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Abstract

We design and implement a series of computational experiments aimed at compar-
ing variants of the Frank-Wolfe (FW) algorithm for pruning large convolutional
neural networks. This is motivated by the “Lottery Ticket Hypothesis”, which
suggests the existence of smaller sub-networks within larger pre-trained networks
that perform comparatively well (if not better). Whilst most literature in this area
focuses on Deep Neural Networks more generally, we specifically consider Convo-
lutional Neural Networks for image classification tasks. With the MNIST dataset,
we find that using a Frank-Wolfe approach with momentum for pruning results in a
sparser model that achieves greater accuracy than both the original network and
the sub-network obtained with simple backward elimination pruning.

1 Problem Statement and Notation

Convolutional neural networks are ideal models for image classification and related computer vision
tasks. However, large models with many parameters pose serious challenges - both in terms of training
time and memory. In this paper, we motivate and outline a series of computational experiments
aimed at evaluating different variants of the Frank-Wolfe (FW) algorithm for neural network pruning,
intending to find well-performing sparser models.

Notation - From Deep Neural Networks to Convolutional Neural Networks. To represent an
arbitrary neural network with N neurons, we follow the notation used in [13] and [14]. Let x ∈ Rd

denote the input vector and θi for i ∈ [N ] = {1, ..., N} denote the parameters/ weights associated
with the i-th neuron. With these inputs, the i-th neuron can be represented as a function σ(x, θi).

Although this function σ(·, θi) can take on general forms, [13] and [14] consider the specific case of
a two-layer network for simpler analysis (a representative example of more complex architectures).
In the two-layer case, we can write σ(x, θi) = bi · σ+(aiTx), where θi = [bi ai] denotes the con-
catenation of the second layer weight, bi, and the vector of first layer weights, ai ∈ Rd, respectively.
The function σ+(·) represents the activation function.

Accordingly, we use the following notation for the output of a neural network containing N neurons:

f[N ](x,Θ) =
1

N

N∑
i=1

σ(x; θi) (1)
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Given a dataset D = {x(j), y(j)}mi=1 consisting of m observations, each with attributes x(j) ∈ Rd

and desired output y(j) ∈ R, we can train the neural network to discover the set of weights Θ that
minimizes the following loss function:

L
[
f[N ](·,Θ)

]
=

1

2

m∑
j=1

(
f[N ](x

(j),Θ)− y(j)
)2

(2)

While existing analysis in this area uses the representative example of a two-layer network, Convo-
lutional Neural Networks have a more complex architecture, which includes convolutional layers
and pooling layers. To extract local features, convolutional layers apply filters that learn to detect
specific patterns. The output of a convolutional layer l, denoted h(l), is obtained by convolving the
input feature maps h(l−1) with learnable filters W(l) and applying an activation function, ψ, that
introduces non-linearity (such as ReLU):

h(l) = ψ
(
W(l) ∗ h(l−1)

)
(3)

Such convolutional layers are typically succeeded by pooling layers, which reduce spatial dimensions
of the feature maps to create a more compact representation while retaining essential information.
For instance, max pooling will simply select the maximum value within a given local region:

h
(l)
pool = Max

{
h(l)

}
(4)

Three Stage Approach for Neural Network Sparsification The classic Stochastic Gradient De-
scent (SGD) algorithm is commonly used for Neural Network training, with the model’s weights
Θ = {θ1, ..., θN} typically being unconstrained [11]. As outlined in [8], [13], and [14], the com-
putational cost and memory requirements for training large-scale, dense models as N increases
necessitates a more practical three-step procedure for finding smaller sub-networks: (i) Pretraining
- minimize (1) by performing SGD over Θ, (ii) Pruning - finding a sub-network from the original
model which performs well, and (iii) Retraining - performing SGD again to maintain desired accuracy,
either using the newer model’s weights as the initial parameters (as in [14]) or starting with a new
random parametrization (as in [8]).

In particular, the pruning stage is concerned with finding a subset of neurons S ⊂ [N ] which
minimizes the loss of the newly defined sub-network: fS(x,Θ) = 1/|S|

∑
i∈S σ(x; θi). In particular,

we would like this sub-network’s accuracy to be comparable to the original dense model:

L
[
f[S]

]
≥ L

[
f[N ]

]
− δ for some δ ∈ R+ (5)

This allows us to find sub-networks that perform relatively well (as compared to the original dense
model) [13]. Furthermore, in [14], they find that pruning dense models guarantees finding more
accurate sparse networks than directly training smaller models can, which is in line with the Lottery
Ticket Hypothesis [5].

2 Background

Lottery Ticket Hypothesis The Lottery Ticket Hypothesis (LTH), proposed by Frankle and
Carbin in 2019, suggests that within randomly-initialized, dense neural networks, there exist sparse
subnetworks, or "winning tickets," capable of achieving test accuracy comparable to the original
network in a similar number of iterations. These winning tickets benefit from fortuitous initializations
that facilitate effective training. Justified by the LTH, a structured three-stage approach to neural
network sparsification emerges.

Firstly, in the identification stage, pruning techniques are employed to systematically re-
move connections from the network, thereby identifying these winning tickets. Pruning enables
significant reductions in model size by removing unnecessary parameters while preserving the
network’s essential functionality. Frankle and Carbin’s reserach consistently found that winning
tickets are less than 10− 20% of the size of several fully-connected and convolutional architectures
for MNIST and CIFAR10 datasets [5].
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Secondly, in the optimization stage, winning tickets are leveraged to design more efficient
training schemes. By focusing on training these sparse subnetworks from the start, the aim is to
accelerate convergence and improve overall training dynamics. This stage involves devising novel
training algorithms and optimization strategies tailored to the unique properties of winning tickets,
enabling faster learning and improved generalization.

Lastly, in the refinement stage, iterative pruning techniques are employed to further en-
hance the performance of the identified winning tickets. Iterative pruning outperforms one-shot
pruning in identifying winning tickets by repeatedly training, pruning, and refining the network over
multiple rounds. This iterative process results in networks that learn faster and achieve higher test
accuracy, ultimately leading to more efficient and effective deep learning models [5].

These implications suggest that certain sparse architectures with fortuitous initializations
possess inherently better training properties and offer opportunities for efficient compression, which
involves reducing the size of neural networks while maintaining performance. This structured
approach not only advances the field of neural network pruning and optimization but also lays the
foundation for more efficient and effective deep learning models.

Suitable Feasible Regions Frank-Wolfe methods can offer computational efficiency by minimizing
a linear objective over the feasible set without needing costly projections [12]. This advantage
extends to scenarios with polyhedral and nuclear norm ball constraints, simplifying the linear
subproblems and streamlining solutions. Additionally, their projection-free nature makes them
popular, particularly in machine learning, where they surpass methods requiring projection at each
iteration. As such, Frank-Wolfe methods are appropriate when the optimization problem’s constraints
define convex, differentiable, and compact feasible regions[6]. Convexity ensures that the feasible
region forms a convex set, enabling efficient exploration of the solution space. Differentiability
allows for the use of gradient information to guide the optimization process towards the optimal
solution. Compactness ensures that the feasible region is bounded, facilitating convergence towards a
global optimum.

These essential characteristics of feasible regions crucial for the effective implementation
of Frank-Wolfe algorithms, particularly within the realm of large-scale optimization, has been
studied as the effectiveness of the algorithm was shown to be intricately tied to the convexity and
compactness of the feasible region, coupled with the ability to solve linear optimization subproblems
efficiently within this region [3]. Specifically, Frank-Wolfe methods excel in scenarios where
constraints define bounded convex regions, enabling swift exploration of the solution space without
necessitating costly projection operations. This alignment fits the needs of neural network pruning
tasks, where a loss function subject to constraints on network sparsity is minimized. The convexity of
the feasible region also ensures a well-defined optimization problem, an essential factor in steering
the iterative pruning process efficiently towards an optimal solution. Additionally, the compactness
property guarantees convergence towards a global optimum, ensuring the algorithm’s resilience in
traversing the solution landscape. Furthermore, the differentiability of the feasible region enables
the computation of gradients, essential for guiding the pruning process towards optimal sparse
architectures efficiently. Compactness ensures a bounded search space, preventing the optimization
process from straying towards infeasible solutions.

By satisfying these properties, the optimization problem in neural network pruning mirrors
the characteristics of problems well-suited for Frank-Wolfe methods. The iterative nature of
Frank-Wolfe-style approaches, where solutions are iteratively refined based on linear approximations
of the objective function within the feasible region, aligns with the iterative pruning process.
Moreover, the reliance on gradients to navigate the search for optimal sparse architectures underscores
the significance of differentiability, a core property of Frank-Wolfe methods.

3 Convolutional Neural Network Pre-training and Pruning

Convolutional Neural Networks Convolutional Neural Networks (CNNs) are a class of neural
networks primarily utilized for image classification. The defining feature of CNNs is the convolution
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operation, which involves sliding filters over the input data to extract and learn important features
such as edges and textures. Key elements of CNNs include:

• Convolutional Layers: Detect features by applying various filters to the input.
• Activation Functions: Introduce non-linearity into the model, enabling it to learn complex

patterns. Eg. ReLU
• Pooling Layers: Reduce the dimensionality of each feature map while retaining the most

important information.
• Fully Connected Layers: After the convolutional and pooling layers extract and reduce fea-

tures, these layers classify the input based on the detected features by outputting probabilities
over the classes.

Resource Constrained Neural Networks and Pruning Paradigm While machine learning and
deep learning applications are increasing at an exorbitant rate, their real-world implementation is
delayed by their high computational requirements in the form of cutting-edge hardware, large memory,
and high energy use. [2], [9] With this context, resource-constrained solutions arise. Henceforth, we
will show how pruning can help to improve efficiency in training and inference.

Neural network pruning consists of simplifying a neural network by setting some weights to zero
according to some rule. For example, a basic pruning rule may consist of removing weights smaller
than a certain threshold. Overall, the goal of running is to reduce model size and complexity without
compromising performance. In general, the pruning process is the following:

• Pre-Training: Train NN to get a baseline model.
• Pruning: Introduce non-linearity into the model, enabling it to learn complex patterns.
• Re-Training: Reduce the dimensionality of each feature map while retaining the most

important information.

Note that pruning and re-training may be done in an iterable manner; this is known as the tunning
stage. Also, under some methods, re-training may not be necessary given the needs of the user

Within the perspective of resource-constrained neural networks, a pruned network is smaller than
the baseline model and this achieves better efficiency for inference tasks. From the angle of training,
pruning may also be beneficial because rather than training a large network to a full extent, the
large network is trained only up to a point from which a sufficiently good subnetwork is identified.
Therefore, even when considering pre-training and re-training, pruning may lead to using fewer
resources as, after pruning, the rest of training is done in a smaller network.

Finally, note that this framework also applies in the case of CNNs, which are the base of our
computational study.

Frank-Wolfe for Pruning To find well-performing smaller sub-networks within dense models that
are pre-trained via stochastic GD, Frank-Wolfe-style approaches can be used [13] [14], where the
desired sparsity level is treated as a constraint. Thus, even though Neural Network training itself is a
non-convex optimization problem, the pruning stage can be reformulated as a constrained convex
optimization problem, with Frank-Wolfe-style approaches being used [13].

Frank-Wolfe in Machine Learning Context The classic FW algorithm (and related projection-free
methods) provides an alternative to projected Gradient Descent for convex-constrained optimization
problems. Its low per-iteration complexity and suitability for complicated constraints makes it very
effective in the context of large-scale machine-learning problems [10].

FW replaces the projection step of projected GD with a linear minimization sub-problem that can be
described as follows:

We form the next iterate by taking a convex combination between (i) the previous iterate and (ii) an
extreme point of the feasible region that best approximates the gradient direction. [10] This ensures
we retain feasibility within each iteration, without using a projection step. Thus, FW is particularly
advantageous when the traditional projection step in projected GD is computationally expensive [6].
See the pseudocode description for the classic deterministic variant below:
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Algorithm 1 Classic (Deterministic) Frank-Wolfe Algorithm [4], [6]
Input: x0 ∈ C := initial starting point; T := number of iterations
for t = 0, 1, ..., T do

vt ← argminxt∈C⟨xt,∇f(xt)⟩ ▷ Approximate gradient direction, maintaining feasibility

γ ← 2
t+2

xt+1 ← (1− γ)xt + γvt ▷ Convex combination: previous iterate and vt
end for

In Algorithm (1), we can also substitute the linear minimization vt = argminvt∈C⟨xt,∇f(xt)⟩ with
an approximate approach, as opposed to solving for the minimizer exactly [6]. Another simple
modification is to perform a line search within each iteration t for the optimal γ required to find the
best next iterate on the line segment connecting xt and vt [6].

4 Pruning Algorithms

Simple Pruning The first algorithm takes a naive approach to pruning. First, all of the weights of
the model are retrieved and sorted based on magnitude. A certain percentage of the weights with the
lowest magnitude are set to zero based on a user-defined pruning percentage.

Algorithm 2 Simple Pruning
Input: M ∈M, a neural network model; p ∈ [0, 1], pruning percentage; D, training dataset; E,
epochs for retraining
W ← weights of M ▷ Retrieve model weights
n← |W | ▷ Total number of weights
np ← round(p · n) ▷ Compute number of weights to prune
Wf ← flattened W ▷ Concatenate all weights into a vector
idxs← indices sorted by |Wf |
Ip ← first np elements of idxs
for i ∈ Ip do

Wf [i]← 0 ▷ Set pruned weights to zero
end for
Update W of M with Wf

Set optimizer, loss, and metrics for M
Retrain M on D for E epochs
return M

Frank-Wolfe Pruning The second algorithm considers a randomly chosen subsample of the
weights and takes gradient information into account when selecting weights to prune. Rather than
pruning a fixed percentage of the weights, the pruning mask is applied based on a user-defined target
sparsity level. This method takes into account cases in which smaller weights are actually more
integral to the structure of the CNN and thus is more flexible than the simple pruning algorithm.
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Algorithm 3 Frank-Wolfe Pruning
Input: M ∈M, neural network model; D, training dataset; s, target sparsity level; N , number of
pruning iterations; S, subsample size; E, epochs for retraining
Initialize optimizer (SGD)
for i = 1 to N do

G← zeros (shape of M ’s trainable weights)
subsample← sample S instances from D
for each (x, y) in subsample do

G← G+∇loss(M,x, y, optimizer)
end for
if i mod

(
N
2

)
= 0 then

Apply pruning to M based on G and sparsity s
end if
Retrain M using D for E epochs

end for
return M

Frank-Wolfe Pruning + Momentum The third algorithm has two main modifications compared
to the basic frank-wolfe method: dynamic sparsity and momentum. The target sparsity level is
determined by the user. However, the sparsity of the model is increased iteratively which potentially
minimizes large decreases in model performance at each iteration. Additionally, a user-defined
momentum vector is applied to the gradients in order to further differentiate the weights and stabilize
the algorithm.

Algorithm 4 Frank-Wolfe Pruning + Momentum
Input: M ∈ M, neural network model; D, training dataset; sinit, initial sparsity; sfinal, final
sparsity; m, momentum parameter; N , number of iterations; E, fine-tuning epochs; S, subsample
size; Optimizer
∆s← sfinal−sinit

N
s← sinit

for i = 1 to N do
G← zeros (shape of M ’s trainable weights)
subsample← sample S instances from D
for each (x, y) in subsample do

G← G+∇loss(M,x, y,Optimizer)
end for
G← m ·G ▷ Apply momentum to gradients
Apply pruning to M based on G and sparsity s
if E > 0 then

Retrain M using D for E epochs
end if
s← min(s+∆s, sfinal)

end for
return M

5 Numerical Experiments

Datasets For our computational study, we consider image classification problems. Here we used the
MNIST [7] dataset as our baseline. This dataset contains handwritten digits, with 60,000 examples
in the training set and 10,000 examples on the test set. The digits are centered in 28x28 grayscale
images. The only pre-processing applied to the data is normalization of the grayscale by dividing the
value of each pixel by 255, ensuring that the pixels used as input for the model are between 0 and 1.

Network Architecture For our numerical analysis, we employ a CNN designed for the classification
of 28x28 images into 10 categories, as is the case for the MNIST dataset. The architecture is detailed
in Table 1.

6



Layer Type Configuration Purpose
Convolutional 32 filters of size 3x3, ReLU activation Captures basic features from input

images, introduces non-linearity.
Max Pooling Pool size of 2x2 Reduces spatial dimensions, making

the detection of features somewhat
invariant to scale and orientation
changes.

Convolutional 64 filters of size 3x3, ReLU activation Increases the complexity of the model
to capture more detailed features.

Max Pooling Pool size of 2x2 Further reduces spatial dimensions,
focusing on the most important
features.

Flatten — Transforms 3D feature maps into 1D
feature vectors.

Dropout Dropout rate of 0.5 Prevents overfitting by randomly
setting input units to 0 during training.

Dense 10 units, Softmax activation Outputs the probability distribution
over the ten classes.

