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Abstract

Convolutional Neural Network (CNN) models have been the standard model for
computer vision tasks such as image classification for a long period. In recent
year, attention-based models including Vision Transformer (ViT) have becomes
the new state-of-the-art model. While many researchers focus on improving the
performance of those models, some research show that we can obtain a comparable
result with Multilayer Perceptron (MLP) based models which is much simpler
in structure. MLP models completetly replaces the attention based mechanism
in attention-based models with multilayer perception (MLP). In this paper, we
explore MLP-like models including MLP-Mixer, ResMLP, gMLP, and a generalized
framework called Metaformer and compare these different architectures with Vision
Transformer. We also tried to explore the structure of these models to gain some
insights into how their structure affects performance.

1 Introduction

Convolutional Neural Network (CNN) models have been the standard for computer vision tasks for
many years until attention based model such as Vision Transformer (ViT) models were developed
and achieved the state-of-the-art result. While CNNs and attention based models are still leading in
this field, in this paper, we explore multilayer Perceptron(MLP) based model, a type of model that
achieved similar result with much simpler architectures, and compare them with attention based
model.

Unlike CNNs or transformer, MLP models use neither convolutional neural network nor self-attention
layers, two key components traditionally associated with the success of CNN and transformer models.
In our paper, we mainly explore several Multilayer Perceptron(MLP) based models including
MLP-Mixer, ResMLP, gMLP and compare them with vision transformer (ViT), a kind of attention
based models. Then, we introduce metaformer, a general framework that proposes an architecture for
image classification task. Metaformer can be viewed as a superset of both attention-based models
and MLP-alternative models. MLP-Mixer(1) is the first paper that introduces a MLP alternative
model and it replaces multihead self-attention with a MLP layer. It’s highly inspired by vision
transformer(ViT). ResMLP (2) is introduced after MLP-Mixer, and in addition to replacing attention
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layers with MLP layers, it also replaces layer normalization with affine transformation. gMLP (3)
introduces spatial gating unit to the model to extract information from cross-token interactions.
Metaformer (4) summarizes the general architecture of transformer and MLP-like models and argues
that all these models are similar in general structure, but use different mechanism to mix tokens. The
metaformer paper argues the general architecture, instead of the specific design of token mixture
layers such as attention and MLP, contributed more to the success of these models.

In this paper, we aim to provide a comprehensive overview of these models mentioned above, focusing
on comparing and contrasting their structure and explore connection between their structure and
performance. We also hope to compare attention-based models and MLP alternatives to transformer.
We focus on accessing the performance of these models in image classification task. Our work
is important as it give insights into new model designs aside from well-developed CNNs and
transformers.

2 Model

In this section, we delve into the architecture of the Vision Transformer (ViT) and several Multilayer
Perceptron based alternatives, including MLP-Mixer, ResMLP, gMLP. We also explore Metaformer,
a general framework which abstracts away certain parts of the model. We aim to compare and
contrast the structures of these models to gain some understanding of how various parts may influence
performance. We will focus mainly on comparing the token mixture layer and the channel mixture
layer of each model. Token mixture enables communication and interaction across pixels and channel
mixture enables communication and interaction across channels.

2.1 Vision Transformer (ViT)

This section introduces the general structure of the vision transformer (ViT).

Figure 1: An overview of ViT structure.

As shown in Figure 1, the transformer encoder consists of L alternating layers of multiheaded self-
attention and MLP blocks. Layernorm is applied before every attention/MLP blocks and residual
connection after every attention/MLP blocks(5). The layers can be written using the following
equation:

z′ℓ = MSA(LN(z′ℓ−1)) + z′ℓ−1, ℓ = 1, . . . (1)

zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1, . . . (2)

To drive deeper into the model, it’s essential to understand the mechanism behind multihead attention.
Self-attention is an important mechanism in various neural network architectures including trans-
formers. Self attention computes a weighted sum of all values in the sequence for each element in an
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input sequence z ∈ RN×D. These weights, denoted by Aij , are derived from the pairwise similarity
metrics between query qi and key kj for any two elements in the sequence. The following equations
represent the self attention mechanism(5).

[q; k; v] = zUqkv, Uqkv ∈ RD×3Dh (3)

A = softmax
(

qkT√
Dh

)
, A ∈ RN×N (4)

SA(z) = Av (5)

Multihead Self-Attention runs k parallel self-attention processes, known as ’heads.’ The outputs of
these heads are concatenated and projected. The following equations represent the multihead self
attention mechanism(5). D

k .

MSA(z) = [SA1(z);SA2(z); . . . ;SAk(z)]Umsa, Umsa ∈ Rk×Dh×D (6)

In this model, multiheaded self-attention serves primarily as a token mixture as it computes attention
scores based on relationships between tokens and mix information from different tokens using these
computed attentions. The MLP layer serves as channel mixture.

2.2 MLP-Mixer

This section introduces general structure of the mixer layer of a transformer alternative model, MLP-
Mixer. MLP-Mixer consists of N mixer layer and each mixer Layer consists of two MLP blocks,

Figure 2: General structure of MLP-Mixer.

as shown in figure 2. The first one is token-mixing MLP and the second one is a channel-mixing
MLP. Each MLP have two fully-connected layers and a nonlinearity applied to each row of the input
data tensor. Residual connections are applied similar to that in vision transformer. The equations
representing the mixer layers are shown below where input X ∈ RS×C . Here σ is an element-wise
nonlinearity GELU and where W1, W2,W3 and, W4 are the main learnable weight matrices of the
layer.

Uℓ,i = Xℓ,i +W2σ (W1LayerNorm(X)ℓ,i) , for i = 1, . . . , C (7)
Yj,ℓ = Uj,ℓ +W4σ (W3LayerNorm(U)j,ℓ) , for j = 1, . . . , S (8)

Compared to vision transformer, MLP-Mixer uses MLP for token-mixing, which is significantly
simpler compared to multihead attention. While the cost of computing multihead attention is quadratic
with respect to tokens because every token computes attention scores with every other token, the cost
of MLP is linear with respect to tokens.
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2.3 ResMLP

This section introduces the general structure of another transformer alternative model, ResMLP.

Figure 3: General structure for ResMLP.

Similar to MLP-Mixer, ResMLP also used MLP layers for both token mixing and channel mixing.
The way it uses residual connection is similar to both ViT and MLP- Mixer. As shown in figure 3, the
first affine-linear-affine section is a token mixer and the affine-linear-Gelu-Linear-Affine section is a
channel mixer. The equations representing the ResMLP layer is shown below, where A, B and C are
the main learnable weight matrices of the layer and σ is an element-wise nonlinearity GELU.

