xN}. The novel
contribution comes in the unification of existing methods
for computing SHAP values. Existing methods either do
not use Shapley values (thus violating correctness, if they
are additive models), or approximate Shapley values by
Monte Carlo or sampling methods (Lundberg & Lee, 2017).
The SHAP framework simply adapts insights from these
previous additive feature attribution methods to approximate
SHAP values under both model-agnostic (Shapley sampling,

Kernel SHAP) and model-specific settings (Max SHAP,
Deep SHAP) (Lundberg & Lee, 2017). For example, Deep
SHAP combines the backpropagation-based linearization
of the DeepLIFT algorithm to recursively compute SHAP
values on neural networks (see Figure 11).

The theoretical correctness of Shapley values as the only
additive feature attribution method satisfying our intuition
matches empirical benchmarks. A small-scale study com-
paring SHAP against previous explanatory methods (LIME,
DeepLIFT) showed SHAP aligned most strongly with hu-
man intuition (Lundberg & Lee, 2017). In a larger-scale
study, Lundberg et al. also showed that SHAP aligns with
anaesthesiologist explanations for predicting hypoxaemia
during surgery (Lundberg et al., 2018).

4. Conclusion
The tension between accuracy and interpretability of ma-
chine learning models has only widened as models grow
more complex and powerful. In this work, we investigated
two pursuits in the field of XAI for developing explainable
model predictions: (1) constructing competitive glass-box
models, and (2) attributing feature explanations to existing
black-box models. In both frontiers, we saw the ubiquity
and importance of GAMs: for constructing the intrinsically
interpretable glass-box models, GAMs keep complexity
understandable by additivity, while maintaining competi-
tive performance against black-box models via arbitrary
shape functions; for attributing feature contribution, Shap-
ley values prove uniquely correct as GAM-based feature
explanation models that align with human intuition.

It is important to mention the relative immaturity of XAI
compared to mainstream black-box pursuits. While GAMs
remain promising for achievable glass-box models, they suf-
fer from limitations as well. For example, many glass-box
models focus on tabular data only (Agarwal et al., 2021).
While there exist efforts to explain black-box models on
non-tabular data (e.g. pixel images) (Bach et al., 2015), to
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the author’s knowledge, little progress is made in general-
ized interpretable models in this domain. Further, recent
criticisms of explanatory models draw attention to failures
in methods to accurately capture model behaviors, or fail-
ing to generalize explanations beyond the initial database
(Rudin, 2019). Ultimately, the field of XAI remains promis-
ing yet nascent — more work is required to truly achieve
explainable artificial intelligence.
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