Table 1: CNN Architecture for MNIST Classification

Results and Analysis The effectiveness of different Frank-Wolfe pruning methods is evaluated in
terms of accuracy, loss, computational efficiency, and complexity reduction, as shown in Figures 1, 2,
and 3.

Model Accuracy and Loss: As depicted in Figure 1, model accuracy improves with increased
pretraining epochs across all methods, which is expected due to the enhanced learning from more
extensive training data. The Frank-Wolfe (FW) method with momentum consistently outperforms
other methods in both accuracy and loss metrics, indicating its robustness. Even with limited
pretraining, the FW + momentum method maintains higher accuracy than the base model, highlighting
its effectiveness in constrained environments. Notably, the simple pruning method often yields
accuracy and loss metrics that are comparable or inferior to those of the base model, suggesting that
this approach may undermine performance.

Computational Efficiency: Figure 2 illustrates the inference time for each method. The FW methods
achieve lower inference times compared to the simple pruning method, reinforcing their suitability
for resource-limited settings. This efficiency is crucial for applications requiring real-time processing.

Model Complexity: The comparison of non-zero parameter percentages in Figure 3 exhibits the FW
methods’ superior ability to reduce model complexity, particularly in scenarios with fewer pretraining
epochs. The FW + momentum method consistently shows a lower percentage of non-zero parameters
compared to the basic FW method, especially before extensive pretraining, making it an advantageous
choice in resource-constrained conditions.

6 Conclusions

Conclusions This computational study evaluated three neural network pruning methods for models
with limited pretraining, which is a common scenario within resource-constrained environments.
Interestingly, the results indicate that the simple pruning technique is ineffective in improving the
model and is detrimental to model performance in some cases. Of the methods studied, the Frank-
Wolfe (FW) + momentum technique proved the most effective. It demonstrated superior performance
across all four metrics of model accuracy, loss, computational efficiency, and complexity reduction.
While the basic FW method also achieved better performance than the base model, the results indicate
that incorporating momentum into the FW pruning approach can significantly benefit the model,
especially in cases where computational resources are limited.
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Figure 1: Accuracy and loss of neural network models pruned using different methods, across multiple
pretraining epochs. This figure highlights the trade-offs between accuracy, loss, and pretraining
duration.

Figure 2: Normalized inference time for pruned neural networks, illustrating the computational
efficiency per pruning method with varying pretraining epochs. This figure evaluates the trade-off
between pruning efficiency and computational performance.

Figure 3: Percentage of non-zero parameters in neural networks post-pruning, relative to the unpruned
base model, across different levels of pretraining. This graph demonstrates the effectiveness of each
pruning method in reducing model complexity.
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7 Further Research

Generalizability and Comparison with Other Pruning Methods Despite the positive results
attained with our numerical experiments, it is still to be seen if these results can be generalized to
other settings. With access to more computational resources, the performance of FW pruning may
be evaluated by using optimizers other than Stochastic Gradient Descent (SGD), such as ADAM.
Moreover, to further test the generalizability of our FW pruning methods, their performance could be
tested on established architectures such as ResNet, AlexNet, or VGG. Likewise, one could also test
the generalizability from varying the dataset by using datasets such as Fashion-MNIST, CIFAR-10,
or ImageNet. Overall, despite promising results, more computational resources are needed to test the
performance of our pruning methods in a general setting.

Moreover, performing these tests would allow us to compare performance against other pruning
methods. To do this, we should suggest using a wide benchmark, such as the one available with
ShrinkBench [1], to allow a systematic review of the models’ performance.

Structured Pruning The pruning paradigm we considered before, which masks certain weights
as zeros, is known as unstructured pruning. On the other hand, we have structured pruning, which
removes entire units, such as neurons, layers, or filters from the NN/CNN. That is, structured pruning
changes the architecture of the network rather than masking weights. Combining the algorithms
developed in this paper with structured pruning may lead to even stronger numerical results as model
size and complexity could be reduced to a greater extent.

Greedy Forward Selection [14]. Another pruning methodology that could be considered for
future research is greedy forward selection. Instead of traditional pruning methods that use backward
elimination to remove redundant and Byzantine neurons from the larger network, greedy forward
selection begins with an empty model, and sequentially adds neurons from the original network that
result in the greatest immediate decrease in the loss function [14]. The main advantage of this scheme
is that there is no need to prune after pre-training, as a subnetwork is found while training. Hence,
this approach may be of particular interest in resource-constrained environments.
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Abstract

In order to deal with the dynamics of the real world, an intelligent system should
be able to improve over time by continuously acquiring more and more knowledge
through data, regardless of the data distribution but most importantly, without
forgetting what it has learnt thus far. Streaming learning, i.e. learning from a single
data point at a time, has the potential to facilitate real-time adaptation to newly
available data. Many continual learning approaches either freeze a significant
amount of the model’s parameters or depend on a great amount of data for pre-
training so as to initialize the parameters of the model before streaming begins.
However, these practices can have a detrimental effect to the model’s performance.
In this project, we have studied Cold Start Streaming Learning (CSSL), a streaming
learning system that overcomes the aforementioned limitations as it updates all the
parameters of the model in an end-to-end fashion, leveraging its representational
power to the maximum possible degree. CSSL also does not require pre-training in
order to preform well, as it can begin streaming even from random initialization
without missing out on performance, which constitutes an important asset given
how expensive offline base initialization procedures can be.
As mentioned earlier, the goal of continual learning is to constantly adjust to new
data in order to acquire new knowledge. This differs from traditional problem
settings, where the objective is to reach a fixed point of convergence. A fundamental
challenge in continual learning is determining what information should be retained
from previous data to prevent catastrophic forgetting (5), and what information
needs to be updated to maintain alignment with the objective function. A neural
network can achieve this by employing a step-size vector, which controls the extent
to which gradient samples influence the adjustment of network weights, suggesting
that adaptive learning rate schedules could play a crucial role in continual learning.

1 Introduction

1.1 Background

"Online learning" is a term we use broadly to refer to a wide array of techniques where the training
process is carried out in a sequential fashion and data is fed into the model one sample or a small batch
at a time, as opposed to the traditional offline learning approach where the entire dataset is available
during training. Due to the benefits that real-time adaptation has, online learning is a topic that has
gained popularity and different variations of it have been studied. One of them is batch-incremental
learning (12; 2), which involves training the model with batches of data in a sequential manner.
These batches are typically drawn from distinct sets of classes or tasks within a dataset. However,
this approach has a significant drawback: it is necessary to wait for a substantial amount of data to
accumulate before the model can be updated through a computationally intensive and time-consuming
offline training process on the newly acquired data. This latency hinders real-time model updates,
as the system cannot adapt to new information as soon as it becomes available. As a result, batch-
incremental learning may not be suitable for applications that require immediate model adaptation
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to rapidly changing environments or data streams. To minimize delay, CSSL utilizes a streaming
learning approach where each data sample is processed only once and the entire dataset is learned in
one iteration (number of epochs is 1) (7). This method involves brief, online adjustments, ensuring
that learning happens instantaneously. Moreover, streaming learning methods have the flexibility to
handle groups of data rather than just individual items (14). In contrast, batch-incremental learning
approaches often experience significant performance drops when dealing with smaller batches of
data (8). Therefore, the streaming learning framework, which has been investigated for its application
in deep neural networks in recent studies (7; 8; 9), is versatile and offers the potential for efficient,
low-overhead updates to deep networks with new data.

2 Methodology

The model CSSL uses (e.g. ResNet18), can begin streaming by either utilizing a pre-trained set of
parameters or a random initialization. To mitigate the issue of catastrophic forgetting, this approach
leverages a replay buffer R paired with sophisticated data augmentation. At each iteration, the
algorithm processes a new data example Dt = (xt, yt) retrieved from the dataset Dt, and combines
it with B randomly selected samples from the replay buffer. It then performs a stochastic gradient
descent (SGD) update using this combined data, and stores the new example in the buffer for future
reuse. At this point, we should note that the system may see a data point only once throughout its
lifetime despite the fact that it was stored in the replay buffer after it became available for the first
time. This happens because we sample B samples from a replay buffer with capacity C, where C > B
and also at some point old data points have to be discarded from the replay buffer once it has reached
its maximum capacity so that the new data points can be stored.

2.1 Definition of Streaming Learning

Streaming learning involves processing a continuous flow of data denoted as D = {xt, yt} from
t = 1, ..., n and the training process guidelines are the following:

• Each data example is unique and appears only once in D.
• The sequence of data in D is arbitrary and may not follow an independent and identically

distributed (iid) pattern.
• The model’s performance can be evaluated at any point in time during the streaming process.

These requirements don’t presuppose anything about the model’s initial state before streaming starts.
However, traditional approaches typically require an offline base initialization step before streaming
begins, whereas CSSL can begin the streaming process directly from either random or pre-trained
parameters, giving it the advantage of initiating streaming without needing to see any data from the
stream first.

2.2 Problem Setting

Here we address the problem of image classification using streaming, building on previous studies (8).
The experiments usually involve class-incremental streaming where samples from each unique class
in the dataset are fed to the model sequentially. Future work involves integrating adaptive learning
rates into the model, as explained in section 4, and study its performance in different streaming
scenarios (class-incremental, non i.i.d.), expanding it to the case where the input to the model is not a
single data point (combined with B samples from the replay buffer) but a batch of new data points.

2.3 Evaluation Metric

The performance of CSSL is assessed using Ωall (7), which is calculated as follows:

Ωall =
1

T

T∑
t=1

αt

αoffline,t

Here,

• αt represents the streaming performance at the t-th testing event
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• αoffline,t is the performance during offline testing at the same event

• T is the total number of testing events

Finally, Ωall measures and compares the overall performance of streaming (while it is happening)
to the performance obtained during offline training. For example, let’s suppose that there are two
streaming events, one after the model has been exposed to 1

3 of the dataset (testing event t = 1) and
one after all the dataset has been observed (end of streaming - (testing event t = 2). To compute
Ωall, we calculate the accuracy α1 and α2 of the streaming model at testing events t = 1 and t = 2
respectively and we also train the model offline, over two separate datasets, one containing the same
1
3 fraction of the dataset mentioned earlier and one with the entirety of the dataset, which yields
αoffline,1 and αoffline,2 respectively and perform the following computation:

Ωall =
1

2

(
α1

αoffline,1
+

α2

αoffline,2

)
The higher the value of Ωall is, the better the performance.

2.4 Cold Start Streaming Learning

CSSL is illustrated in Figure 1 and encapsulated in algorithm 2. In a nutshell, CSSL first initializes the
neural network’s weights W either with random values or using pre-trained parameters (Initialize).
For each new data point xnew, ynew of D that becomes available to the system, B samples from
the replay buffer R get uniformly selected (ReplaySample). Then, the new data sample, gets
concatenated with the data samples from the Replay Buffer (X ,Y := {xnew} ∪ Xreplay, {ynew} ∪
Yreplay) and the new batch of B + 1 samples undergoes a process of data augmentation (Augment)
before being used for training during the streaming phase (StreamingUpdate). The new data
sample is stored in the Replay Buffer and occasionally, a random sample from the buffer is discarded
when R has reached its capacity C (ReplayEvict). In the continual learning scenario, |D| = ∞
Algorithm 1: Cold Start Streaming Learning (CSSL)

W := Initialize()
R := ∅
for t = 1, 2, ..., |D| do

xnew, ynew := Dt

Xreplay,Yreplay := ReplaySample(R,B)
X ,Y := {xnew} ∪ Xreplay, {ynew} ∪ Yreplay

StreamingUpdate(W, Augment(X ,Y))

ReplayStore(R, (Compress(xnew, ynew))

if |R| > C then
ReplayEvict(R)

end
end

2.4.1 Replay Buffer

The Replay Buffer R has a fixed size, denoted with its capacity C, and is used for storing complete
compressed images along with their corresponding labels as the system navigates the data stream.
New data can be added to R as long as the number of items in R, is less than C. However, when
R reaches its capacity, some of its elements must be removed (ReplayEvict in Algorithm 2) to
accommodate new data points that will become available as the streaming process proceeds. A
straightforward policy for removing items, which is computationally efficient and its performance is
comparable to more complex strategies, has been used in previous studies (8), and involves:

(i) identifying the class with the highest number of examples in the buffer, and

(ii) randomly selecting an example from this class to remove

This policy in CSSL because
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Figure 1: Illustration of CSSL.

2.4.2 Data Compression

In order to decrease memory usage, the data is compressed before being added to the Replay Buffer
R (Compress(xnew, ynew) in 2). Previous approaches have minimized the memory footprint of
replay data by freezing many network layers during the data streaming process, utilizing pre-trained
feature representations and learned quantization modules (9; 8). Unlike these methods, CSSL stores
full images, which may require more memory, but does not fix any network parameters, which
enables the model to maximize its representational power.

CSSL examines various data-independent compression methods, including resizing images,
quantizing the integer values of pixels, and saving images with JPEG compression on the disk. These
techniques greatly lower memory costs while preserving performance levels. Nevertheless, storing
full images in the replay buffer still results in greater memory usage compared to previous methods,
which may not be suitable for environments with limited memory. However, many streaming
applications, such as pre-labeling for data annotation for example, typically operate on cloud servers
where memory capacity is less of an issue. For these types of scenarios, CSSL provides better
performance than earlier methods, provided there is enough memory available for replay.

2.4.3 Model Updates

When processing a new example from dataset D, CSSL adjusts the weights of the model using the
StreamingUpdate method which implements a basic stochastic gradient descent (SGD) update
(as described in Algorithm 2). This update uses both the new data sample and B samples from the
replay buffer obtained via ReplaySample, which selects data from the replay buffer R uniformly.
Although alternative sampling strategies have been explored, they offer limited benefits at scale (1; 8).
Streaming updates involve processing a combination of new and replayed data through a data
augmentation pipeline (referred to as Augment in Algorithm 2) before this batch of data is fed to the
neural network. Developing a robust and sophisticated data augmentation pipeline is fundamental to
achieving CSSL’s remarkable performance. More specifically, while previous studies have employed
basic augmentation techniques (2; 13; 8), CSSL has investigated more advanced methods such
as data interpolation (17; 16) and augmentation policies that are learned (3). Specifically, CSSL
integrates random cropping and flipping, Cutmix, Mixup, and Autoaugment into a unified, sequential
augmentation policy.
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3 Benefits of CSSL

• Full Plasticity

CSSL is an end-to-end approach, adjusting all model parameters with every update
throughout the streaming process. Keeping network parameters fixed is detrimental to
the learning process, as illustrated in figure 2 which depicts the scenario of a ResNet18
model pre-trained on ImageNet where various proportions of network parameters have been
frozen during fine-tuning on CIFAR10/100. We observe that the final accuracy consistently
decreases as the ratio of frozen parameters increases. Despite high-quality pre-training,
fixing network parameters not only limits the model’s capacity for representation but also
hinders the adaptation of network representations to new data, making end-to-end training
more advantageous.

Figure 2: Test accuracy of ResNet18 models that were first pre-trained on ImageNet, and then
fine-tuned on CIFAR10/100, with different proportions of frozen parameters.

• Pre-training is not necessary

Previous streaming techniques typically rely on base initialization, where network
parameters and other components are adjusted using a portion of the data before the
streaming starts. However, this offline base initialization process is costly and it also makes
the model’s performance reliant on having access to a sufficient amount of pre-training
data (6). The streaming performance suffers when there is insufficient base initialization
data which will most likely result in subpar performance, if there is limited data available or
none at all when streaming commences.

CSSL does not rely on pre-training as it trains the network in an end-to-end man-
ner during the streaming process. This approach simplifies the CSSL training pipeline
to merely initializing and then training. This straightforwardness facilitates the easy
implementation and deployment of CSSL in real-world applications. It’s worth noting that
CSSL can start streaming from a set of pre-trained model parameters, which often improves
performance. However, the advantage of CSSL is that pre-training is entirely optional, with
the network parameters being updated continuously during streaming.
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4 Adaptive Learning Rates and Continual Learning

The performance of optimization algorithms in machine learning is greatly affected by their meta-
parameters, i.e. hyperparameters, which are usually determined by a search process, like grid search
or other trial-and-error techniques, before the training phase begins. Yet, the search for these meta-
parameters has a considerably higher computational expense compared to training with already
optimized meta-parameters (4; 10). Meta-parameter optimization aims to make this process more
efficient by concurrently adjusting the meta-parameters throughout the training phase, thus moving
away from the inefficient and often suboptimal trial and error methods towards a more compact and
automated optimization process. In the field of continual learning, where environments are dynamic
and loss functions are constantly changing, it’s crucial to optimize meta-parameters, such as step
sizes, to adapt to optimal values that evolve over time.