Z = X + Aff
(
(AAff(X))

T
)

(9)

Y = Z + Aff (Cσ (BAff(Z))) (10)

Compared to MLP-Mixer, ResMLP replaces layer normalization with simpler affine transformation.
This operation only rescales and shifts the input element-wise and is superior to other normalization
techniques because it has no cost at inference time and it does not depend on batch statistics.

2.4 gMLP

This section introduces the general structure of another transformer alternative model, gMLP.

Figure 4: General structure of gMLP.

As shown in in figure 4, gMLP consists of L blocks. Each block is defined as:

Z = σ(XU) (11)

Z̃ = s(Z) (12)

Y = Z̃V (13)

where σ is an activation function such as GeLU . U and V define linear projections along the channel
as in feed forward layers in transformers which include a normalization and a MLP layer. s represents
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a technique called spatial gating unit to enable cross-token interaction and is represented by the
formula below.

s(Z) = Z1 ⊕ fW,b(Z2) (14)
⊕ denotes element-wise multiplication. fW,b(Z) is a linear projection represented by the formula
below.

fW,b(Z) = WZ + b (15)
The authors found it is effective to split Z into two independent parts (Z1, Z2) along the channel
dimension for the gating function and for the multiplicative bypass(3).

SGUs offer an alternative to capture high-order relationships besides self-attention. Specifically,
SGUs contains up to 2nd-order interactions (e.g., zizj) whereas output for self-attention (assuming
no nonlinearity) contains up to 3rd-order interactions (e.g., qikjvk). Both SGUs and self attention
have computation cost which is linear over the input channel size and quadratic over the token size(3).

2.5 Metaformer

This section introduces the structure of a framework called mataformer, which consists of a general
structure consisting of token mixer and channel mixer, with normalization layers and residual
connection as shwon in figure 5. The framework generalizes the structure of transformers and

Figure 5: General framework for metaformer

MLP-like model described in the above sections and claims attributes the general structure, instead of
the design of token mixer layer, to a significant portion of the success of these models. The author
also proposes poolformer, which uses simple pooling as token-mixing technique and achieves good
result. The pooling operator can be expressed with an input image T where K is the pooling size.

T ′
i,j =

1

K ×K

K∑
p,q=1

Ti+p−K+1
2 ,j+q−K+1

2
− Ti,j (16)

Compared to other methods, In contrast, pooling’s computational complexity is linear to the sequence
length and it doesn’t need without any learnable parameters, so it should be more time efficient (4).

3 Performance Comparison

3.1 Datasets

In computer vision, when comparing the performance of image classification, a widely utilized
method is evaluating results using common datasets. Not all of the pretrained datasets on the models
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covered in this review are the same. However, they do share some common ones such as ImageNet
(6), which helps us evaluate and compare the performance of models. ImageNet is used as the base
dataset for evaluating these models, and bigger datasets like ImageNet-21k or JFT-300M are used to
analyze the scalability and verify the accuracy growth compared to the pre-training size.

Brief introduction of the mentioned datasets: ImageNet is a dataset with 1,000 classes and 1.3
million images. ImageNet-21k is the superset of ImageNet with the classes increased to 21,000 and
images increased to 14 million. JFT-300M is a dataset with 18,000 classes and 303 million images.
JFT-3B is the superset of JFT-300M with the classes increased to 30,000 and images increased to 3
billion.

3.2 Metrics

We use three important shared metrics for comparing the performance across different models: pre-
training data size, pre-training computation cost, and accuracy. This ensure we get a holistic review
of performance.

Figure 6: Model performance on ImageNet classification. (image source (4))

We first compare the accuracy of each of the base models that are pretrained on ImageNet. We used
ResNet, a classical CNN model, as a reference for comparison. Figure 6 is from the metaformer
paper and displays four columns for each model. The first column shows the image size, indicating
the input size of each model. The second column shows the parameter count in millions. The third
column shows the Multiply-Accumulate Operations (MAC) in billions, a commonly used metric
for calculating computational complexity. A model with a higher MAC count generally requires
more computational resources to operate. Finally, the fourth column shows the top-1 accuracy,
which is the correct ratio of the most confident classification. As depicted in the Figure 6, ViT
demonstrates a decent top-1 accuracy but requires slightly more parameters and computational
resources during training. Similarly, MLP-Mixer exhibits a slightly lower performance compared
to ViT but also requires less parameters and computation. ResMLP achieve similar accuracy while
requiring significantly fewer computations and parameters. gMLP performances slightly better than
ViT and uses slightly fewer resources. Notably, PoolFormer achieves better accuracy with significantly
less computational load compared to ViT. The difference in computation cost is consistent with the
time complexity analysis of each model compared to transformer made in the model section. The
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performance of the model in terms of top-1 accuracy is decent in general, which may indicate that the
general structure of metaformer is a good design. The MLP alternatives demonstrated comparable
and sometimes even slightly better performance compared to ViT, demonstrating that MLP have the
potential to substitute attention as a token-mixer.

In order to better understand the performance difference between models, we provide visualization to
compare the models performance against their model size and MACs respectively.

Figure 7: The accuracy of ViT and MLP-based models with different parameter numbers. (image
source (3))

Figure 7 shows the parameters versus top-1 accuracy for MLP-based models compared to ViT
provided in the gMLP paper. The general trend for all of the models is the same; as number
of parameters increases, accuracy increases. However, the accuracy are different across models.
As shown in the figure, MLP Mixer and ResMLP perform worse than ViT, and gMLP slightly
outperformed ViT when the parameter number is larger than around 50M.

Figure 8: The accuracy of metaformer structured models with different pre-training cost and parameter
numbers. The cost is measured in Multiply-Accumulate Operations (MACs). (image source (4))

Figure 8 shows the performance of models against MACs and model size respectively provided in the
metaformer paper. Generally, the curves for the MLP models are above that of ViT, meaning that the
MLP models achieved a better performance given a fix MACs and model size. We can also observe
that PoolFormer model yields better performance than the attention-based or MLP-based models
both when compared on same MACs basis and model size basis, meaning poolformer uses resources
the most efficiently out of all the models.
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The general trend of parameter/model size versus accuracy between the graph provided in the
metaformer paper and gMLP are similar, with some slight difference in the relative performance
between MLP models and ViT. This is possible due to the difference in implementation.

4 Conclusion and Evaluation

By reviewing and comparing MLP-Mixer, ResMLP, gMLP, and the concept of Metaformer with
Vision Transformer, we can see that CNNs and attention based models are not the only few options
for computer vision tasks. In fact, MLP-like structures and models that follow the architecture of
Metaformer attain comparable results with lower cost compared to ViT in general as shown in the
graphs.

By evaluating the structure of the respective models, we compared the relative time complexity of
performing the token mixture step of MLP models and metaformer as compared to ViT. The MACs
values in the result generally agrees with our analysis of our model. All these models achieve decent
performance, indicating that the general metaformer structure may be important in the performance
of the model. However, other factors aside from the structure might also play a role which can be an
interesting topic for future exploration.

However, one limitation of our paper is that since we don’t have the resources to train large models,
we have to rely on the results in the original paper of these models, which might vary across
implementation and be biased toward their own model.

Furthermore, the results we obtained are from image classification tasks in computer vision. In future
works, it’s meaningful to explore the performance of MLP models and attention-based model in other
fields such as natural language processing and determine if similar conclusion holds.
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Abstract

Diffusion models have emerged as powerful generative
tools for solving complex inverse problems in data-rich fields
like imagery and video. However, their reliance on exten-
sive, clean datasets limits their applicability in areas with
noisy or scarce data, such as medical imaging. Existing
training approaches of diffusion models in corrupted data
often depend on unrealistic assumptions about data corrup-
tion. This paper introduces a novel methodology for training
diffusion models using corrupted data alongside clean data
from unrelated domains, to compensate for missing high-
frequency details. We analyze the diffusion process, showing
that early stages can utilize corrupted data effectively, while
later stages require fine-tuning with clean data to restore
high-frequency information. By exploring the use of blended
datasets, such as combining blurred cat images with clean
dog images, this study aims to reduce dependency on con-
ventional strong assumptions and expand the practical use
of diffusion models in various domains.

1. Introduction
Diffusion models represent a class of generative models
that have recently emerged as a powerful framework for
solving a variety of blind and nonlinear inverse problems
[2, 3, 15]. The versatility and scalability of these models have
made them the foundation of many recent breakthroughs in
domains rich in data, such as natural imagery and video
content. Training a diffusion model necessitates access to
extensive datasets and substantial computational resources.
For instance, state-of-the-art text-to-image models [16, 17]
require hundreds of millions of images for training to achieve
their impressive performance. This limits their usage in data
scarce domains, such as medical imaging.

Subsequent research has focused on fine-tuning these
foundational models for specialized domains, accomplishing
tasks such as medical image analysis or enhancing person-
alized user experiences in image diffusion. This fine-tuning
process still mandates a significant quantity of clean data that
accurately reflects the target distribution. However, in many

domains such as environmental monitoring. medical imag-
ing, and astrophotography, data frequently exhibit high levels
of noise—either inherently, as in environmental data affected
by sensor inaccuracies, or by design, such as undersampling
in diffusion MRI to reduce data acquisition times. In realistic
settings, corruption typically exhibits a range from weak to
strong spatial correlation. For instance, undersampling in
MRI selectively omits information across specific frequency
levels, impacting every pixel and thereby inducing a form of
corruption with a global effect on the image. This prevalence
of corrupted datasets presents substantial challenges in train-
ing generative models effectively for these domains, thereby
restricting their applicability. One potential solution involves
employing unsupervised denoising methods to preprocess
the corrupted data for model training. However, these meth-
ods often rely on unrealistic assumptions, such as pixel-wise
noise independence [1, 6, 9, 13, 19], necessitate knowledge
of the specific corruption process [5], are limited to cer-
tain noise types [14], rely on unrealistic assumptions over
the corruption process [5, 12], or are incapable of restoring
high-frequency details [20]. AmbientDiffusion [5] explored
training a diffusion model on corrupted images with missing
pixels. To achieve this, they assume access to the corrup-
tion matrix of each sample in the training dataset and the
distribution of the corruption parameters.

In this work, we focus on corruption processes that
happen in the high-frequency domain (e.g blurring, low-
resolution, noisy). Given that these corruption processes
often eliminates critical, frequently high-frequency, details
from the images, there’s a need for a prior that accounts for
these omissions. While previous efforts generally impose
stringent assumptions about the nature of the corruption as a
prior, our research explores whether it is feasible to derive a
prior from a clean, unrelated data set from another domain.
Specifically, we are investigating whether it is possible to
train a generative model on blurred cat images by using a
combination of blurred cat images and clean dog images,
without imposing any additional assumptions.

To accomplish this, we analyze the generation process of
diffusion models across different timesteps, distinguishing
between the generation of low-frequency and high-frequency



information. Specifically, we show that for high-frequency
corruptions (e.g. blurring), the forward diffusion process
removes the high-frequency information in the early steps,
making a blurred and a clean image looks similar for these
steps. We then show that these initial stages of diffusion pri-
marily focus on generating low-frequency details, allowing
for the effective training of the model using directly cor-
rupted images during these early phases. For the later stages,
which involve the generation of high-frequency details, we
experiment with various fine-tuning approaches that utilize
clean image distributions from a related domain to restore
high-frequency information pertinent to the target domain.

2. Problem Formulation
Consider a dataset of corrupted image observations drawn
from a distribution p̃(y), where each observation y ∈
R3×H×W is derived from a corresponding clean image
x ∈ R3×H×W that is drawn from an underlying clean data
distribution p(x). We assume that y results from a linear
corruption operation of x.

x = Ay + ϵ, (1)

where A ∈ R(3×H×W )×(3×H×W ) represents the linear for-
ward operator, and ϵ denotes the additive noise, which typi-
cally follows a normal Gaussian distribution ϵ ∼ N (0, I).

Our objective is to learn a generative model G : Rd →
R3×H×W , mapping a latent space variable z ∼ N (0, I)
to the space of clean images, such that the distribution of
images generated by G(z) approximates the clean data dis-
tribution p(x) as closely as possible. The problem can be
mathematically formulated as follows:

min
G

Ez∼N (0,Id) [L (G(z), p(x))] , (2)

where L is a loss function that measures the discrepancy
between the distribution of generated images G(z) and the
clean data distribution p(x). The goal of this work is to learn
G such that it generates images which are indistinguishable
from those drawn from the clean distribution p(x), despite
the model’s access only to the corrupted data from distri-
bution p̃(y) and clean data from a similar distributing p(z)
during training.

3. Background on Diffusion Models
Denoising Diffusion Probabilistic Models [7] are a class
of generative models that operates by gradually transform-
ing a data distribution into a simple, typically Gaussian,
noise distribution over a series of diffusion steps, and then
learn to reverse this process. The forward diffusion pro-
cess is described by a Markov chain that progressively adds
Gaussian noise to the data over T steps, transforming the
data distribution p(x0) into a noise distribution p(xT ). This

process can be expressed by the conditional distribution
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt is a vari-

ance schedule that controls the noise level at each step t.
Then, a reverse process is learnt to estimate pθ(xt−1|xt) that
can recover the original data from the noise. This is achieved
by parameterizing the reverse process with a neural network
with parameters θ, and training it to approximate the poste-
rior distribution. The training of diffusion models is typically
framed as a variational inference problem, where the goal
is to minimize the KL divergence between the forward pro-
cess and the reverse process across all timesteps. This is
simplified as minimizing a weighted sum of squared errors
between the noisy data at each timestep and the denoised
estimates produced by the model:

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
,

where ϵθ(xt, t) is the model’s estimate of the noise added
at step t, and ϵ is the actual noise.