4.1 Quantifying an adaptive learning rate

4.1.1 Optimization theory background

One of the most fundamental optimization algorithms for minimizing a function f(x) : Rd → R
is Gradient Descent, introduced by Cauchy et al. in 1847. Assuming that f is globally L-smooth,
gradient Descent iterates with a step size ηt according to the following update rule:

xt+1 = xt − ηt∇f(xt) (1)

while L-smoothness can be mathematically described as follows:

||∇f(x)−∇f(y)|| ≤ L · ||x− y|| ∀x, y ∈ Rd (2)

The optimal step size for gradient descent is for ηt = 1
L which, when f is convex, guarantees the

following convergence rate:

f(xt+1)− f(x∗) ≤ L||x0 − x∗||
2(2t+ 1)

(3)

4.1.2 Adaptive step size algorithm

The requirement for global L-smoothness in equation (2) must be fulfilled for all x and y, which
may result in a finite but arbitrarily large value for L. This makes the step size small, thus causing a
slow convergence as demonstrated in equation (3). This challenge can be addressed by utilizing
a step size for GD that relies on the local smoothness of f , which by definition, is smaller than
the global L described in equation (2) (11). In other words, the learning rate adapts to local ge-
ometry of f , ensuring convergence depending only on the smoothness within the vicinity of a solution.

Mathematically, this step size is described described as:

ηt = min

{
∥Wt −Wt−1∥

2∥∇f(Wt)−∇f(Wt−1)∥
,
√

1 + θt−1ηt−1

}
Since we are working with neural networks, the x in (1) now denotes the parameters of our model
(its weights) so we replace x with W . The intuition behind the factor ∥Wt−Wt−1∥

2∥∇f(Wt)−∇f(Wt−1)∥ , is that
we take a region where f is locally L-smooth, and plug into (2) the L that stems from the optimal
learning rate for GD which is

ηt =
1

L
⇒

L =
1

ηt
(4)

so substituting (4) in (2) we get:

||∇f(x)−∇f(y)|| ≤ 1

ηt
· ||x− y|| ∀x, y ∈ Rd ⇒ (5)

ηt ≤
||x− y||

||∇f(x)−∇f(y)||
(6)
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And so we can set

ηt =
||x− y||

2||∇f(x)−∇f(y)||
(7)

Algorithm 2: Adaptive learning rate algorithm
Initialize :W0, η0 > 0, θ0 = +∞
W1 = W0 − η0∇f(W0)
for t = 1, 2, ... do

ηt = min

{
∥Wt−Wt−1∥

2∥∇f(Wt)−∇f(Wt−1)∥ ,
√
1 + θt−1ηt−1

}
Wt+1 = Wt − ηt∇f(Wt)

θt =
ηt

ηt−1

end

Regarding the initialization values, in order for the algorithm to converge, we need to use a small
value for η0, for example set η0 = 0.0001 whereas we need to set a large value for θ0, for example
η0 = 10000.

For the first iteration of the algorithm, we can calculate W1 = W0 − η0∇f(W0) as we
know the initialization values W0, η0. Then, for t = 1 we are going to calculate the value of the step
size of the next iteration, η1, as follows:

η1 = min

{
∥W1 −W0∥

2∥∇f(W1)−∇f(W0)∥
,
√
1 + θ0η0

}

Using the above step size we can perform the next weight update of the model:

W2 = W1 − η1∇f(W1)

Finally, we calculate the value of θ1 = η1

η0
that is going to be used for the calculation of η2 during the

following iteration, for t = 2 and so on.

5 Figures and Results

Figure 3 Illustrates the performance of CSSL under a class-incremental streaming learning
process, measuring the accuracy of the model after seeing each class. As we can see, the baseline
approaches exhibit high accuracy initially (while being exposed to data examples similar to
the ones that were used during base initialization), but their performance drops significantly
as the model gets exposed to more data, especially after processing data not relevant to the
pre-training process. In contrast, CSSL with random initialization starts with relatively low
performance, which gradually improves as more and more data is observed, finally reaching
a stable performance plateau that outperforms all baseline methods. When starting from a
pre-trained parameter initialization and transitioning to a streaming environment, this initial period of
poor performance is eliminated, and the model can still achieve a stable plateau of higher performance.

Interestingly, not only does CSSL not suffer from this accuracy drop that baseline methods
exhibit, but its performance keeps on improving as more and more data is getting streamed. This
implies that end-to-end training helps eliminate biases towards the base initialization data. Moreover,
CSSL’s ability to maintain a stable performance level shows that streaming models don’t necessarily
deteriorate as the data stream diverges from the initial data, whereas CSSL’s adaptability enables
model representations to evolve in response to changing data, ensuring consistent performance over
time, highlighting how beneficial full plasticity can be.
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Figure 3: Streaming performance of class incremental learning on CIFAR100 after learning each new
class as presented in (15), Figure 5.

Figure 4: Reproduction of the green and purple lines of Figure 3.

Figure 5: Reproduction of the green and purple lines of Figure 3 but with top-5 accuracy instead of
top-1
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1 Introduction

Consider the following system of n equations in d variables x1, . . . , xd ∈ Rn:

a11x1 + a12x2 + · · ·+ a1dxd = b1
a21x1 + a22x2 + · · ·+ a2dxd = b2

...
an1x1 + an2x2 + · · ·+ andxd = bn.

As we know, we can represent this as the matrix-vector multiplication Ax = b, where A ∈ Rn×d,
x ∈ Rn, and b ∈ Rn. Solving problems of this form has been a foundational task in mathematics for
centuries because of its wide-ranging applications in fields such as engineering, physics, economics,
and computer science – and has become particularly relevant in recent years due to the explosion in
popularity of machine learning-informed data analysis. Because of its ubiquity, numerous methods
have already been developed to solve this problem, including but not limited to Gaussian elimination,
matrix factorization techniques such as LU [6] and QR [3] decomposition, as well as iterative
methods like Gauss-Seidel [4] and Successive Over-Relaxation (SOR) [7].

However, as datasets within the Internet age have grown exponentially in size, it has become
increasingly important to develop new, numerically stable, and both computationally and memory-
efficient techniques for solving large-scale systems. This report will provide an overview of a
particular line of research in finding distributed, parallelizable linear regression algorithms that have
been developed over the past several months.

2 Problem Setting

Recall that we wish to solve the problem Ax = b for x ∈ Rd, given a data matrix A ∈ Rn×d

and vector b ∈ Rn. One popular reformulation of this problem in terms of numerical optimization,
known as linear regression, is the following:

min
x∈Rd

L(x) := 1

2
∥Ax− b∥22 .
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A classical method of solving this problem is with gradient descent, in which we perform iterative
updates of the form

xt+1 = xt − ηA⊤(Ax− b)

given some initial point x0 ∈ Rn and learning rate η. This gives rise to the following algorithm:

Algorithm 1 Linear Regression with Gradient Descent
Input: Samples A ∈ Rn×d, labels b ∈ Rn, learning rate η, number of iterations T

1: Initialize x0

2: for t = 0, . . . , T − 1 do
3: Compute xt+1 := xt − ηA⊤ (Axt − b)
4: end for
5: return xT

A popular alternative to vanilla gradient descent is that of stochastic gradient descent, in which we
instead perform the update

xt+1 = xt − ηαit

(
α⊤
itx− b

)
,

where we randomly sample a row vector αit from A at each iteration. In particular, we have the
following alternative to Algorithm 1:

Algorithm 2 Linear Regression with Stochastic Gradient Descent
Input: Samples A ∈ Rn×d, labels b ∈ Rn, learning rate η, number of iterations T

1: Initialize x0

2: for t = 0, . . . , T − 1 do
3: Sample it from unif(1, n)
4: Compute xt+1 := xt − ηαit

(
α⊤
it
x− b

)
5: end for
6: return xT

The motivation behind this approach is that computing the full gradient of our objective function
L(x) during each iteration can be expensive (especially if A is large-scale), so we can instead split
our objective function into the average of several objective functions that are easier to compute the
gradient of – and the reason why this works is because the gradient of each smaller objective function
is by construction an unbiased estimator of the original objective’s gradient.

Keeping these ideas in mind, our approach is guided by the following key principles:

1. Instead of sampling rows for our smaller objective functions like in SGD, what if we sampled
columns instead, and multiple at a time instead of just one?

2. What if we want to distribute our computation to L local workers?

To achieve both of these objectives, we can modify Algorithm 1 in a distributed fashion by creating
L subproblems of a similar form for each local worker, whose results can then be aggregated into
a single global update. In particular, on the kth global iteration, the ℓth local worker will receive a
subproblem of the form

min
x∈Rd

L
M

(ℓ)
k

(x) :=
1

2

∥∥∥AM
(ℓ)
k x− b

∥∥∥2
2
, (1)

and the solution x̂
(ℓ)
k to this subproblem will then be aggregated with the rest into a single global

update as follows:

xk+1 =
1

L

L∑
ℓ=1

x
(ℓ)
k .

Here, M(ℓ)
k is a diagonal mask matrix where each diagonal entry has a fixed chance of being active or

not; in this fashion, we can feed each local worker a random subsample of the columns of A.
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3 Approach 1: Deregularized Dropout

Initially, one approach to solving each worker’s subproblem could be to apply gradient descent for
each local worker, i.e. we have the update

x
(ℓ)
k,t+1 = x

(ℓ)
k,t − η

(
AM

(ℓ)
k

)⊤ (
AM

(ℓ)
k x

(ℓ)
k,t − b

)
,

which we can run for T iterations for each local worker as in the following algorithm:

Algorithm 3 Distributed Linear Regression with Masked Features
Input: Samples A ∈ Rn×d, labels b ∈ Rn, learning rate η, number of global iterations K, mask
distribution D, number of workers L, number of local iterations T

1: Initialize x0

2: for k = 0, . . . ,K − 1 do

3: Sample
{
m

(ℓ)
k

}L

ℓ=1
with m

(ℓ)
k ∼ D for all ℓ ∈ [L]

4: for ℓ = 0, . . . , L− 1 in parallel do
5: Set x(ℓ)

k,0 := xk

6: for t = 0, . . . , T − 1 do
7: Initialize M

(ℓ)
k as the diagonal matrix given by m

(ℓ)
k

8: Compute x
(ℓ)
k,t+1 := x

(ℓ)
k,t − η

(
AM

(ℓ)
k

)⊤ (
AM

(ℓ)
k x

(ℓ)
k,t − b

)
9: end for

10: end for
11: Compute xk+1 := 1

L

∑L
ℓ=1 x

(ℓ)
k,T

12: end for
13: return xK

First, suppose T = 1; then since E
M

(ℓ)
k

[L
M

(ℓ)
k

(x)] ̸= L(x), we immediately run into an issue: our
local subproblem becomes a biased estimator of L, and therefore will not converge properly. To fix
this, we can try to modify the loss function to remove the bias (i.e. deregularize it). If each diagonal
entry of M(ℓ)

k is drawn from the distribution α−1Bern(α), so that E[Mii] = 1 and E[Mii] = α−1,
then we have the following result:

Theorem 1 (Removing Bias). For LM(x) := 1
2 ∥AMx− b∥22, we have

EM[LM(x)] = L(x) + α−1 − 1

2
x⊤Diag

(
A⊤A

)
x.

Thus, if

L̂M(x) :=
1

2
∥AMx− b∥22 −

α−1 − 1

2
x⊤ (M⊙A⊤A

)
x, (2)

then EM

[
L̂M(x)

]
= L(x).

Using L̂M as our loss function instead, this produces the following algorithm:
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Algorithm 4 Distributed Linear Regression with Deregularized Dropout
Input: Samples A ∈ Rn×d, labels b ∈ Rn, learning rate η, mask sampling probability α, number of
global iterations K, mask distribution D, number of workers L

1: Initialize x0

2: for k = 0, . . . ,K − 1 do
3: for ℓ = 0, . . . , L− 1 in parallel do

4: Sample diagonal matrices
{
M

(ℓ)
k

}L

ℓ=1
with

[
M

(ℓ)
k

]
ii
∼ α−1Bern(α) for all ℓ ∈ [L]

5: Compute x
(ℓ)
k :=

(
AM

(ℓ)
k

)⊤ (
AM

(ℓ)
k xk − b

)
−
(
α−1 − 1

)
(M⊙A⊤A)x

6: end for
7: Compute xk+1 := xk − η

L

∑L
ℓ=1 x

(ℓ)
k

8: end for
9: return xK

Unfortunately, this deregularization technique only works for the T = 1 case, and if we were to try to
extend it for T > 1, we would have to produce increasingly complex derivations and therefore we
deemed this technique to be untenable to extend to multiple local iterations.

4 Approach 2: Adaptive Step Size Schemes

For this second approach, we decided to investigate if there was any experimental potential in using an
adaptive step size scheme for each local worker in their individual learning processes, since originally
we were just using the classical 1

σ step size from optimization theory (where σ is the largest singular
value of AM

(ℓ)
k ). We tested the following 2 schemes:

4.1 Minimizing Loss at Each Step

The idea behind this first scheme was to simply select η to minimize the loss at each gradient descent
update; in other words, we wanted

argmin
η∈R

L
M

(ℓ)
k

(
x
(ℓ)
k,t+1

)
= L

M
(ℓ)
k

(
x
(ℓ)
t − η∇L

M
(ℓ)
k

(
x
(ℓ)
k,t

))
.

One straightforward to solve this is by setting ∂
∂η

[
L
M

(ℓ)
k

(
x
(ℓ)
k,t+1

)]
= 0, which gives

η
(ℓ)
k,t =

∥∥∥LM
(ℓ)
k

(x
(ℓ)
k,t)
∥∥∥2
2∥∥∥AM

(ℓ)
k ∇L

M
(ℓ)
k

(x
(ℓ)
k,t)
∥∥∥2
2

.

4.2 Decaying Polynomial Roots

The second adaptive step size scheme we tried was by finding the roots to the polynomial∑T
t=0 at(−1)T−txt, where aT = 1, at =

(
T
t

)
αT−t−1ηT−t for 0 ≤ t ≤ T − 1, and η = 1

σ .
The idea was to use decaying step sizes η1, . . . , ηT that could somewhat approximate the classical
step size η, so the coefficients were derived from the following equalities:

T∑
i=1

ηi =

(
T

1

)
η

∑
1≤i<j≤T

ηiηj =

(
T

2

)
αη2

...
T∏

i=1

ηi =

(
T

T

)
αT−1ηT .
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Unfortunately, neither of these schemes ended up achieving good experimental results (either con-
verging to around 0.1 error or diverging), and the second scheme in particular frequently had complex
roots, so we decided to try to overhaul the theory behind our approach entirely.

5 Approach 3: Federated Learning

The similarities between our problem setting and that of federated learning were immediately evident:
in federated learning, the objective is to minimize a function f of the form

f(x1, . . . , xL) =
1

L

L∑
ℓ=1

fℓ(xℓ),

by giving L local workers the problem of optimizing fℓ(xℓ) while enforcing a consensus condition
to converge to a common value x by the end of local training. Federated learning is also especially
appealing because settings in which it can be applied are generally characterized by data heterogeneity,
massive scale, and privacy constraints, all of which are relevant within our general distributed approach
given by 1.

Although there are already many existing federated learning frameworks for solving convex opti-
mization problems like FedProx [1], FedPD [8], and FedSplit [2], we decided to try to apply the
approach outlined by FedDR [5] since it seemed to fit our problem setting the best. FedDR utilizes the
eponymous Douglas-Rachford splitting technique along with randomized block-coordinate strategy
to handle nonconvex federated objectives, and for our problem, we have the updates

uk = proxLηL̂ (vk)

vk+1 = proxLηδS
(2uk − vk) ,

where uk =
[
x
(1)
k , . . . ,x

(L)
k

]
∈ R(L+1)d consists of the concatenated solutions obtained from each

local worker and L̂(uk) :=
1
L

∑L
ℓ=1 L̂M

(ℓ)
k

(x
(ℓ)
k ), using the same deregularized objective function

L̂
M

(ℓ)
k

(x) from 2 in aggregation to approximate L.

Observing that we only need to consider the active entries for each local worker, we can then set the
consensus condition for worker ℓ to M(ℓ)x(ℓ) = βM(ℓ)x(0) for some fixed x(0) and β ̸= 0. We can
also split up vk as

[
y
(0)
k , . . . ,y

(L)
k

]
. After a lot of expanding and simplifying, we eventually get the

update

x
(ℓ)
k ∈ argmin

x∈Rd

L̂
M

(ℓ)
k

(x) +
α2

2η

∥∥∥M(ℓ)
k

(
y
(ℓ)
k − x

)∥∥∥2
2

y
(ℓ)
k+1 =

(
1

αβ2
I+

L∑
ℓ=1

M
(ℓ)
k

)−1((
1

αβ2
I−

L∑
ℓ=1

M
(ℓ)
k

)
y
(ℓ)
k + 2

L∑
ℓ=1

M
(ℓ)
k x

(ℓ)
k

)
.