4. Related Work

4.1. Unsupervised denoising methods

Unsupervised denoising methods aim to recover a noise-free
data sample y given the noisy measurement x through a
mapping f , which is given when optimizing the objective
E∥f(x)−y∥2. Most work carry a strong, and rather unrealis-
tic assumption that the noise is pixel-wise independent. That
is x = y + n, where n is a noise that can come from various
distributions such as Gaussian (n ∼ N (µ, I)), Bernoulli
(n ∼ Bernoulli(p)), or Poisson (n ∼ Poisson(λ)).

Noise2Noise [13] uses two noisy observations x1 = y +
n1 and x2 = y + n2 to train a denosing network f that
optimizes the objective E∥z2 − f(x1)∥. The method relies
on the noise independence assumption with the intuition that
the network learns to reconstruct only the noise-free sample
y while discarding the noise n2 as it cannot be inferred from
the image features x or the noise n1.

Noise2Self and Bline-Spot Networks [1] drops the re-
quirement of two noisy observations by using the image’s
inherent structure. Specifically, it defines a family of func-
tions as J − Invarant if f(x)j does not depend on xj

for any j. In the context of images, it means that we can
infer the value of a pixel from its neighboring pixels. The
authors shows that for such functions E∥f(x) − x∥2 =
E∥f(x) − y∥2 + E∥x − y∥2. In other words, optimizing
E∥f(x) − y∥2 is equivalent to optimizing E∥f(x) − x∥2
with respect to f . Based on this observation, they propose
to randomly mask pixel from the noisy measurement and
predict their values from their surrounding ones. This way,
the model can only reconstruct the image features while
discarding the noise as the noise is pixel-wise independent.
Many followup works [8, 12] improves the efficiency of this



Sample Image Blurred version Different Image

Figure 1. Difference between corrupted and clean image at various diffusion steps. we show that for a 11x11 blurred kernel, the
difference between the blurred and clean image (in blue) becomes almost zero when the LogPSNR achieves zero (on the left figure) after
200 diffusion steps. This is compared to the difference with a different image (in red).

approach by performing the denoising operation from con-
text pixels in a single forward pass, often using networks that
are referred to as Blind-Spot Networks. One disadvantage
of these networks is that they don’t use the information of
the masked pixel, leading to suboptimal results. Laine et
al [11] assumes access to the noise distribution to compute
analytically the posterior of the clean pixel given the noisy
one. That is, the probability of a pixel yi is given as:

p(yi|xj ̸=i) =

∫
p(yi|xi)p(xi|xj ̸=i)dxi

Where p(yi|xi) can be computed analytically knowing the
noise distribution, and p(xi|xj ̸=i) is estimated with a blind-
spot network.

Neighbor2Neighbor [9] performs two downsampling
operations with different kernels on the noisy observation y
to obtain two noisy observations y1 and y2, then follows the
Noise2Noise framework.

Patch2Self [6] extends the Noise2Self idea to 4D data
such as MRI diffusion by exploiting the spatial and tempo-
ral redundancy of N over-sampled (N ≥ 20) 3D volumes.
Specifically, they formulate the denoising as prediction a
3D patch in the Nth volume from the remaining N − 1 vol-
umes. By repeating this operation for different volumes, the
authors can significantly outperforms previous methods on
these types of data.

Noise2Score [10] provides a unified perspective over

the previously mentioned Noise2X methods by linking it
to score model through the Tweedie’s formula. Specifically,
for a Gaussian noise distribution, the Tweedie’s formula
calculates the posterior of the clean sample y given the noisy
x as:

E[y|x] = x+∇x log p(x)

Where p(x) is the marginal distribution of x and thus
∇x log p(x) denotes the score function. Thus, we may obtain
the denoised image if we have access to a score network. A
more general formulation for all exponential family of noise
distributions can be obtained such that the posterior only
depends on the score function, and the noise distribution
parameters. The score can be estimated using a denoising
network for very small noise levels, similar to the score-
matching perspective of diffusion models [18]. Additionally,
the authors draw a connection between their method and
the SURE-based method as all of them essentially aims
to estimate the score function, with the difference that in
the Noise2Score formulation, the score is independent from
the noise sampling and thus can be used for blind image
denoising problems, whereas SURE-based model requires
retraining in case of changing the noise distribution assump-
tion.

DDM2 [19] attempts to improve the performance of
Patch2Self by increasing its solution space through learning
a diffusion model from the given corrupted data. While the
natural naive method is to denoise the corrupted dataset and
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Figure 2. Training early diffusion steps with blurred images. On the left, we show generated sample when training early diffusion steps
(t ≤ λ) on blurred images. On the right, we show qualitatively how the FID score changes for different values of λ

then train a generative model, the authors shows that this con-
strains the solution space. Instead, they follow a three-stage
approach. In the first stage, they train an improved version
of Patch2Self to obtain a denoised version of each corrupted
sample in the dataset and estimate its noise level as ϵ̄ = y−x.
In the second stage, they use the estimated noise to map the
noisy sample into a specific timestamp in the diffusion pro-
cess. Lastly, they train a diffusion model using the estimated
noise calibrated with the matched state. They modify the
training process of the diffusion model by first pixel-wise
shuffle the noise as a way to augment the data. Additionally,
they train to reconstruct the noisy samples instead of the
denoised ones. This is to prevent the diffusion model from
exactly mimicking the deonising network in stage 1. Under
the pixel-wise noise independence, reconstructing the noisy
same is equivalent to reconstructing the clean sample up to a
constant.

Relaxing noise pixel-wise independence. Few follow-up
work aimed to adapt previous methods to real noises by re-
laxing the assumption that the noise is spatially-independent.
[20] breaks the noise dependence by performing pixel shuf-
fling downsampling operation. Then uses a blind-spot net-
work for denoising, trained with synthetic data. This assumes
that the noise has a short-range correlation compared to the
image. However, the pixel shuffling also breaks the image

features, introducing aliasing artifacts. Carrying the same
assumption, Li et al [14] proposes to process flat and tex-
tures regions differently. Specifically, it assumes that pixels
in flat regions are correlated to other pixels that are further
away. Therefore, it also masks neighboring pixels in blind
spot networks so that the pixel noise cannot be inferred from
the surrounding ones. The resulting image is then used to
supervised the denoising of textured regions using a locally
aware network in a fashion similar to Noise2Noise.