This provides the following algorithm:
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Algorithm 5 Distributed Linear Regression with Consensus
Input: Samples A ∈ Rn×d, labels b ∈ Rn, learning rate η, number of global iterations K,
mask sampling probability α, number of workers L, number of local iterations T , model drifting
regularization β

1: Initialize x0

2: for k = 0, . . . ,K − 1 do
3: Sample diagonal matrices

{
M

(ℓ)
k

}p

ℓ=1
with

[
M

(ℓ)
k

]
ii
∼ Bern(α) for all ℓ ∈ [L]

4: for ℓ = 1, . . . , p do
5: x

(ℓ)
k,0 := M

(ℓ)
k xk; A(ℓ)

k = AM
(ℓ)
k

6: for t = 0, . . . , T − 1 do
7: x

(ℓ)
k,t+1 := x

(ℓ)
k,0 +

η
αA

(ℓ)⊤
k b− η

α2

(
A

(ℓ)⊤
k A

(ℓ)
k − (1− α)Diag

(
A

(ℓ)⊤
k A

(ℓ)
k

))
x
(ℓ)
k,t

8: end for
9: end for

10: xk+1 :=
(

1
αβ2 I+

∑p
ℓ=1 M

(ℓ)
k

)−1 ((
1

αβ2 I−
∑p

ℓ=1 M
(ℓ)
k

)
xk + 2

∑p
ℓ=1 x

(ℓ)
k,T

)
11: end for
12: return xK

Testing this algorithm experimentally, we discovered that varying the condition number κ, mask
sampling probability α, and number of local iterations, we had the following results:

Figure 1: Results of 5 for a randomly generated matrix with n = 200, d = 500
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Figure 2: Results of 5 for a randomly generated matrix with n = 500, d = 200

For both settings, experiments were conducted with a step size of η = 1
2σ , half of the classical step

size. So far, the convergences have been somewhat high but preliminary observations are that most of
the time performing more local iterations does not seem beneficial for better convergence; this could
potentially be due to the approximation of L being too inaccurate, or perhaps due to some issues with
using a constant step size. Future directions could include introducing more variance in how A is
generated, as well as testing decaying step sizes; for the latter, preliminary results seem to indicate
that halving the step size after some number of global iterations can achieve better convergences
(below 0.01), but it’s still unclear how each of the hyperparameters are interacting with each other.
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Abstract

As large language models become larger, they require more computational and
memory resources to train and run inference on. This resource-hungry nature of
large language models limits their utility in resource-constrained environments
like mobile devices. The usual solution to this problem is to run models on the
cloud but this has various privacy and latency concerns for certain use cases. This
paper focuses on reducing the size of the embedding table in these models which
can have a significant impact on the memory footprint of compact large language
models. We detail the recent advancements in this area in this survey paper and also
introduce a new embedding method based on probabilistic count-sketch algorithms.

1 Introduction

In natural language processing, pre-trained transformer language models such as BERT (1),
RoBERTa (2), and ALBERT (3) have been established as the standard models for a variety of
language tasks like text classification, sequence labeling, and text generation. These models usually
comprise a series of transformer-based layers that act as the backbone and can be plugged in with
different output layers and fine-tuned for different tasks.

These models have been shown to have excellent predictive and generative power but have
also been recognized to have a high memory footprint due to their large number of parameters.
Previous works (? ) have shown that increasing the number of parameters in the model increases its
representational ability and accuracy on different tasks. This has resulted in the size of state-of-the-art
language models increasing by many orders of magnitude.

However, the size of these models presents a challenge when we try to deploy them on resource-
constrained environments like a mobile device or a watch. This is an important problem as as models
become more frequently used on mobile applications, there might be various applications of large
language models that need to use the private data of users and hence, can’t be processed on the cloud.
Instead, these models will need to be run on-device to respect user privacy. Another common use
case is when we want to run these models on-edge for lower latency in certain enterprise IoT solutions.

As the number of applications using large language models in these environments increases, we also
expect the memory available for each model to decrease further limiting resources. The common
practice is to fine-tune a model for each different task from a pre-trained backbone, so we have a
different model for each different application on the device. So along with reducing the memory
footprint of these models individually, we also want to identify frameworks that allow us to solve
multiple language tasks with a single base model.

In this paper, we want to answer the following questions in the context of resource-constrained
environments:

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Embedding Table sizes for BERT and compact versions (7)

• Is it possible to use a large language model (or a model with comparable performance)
without the massive disk, memory, and compute requirements?

• Is there a modular way to use a single pre-trained backbone for different language tasks on a
device with limited memory resources?

The first question has been a topic of active research in recent years. Most of the work has focused on
areas like model pruning (4), quantization (5), and distillation (6). These works have shown significant
improvements in the efficiency of memory usage but have not considered compressing the parameters
stored in the embedding layer of the model. Also, note that the memory footprint of a model can be
determined by the memory used to store its parameters. Hence, the memory footprint is determined by
the number of parameters used in the model, assuming that a parameter has a fixed predetermined size.

Our approach is focused on replacing the classical embedding table with a probabilistic al-
ternative which takes up less memory. Earlier works (7) have shown that the embedding table in
large language models makes up for a significant number of parameters, especially in compact
models which are smaller versions of the original models (after model compression based on
knowledge-distillation) e.g. BERT-Tiny (8) is a compact version of BERT. Figure 1 (7) shows the
percentage of parameters in the classical embedding tables of BERT-base, and its compact versions:
BERT-mini and BERT-tiny. Note that even for BERT-base, the embedding table takes up a significant
% of the parameters, but this % becomes much more exaggerated in distilled models occupying
almost 90% of the model. Hence, any compression in the size of the embedding table would have a
significant impact on the memory footprint of the overall model.

Various approaches to table compression have been explored for language models including
dynamic embeddings, hashing, etc. We discuss some of these models in detail in Section 3. Inspired
by these probabilistic ideas, we establish an embedding algorithm based on the popular probabilistic
count-sketch algorithm in Section 4.

For the second question, we explore previous work (9) that proposes a framework for using
a single backbone for multiple tasks combining the popular LoRA (10) framework with an
embedding table alternative in Section 3.

2 Background

A classical embedding table is a lookup that maps every token in the vocabulary to a vector in some
embedding space via an embedding matrix. This embedding matrix is trainable and has one unique
embedding vector for each token in the vocabulary. Due to this one-to-one mapping, the embedding
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Figure 2: Computation of token embedding in EELBERT (7)

table takes scales linearly with the vocabulary size. This embedding layer is the first layer that the
tokenized input goes through before getting to the transformer architecture in a vanilla pre-trained
transformer model. Additionally, for a pre-training task like masked language modeling (1), this layer
is also coupled with the output layer which predicts the masked tokens using the embedding table.

For the rest of the paper, we assume an understanding of the transformer architecture and
vanilla pre-trained transformer models like BERT (1). We also use Wq,Wk,Wv and Wo to refer to
the query/key/value/output projection matrices in the self-attention module.

3 Related Work / Survey

This section discusses different ways to replace the classical embedding table. This line of research
can be divided into two groups:

• Post-training compression: Compressing the learned embedding table after training

• Pre-training compression: Training the model with a compressed embedding table

This section and the rest of the paper focus on the latter of those groups. Subsection 2.1 will
discuss an embedding technique that dynamically computes the embeddings instead of using a
memory-occupying table. Subsection 2.2 will discuss a technique of compressing embedding tables
in recommendation systems that can be easily adapted to natural language processing. Note that
we will only be focusing on the embedding alternatives from these papers and will skip over other
aspects that might be less relevant.

We also discuss frameworks for more efficient use of a single backbone for different tasks
in this section. Specifically, we discuss LoRA (10) in Subsection 2.3, a popular technique to reduce
the memory footprint of backbone fine-tuning. Subsection 2.4 focuses on combining LoRA with the
embedding tables alternatives we discussed in earlier subsections.

3.1 EELBERT: Tiny Models through Dynamic Embeddings (7)

This paper eliminates the trainable embedding matrix by computing dynamic (and mostly determin-
istic) embeddings for the tokens in the vocabulary. The process of computing these embeddings
dynamically is shown in Figure 2:

• Divide input token into n-grams (i.e. subsequences of length 1, 2, . . . , n where the token is
of length n)

3



Figure 3: Computation of token (for tokens x, y, z) embedding in ROBE-D (11)

• For each n-gram, compute the hash value using a rolling hash function and pre-initialized
random hash seeds

• For each i ∈ [1, n], compute a projection matrix Pi as the outer product of a vector of the
hashed values of each i-gram and a subset of the random hash seeds.

• Average out each projection matrix Pi across the rows to get an embedding vector ei for
each i ∈ [1, n]

• Concatenate ei for all i to get the final embedding for the input token

Pre-training and fine-tuning BERT (1) with this embedding layer yields a model with comparable
metrics to BERT across different language tasks. Specifically, for BERT-base, the paper observes a
reduction of 21% in terms of memory and a 1.5% reduction in the GLUE score of the model. Note
that this alternative model is the same as BERT except in the input embedding layer.
//Hence, this suggests that we can replace the trainable embedding table with a dynamic embed-
ding with no impact on performance. Further ablation studies in the paper suggest that using a
completely random hash function for the embeddings will not work, especially in smaller model sizes.

Note that the significant impact of this dynamic embedding is the increase in latency. This
impact is less noticeable in large models but can be as high as 2.3x for compact models like
BERT-Tiny.

The paper concludes that using n-gram pooling hash function to compute the dynamic em-
beddings is a feasible alternative to having a classical embedding table if the increased latency is
acceptable.

3.2 Random Offset Block Embedding (ROBE) for compressed embedding tables in deep
learning recommendation systems (11)

Deep learning recommendation systems also use an embedding table for categorical tokens which
are the same as embedding tables in our context. Hence, it is a good exercise to explore ideas for
embedding table compression from the recommendation system domain which is a more mature area
in terms of efficiency.

This paper emphasizes the importance of achieving orders of magnitude more reduction in
the memory footprint of the model to have a significant impact on the utility of these compact models.
Inspired by other works using weight sharing, this paper proposes a new algorithm to replace the
embedding table called ROBE (Random Offset Block Embedding). Instead of storing an embedding
table, ROBE maintains a single array for learned parameters which is a compressed representation of
an embedding table. This array is shared across the model and can be used to generate embeddings.

To replace an embedding table of size |V | × D, we can use ROBE-D where D is the di-
mension of the embedding. The learnable matrix is reduced to a circular array M of size m. We also
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have two independent hash functions: h : N → {0, . . . ,m− 1} and g : N× N → {−1, 1}.

The computation of the embedding for token x in ROBE-D is done in the following man-
ner (shown in Figure 3):

• Hash token x using h to get the starting index for the initial embedding
• Let your initial embedding i.e. P (x) be D-dimensional sub-array of the circular array M

starting at position h(x). Note that as M is circular if h(x) +D ≥ m, we circle back to the
beginning of M to complete P (x).

• Compute G(x) = {g(x, 1), g(x, 2), . . . , g(x,D)} ∈ {−1, 1}D

• The final embedding is the element-wise product of G(x) and P (x) i.e. E(x) = G(x)◦P (x)

The ROBE-D algorithm is further adapted to use concatenated smaller chunks of the array instead of
a single chunk by adding more hash functions. The paper shows higher performance in terms of
memory latency and irregular memory accesses for ROBE-Z.

As the paper is focused on recommendation systems, most of the results and analysis are
geared towards that community. So the paper shows that this method of compression is more
effective than other techniques like quantization, other hashing techniques, MD Embeddings (12),
etc. by many orders of magnitude. Specifically, by choosing appropriate values for m and Z, the
paper shows a memory compression of up to 1000x compared to the embedding look-up table. This
is a very promising result as there is little or no change in the baseline metric used to measure the
effectiveness of the overall deep learning recommendation system model.

Due to the high degree of compression and similarities between the trainable embedding
table in recommendation systems and language models, this is an interesting area to explore.
Specifically, to implement a ROBE-D/Z compressed embedding table algorithm for language models
and test the kind of memory-performance trade-off we achieve.

3.3 LoRA: Low-Rank Adaptation of Large Language Models (10)

This paper and the LoRA algorithm form the base for a variety of techniques trying to increase the
efficiency of fine-tuning and inference using large language models. This paper is important to
explore for the second question we are trying to answer in this report: Is there a modular way to use
a single pre-trained backbone for different language tasks on a device with limited memory resources?

LoRA aims to replace a different model for every language task with a single backbone
(with frozen weights) and many small "LoRA" modules for different tasks. This reduces the memory
required per task and makes task-switching between different tasks more efficient. Also, LoRA
modules make fine-tuning more efficient.

The fine-tuning task can be expressed as updating all relevant weight matrices in a trans-
former model via a gradient update step which adds ∆Wi to each matrix Wi ∈ Rd×k. Storing this
∆Wi for every weight matrix is inefficient. However, previous work (13) shows that pre-trained
language models have a low "intrinsic dimension" and can still learn when projected to a smaller
subspace. Hence, the paper argues we can represent ∆Wi as a low-rank decomposition i.e.
∆Wi = BA where B ∈ Rd×r, A ∈ Rr×k and r << min(d, k). Note that the paper chooses to
freeze the MLP modules and only train the attention weight matrices during fine-tuning.

So the LoRA modules comprise the A,B matrices with a chosen value for r that achieves
the memory reduction required. For fine-tuning, we initialize A as a random Gaussian and B as zero
so BA = 0 at the beginning of training. We can fine-tune our backbone for any downstream task by
keeping track of a low-rank representation of the weight matrices.

The paper shows that LoRA modules have comparable accuracy to fine-tuned models with
the same backbones for pre-trained models like GPT-3, RoBERTa, etc. Additionally, as the updates
can be stored in low-rank matrices, this allows us to reduce the trainable parameters, which is directly
proportional to the memory occupied by each fine-tuned model in addition to the backbone, by many
orders of magnitude.
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Figure 4: NanoBERT Architecture with intermediate embedding size = 16 (9)

3.4 NanoBERT: An Extremely Compact Language Model (9)

This paper explores an alternative to the classical embedding lookup table but more importantly,
emphasizes the importance of combining this with LoRA fine-tuning modules for maximum
efficiency.

As this paper was initially written for large language models, the motivations are similar to
EELBERT (7) but they define a new way of computing embeddings. Specifically, they replace the
embedding matrix with an intermediate embedding matrix which maps each token to an embedding
with a smaller size. As the two dimensions of the embedding matrix are |V |, the vocabulary size, and
d, the size of the embedding, this directly reduces the number of parameters in the model. However,
we still want the final embeddings to have the original (larger) size, as a smaller embedding size can
decrease the representational ability of the model.

In the overall NanoBERT architecture, the first few layers show how the embeddings for a
sequence of tokens can be computed. This is a simple module that can be used to reduce the
embedding matrix size for any transformer-based language model. The embedding computation is
specified below::

• For each token, get the intermediate embedding (with the smaller size, say 16) from the
intermediate embedding matrix.

• Pass each embedding through a feedforward neural network (FNN) which has input size as
the small embedding size, say 16, and output size as the large embedding size, say 128.

• The computed embedding after passing through the FNN is the final embedding and has
size = 128 i.e. the original (large) embedding size of the model.

This paper also explores ways to combine LoRA with these embedding matrix alternatives. Usually,
the updates to the embedding matrix are not represented as the product of low-rank matrices so we
can not use LoRA with the embedding matrix. However, note that the architecture in Figure 4 shows
the use of LoRA modules for the embedding layer which has a large FNN matrix along with the
attention modules. Hence, the only part of the model that can not be fine-tuned using the LoRA
algorithm is the small modified embedding matrix, which is a relatively small matrix. This reduces
the size of the model when used for a single language task by reducing the size of the embedding
matrix, and reduces the overall size of all models when a single backbone is being used for multiple
tasks with a combination of LoRA and the reduction in the size of the embedding matrix.
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Figure 5: Count Sketch Embedding Algorithm to compute embedding for a token. The final
embedding is an element-wise median of each of the d chosen embeddings.

The results in the paper suggest that the accuracy of the pre-trained BERT-Tiny model with
the modified embeddings is comparable (or better) than the model with classical embeddings. Note
that in this case, the size of a classical embedding is 128 and the size of an intermediate embedding
for NanoBERT is 16. Hence, the size of the model is reduced by about 75%.

4 Count-sketch Embeddings

As explained earlier, there are a few different ways of reducing the memory footprint of the embedding
matrix:

1. Replace embedding matrix by computing embeddings dynamically. This eliminates the
memory used by the matrix but increases latency.

2. Reduce the dimensionality of each embedding vector as each row of the embedding matrix
has the same size as the dimensionality of the embedding vector.

3. Reduce the number of tokens/elements that we are mapping into the embedding matrix as
the number of rows in the embedding matrix is determined by the number of elements.

We noticed that there were no algorithms that were reducing the size of the embedding ma-
trix by reducing the number of elements mapping into the matrix i.e. method 3 in the list
above. To fill this gap, we propose Count-sketch embeddings, inspired by the classic Count-
sketch method (14) which models statistics of a data stream by hashing into a much smaller array
than the stream length and using probabilistic guarantees to decrease the error from the actual statistic.

Our algorithm takes advantage of previous works (15) which have shown that attention
sparsity in various pre-trained language models is as high as 99% in deeper layers of the network.
Hence, there is a small set of tokens that is "very" influential for the model that we can call the
"heavy-hitter tokens" in parallel to the heavy-hitter elements of a data stream in the context of the
classic Count-sketch algorithm.

For our algorithm to compute the embeddings for a token, x, we need to have d indepen-
dent hash functions, H1, H2, . . . ,Hd and d matrices with R embeddings each, E1, E2, . . . , Ed. Note
that d and R are hyperparameters that can be chosen such that dR << |V | where |V | is the size
of the vocabulary. So we reduce the embedding table by a factor of |V |−dR

|V | . We can compute the
embedding in the following manner (as shown in Figure 5):

• Compute the hash values of x using H1, . . . ,Hd modulo R which gives us a position in
each of the E1, . . . , Ed array.

• Select an embedding from each matrix at the position specified by the hash value i.e. the ith
embedding would be Ei[Hi(x)%R].

• The final embedding is the elementwise median of each of the d chosen embeddings.

As for previous works, this embedding computation can be used with any transformer-based language
model. Additionally, we can use LoRA for fine-tuning different language tasks using the same
backbone in the same manner as in NanoBERT (9).
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Table 1: Resulting comparing BERT-base and Count-BERT

Model BERT-mini Count-BERT

Model Size 44.8MB 16.79MB

SST-2 (Acc.) 0.851 0.5092
QNLI (Acc.) 0.827 0.5054
RTE (Acc.) 0.552 0.5271
MRPC (Acc.) 0.701 0.6838
QQP (Acc.) 0.864 0.6318
MNLI (Acc.) 0.719 0.3533

GLUE Score 0.753 0.5351

5 Experimentation

To ensure that using our algorithm to compute embeddings doesn’t affect the accuracy of the original
models on basic NLP tasks, we use our algorithm with BERT-mini. We pre-train the model on the
English Wikipedia Corpus and report the accuracies compared with the original model in Table 1.

Note that we can not pre-train the model in the same way as BERT-mini because the input
embedding table is used again for the masked language modeling output loss computation. Hence,
for pre-training we maintain a classical embedding table only for loss computation which is not used
for fine-tuning.

6 Results

Unfortunately, our results show that even though we achieved a significant reduction in model size,
the accuracy for various language tasks significantly suffers. Hence, the current version of the
count-sketch embedding algorithm is not an effective replacement for the embedding table.

7 Conclusion

Through this project, we have explored different ways of replacing the classical embedding table
in transformer-based language models to reduce the memory footprint of these models, especially
for deployment in resource-constrained environments. We also focused on approaches that can be
combined with LoRA to provide further compression in cases where the same backbone can be used
for different language tasks. Additionally, we proposed a novel algorithm to replace the classical
embedding table with Count-sketch embeddings. However, our current results indicate that this
algorithm is not an effective replacement as it has a significant impact on the accuracy of the model
for different language tasks.
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Abstract

Computing the excited states of a molecule is intractable for large systems, but
methods to do so on quantum computers scale tractably with the number of desired
states to compute. This problem is equivalent to the PCA problem, for which
distributed approaches have been developed. One of these is EigenGame, a game-
theoretic approach to finding eigenvectors where each eigenvector reaches a Nash
equilibrium in parallel. In this paper, we adapt the EigenGame objective function
for use on quantum computers to explore a novel method of computing excited
states. We show preliminary results that using the EigenGame objective allows
us to converge to excited states sequentially, and we outline next steps to create a
distributed algorithm.

1 Introduction

Understanding the excited states of a molecule is one of the main problems in modern electronic
structure theory. Solving this problem on a classical computer would require large amounts of
resources due to the exponential scaling of the Hilbert space. As a result, researchers have proposed
using quantum computers, which can efficiently represent and transform quantum states [2] [8]. The
potential to compute excited states on near-term, noisy quantum computers has yielded much research
in this area in recent years [6].

One of the most prominent algorithms employed in quantum chemistry problems for estimating the
ground state energy of a molecule is the Variational Quantum Eigensolver (VQE) [9]. It is based on
the variational principle in quantum mechanics, which states that given a Hamiltonian Ĥ , the ground
state energy E0 is always upper bounded by the expectation of Ĥ with respect to a trial wavefunction
|ψ⟩:

E0 ≤ ⟨ψ|Ĥ|ψ⟩ (1)

As a result, we can find E0 by finding the |ψ(θ)⟩ that minimizes ⟨ψ(θ)|Ĥ|ψ(θ)⟩:

E0 ≈ min
θ
⟨ψ(θ)|Ĥ|ψ(θ)⟩ (2)

This variational approach can be extended to compute the k-lowest eigenstates of a Hamiltonian Ĥ ,
which are the k-lowest excited states. In a paper titled "Variational Quantum Computation of Excited
States" by Higgott et al. [5], the authors propose a variational approach to excited state computation
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based on the idea of eigenvalue deflation. As computing the excited states is equivalent to finding
the eigenvalues and eigenvectors of Ĥ , they do so by iteratively using the standard VQE objective
function as in equation 2, with an additional penalty term to encourage orthogonality of excited states:

Ek ≈ min
θk
⟨ψ(θk)|Ĥ|ψ(θk)⟩+

k−1∑
i=1

βi|⟨ψ(θk)|ψ(θi)⟩|2 (3)

Although this approach has strong theoretical backing and can achieve high accuracy, one drawback
is that this approach is sequential (other sequential methods have also been proposed to compute
excited states, such as Orthogonal State Reduction VQE by Xie et al. [10]). As a result, researchers
have explored attempts to parallelize computation of excited states, one of which being the Subspace-
Search VQE (SSVQE) method by Nakanishi et al. [7] which attempts to find the subspace spanned
by the K-lowest eigenstates. To do so, a unitary is optimized to minimize the average energy of the
resulting states. In particular, the following cost function is minimized for a parameterized unitary
U(θ) and initial orthogonal states ψi, 1 ≤ i ≤ k:

min
θ

k∑
i=1

⟨ψi|U†(θ)ĤU(θ)|ψi⟩ (4)

where the eigenstates are computed via another parameterized quantum circuit in the optimized
eigenspace.

To replace the additional variational step that finds eigenvectors in the optimized eigenspace, a method
called the Quantum Parallelized VQE (QP-VQE) by Hong et al. [6] uses a different cost function and
embeds all desired excited states in one quantum circuit. This approach weights each eigenstate with
wi > wi+1, which is bounded below by the weighted sum of the Eigenenergies [6]:

min
θ

k∑
i=1

wi⟨ψi|U†(θ)ĤU(θ)|ψi⟩ ≥
k∑
i=1

wiEi (5)

based on the variational principle. This method optimizes a unitary acting on a mixed quantum state,
which requires additional quantum resources for initial state preparation, ancilla qubits, as well as
potentially higher depth ansatz due to the mixed quantum state being optimized.

In this work, our objective is to explore a parallelizable approach to computing excited states that
limits the depth and number of qubits for quantum circuits in favor of more quantum computation on
smaller circuits. In addition, we present a method for computing off-diagonal terms of a Hamiltonian
on a quantum computer, which has not previously been explored and opens up a new way of
approaching the problem of excited states computation.

2 Related Work

In this section, we will discuss a parallelizable, game-theoretic approach to classical PCA computation
called EigenGame, and we will discuss potential advantages of viewing the excited states problem
from a game-theoretic perspective.

As the problem of computing excited states of a Hamiltonian Ĥ by solving the Schrödinger equation
is equivalent to finding the top k eigenvalues of Ĥ , it is useful to explore classical techniques for
diagonalizing matrices and apply these insights to the excited states problem. Notably, one of the
most common methods for computing the top k eigenvalues of a square matrix M is the power
deflation method, which iteratively computes the excited states by finding the next highest eigenvalue
after the previous ones have been removed. A direct analog is applied to quantum computation for
excited states, as seen in the Variational Quantum Deflation algorithm in equation 3 [5].

Another approach that has garnered attention due to its novel perspective on the PCA problem is
a paper titled "EigenGame: PCA as a Nash Equilibrium" by Gemp et al. [3]. Instead of viewing
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eigenvalue computation from a deflation perspective, the authors approach the problem from a game
theoretic perspective.

To motivate the intuition behind the objective function in EigenGame, we briefly review the eigenvalue
problem underlying PCA. Given a symmetric matrix M ∈ Rd×d, our goal is to find a matrix of
eigenvectors V ∈ Rd×d such that MV = V Λ where Λ ∈ Rd×d is diagonal. As V is orthonormal,
we can observe that:

V TMV = V TV Λ = Λ (6)

We define V̂ to be our approximation of the eigenvectors V and define a matrix R(V̂ ) = V̂ TMV̂ .
Each player wants to maximize its Rayleigh quotient Rii = ⟨v̂,Mv̂⟩ and minimize the off diagonal
terms of R (Rij = ⟨v̂i,Mv̂j⟩), so that R is diagonal and approaches Λ (note that R(V ) = Λ by
equation 6).

Thus, if we let each approximate eigenvector v̂i ∈ Rd be a player in the game, where v̂i denotes the
i-th largest eigenvector, we can define their utility function as follows:

max
⟨v̂i,v̂i⟩=1

ui(v̂i|v̂j<i) = ⟨v̂i,Mv̂i⟩︸ ︷︷ ︸
Rii

−
∑
j<i

⟨v̂i,Mv̂j⟩2

⟨v̂j ,Mv̂j⟩︸ ︷︷ ︸
R2

ij
Rjj

(7)

where we divide use R2
ij to get a nonnegative penalty for the off-diagonal terms and divide by Rjj

for normalization of the penalty. The authors argue that the orthogonality constraint is satisfied
by the term ⟨v̂i,Mv̂j⟩2

⟨v̂j ,Mv̂j⟩ as if v̂i, v̂j are eigenvectors, then ⟨v̂i,Mv̂j⟩ = ⟨v̂i, λj v̂j⟩ = λj⟨v̂i, v̂j⟩ = 0.
The authors showed that the top k eigenvectors form the unique solution for the game described
in equation 7. By taking the gradient of the utility function ui(v̂i|v̂j<i) with respect to v̂i, the
authors describe both a sequential and distributed algorithm for updating the eigenvectors and show
convergence of the sequential algorithm.

One advantage of the EigenGame algorithm over power deflation is its potential for parallelization. As
the authors observed that the players become effectively stationary as they approach the eigenvectors,
a distributed approach holds the potential for further speedup. Furthermore, if there is noise in
computation of the objective function, EigenGame has the potential to be more robust as each player
is constantly adjusting to converge to an eigenvector, whereas power deflation accumulates errors
from one iteration to the next.

3 Methods

3.1 Quantum EigenGame Formulation

These advantages of EigenGame over classical deflation motivate us to explore applying EigenGame
to the excited states problem. Specifically, EigenGame’s parallelizability holds the potential to
improve upon existing methods for calculating excited states on quantum computers as mentioned in
section 1. In this section, we will motivate a novel approach to computing excited states, which we
call QuantumGame.

To formulate the quantum problem, one key observation is that we are working in a complex
Hilbert space, where the Hamiltonian Ĥ ∈ Cd×d and vectors |ψ⟩ ∈ Cd. We can use much of the
same theoretical basis as in the EigenGame problem to motivate an objective function by finding
analogs in the complex space. Specifically, we need the utility function to be real-valued (so our
classical optimizer can operate on real vector spaces). To do so, we take advantage of the following
observations: the Hamiltonian Ĥ is Hermitian (meaning Ĥ = Ĥ†), so ⟨ψ|Ĥ|ψ⟩ ∈ R. So, Ĥ is
analogous to being symmetric in the real vector space case, and we let M ← Ĥ in our Quantum
EigenGame problem. However, to use the EigenGame utility function as described in equation 7, we
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need to compute ⟨ϕ|Ĥ|ψ⟩ where |ϕ⟩ ̸= |ψ⟩, |ϕ⟩, |ψ⟩ ∈ Cd. As ⟨ϕ|Ĥ|ψ⟩ ∈ C, we propose making
this value real-valued by simply taking its magnitude: ⟨ϕ|Ĥ|ψ⟩ ← |⟨ϕ|Ĥ|ψ⟩|.
We now define an objective function for the quantum analog to the EigenGame utility function seen in
equation 7, where we minimize our objective to find the k-lowest eigenstates. We denote ˆ|ψi⟩ ∈ Cd×d

to be candidate i-th smallest eigenvector, and ˆ⟨ψi| = ˆ|ψi⟩
†

(using standard bra-ket notation):

min
⟨ψ̂i|ψ̂i⟩=1

ũi(|ψ̂i⟩, | ˆψj<i⟩) = ⟨ψ̂i|Ĥ|ψ̂i⟩ −
∑
j<i

|⟨ψ̂i|Ĥ|ψ̂j⟩|2

⟨ψ̂j |Ĥ|ψ̂j⟩
(8)

In the EigenGame paper, they also take the gradient of the utility function to determine how to
update each vector. Although we can perform a similar step here, we have not yet figured out how to
implement this step in quantum computers because it is unclear how to perform scalar multiplication
and vector addition due to norm-preserving properties in quantum mechanics. It is worth noting that,
if we can implement a well-defined update to the candidate eigenstates, then we may be able to prove
convergence for our algorithm, which no algorithm run on quantum computers currently has due to
the complicated landscape of these objective functions based on a given Hamiltonian Ĥ .

3.2 Implementation on Quantum Computers

To implement an algorithm on solving this problem on quantum computers, we adopt a hybrid-
classical variational approach as seen in every other near-term quantum algorithm for computing
excited states. A diagram of our method can be found in Figure In particular, we will run the inner
product calculations seen in the objective function 8 on quantum machines, and combine these
real-valued calculations with a classical optimizer on a classical machine.

Figure 1: We propose a hybrid-quantum classical algorithm for the excited states problem using a
variant of the objective function from EigenGame. For each eigenvector, we calculate two quantities
on quantum machines: the energy expectation for that quantum state, as well as the ’mixed’ energy
expectation of the current eigenstate with respect to the other candidate eigenstates. We then combine
these values to form our utility cost function, which our classical optimizer minimizes to update the
parameters θi for each eigenvector | ˆψi(θi)⟩.

To compute terms of the form ⟨ψ̂i|Ĥ|ψ̂i⟩, we can follow the standard approach of taking the expecta-
tion value of the Hamiltonian with respect to the prepared quantum state |ψi⟩. To compute terms of
the form ⟨ψ̂i|Ĥ|ψ̂j⟩, however, no clear quantum algorithm has been proposed. Drawing inspiration
from the SWAP test, it is the job of our work to propose a novel quantum algorithm for computing
⟨ψ̂i|Ĥ|ψ̂j⟩ [1]. The quantum circuit computing this value can be found in Fig. 2.

3.3 Mixed Energy Expectation Computation

We will now elaborate in detail the math behind how this quantum circuit computes the value ⟨ϕ|Ĥ|ψ⟩.
We can run two versions of this circuit, one with the S gate and one without, to computeRe(⟨ϕ|Ĥ|ψ⟩)
and Im(⟨ϕ|Ĥ|ψ⟩), respectively.
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Figure 2: We propose a novel quantum circuit for computing mixed terms of the form ⟨ϕ|Ĥ|ψ⟩,
where |ϕ⟩ = U(θi)|0⟩ and |ψ⟩ = U(θj)|0⟩. Our method uses quantum superposition and interference
to extract this mixed term, and consists of three steps. We first create a superposition of |ψ⟩ and |ϕ⟩,
and add a phase to the qubit depending on whether we want to measure the imaginary component of
⟨ϕ|Ĥ|ψ⟩. We then compute the expectation value of our Hamiltonian with our ancilla qubit, which
interferes the quantum states.

Assuming that |ψ⟩, |ϕ⟩ ∈ Cd where |ϕ⟩ = U(θi)|0⟩ and |ψ⟩ = U(θj)|0⟩, after the ’Superposition
Preparation’ in Fig. 2, if we let Ψ represent the state of our quantum system, then Ψ can be written
as:

Ψ =
1√
2
(|ψ0⟩+ |ϕ1⟩) (9)

We then apply the phase gate S to Ψ depending on whether we want to measure the imaginary
component of ⟨ϕ|Ĥ|ψ⟩. We will proceed our analysis without applying the S gate to compute
Re(⟨ϕ|Ĥ|ψ⟩), although the analysis will proceed symmetrically if the S gate is applied to compute
Im(⟨ϕ|Ĥ|ψ⟩).
We then apply the H gate again to our quantum system, putting it in the state:

Ψ =
1

2
(|ψ0⟩+ |ψ1⟩+ |ϕ0⟩ − |ϕ1⟩) (10)

We then compute the expectation value of our Hamiltonian, measuring the effects of our ancilla:
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⟨Ψ|Ĥ ⊗ Z|Ψ⟩ = 1

4
⟨(|ψ0⟩+ |ψ1⟩+ |ϕ0⟩ − |ϕ1⟩)|Ĥ ⊗ Z|(|ψ0⟩+ |ψ1⟩+ |ϕ0⟩ − |ϕ1⟩)⟩ (11)

=
1

4
(⟨ψ|Ĥ|ψ⟩+ ⟨ϕ|Ĥ|ψ⟩ − ⟨ψ|Ĥ|ψ⟩+ ⟨ϕ|Ĥ|ψ⟩+ ⟨ψ|Ĥ|ϕ⟩+ ⟨ϕ|Ĥ|ϕ⟩ (12)

+ ⟨ψ|Ĥ|ϕ⟩ − ⟨ϕ|Ĥ|ϕ⟩) (13)

=
1

4
(2⟨ϕ|Ĥ|ψ⟩+ 2⟨ψ|Ĥ|ϕ⟩) (14)

=
1

4
(4Re(⟨ϕ|Ĥ|ψ⟩)) (15)

= Re(⟨ϕ|Ĥ|ψ⟩) (16)

as desired.