4.2. Generative models from corrupted data

SoftDiffusion [4] explores a non-trivial task of training dif-
fusion models with a non-Markovian corruption processes
other than Gaussian noises (e.g blurring, masking, etc).
Specifically, they are interested in the forward diffusion cor-
ruption process that is defined as:

xt = Atx0 + stηt

Where At is the linear corruption matrix at timestamp t, st is
a constant that controls the level of noise at time t, and ηt is
the forward Wiener process. To train a generative model on
such family of corruption, they redefine the training objective
as the error between the corrupted version of the network
prediction for the clean image At ∗ ϵθ(xt) and the corrupted
image At ∗ x0. Additionally, they update the sampling and
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Figure 3. Fine-tuning later diffusion steps with clean images from untreated domain. We experiment with training diffusion model
on blurred cat images and fine-tune on later steps (t ≤ λ on clean dog images. We show that compared to the reference blurred model
(λ = 1000), fine-tuning on clean dog images for smaller values of λ decreases the blurriness, yet results in more distorted shapes.

noise scheduling process to accommodate the change in
noise distribution.

Ambient Diffusion [5] is the first and only existing work
that aims to learn a generative model from corrupted data.
Specifically, the target is to learn the condition expectation
E[x0|Ax0 + st ∗ ηt] for all noise levels t given access to
only corrupted sample y0 = Ax0 and use this expectation to
recover E[x0|xt] for all t, which would allow us to sample
from the clean samples distributions p(x0).

To make the problem settings easier, the authors assumes
having access to the corruption matrix Ai and its distribution
p(A) for each sample in the dataset. Then, the authors pro-
pose to further corrupt the samples with Ã that is very close
to A and learn to remove this additional corruption. In the
example of missing pixels corruption, this introduces few
additional missing pixels and learn to recover them through
the SoftDiffusion training framework. The authors further
assumes that E[x0|Ãx0, Ã] is equivalent to E[x0|Ax0, A]
when Ã is close enough to A, and show that under the con-
dition that EA|Ã[A

TA] is a full-rank matrix, it is possible to
recover E[x0|Ãx0 + st ∗ ηt, Ã], Which estimates the clean
sample x0, given the corrupted sample. To accommodate this
change, they also alter the sampling process such that at ev-
ery diffusion step t+1, they predict the noise-free sample x0,
and corrupt it back with the noise level of t. This provides
a framework to learn a generative model from corrupted
data, yet it comes with huge assumption over the corruption
process that is only met in few setting such as missing pixel
and not met in a more realistic settings such as blurring. It
also assumes access to a privileged information of the exact
corruption matrix for each sample, which is unrealistic.

5. Method and Experiments
Training a diffusion model involves a forward diffusion
process that removes information from a sample image by
adding a high level of noise, and a reverse diffusion process

that learn to generate information through predicting the
added noise. Adding a small amount of noise, in the early
diffusion steps, essentially destroys the high-frequency in-
formation. The means for high-frequency corruptions (e.g.
blurring), both the a corrupted image and a clear version
of it will be similar at early diffusion steps (e.g. t ≤ λ).
We validate this assumption in Fig. 1, where we show that
at a low LogPSNR (e.g. ≤ 0), the difference between the
corrupted and clean image becomes almost zero. This mo-
tivates us to distinguish between learning the generation
of low-frequency information (t ≤ λ), and high-frequency
information (t ≥ λ).

5.1. Stage I: Low-frequency Information

As the corrupted and clean images becomes similar when
the high frequency information is removed in early diffusion
steps, we propose to train these steps directly on corrupted
images, following a standard diffusion model training. To
validate this, we train a diffusion model using blurred cat
images for (t ≤ λ) and clean cat images for (t ≥ λ). In
Fig. 2, we show that despite training the first 800 steps on
blurred images (λ = 800), the results are indistinguishable
from training all diffusion steps in clean images (λ = 0).
To measure this quantitatively, we employ Fréchet Inception
Distance metric (FID), which measures the distance between
the generated and ground truth distributions (lower is better).
We show that the FID score remains similar λ ≤ 800 and
only gets exponentially worse when using λ > 800, thus val-
idating our assumption that we may learn the early diffusion
steps directly on the corrupted images.

5.2. Stage II: High-frequency Details

The corruption process predominantly affects the high-
frequency information in our target domain (e.g., cats),
unlike the low-frequency details. To recover this high-
frequency information, we propose imposing a prior using
a dataset of clean images from an unrelated domain (e.g.,



dogs). Although this approach does not replicate the exact
distribution of the target domain, our objective is to estimate
and approximate a distribution from which we can generate
clean images of the target domain. This method focuses on
achieving a practical approximation rather than exact repli-
cation, aiming to enhance the usability of diffusion models
in the presence of corrupted data.

To achieve this, we experiment with a basic baseline of
training the diffusion model on corrupted images from the
target domain in stage I, and fine-tune the high-frequency
steps (i.e. t ≥ λ) on the clean images from the unrelated
domain. In Fig. 3, we experiment with training a diffusion
model on blurred cat images, followed by fine-tuning later
diffusion steps t ≥ λ on clean dog images directly. We
show that following this procedure decreased the blurriness
significantly, yet it results in distorted shapes. The value of λ
offers a trade-off between distortion and perception. A lower
value of λ results in less blurred images but more distorted
shapes.

6. Conclusion
In this study, we explored the innovative question of train-
ing generative models using only corrupted data from the
target domain alongside clean data from a different domain.
Our experiments demonstrate the feasibility of extracting
clean low-frequency details from corrupted data within the
diffusion model framework. However, our method falls short
in generating high-frequency details. Moving forward, we
aim to continue this research by exploring additional fine-
tuning methods that can bridge the gap between the clean
and corrupted domains, thereby producing less corrupted
data without significant distortions.
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Abstract

Large language models have achieved remarkable success in various natural lan-
guage processing tasks, but fine-tuning these massive models for each new task is
computationally expensive and memory-intensive. This has motivated research into
parameter-efficient learning methods that adapt pre-trained models to new tasks
with minimal parameter updates. This paper reviews several prominent approaches,
including prefix-tuning, adapter methods, intrinsic dimensionality analysis, and
low-rank adaptation techniques like Prefix Tuning, Adapters, and LoRA. We
discuss their key ideas, advantages, and limitations, providing a comprehensive
overview of this rapidly evolving field.