We now are able to compute all the values in the QuantumGame utility function 8, and add these
values classically and use a classical optimizer (in this work, we used the Sequential Least Squares
Linear Programming, or SLSQP, optimizer) to minimize the utility function. We would like to note
that other choices of classical optimizers and quantum circuit structures to achieve the desired result
may yield better results, but this is ongoing work and we focus on presenting the ideas behind our
work in this paper.

4 Results

We performed preliminary testing of our method on the H2 molecule to compute the smallest 3
eigenvalues of its corresponding Hamiltonian. We use a two-qubit quantum circuit exhibiting linear
entanglement with 8 parameters, and use the Sequential Least Squares Linear Programming (SLSQP)
optimizer, which is effective in achieving orthogonality constraints and computing gradients for fast
convergence. We plot the convergence of QuantumGame compared to Variational Quantum Deflation
(VQD), which is a standard algorithm for computing excited states sequentially, for the lowest 3
eigenstates in Fig. 3.

We see that QuantumGame achieves a faster convergence compared to VQD in terms of number
of calls to the objective function (392 versus 647 calls to the objective function). QuantumGame
and VQD exhibit identical convergence for the first eigenvalue, which is expected because, for the
first eigenvalue, the optimization problem is identical. However, for states 2 and 3, we see that
QuantumGame achieves a faster convergence for both states. For state 2, we see that QuantumGame
effectively minimizes the expectation value without increasing the objective function, allowing it to
converge at a faster rate. For state 3, although QuantumGame ’overshoots’ by finding a state that
minimizes the expectation energy too much, we see that it very effectively factors in the ’off-diagonal’
penalty found in equation 8 to find the third eigenvalue faster than VQD. In contrast, VQD has a
slower convergence for the third eigenvalue, where it slowly converges to the third eigenvalue.

These results are promising to show how QuantumGame can improve upon VQD, but an important
consideration is the amount of quantum resources used in QuantumGame versus in VQD, which we
will cover in the next section.

5 Discussion

Based on our current implementation, for the i-th vector in QuantumGame, we have to run expectation
values of the Hamiltonian for i quantum circuits (computing the expectation of the Hamiltonian for
the state |ψ̂i⟩ and |ψ̂j<i⟩), whereas VQD only requires one Hamiltonian expectation value. This is an
additional cost we must pay for QuantumGame because we are utilizing additional information from
Ĥ to guide the optimizer in the objective function. Based on the preliminary experiment that we
ran, we see that incorporating Ĥ into the objective function appears to be beneficial, but additional
experimental testing needs to be performed to see whether or not the tradeoff in calls to the objective
function versus incorporating the Hamiltonian in the objective function is worth it. Additionally,
as mentioned in 3.3, computing the value ⟨ψ̂i|Ĥ|ψ̂j⟩ requires two quantum circuits to be run (to
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Figure 3: We plot the convergence of Variational Quantum Deflation (VQD) and QuantumGame
based on the number of calls to the objective function. We see that QuantumGame achieves a faster
convergence than VQD.

compute the real and imaginary components of the value), but assuming that the sizes of the quantum
circuits are not too large, this cost should not be too significant because these circuits can be run in
parallel, and there exist smaller quantum devices which we can use to parallelize this computation.

Regarding the depth of the circuit for mixed energy expectation calculation as seen in Fig. 2, this
circuit does have a higher depth than the quantum circuit used to calculate ⟨ψ̂i|ψ̂j⟩ used in VQD,
especially because the controlled unitary gates may be difficult to implement for general unitaries. In
VQD, they use a compute-uncompute method, which applies the state preparation gates for ψj first
followed by the adjoint of each gate used to prepare ψi applied in reverse order), but we note that
an alternative circuit can be used for mixed energy expectation calculation which contains twice as
many qubits and uses conditional SWAP gates instead to superimpose the qubits [5] [4]. Depending
on whether or not additional qubits are available on the quantum machine, the alternative circuit
can be employed which would have a strictly lower depth than the Compute-Uncompute method.
Constructing a shallow circuit that efficiently computes this mixed energy expectation is a clear next
step for this work. The other differences of the QuantumGame approach outlined in Fig. 1 compared
to VQD have a constant-time impact.

Overall, our preliminary results are promising to show both the convergence of the QuantumGame
approach and its potential to achieve faster convergence than VQD. Our current research efforts are
focused on the following question: another advantage of EigenGame is that it can compute eigenvalues
in parallel, so can we leverage that strength for QuantumGame as well? Preliminary experiments do
not show faster convergence when eigenvalues are computed in parallel (the optimization appears to
be fruitless until the previous eigenvectors converge), and we are currently performing additional
work in this area to explore parallelization of QuantumGame.
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6 Conclusion and Future Work

In this work, we presented a novel approach to the problem of computing excited states on a quantum
computer by drawing inspiration from a game-theoretic formulation to the PCA problem proposed
in the EigenGame paper. Preliminary results suggest effective convergence of EigenGame, and our
work provides additional research questions to be explored:

Parallel Computation of Excited States. As was mentioned in Sec. 5, QuantumGame holds the
potential for parallelization just as EigenGame does. The question we ask is, "When can we achieve
an ’approximate enough’ eigenvector so that future candidate eigenvectors can begin productive
optimization?" We can attempt delayed starts, detection of "barren plateau’s", or assigning higher
weights to eigenvectors which have run for more iterations (and likely are closer to the desired
eigenvector).

Accuracy. How accurate is QuantumGame compared to other methods of computing excited states?
Rigorous benchmarking for multiple methods on a diverse set of molecules would be required to
create more robust analysis and draw better insights on the behavior of QuantumGame, and how we
might improve QuantumGame based on its shortcomings.

Quantum Resource Cost. One cost of the current implementation of QuantumGame is the additional
quantum resources needed for computing the objective function compared to existing quantum
algorithms. Additional quantum algorithm design may help reduce the quantum resource cost of our
method while still ensuring its accuracy.

Mixed Energy Expectation. One novel contribution of our work that has not been seen in other
works (to our knowledge) is the incorporation of the Hamiltonian in the penalty of the objective
function. As we saw in our preliminary results, incorporating the Hamiltonian may lead to an
objective function that can be optimized faster due to the additional information about the problem
that we have. This new perspective opens up additional work for exploring how the Hamiltonian can
be used as a penalty in the objective function to obtain more information about the problem, as well
as weighing tradeoffs to see if this choice is worth the additional computational cost.
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Abstract

The evolution of natural language processing (NLP) is increasingly characterized by1

the use of large-scale pre-training on general domain data, followed by fine-tuning2

for specific tasks. However, as models become larger, the traditional approach of3

fine-tuning all parameters becomes computationally infeasible. To address this4

challenge, Low-Rank Adaptation (LoRA) is introduced. This method retains the5

original weights of pre-trained models and integrates trainable low-rank matrices6

within each Transformer layer, significantly reducing the number of parameters7

that need adjustment during fine-tuning.8

While LoRA has proven effective for fine-tuning, its potential in the pre-training9

phase is less understood. A novel method that extends LoRA to the pre-training10

process is introduced, detailing the unique challenges and limitations encountered.11

This novel solution is LoRA-the-Explorer (LTE), which utilizes a bi-level opti-12

mization algorithm to facilitate parallel training of multiple low-rank structures13

across different computing nodes, enhancing the scalability and efficiency of model14

training.15

In addition to these innovations in model training, we also tackle the issue of com-16

munication overhead in distributed training environments. We introduce PUFFER-17

FISH, a framework that employs compressed stochastic gradients, achieved through18

methods such as sparsification or quantization, to reduce the data transmitted dur-19

ing training. PUFFERFISH not only lowers communication costs but also avoids20

additional computational burdens typically associated with gradient compression,21

maintaining the accuracy of state-of-the-art models. This framework is designed22

for easy integration into existing deep learning platforms, requiring minimal modi-23

fications for implementation.24

Collectively, these advancements—LoRA, LTE, and PUFFERFISH—represent25

significant steps forward in optimizing both the efficiency and effectiveness of26

training large-scale NLP models, addressing key challenges in model scalability,27

training speed, and operational overhead.28

1 Introduction29

1.1 Low-Rank Adaptation (LoRA)30

In the field of natural language processing (NLP), a common practice involves using a large-scale31

pre-trained language model for various downstream applications. Typically, adapting these models to32

specific tasks is done through fine-tuning, where all the model’s parameters are updated. This method,33

though straightforward, means that each adapted model retains the same number of parameters as the34

original, leading to high storage and computation costs.35

To address this issue, many researchers have started exploring ways to only adjust some of the36

model’s parameters or to add external modules tailored to new tasks. This approach significantly37



Figure 1: This is how LoRA reparametrization works. Only A and B are trained.

reduces the number of parameters that need to be stored and managed for each specific task, thereby38

enhancing operational efficiency. However, these methods often introduce delays during model39

inference and sometimes do not achieve the same level of performance as the traditional fine-tuning40

method, presenting a trade-off between efficiency and effectiveness.41

Inspired by the work of Li et al. (2018a) and Aghajanyan et al. (2020), which indicated that models42

with a large number of parameters actually function within a surprisingly low intrinsic dimension,43

we developed a new method called Low-Rank Adaptation (LoRA). Our approach is based on the44

hypothesis that changes in model weights during adaptation exhibit a low "intrinsic rank." LoRA45

specifically allows us to indirectly train some dense layers of a neural network by optimizing low-rank46

matrices that represent these changes, all while keeping the pre-trained weights fixed.47

One of the major benefits of using LoRA is its operational efficiency. It allows us to use a single48

shared pre-trained model to create many smaller, task-specific LoRA modules. By freezing the shared49

model, we can quickly switch between tasks by simply replacing the specific matrices used for each50

task, as shown in Figure 1. This method significantly cuts down on storage needs and reduces the51

overhead associated with switching tasks, potentially making the deployment of adaptive NLP models52

much more practical in real-world settings.53

1.2 LoRA The Explorer (LTE)54

LoRA-The-Explorer expands the usage of the low-rank adapters for pre-training and would be55

a good competitor to standard pre-training from scratch. This can bring many advantages to the56

table, like lower memory requirements and lower communication between the contributing nodes,57

which is appealing for band-limited frameworks. These positive points make it possible for a single58

consumer-grade GPU to overcome the computational complexities of training a large deep-learning59

model. LoRA The Explorer leverages both data and model parallelism by training on different shards60

of the data distribution and by storing different copies of the LoRA parameters.61

62

A single LoRA head cannot achieve the performance of standard optimization algorithms63

for pre-training unless it has a rank of r = min{m,n} where m and n are dimensions of the original64

weight matrix. The drawback of r = min{m,n} is that it increases the memory consumption. While65

the case of r ≪ min{m,n} can help to decrease required memory to O(r(m + n)) compared to66

O(mn) for the standard model, setting r to min{m,n} ends up to a worse scenario for memory67

usage and compromises the memory efficiency. This observation implies the need for multiple68

Low-Rank Adapters to achieve the performance of standard pre-training and assure memory69

efficiency. High-rank matrices can be decomposed into a linear combination of multiple low-rank70

matrices. A simple illustration of that is the singular value decomposition, which transforms a given71

matrix into the summation of rank-1 matrices formed by the outer product of the right and left72

singular vectors. This intuition forms the basis for multi-head LoRA parameterization where each73

head estimates a low-rank model, then all the low-rank weights can be added to make a higher rank74

estimate for the pre-training problem.75

1.3 PUFFERFISH:76

In the realm of modern machine learning, distributed model training, particularly data parallel training,77

has become essential for achieving significant speed enhancements in various applications. This78
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method allows a model to be trained simultaneously across multiple computing nodes, theoretically79

promising substantial reductions in training time. However, the actual performance improvements80

often do not meet these ideal expectations, primarily due to communication overheads that become81

more pronounced as model complexity increases.82

A major bottleneck in this process arises from the frequent need to update and transmit gradients—the83

changes computed for model parameters after each batch of data is processed—across these nodes.84

As state-of-the-art models now include hundreds of billions of parameters, the data volume for these85

updates is massive. To tackle these challenges, recent research has focused on gradient compression86

techniques, such as low-precision training and sparsification, which aim to reduce the amount of data87

that needs to be communicated.88

Despite these advancements, gradient compression often introduces new issues, such as increased89

computational demands for compressing the gradients, insufficient utilization of gradient data, and90

the need for extensive modifications to integrate these techniques into existing deep learning frame-91

works efficiently. Given these complications, our study proposes integrating gradient compression92

directly into the model’s architecture, potentially simplifying the training process while retaining93

communication efficiency. We explore this by initially training a standard, full-rank model for a94

fraction of the total training epochs and then converting it to a more manageable, low-rank format95

using Singular Value Decomposition (SVD). This approach not only aims to maintain model accuracy96

but also reduces the overhead associated with traditional gradient compression methods, offering a97

promising avenue for efficient and effective distributed training.98

2 Literature Review99

2.1 Low-Rank Adaptation (LoRA)100

We discuss the straightforward design of Low-Rank Adaptation (LoRA) and its practical advantages,101

which are applicable to any dense layers in deep learning models.102

In deep learning, neural networks consist of numerous dense layers that perform matrix multiplication103

using fully-ranked weight matrices. According to research by Aghajanyan et al. (2020), pre-trained104

language models can still effectively learn despite being reduced to a lower-dimensional subspace,105

indicating a low "intrinsic dimension." Building on this concept, we hypothesize that during model106

adaptation, the weight updates also exhibit a low "intrinsic rank."107

To implement this, for a pre-trained weight matrix W0 in a space Rd×k, we restrict its updates using108

a low-rank decomposition W0 +∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r109

is significantly smaller than d and k. During the training phase, W0 remains fixed, not updated by110

gradients, whereas A and B are trainable. Both W0 and ∆W = BA interact with the same input, and111

their outputs are added together to produce the final output h. Specifically, the output is calculated as:112

h = W0x+∆Wx = W0x+BAx

We depict this process of reparameterization in Figure 1. Initially, A is set using a random Gaussian113

distribution, and B is initialized to zero, making ∆W = BA start at zero at the beginning of training.114

The scaling factor ∆Wx is adjusted by αr, where α remains constant. In terms of optimization,115

particularly with the Adam optimizer, adjusting α is akin to modifying the learning rate when the116

initialization is scaled appropriately. Therefore, we typically set α to the first value of r tested and do117

not further adjust it. This approach of scaling minimizes the necessity to recalibrate other training118

settings when r is changed, according to Yang & Hu (2021).119

In essence, LoRA introduces a method to optimize neural network training by managing the com-120

plexity of weight adjustments, making the training process more efficient without sacrificing model121

performance.122

2.2 LoRA The Explorer (LTE)123

LoRA-The-Explorer’s advantages include reduced memory demands and communication overhead124

between nodes, which is particularly beneficial for bandwidth-limited frameworks. As stated in125

the introduction, a single Low-Rank Adapter suffers from a rank deficiency for pre-training. This126

suggests the novel idea of using multiple parallel heads to compensate for the rank deficiency. Each127
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Figure 2: LTE diagram and its 3 steps: (1) train: each head is trained independently for T iterations
on different mini-batches from the same distribution, (2) commit and merge: averaging the individual
LoRA updates after aggregation, (3) LTE: applying updates to main weights and resetting the matrix
B, then repeating the optimization for a new iteration with new LoRA parameters

head will be provided with a separate subset of the train data with the same statistical distribution and128

try to learn a low-rank estimate of the parameters with its own initialization. Then, the optimization129

results from each head are gathered and merged to update the whole model in a fashion similar to130

federated learning systems. The mathematical details of this method will be stated in the following131

subsection on Multi-head LoRA (MHLoRA).132

2.2.1 Multihead LoRA133

Multi-head LoRA reparameterizes the full-rank weights into a linear combination of N low-rank134

weight matrices denoted by Bn and An.135

fMHLoRA(x) = Wx+
s

N

N∑
n=1

BnAnx

The parallel LoRA heads provide low-rank weights that are periodically merged into the full weights136

with simple linear combinations. We can trivially show that the dynamics of a single parallel LoRA137

head can estimate the direction of one step of MHLoRA by rewriting the minimization problem in a138

different way:139

argmin
Bn,An

L
(
W + s

N

N∑
n=1

BnAn

)
≡ argmin

B̂n,Ân

L
(
Ŵ + s

N B̂nÂn

)
when Ŵ = W + s

N

∑
j ̸=n

BjAj , Ŵ accumulates all the information of the LoRA parameters at every140

iteration. So the single node B̂nÂn can approximate the direction a single step of the MHLoRA. This141

simple intuition illustrates that the exact gradient updates of the Multihead LoRA are recoverable, and142

since the gradient’s rank tends to increase through the training, MHLoRA would be able to estimate143

higher rank updates compared to a single head.144

2.2.2 LTE algorithm145

In this section, we will explain the LoRA The Explorer algorithmically. In the training step, each146

LoRA head performs a gradient descent algorithm to minimize the objective function on its local147

data sampled from a similar distribution to the data of other participating nodes. This results to148

an overall update form of δloran(x) = −η
∑

t∇loran(x[t]) for each head. Then, In the commit149

and merge step, all of these updates are aggregated and averaged to update the whole model with150

∆lora(x) =
1
N

∑
n δloran

(x). The updated whole weights are then sent to all the contributing heads151

to update their initialization and the same procedure repeats until convergence.152
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Algorithm 1 LoRA The Explorer(LTE)
Input: Dataset Dtrain, model F , loss function L, parameters θ = {W0, · · · ,WL}, merge scalar s,
number of workers N , merge iterations T

1: while not converged do
2: optional: quantize θ, Keep high precision copy
3: for each worker n do (in parallel)
4: if LoRA not initialized then
5: Bn, An ← LoRA_parameterize(F)
6: else
7: (optional) reset parameter Bn to zero
8: Optimize Bn,An for T iterations by minimizing Ex,y∼Dtrain

[L(F(x), y)]
9: end if

10: Synchronize by Communicating LoRA parameters
11: end for
12: for each worker n do
13: for Bn, An in Bn,An do
14: Merge LoRA params Wn ←Wn + s

NBnAn

15: end for
16: end for
17: end while

2.3 PUFFERFISH153

In this study, we introduce PUFFERFISH, a framework designed for efficient computation and154

communication in distributed training. PUFFERFISH adapts any deep neural network architecture155

into a pre-factorized low-rank format and trains this modified network to enhance both computational156

and communication efficiencies, eliminating the need for direct gradient compression. However,157

we have found that training these pre-factorized low-rank networks directly can lead to significant158

accuracy losses, particularly in large-scale machine learning applications. To address these losses, we159

have developed two strategies: (i) implementing a hybrid architecture and (ii) employing a technique160

known as vanilla warm-up training.161

Hybrid network architecture. In the PUFFERFISH framework, low-rank factorization is employed162

to approximate the original weights of a neural network, denoted by Wl ≈ UlV
⊤
l for each layer163

l. This technique, however, introduces approximation errors which may accumulate and propagate164

from earlier to later layers, potentially affecting the overall model accuracy. To counteract this, the165

strategy adopted involves factorizing only the later layers of the network. This approach is particularly166

effective in Convolutional Neural Networks (CNNs), where the bulk of parameters is often located in167

the later layers, thereby allowing substantial model compression without significant accuracy loss.168

In a network with L layers, rather than factorizing all layers, the first K − 1 layers are kept intact,169

with only layers from K onward being factorized, where K is a hyper-parameter that helps balance170

compression efficiency against model accuracy. The choice of K is tuned for each model to optimize171

performance. Experimental results have shown that such a hybrid architecture can mitigate the172

loss in test accuracy, for instance, approximately 0.6% for a modified VGG-19 model with K = 9,173

demonstrating the efficacy of this approach in maintaining a favorable balance between model size174

and accuracy.175

176

Vanilla warm-up training. Vanilla warm-up training is recognized as essential due to its significant177

impact on the final accuracy of a model. Research has shown that early training phases are crucial, and178

adjustments like sparsifying gradients or factorizing weights too early can permanently harm model179

accuracy. To counteract potential accuracy losses from early modifications, this work introduces a180

method called "vanilla warm-up training." In this approach, the network is initially trained in its full,181

unmodified state for a few epochs. After this initial phase, the model weights are then factorized182

using truncated Singular Value Decomposition (SVD) to initialize a low-rank version of the network.183

This technique leverages the stability of the early trained full-rank model to ensure a more reliable184

and accurate foundation for the subsequent, more compressed training phases.185
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Algorithm 2 PUFFERFISH Training Procedure
Require: Randomly initialized weights of vanilla N -layer architectures {W1,W2, . . . ,WL}, and the

associated weights of hybrid N -layer architecture {W1,W2, . . . ,WK−1, UK , V ⊤
K , . . . , UL, V

⊤
L },

the entire training epochs E, the vanilla warm-up training epochs Ewu, and learning rate schedule
{ηt}Et=1

Ensure: Trained hybrid L-layer architecture weights {Ŵ1, Ŵ2, . . . , ŴK−1, ÛK , V̂ ⊤
K , . . . , ÛL, V̂

⊤
L }

1: for t = 1, . . . , Ewu do
2: Train {W1,W2, . . . ,WL} with learning rate schedule {ηt}Ewu

t=1 ▷ vanilla warm-up training
3: end for
4: for l = 1, . . . , L do
5: if l < K then
6: Copy the partially trained Wl weight to the hybrid network
7: else
8: ŨlΣ̃lṼ

⊤
l = SVD(Wl) ▷ Decomposing the vanilla warm-up trained weights

9:
10: Ul = ŨlΣl

1
2 , V ⊤

l = Σl
1
2 Ṽ ⊤

l
11: end if
12: end for
13: for t = Ewu + 1, . . . , E do
14: Train the hybrid network weights {W1,W2, . . . ,WK−1, UK , V ⊤

K , . . . , UL, V
⊤
L } with learn-

ing rate schedule {ηt}Et=Ewu
▷ consecutive low rank

training
15: end for

The PUFFERFISH Training Procedure, as detailed in Algorithm 2, outlines an advanced approach to186

training deep learning models. The process initiates with two principal sets of inputs: the weights of187

a conventional neural network, denoted as the vanilla network, alongside the weights for a specialized188

hybrid network architecture. The vanilla network undergoes initial training for a predefined number189

of epochs, represented as Ewu, following a prescribed learning rate schedule. This stage, known as190

vanilla warm-up training, is essential for establishing a robust baseline for the model’s subsequent191

accuracy.192

Subsequent to the warm-up phase, the procedure shifts focus to the initialization of the hybrid network.193

For layers up to the K−1th, weights are replicated directly from the vanilla model, hence maintaining194

their original full-rank structure. Conversely, for layers starting from the Kth layer onward, weights195

are transformed through a factorization process using Singular Value Decomposition (SVD), yielding196

a low-rank format. This technique effectively compacts the model’s complexity, which is particularly197

advantageous for mitigating computation and communication expenditures during training, especially198

in distributed settings.199

The concluding phase engages the hybrid network—now integrated with the newly initialized low-200

rank layers—in further training for the remaining epochs (E − Ewu). This stage is intended for the201

fine-tuning of the model within its revised low-rank configuration, with an objective to retain high202

model accuracy while ensuring computational economy. The end product is a hybrid model that203

has been methodically trained to leverage the benefits of both vanilla and low-rank structures. This204

aligns with the overarching goal of the PUFFERFISH framework, which is to streamline the training205

process of neural networks without impinging upon their efficacy.206

3 Problem Statement207

Let X ∈ Rn×d be the matrix of an aggregation of n input data points, each with d features, generated208

by sampling each entry from the normal distribution Xij ∼ N (0, 1), and normalizing each row to209

have a unit Euclidean norm. Let Y ∈ Rn×m be the matrix of an aggregation of n output data points,210

each with m entries, generated by passing the input data through a low-rank linear channel W ∗211

and adding a little bit of additive white Gaussian noise (AWGN) to the result. The problem can be212

stated as estimating the low-rank model W ∗ by accessing the input and output data points like the213
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least-squares regression problem.214

min
W∈Rd×m

1

2
∥Y −XW∥2F (1)

We aim to develop a factorized model represented as h(X) = XABT , where A is a matrix with215

dimensions d× r, and B is a matrix with dimensions m× r. In this way, we can inherently force216

W = ABT to be low-rank with rank r. This modeling approach extends to various applications,217

including linear regression, shallow linear networks, robust Principal Component Analysis (PCA),218

and Low-Rank Adaptation (LoRA) with linear activations. The training process for this model is219

essentially about solving an optimization problem, where we aim to find the best matrices A and B220

that minimize the difference between our target Y and the product XABT , specifically:221

min
A∈Rd×r,B∈Rm×r

∥∥Y −XABT
∥∥2
F

(2)

In this project, we’re particularly interested in scenarios where r is less than the minimum of m and222

d, which means that the resulting matrix W = ABT is low-rank. In such cases, each column of A223

(and correspondingly, each column of B) defines a direction in the low-rank subspace. Our goal is to224

investigate whether it’s possible to sequentially discover these directional vectors using a method225

similar to deflation, which implicitly maintains orthogonality among them.226

Now let’s consider a sequence of decreasing values σ1, σ2, . . . , σr, such as σi =
1
i , and let Σ ∈ Rr×r227

be the diagonal matrix with Σii = σi. We generate matrices A∗ and B∗ as follows: A∗ = Â∗Σ
1
2 and228

B∗ = B̂∗Σ
1
2 , where Â∗ ∈ Rd×r and B̂∗ ∈ Rd×r have orthonormal columns. To obtain matrices229

with orthonormal columns, one method is to generate a random matrix M ∈ Rd×m, perform Singular230

Value Decomposition (SVD) on M , and take the top-r left and right singular vectors. After generating231

A∗ and B∗, we then generate the target matrix Y as follows: Y = XA∗B∗⊤ + z, where z is the232

additive white Gaussian noise mentioned above.233

3.1 Simple Gradient Descent234

First, we implement the simple gradient descent to solve the equation (1). If we do not force the235

algorithm to have low-rank updates in each iteration, we will estimate the matrix W ∗ with low236

error, but the result will not be a low-rank matrix. We can do iterative hard thresholding by keeping237

the largest r singular values of the update at each iteration. This would be called the projected238

gradient descent algorithm, and the results of our simulation show that it can calculate the low-rank239

approximation of W ∗ with low error. However, this method cannot extract the low-rank subspaces240

sequentially one by one.241

3.2 Factorized Gradient Descent242

We utilize Factorized Gradient Descent, a low-rank solver, to tackle the problem. Specifically, the243

function f(A,B) we aim to minimize is given by:244

f(A,B) =
1

2
∥Y −XAB⊤∥2F

This function represents the squared Frobenius norm of the difference between Y and the product245

XAB⊤, which we attempt to minimize. The update steps in Factorized Gradient Descent for A and246

B are formulated as follows:247

At+1 = At − ηA∇Af(At, Bt)
248

Bt+1 = Bt − ηB∇Bf(At, Bt)

Here, ηA and ηB represent the learning rates for A and B respectively. The gradients∇Af(At, Bt)249

and ∇Bf(At, Bt) drive the updates, reducing the error in each iteration of the algorithm.250

251

The factorized gradient descent algorithm can be modified to estimate rank-1 matrices by choosing252

abT as the outer product of two vectors instead of matrices A and B. Then the result would be253

deflated from the data Y and the next orthogonal rank-1 estimates are calculated sequentially. In254

Figure (3), we can see how the error decreases as we continue to estimate more and more rank-1255

matrices and add them up to converge to W ∗256
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Figure 3: Error diagram, the Frobenius norm of the difference between rank-r approximate with
gradient descent based algorithm and the rank-r approximate of W ∗ is decreasing as we approach the
exact rank of W ∗
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Abstract

While deep learning models offer solutions to many problems in today’s world, they1

provide issues of their own that must be resolved. DeepSpeed is a deep learning2

optimization library that collects many features and functions that address these3

issues, such as parallelism, compression, training, and inference. By gathering4

all of these functions in one library, DeepSpeed is an easily usable and invaluable5

tool for model scientists and algorithm designers to improve their models’ speed,6

scalability, and efficiency.7

1 Introduction8

Training complex deep learning models presents numerous challenges. In addition to devising9

sophisticated model architectures, model scientists must adeptly implement contemporary training10

methodologies, encompassing distributed training, mixed precision computation, gradient accumula-11

tion strategies, and systematic checkpointing mechanisms. Even with meticulous integration of these12

techniques, achieving optimal system performance and convergence rates remains difficult at best.13

The management of large models creates a uniquely daunting challenge: traditional data parallelism14

methodologies often falter due to memory constraints, but model parallelism techniques also pose15

formidable technical hurdles. Addressing these multifaceted challenges, DeepSpeed emerges as16

a pivotal framework designed to expedite the development and training of deep learning models.17

Through its innovative approach, DeepSpeed not only mitigates the inherent complexities associated18

with large model sizes but also enhances training efficiency and scalability, thereby facilitating19

accelerated progress in the field of deep learning research and application.20

2 What is DeepSpeed?21

DeepSpeed is a transformative deep learning optimization software suite, distinguished by its capacity22

to facilitate unparalleled speed and scale in both training and inference tasks within the realm of23

deep learning. Positioned as an accessible solution, DeepSpeed empowers users with a spectrum24

of functionalities aimed at enhancing efficiency and effectiveness in deep learning endeavors. Its25

repository on GitHub and its dedicated website serve as conduits for users to explore and engage with26

its features.27

At its core, DeepSpeed embodies a fusion of pioneering system innovations tailored to reshape the28

landscape of large-scale deep learning training and inference. Among its flagship contributions is29

ZeRO (which stands for "Zero Redundancy Optimizer"), a groundbreaking approach that optimizes30

memory consumption and communication overhead, thereby enabling the effective training of large-31

scale models. Augmenting this innovation is 3D parallelism, which combines multiple subtypes32

of parallelism and harnesses model and data parallelism along with pipeline parallelism to further33

accelerate training processes.34
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Moreover, DeepSpeed extends its impact to the realm of inference optimization through a convergence35

of advanced parallelism techniques, including tensor, pipeline, expert, and ZeRO-parallelism. By36

amalgamating these methodologies with high-performance custom inference kernels, communication37

optimizations, and heterogeneous memory technologies, DeepSpeed achieves unparalleled scalability38

and efficiency in inference tasks, while simultaneously reducing latency, enhancing throughput, and39

minimizing cost overhead.40

Furthermore, DeepSpeed encompasses a suite of compression techniques aimed at augmenting41

inference efficiency and reducing model sizes. These techniques, characterized by their ease of42

use and flexibility, cater to the diverse needs of researchers and practitioners. Notable among43

these innovations are ZeroQuant and XTC, which represent state-of-the-art advancements in model44

compression, promising faster inference speeds, smaller model footprints, and significantly reduced45

compression costs.46

3 Features of DeepSpeed47

DeepSpeed has a number of sophisticated features, each designed to enhance the efficiency and48

scalability of deep learning tasks. These features, coupled with DeepSpeed’s intuitive interface,49

facilitate seamless integration into existing workflows, empowering users to tackle complex deep50

learning challenges with ease.51

3.1 Parallelism52

One way that DeepSpeed achieves such high speed and scalability is through parallelism. Parallelism53

aims to distribute the training workload of a neural network across all available processing units to54

achieve higher efficiency. DeepSpeed offers several different methods of achieving parallelism, each55

offering different benefits and downsides.56

3.1.1 Data Parallelism57

Data parallelism splits the training data between the GPUs available. Compute efficiency, or efficiency58

based on how many computations need to be completed, is high since little communication is needed59

between the units. However, memory efficiency, or efficiency based on the amount of memory60

used, is low since the model and optimizer need to be replicated on each unit, taking up large61

amounts of memory. ZeRO uses data parallelism, but it improves memory efficiency by utilizing three62

optimization stages that partition the optimizer states to reduce the amount of redundant information63

taking up memory.64

3.1.2 Model Parallelism65

Model parallelism splits the layers of the model between the GPUs available. This method has66

high memory efficiency since each worker unit only has to store the layer it is responsible for in67

memory. However, the compute efficiency is low since units must constantly communicate with68

each other about activations. DeepSpeed uses NVIDIA’s Megatron-LM for model parallelism, which69

implements tensor parallelism to reduce the amount of communication necessary, therefore increasing70

compute efficiency.71

3.1.3 Pipeline Parallelism72

Pipeline parallelism splits the layers of the model into stages, which can be processed in parallel.73

When the forward pass for a “micro-batch”, or small unit of data, is completed, the activation memory74

is passed on to the next stage. When a stage finishes its back propagation, the gradients are passed75

backwards through the pipeline. This method has mixed memory and compute efficiency. Increased76

pipeline stages proportionally decrease memory, but each processing unit must store the activations77

for all micro-batches currently being processed. Pipelining has very low communication overhead,78

but the stages must be exactly load-balanced to achieve good compute efficiency.79
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3.1.4 3D parallelism80