1 Introduction

Large pre-trained language models like GPT-3, PaLM, and LaMDA have revolutionized natural
language processing (NLP) by achieving state-of-the-art performance on a wide range of tasks.
However, these models have billions of parameters, making it computationally expensive and memory-
intensive to fine-tune them for each new task. This has motivated research into parameter-efficient
learning methods that can adapt these massive models to new tasks with minimal parameter updates.
The key idea behind parameter-efficient learning is to introduce a small number of task-specific
parameters that can be optimized during fine-tuning, while keeping the pre-trained model weights
frozen. This not only reduces the computational and memory requirements but also enables better
transfer learning and faster convergence, especially in low-data regimes.
In this paper, we review several prominent parameter-efficient learning methods for large language
models, including prefix-tuning, adapter methods, intrinsic dimensionality analysis, and low-rank
adaptation techniques like LoRA. We discuss their key ideas, advantages, and limitations, providing
a comprehensive overview of this rapidly evolving field.

2 Problem

Fine-tuning large pre-trained language models for new tasks is computationally expensive and
memory-intensive due to the vast number of parameters that need to be updated. This poses significant
challenges for deploying these models in resource-constrained environments or for tasks with limited
data. Moreover, fine-tuning requires storing a separate copy of the model for each task, leading
to substantial storage and maintenance costs, especially for large models. This issue becomes
more pronounced as the number of tasks and models increases, making it impractical to fine-tune
and maintain multiple models for different tasks. To address these challenges, parameter-efficient
learning methods aim to adapt pre-trained models to new tasks with minimal parameter updates,
reducing computational and memory requirements while enabling better transfer learning and faster
convergence. The key problems that parameter-efficient learning methods aim to solve are:
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• Computational and Memory Efficiency: Fine-tuning large pre-trained language models
requires updating a vast number of parameters, which can be computationally expensive and
memory-intensive, especially in resource-constrained environments or for tasks with limited
data.

• Storage and Maintenance Costs: Fine-tuning a pre-trained model for each new task
requires storing a separate copy of the model, leading to substantial storage and maintenance
costs, especially as the number of tasks and models increases.

• Transfer Learning and Convergence: Fine-tuning can be inefficient in terms of transfer
learning and convergence, particularly in low-data regimes, as the model needs to learn
task-specific parameters from scratch.

Parameter-efficient learning methods address these problems by introducing techniques that can adapt
pre-trained models to new tasks with minimal parameter updates. This reduces the computational
and memory requirements, enables better transfer learning and faster convergence, and allows for
more efficient storage and maintenance of multiple models for different tasks.

3 Prefix-Tuning: Optimizing Continuous Prompts for Generation

The prefix-tuning method, proposed by Li and Liang (2021) [4], aims to achieve parameter-efficient
transfer learning for natural language generation tasks. Instead of updating all the parameters of the
pre-trained language model, prefix-tuning optimizes a small continuous task-specific vector called
the "prefix".

Figure 1: Fine-tuning (top) updates all Transformer parameters (the red Transformer box) and
requires storing a full model copy for each task. We propose prefix-tuning (bottom), which freezes
the Transformer parameters and only optimizes the prefix (the red prefix blocks). Consequently, we
only need to store the prefix for each task, making prefix-tuning modular and space-efficient. Note
that each vertical block denote transformer activations at one time step.

3.1 Optimization Problem

The key idea of prefix-tuning is to learn a continuous prefix vector p that is prepended to the input
sequence x. This allows the language model to attend to the prefix as if it were "virtual tokens",
enabling efficient adaptation to the target task.

2



3.2 Objective Function

The objective of prefix-tuning is to maximize the likelihood of the target sequence y given the input
x and the prefix p, while keeping the pre-trained model parameters θ frozen:

max
p

logP (y|x,p; θ) (1)

where θ represents the parameters of the pre-trained language model.

3.3 Optimization Algorithm

To optimize the prefix vector p, the authors use gradient descent. The gradients are computed with
respect to the prefix vector p, while the pre-trained model parameters θ are kept fixed.

3.4 Key Advantage

The key advantage of prefix-tuning is that it requires optimizing only a small number of parameters
(the prefix vector p), typically around 0.1% of the total model parameters. This leads to significant
parameter efficiency compared to full fine-tuning, where all the model parameters need to be updated.
The authors show that by learning only 0.1% of the parameters, prefix-tuning can achieve comparable
performance to full fine-tuning in the high-data regime. Moreover, prefix-tuning outperforms fine-
tuning in low-data settings and extrapolates better to examples with topics unseen during training.
The modular nature of the prefix also enables efficient multi-task learning, as the prefix can be easily
swapped for different tasks without interfering with the pre-trained model.

4 Intrinsic Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning

The paper by Aghajanyan et al. (2020) [1] provides valuable insights into the dynamics of fine-tuning
large language models by analyzing the concept of intrinsic dimensionality.

4.1 Intrinsic Dimensionality

The key insight of this work is that common NLP tasks within the context of pre-trained representa-
tions have an intrinsic dimension several orders of magnitude smaller than the full parameterization
of the language model.

The authors propose a new interpretation of intrinsic dimension as the downstream fine-tuning task’s
minimal description length within the framework of the pre-trained model. In other words, they
argue that a low-dimensional reparameterization (e.g., a few thousand dimensions out of hundreds of
millions) can effectively represent the fine-tuning task.

4.2 Empirical Analysis

Through extensive empirical analysis, the authors show that a low-dimensional reparameterization can
represent the fine-tuning task effectively. Specifically, they demonstrate that a random projection of
the pre-trained model’s parameters to a subspace of just a few thousand dimensions (out of hundreds
of millions) is enough to represent the problem of fine-tuning a RoBERTa model to within 90% of
the performance of the full model.

Figure 2 illustrates the authors’ findings on the intrinsic dimensionality of pre-trained language
models. The figure shows that common NLP tasks have an intrinsic dimension several orders of
magnitude smaller than the full parameterization of the pre-trained model.

4.3 Implications

The low intrinsic dimensionality of fine-tuning tasks explains why vanilla gradient descent algorithms
can effectively fine-tune large language models on small datasets. It also motivates the development
of parameter-efficient learning methods that exploit this low intrinsic dimensionality, such as adapter
methods and low-rank adaptation techniques like LoRA.
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Figure 2: Intrinsic dimensionality of pre-trained language models [1]

By understanding that the fine-tuning task can be effectively represented in a much lower-dimensional
subspace, these methods can adapt pre-trained models to new tasks with minimal parameter updates,
reducing computational and memory requirements while enabling better transfer learning and faster
convergence.

4.4 Theoretical Connections

The authors also describe strong empirical and theoretical connections between intrinsic dimensional-
ity, number of parameters, pre-training, and generalization. They provide intrinsic-dimension-based
generalization bounds that are independent of the full parameter count, further highlighting the
importance of understanding the intrinsic dimensionality of language tasks.