3D parallelism combines multiple subtypes of parallelism, harnessing model and data parallelism81

along with pipeline parallelism to further accelerate training processes. The key attribute of 3D82

parallelism is its adaptability, which allows it to handle massive models with over a trillion parameters83

with high memory and compute efficiency. Memory efficiency is improved by the use of pipeline84

stages, as in pipeline parallelism, which are then divided up again using model parallelism; this85

allows the model, optimizer, and activations to use less memory. The compute efficiency is improved86

by ZeRO data parallelism, which allows for the model to scale to any number of GPUs without excess87

communication overhead while also improving memory efficiency.88

3.2 Compression89

DeepSpeed allows for easy compression of deep learning models via the DeepSpeed Compression90

library, which supports several compression methods for reducing the memory taken up by the model.91

Benefits of using the library include faster compression time, higher quality and efficiency in less92

space, and reduced compression cost.93

3.2.1 Layer Reduction94

The layer reduction method compresses a deep learning model by removing some of the hidden95

layers without changing the network’s width, reducing the inference latency of the hidden layers.96

This method is best used when the model is deep and/or the knowledge is being transferred from a97

larger model to a smaller model.98

3.2.2 Weight Quantization99

Weight quantization reduces the precision of weights by mapping the original, full-precision number100

to an equivalent low-bit representation, improving execution performance and efficiency but lowering101

accuracy. This method is best used when high accuracy is not as important as having lower complexity,102

such as in devices with lower computation resources like smartphones.103

3.2.3 Activation Quantization104

Activation quantization reduces the precision of the activation (input to each layer of the model) by105

mapping the original number to an equivalent low-precision representation, causing a similar effect106

to weight quantization (improved performance/efficiency, worsened precision/accuracy). Just like107

weight quantization, this method is most useful when the accuracy is not as important as being able108

to run the model using limited computational resources.109

3.2.4 Pruning110

Pruning reduces the number of parameters and operations used for making predictions by "pruning",111

or removing, connections in the network. Pruning can be split into four submethods:112

1. Sparse pruning reduces the number of parameters and operations by setting some elements113

within each weight matrix to zero, causing these zero-set elements to have no effect on the114

prediction, improving hardware speedup but reducing accuracy. This submethod of pruning115

is best used when the ratio of weights kept after pruning vs total weights before pruning is116

very low.117

2. Row pruning reduces the number of parameters and operations by setting all of the elements118

within certain rows of the weight matrix to zero, causing these zero-set rows to have no119

effect on the prediction, greatly improving hardware speedup but greatly reducing accuracy.120

This submethod of pruning is designed for models with two back-to-back linear layers,121

although it also works for models with other kinds of linear layers.122

3. Head pruning reduces the number of parameters and operations by removing some of123

the many heads in a model, improving hardware speedup. This submethod of pruning is124

designed for models that have multiple heads.125

3



4. Channel pruning reduces the number of parameters and operations by removing some of126

the many channels in a model, improving hardware speedup. This submethod of pruning is127

designed for models with two back-to-back two-dimensional convolutional layers, although128

it also works for models with other kinds of two-dimensional convolutional layers.129

3.2.5 ZeroQuant130

ZeroQuant compresses a deep learning model by performing both weight and activation quantiza-131

tion at low or no cost and with minimal quantization error. This method can only be used after132

training and is best used whenever a transformer-based model needs to be converted to using INT8133

weights/activations. It is especially helpful when the model is very time- or computational resource-134

hungry.135

3.2.6 XTC136

eXTreme Compression (or XTC) greatly compresses a deep learning model by both reducing the137

layers of a model and greatly reducing the precision of weights and/or activations via binary/ternary138

quantization without losing much accuracy. This method is best used when the model needs significant139

compression as well as strong performance.140

3.3 Support for Long Sequence Length141

DeepSpeed revolutionizes long sequence processing with its sparse attention kernels, a pivotal142

technology accommodating extended sequences of model inputs across various data modalities143

including text, image, and sound. In contrast to conventional dense transformers, these kernels144

facilitate processing sequences orders of magnitude longer, achieving up to 6 times faster execution145

while maintaining comparable accuracy. DeepSpeed’s sparse attention kernels outperform existing146

state-of-the-art implementations, delivering 1.5–3 times faster execution. Additionally, they support147

the efficient execution of diverse sparse formats, empowering users to innovate and customize their148

sparse structures effectively. This suite of capabilities underscores DeepSpeed’s commitment to149

enabling efficient processing of long sequences and fostering innovation in deep learning research150

and application.151

3.4 Convergence Acceleration152

DeepSpeed accelerates convergence through its support for advanced hyperparameter tuning tech-153

niques and large batch size optimizers like LAMB. By leveraging these tools, DeepSpeed enhances154

the effectiveness of model training, enabling faster convergence to the desired accuracy with fewer155

samples. This combination of advanced tuning methodologies and optimized batch size selection156

underscores DeepSpeed’s commitment to expediting the training process and achieving superior157

model performance in a more efficient manner.158

3.5 Training159

Thanks to its many capabilities discussed above, DeepSpeed is capable of training very large, high-160

density deep learning models, including Turing-NLG, Big Science, and Megatron-Turing NLG 530B.161

The many options and combinations of features offered by DeepSpeed allow for all types of models162

to be trained via DeepSpeed technologies.163

The two main categories are ZeRO training technologies and 3D parallelism training technologies.164

ZeRO requires less code refactoring, while 3D parallelism has better throughput efficiency. The two165

technologies have similar performance when the batch size per GPU is larger, but as the batch size166

decreases, the gap in performance increases, with the performance of 3D parallelism exceeding that167

of ZeRO. Therefore, ZeRO training is better for most scenarios, while 3D parallelism training is better168

for very large models with hundreds of billions or trillions of parameters, similar to GPT-2/GPT-3.169

3.6 Inference170

If a deep learning model was trained in DeepSpeed, then the DeepSpeed Inference library can be171

used to apply the trained model to the desired scenario. The DeepSpeed Inference library seeks to172
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address limitations in existing inference tools with three main features: multi-GPU inference utilizing173

adaptive parallelism, kernels that are optimized for inference and tuned for smaller batch sizes, and174

support for quantization via quantize-aware training and inference kernels adapted to quantized175

models. Together, these three features greatly increase DeepSpeed Inference’s throughput per GPU176

in comparison to PyTorch. Due to quantization, the number of GPUs needed to run DeepSpeed177

Inference for massive models is at least half that of full-precision PyTorch.178

3.6.1 Multi-GPU inference utilizing adaptive parallelism179

As in training, parallelism can be used in inference to fit large models and evenly spread memory180

consumption among the processing devices, but the choices made for training do not necessarily181

work for inference. Inference tends to require less memory and needs a stronger focus on latency182

optimization or meeting the requirements for latency rather than throughput, as in training.183

To this end, the DeepSpeed Inference library first uses model parallelism to reach the latency target,184

then adds in pipeline parallelism to optimize the throughput. This adaptive approach meets the goals185

of model inference while reducing the cost of deployment.186

3.6.2 Small-batch custom inference kernels187

DeepSpeed Inference uses inference kernels tailored for model parallelism for multiple GPUs via188

operator fusion, fusing general matrix multiply operations as well as element-wise operations us-189

ing efficient vector-matrix and skinny matrix-matrix multiplication. Fused operations must keep190

the access-pattern of inputs/outputs intact throughout the entire sequence of fused operations (pre-191

venting different thread-blocks from encountering data being transferred between the streaming-192

multiprocessors). Additionally, the fusion must occur at every all-reduce boundary so that the193

execution can continue since the execution is paused until partial results are reduced.194

To run inference, the DeepSpeed inference kernels need the location of the model checkpoints and195

the degree of model parallelism and pipeline parallelism. Kernels can be customized for standard196

model architectures (ex. HuggingFace or Megatron-GPT) via a provided policy map, which maps the197

original parameters to those in the inference kernels. Other models can provide their own policy map198

to the kernels to run inference mode.199

3.6.3 Quantization support200

The DeepSpeed Quantization Toolkit is designed to reduce the inference cost for large models via201

quantization, creating support for flexible quantize-aware training and high-performance quantized202

inference kernels. The toolkit does not require client-side code changes, allowing for ease of use.203

In the training, mixed-precision training occurs in tandem with the application of quantization in a204

process called Mixture of Quantization (MoQ), allowing for control over the model’s precision via205

simulation of the impact of quantization on the parameters at each step of training. This also supports206

flexible quantization schedules and policies, since the adjustment of the quantity of quantization bits207

during training results in higher accuracy using the same compression ratio in the final quantized208

model. MoQ can also adapt to various tasks by using models’ second-order information to determine209

how much precision is required, tweaking the quantization target and schedule to compensate.210

In order to optimize the benefits of quantization, the DeepSpeed Quantization Toolkit creates inference211

kernels custom-made for quantized models: these kernels reduce latency by optimizing the movement212

of data, but they don’t require any specialized hardware.213

4 Benefits of DeepSpeed214

4.1 Speed215

DeepSpeed achieves remarkable training times for large-scale models, exemplified by its ability to216

train BERT-large to parity in a mere 44 minutes utilizing 1024 V100 GPUs or in 2.4 hours with217

256 GPUs. Such expedited training is further underscored by DeepSpeed’s capacity to outpace218

state-of-the-art solutions, exemplified by its 3.75x faster training of GPT2 (1.5 billion parameters)219

compared to NVIDIA Megatron on Azure GPUs. Central to DeepSpeed’s efficacy is its enhanced220
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memory efficiency, facilitating higher throughput and faster convergence rates. This is exemplified221

by ZeRO-2’s capability to train 100-billion-parameter models on a 400 NVIDIA V100 GPU cluster222

with over 38 teraflops per GPU and aggregated performance exceeding 15 petaflops. Compared to223

using Megatron-LM alone, ZeRO-2 achieves a remarkable 10x speedup in training speed for models224

of equivalent size, underscoring its prowess in accelerating deep learning workflows.225

4.2 Scalability226

One of DeepSpeed’s standout offerings is its ability to efficiently run large-scale models, delivering up227

to 10x faster training speeds across a spectrum of model sizes ranging from 1.5 billion to hundreds of228

billions of parameters. This efficiency is particularly pronounced in configurations leveraging ZeRO-229

powered data parallelism, which can be seamlessly combined with various types of model parallelism.230

By optimizing memory usage and batch sizes, DeepSpeed achieves significant performance gains231

compared to relying solely on model parallelism.232

In benchmarking against the GPT-3 model architecture with over 175 billion parameters, DeepSpeed’s233

3D parallelism configurations demonstrate remarkable efficiency. While 2D configurations struggle234

with low throughput due to suboptimal parallelism strategies, the 3D configurations, arranged by235

increasing degrees of pipeline parallelism, achieve superior performance by striking a balance between236

memory, compute, and communication efficiency. The best 3D approaches attain an impressive 49237

teraflops per GPU, representing over 40% of the theoretical hardware peak.238

4.3 Efficiency239

DeepSpeed offers impressive efficiency in memory, data, and computation.240

4.3.1 Memory Efficiency241

DeepSpeed’s prowess in memory efficiency revolutionizes deep learning training by offering memory-242

efficient data parallelism. Notably, DeepSpeed excels in training models with up to 13 billion243

parameters on a single GPU, a feat unattainable by existing frameworks like PyTorch’s Distributed244

Data Parallel, which struggles with models exceeding 1.4 billion parameters due to memory limita-245

tions.246

Central to DeepSpeed’s memory optimization strategy is its innovative algorithm, the Zero Redun-247

dancy Optimizer (ZeRO), which partitions model states and gradients to significantly reduce memory248

consumption. Unlike conventional data parallelism approaches that replicate memory states across249

processes, ZeRO mitigates memory overhead by strategically partitioning data. ZeRO minimizes acti-250

vation memory and fragmented memory, further enhancing memory efficiency. The current version,251

ZeRO-2, achieves up to an 8x reduction in memory usage compared to prevailing methodologies, as252

detailed in our research paper and related blog posts.253

The profound impact of DeepSpeed’s memory optimization capabilities is evidenced by the accom-254

plishments of early adopters, who have successfully trained the Turing-NLG language model boasting255

over 17 billion parameters, thus setting a new standard in the language model domain.256

Additionally, DeepSpeed extends its memory optimization capabilities through ZeRO-Offload, which257

leverages both CPU and GPU memory for training large models. This innovative approach enables258

users to train models with up to 13 billion parameters on a single GPU, a tenfold increase compared259

to existing methodologies while maintaining competitive throughput. By democratizing multi-billion-260

parameter model training, ZeRO-Offload empowers deep learning practitioners to explore larger and261

more sophisticated models, thereby advancing the frontiers of deep learning research and application.262

4.3.2 Data Efficiency263

The Data Efficiency Library spearheads advancements in data efficiency by offering efficient data264

sampling through curriculum learning and streamlined data routing via random layerwise token265

dropping. This integrated solution delivers remarkable benefits, including up to 2 times data and time266

savings during pretraining of models like GPT-3 and BERT, as well as during finetuning tasks such267

as GPT and ViT. Alternatively, it enables users to enhance model quality within the same data and268

time constraints.269
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4.3.3 Compute Efficiency270

DeepSpeed showcases exceptional compute efficiency through its utilization of pipeline parallelism,271

which effectively reduces communication volume during distributed training. This reduction in272

communication overhead enables users to train multi-billion-parameter models 2–7 times faster on273

clusters with limited network bandwidth, enhancing training efficiency and scalability. Furthermore,274

DeepSpeed introduces optimized communication techniques such as 1-bit Adam, 0/1 Adam, and 1-bit275

LAMB, which significantly reduce communication volume by up to 26 times while maintaining com-276

parable convergence efficiency to traditional Adam optimization. This reduction in communication277

overhead not only facilitates seamless scaling across different types of GPU clusters and networks278

but also enhances the overall efficiency of distributed training workflows.279

4.4 Usability280

DeepSpeed offers exceptional usability, requiring minimal code changes to enable a PyTorch model to281

utilize its capabilities, including ZeRO. Unlike most current model parallelism libraries, DeepSpeed282

doesn’t necessitate code redesign or model refactoring, ensuring a seamless integration process. It283

also imposes no restrictions on model dimensions, batch size, or other training parameters. For284

models of up to 13 billion parameters, ZeRO-powered data parallelism can be conveniently employed285

without requiring model parallelism, while standard data parallelism typically encounters memory286

limitations for models exceeding 1.4 billion parameters. Additionally, DeepSpeed facilitates flexible287

combinations of ZeRO-powered data parallelism with custom model parallelisms, such as tensor288

slicing of NVIDIA’s Megatron-LM, which further enhances its usability and adaptability to diverse289

training scenarios.290

4.5 Accessibility291

DeepSpeed makes deep learning more accessible by offering algorithm designers a suite of benefits292

that streamline the development process, allowing them to focus on conceptualizing and refining293

cutting-edge algorithms rather than getting bogged down in implementation intricacies.294

Firstly, by tackling complexity and scale. With DeepSpeed, algorithm designers can delve into more295

intricate tasks and handle vast datasets with ease. The framework’s optimizations enable efficient296

processing of large-scale data, empowering designers to tackle complex problems without being297

hindered by scalability concerns.298

Additionally, DeepSpeed accelerates experimentation and iteration cycles, significantly reducing the299

time required to test and refine algorithms. This rapid feedback loop enables designers to explore300

various approaches swiftly, facilitating quicker progress and innovation.301

Thirdly, by abstracting away implementation details, DeepSpeed allows algorithm designers to302

concentrate on refining the core concepts of their algorithms. Freed from the burden of low-level303

coding tasks, designers can devote their energy to pushing the boundaries of algorithmic innovation.304

Allowances for memory-intensive algorithm exploration also benefit algorithm designers. Deep-305

Speed’s efficient memory management capabilities remove the constraints typically associated with306

memory-intensive algorithms. Algorithm designers can explore and develop sophisticated mod-307

els without worrying about memory limitations, opening up new avenues for experimentation and308

advancement.309

DeepSpeed also provides a flexible environment for experimenting with different training designs and310

performance optimizations. Designers can easily tweak parameters, explore alternative architectures,311

and fine-tune training strategies to achieve optimal results for their algorithms. In essence, DeepSpeed312

empowers algorithm designers to unlock their creativity and push the boundaries of what’s possible313

in algorithmic research and development, ushering in a new era of innovation and discovery.314

5 Conclusion315

DeepSpeed has emerged as a pivotal force in the advancement of deep learning methodologies. It316

offers a comprehensive arsenal of tools and techniques to expedite model development, training, and317

inference processes. Simultaneously, DeepSpeed pushes the boundaries of scalability, efficiency,318
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and cost-effectiveness in the domain of deep learning research and application. With these tools and319

benefits, DeepSpeed helps to democratize deep learning and make it accessible to more and more320

people.321
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