Overall, the insights from this work on the intrinsic dimensionality of language models have been
highly influential in the development of parameter-efficient learning methods, as they provide a
theoretical foundation for the effectiveness of these approaches.

4.5 Intrinsic-Dimension-Based Generalization Bounds

In addition to the empirical analysis of intrinsic dimensionality, Aghajanyan et al. (2020) [1] also
provide theoretical insights into the generalization properties of language models based on their
intrinsic dimensionality.

The authors derive intrinsic-dimension-based generalization bounds that are independent of the full
parameter count of the language model. Specifically, they show that the generalization error can be
bounded by a term that depends on the intrinsic dimension of the task, rather than the total number of
parameters in the model.

Let H be the hypothesis class of the pre-trained language model, and dint be the intrinsic dimension
of the fine-tuning task. The authors prove the following generalization bound:

ED

[
sup
h∈H

|L(h)− L̂(h)|
]
≤ O

(√
dint log(1/δ)

n

)
(2)

where L(h) is the true loss, L̂(h) is the empirical loss, n is the number of training examples, and δ is
the failure probability.

This bound shows that the generalization error depends on the intrinsic dimension dint, rather
than the full parameter count of the language model. This provides a theoretical justification for
the effectiveness of parameter-efficient learning methods, as they can exploit the low intrinsic
dimensionality of language tasks to achieve efficient adaptation with minimal parameter updates.

The authors further discuss the connections between intrinsic dimensionality, pre-training, and
generalization, highlighting the importance of understanding the underlying structure of language
models for developing effective and efficient learning algorithms.
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5 Parameter-Efficient Transfer Learning for NLP

The parameter-efficient transfer learning approach proposed by Houlsby et al. (2019) [2] aims
to achieve efficient adaptation of pre-trained language models to new tasks by introducing small
task-specific adapter modules.

5.1 Optimization Problem

The key idea of the adapter method is to learn task-specific adapter modules that are inserted between
the layers of the pre-trained model, while keeping the original model parameters frozen. This allows
the model to be efficiently adapted to new tasks without modifying the entire set of parameters.

5.2 Adapter Architecture

The adapter module proposed by Houlsby et al. consists of a bottleneck architecture with the
following components (as shown in Figure 3):

Figure 3: Adapter architecture proposed by Houlsby et al. [2]

A down-projection layer that projects the input representation to a lower-dimensional space. A
non-linear layer, typically using a ReLU or GeLU activation function. An up-projection layer that
projects the representation back to the original dimension. The adapter module is inserted between
the layers of the pre-trained model, and its output is added to the output of the corresponding layer.
This allows the adapter to modify the behavior of the pre-trained model while keeping the original
parameters frozen.

5.3 Objective Function

The objective of the adapter method is to minimize the task-specific loss function (e.g., cross-entropy
for classification tasks) by optimizing the adapter parameters, while keeping the pre-trained model
parameters fixed:

min
wadapter

L(x,y; θ,wadapter) (3)

where x and y are the input and target output, respectively, θ represents the frozen pre-trained model
parameters, and wadapter are the trainable adapter parameters.

5.4 Optimization Algorithm

To optimize the adapter parameters wadapter, the authors use gradient descent. The gradients are
computed with respect to the adapter parameters, while the pre-trained model parameters θ are kept
fixed.
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5.5 Key Advantage

The key advantage of the adapter method is that it adds only a few trainable parameters per task,
typically less than 1% of the pre-trained model’s parameters. This enables efficient transfer learning
and multi-task learning, as new tasks can be added without revisiting previous ones. Houlsby et al.
evaluated the adapter method on 26 diverse text classification tasks, including the GLUE benchmark
[5]. They found that adapters attain near state-of-the-art performance while adding only a few
parameters per task. On the GLUE benchmark, adapters achieved within 0.4% of the performance of
full fine-tuning while adding only 3.6% parameters per task, as shown in Figure 4.

Figure 4: Performance of adapter-based tuning compared to fine-tuning on the GLUE benchmark [2]

The authors also discussed the potential of adapters for multi-task learning and continual learning
scenarios, as the task-specific adapters can be easily added or removed without interfering with other
tasks.

6 LoRA: Low-Rank Adaptation of Large Language Models

The LoRA (Low-Rank Adaptation) method, proposed by Hu et al. (2022) [3], is a parameter-efficient
fine-tuning technique for adapting large language models to new tasks. LoRA aims to achieve
efficient adaptation by introducing low-rank updates to the pre-trained model weights, while keeping
the original weights frozen.

6.1 Optimization Problem

The key idea of LoRA is to learn low-rank updates to the pre-trained model weights, rather than
updating all the parameters. Specifically, LoRA introduces two small rank-decomposed matrices, A
and B, which are multiplied with the pre-trained weights W during fine-tuning:

W′ = W +AB⊤ (4)

where W′ represents the updated weights used during the forward pass.

6.2 Objective Function

The objective of LoRA is to minimize the task-specific loss function by optimizing the low-rank
update parameters A and B, while keeping the pre-trained weights W frozen:

min
A,B

L(x,y;W,A,B) (5)

where x and y are the input and target output, respectively, and L is the task-specific loss function
(e.g., cross-entropy for classification tasks).

6.3 Optimization Algorithm

To optimize the low-rank update parameters A and B, the authors use gradient descent. The gradients
are computed with respect to A and B, while the pre-trained weights W are kept fixed.
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6.4 LoRA Architecture

The LoRA adaptation can be viewed as a special case of the adapter architecture, where the down-
projection, non-linear, and up-projection layers are replaced by the low-rank update matrices A and
B. This is illustrated in Figure 5.

Figure 5: LoRA adaptation architecture [3]

6.5 Key Advantages

The key advantages of LoRA are:

1. Parameter Efficiency: LoRA requires only a small number of trainable parameters (typically less
than 1% of the pre-trained model’s parameters), making it highly parameter-efficient.

2. Effective Adaptation: LoRA achieves comparable or better performance than full fine-tuning on
various tasks.

3. Modularity: LoRA modules can be easily swapped for different tasks, enabling efficient multi-task
learning.

6.6 Expressive Power of Low-Rank Adaptation

The paper "The Expressive Power of Low-Rank Adaptation" by Zeng et al. (2024) [6] provides a
theoretical analysis of the expressive power of the Low-Rank Adaptation (LoRA) method.

6.6.1 Fully Connected Neural Networks

For fully connected neural networks (FNNs), the authors show that LoRA can adapt any model f to
accurately represent any smaller target model f̄ if the LoRA rank is greater than or equal to:

LoRA-rank ≥ (width of f)× depth of f̄
depth of f

(6)

This result holds under the mild assumption that the target model f̄ can be well-approximated by a
low-rank matrix.

Furthermore, the authors provide bounds on the approximation error when the LoRA rank is lower
than the threshold. Specifically, they show that the approximation error between the fine-tuned model
and the target model decreases as the LoRA rank increases.
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6.6.2 Transformer Networks

For Transformer networks, the authors show that any model can be adapted to a target model of the
same size with rank-( embedding size

2 ) LoRA adapters.

This result indicates that the expressive power of LoRA is nearly optimal for Transformer networks,
as the effective expressive power of the LoRA-adapted model is close to the expressive power of the
target model.

6.6.3 Implications

The theoretical insights provided in this work offer several important implications:

1. Theoretical Guarantees: The authors establish theoretical guarantees on the expressive power of
LoRA, showing that it can effectively approximate the full fine-tuning solution with a small number
of parameters.

2. Rank Selection: The results provide guidelines for selecting the rank of the low-rank updates
based on the desired approximation error and the number of available parameters.

3. Limitations: The authors also discuss the limitations of low-rank adaptation, noting that it may
not be effective for tasks that require significant changes to the pre-trained model’s behavior, as the
approximation error can be large in such cases.

Overall, this work provides the first known theoretical results on the expressive power of LoRA,
offering valuable insights into the practical success of this parameter-efficient fine-tuning method.

6.7 Empirical Evaluation

The authors evaluate LoRA on various natural language processing tasks, including text classification,
question answering, and language generation. They show that LoRA can achieve comparable or
better performance than full fine-tuning while requiring only a small fraction of the parameters.

Figure 6: Performance Comparison of LoRA with other fine-tuning methods

Overall, LoRA demonstrates the effectiveness of low-rank adaptation as a parameter-efficient learning
method for adapting large language models to new tasks, with strong theoretical and empirical support.

7 Conclusion

Parameter-efficient learning methods have emerged as a promising solution to adapt large pre-trained
language models to new tasks with minimal parameter updates, reducing computational and memory
requirements while enabling better transfer learning and faster convergence.
This review has covered several prominent approaches, including prefix-tuning, adapter methods,
and low-rank adaptation techniques like LoRA. Prefix-tuning optimizes a small continuous prefix
vector that is prepended to the input, allowing the language model to attend to it as "virtual tokens."
This method achieves significant parameter efficiency compared to full fine-tuning, particularly in
high-data regimes.
Adapter methods introduce small task-specific modules within the pre-trained model, which are
trained while keeping the original model parameters frozen. This enables efficient transfer learning
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and multi-task learning, with adapters adding only a few trainable parameters per task.
The analysis of intrinsic dimensionality has provided valuable insights into the dynamics of fine-
tuning large language models. The finding that common NLP tasks have an intrinsic dimension much
smaller than the full model parameterization explains the effectiveness of simple gradient-based
fine-tuning and motivates the development of parameter-efficient learning methods.
Low-rank adaptation techniques, such as LoRA, achieve parameter-efficient fine-tuning by introducing
low-rank updates to the pre-trained model weights. LoRA can effectively approximate the full fine-
tuning solution with a small number of parameters, as demonstrated by the theoretical and empirical
results.
As large language models continue to grow in size and complexity, parameter-efficient learning
methods will become increasingly important for practical deployment and efficient adaptation to new
tasks. Future research directions may include developing more expressive and versatile parameter-
efficient methods, exploring their theoretical properties, and investigating their application to emerging
areas such as multi-modal and multi-task learning.
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Abstract

The recent explosion in the parameter size of large-scale neural networks has
made the use of such models computationally costly or prohibitive for resource-
constrained systems. Post-training pruning provides a particularly promising
methods to reduce the size and latency of such networks without loss in performance
through the sparsification of network elements. While numerous methods have
been proposed for post-training pruning, including those that rely on quadratic
approximations of the loss function or alternative heuristics, it remains unclear how
these methods compare, particularly in lieu of computational constraints. In this
project, we explore various impact and heuristic-based methods for neural network
pruning as well as experimentally verify how such methods compare on several
neural network architectures.

1 Introduction

Modern large-scale neural networks utilize increasingly large number of parameters, resulting in
slower and computationally costlier inference. Numerous methods have been proposed to mitigate
the impact of increasing computational costs, including low-bit quantization, knowledge distillation,
low-rank factorization, and pruning. Pruning provides a particularly promising method to reduce the
size and latency of neural networks by aiming to identify sub-networks of larger, dense networks
with minimal loss in performance. Pruning methods extract these sub-networks through sparsifying
network elements.

Various classes of sparsity can be achieved in the context of neural network pruning, yielding
disparate improvements in efficiency and cost. Unstructured sparsity, corresponds to the removal
of individual weights from the network. While requiring the least constraints or knowledge of
model structure to achieve, it is most difficult to leverage for improvements in latency. The removal
of higher granularity structures such as neurons or layer, corresponding to contiguous blocks of
parameters, yields structured sparsity, which can provide significant speedups in inference on nearly
any system. The semi-structured variant of sparsity removes pre-defined fractions of weights in
regularly interspaced patterns (i.e. 2 out of every 4 weights, or 2:4 sparsity), which select GPUs can
leverage to improve latency.

Many approaches have been proposed to induce such sparsity patterns within neural networks. Sparse
training or mask learning methods, for example, train a network with knowledge of a sparsity
constraint. However, we focus particularly on post-training pruning methods which attempt to find
sparse masks of neural networks after training while minimally impacting the network performance.
Efficient post-training pruning methods allow for the pruning of large-scale neural networks without
the need for costly and often infeasible model retraining. These pruning methods will allow for
greater utility and democratization of neural networks on resource constrained systems without the
computational capability to host large-scale models.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



2 Approaches to Post-Training Pruning

2.1 Problem Formulation

Suppose we have a neural network of p trainable parameters represented as a vector w ∈ Rp with
an empirical loss function L(w) :=

∑N
i=1 ℓi(w), where N is the number of data samples and ℓi is a

function on the i-th sample. The pruning problem (in the case of unstructured sparsity) is most often
represented by the following sparse optimization objective:

min
w∈Rp

L(w) s.t.∥w∥0 ≤ k (1)

where k denotes the target sparsity. In the post-training pruning scenario, we are given a pre-trained
weight vector w ∈ Rp, and seek to find a k-sparse vector w ∈ Rp that maintains the model’s original
performance, i.e. L(w) ≈ L(w).

2.2 Impact-Based Pruning Methods

Impact-based pruning methods remove weights in accordance with how those weights impact the loss
function, L. Leveraging the information provided by the full loss function would require some sort
sparse training regime, which is often computationally infeasible. Thus, most works use a quadratic
approximation of L around the pre-trained weight vector w:

L(w) ≈ L(w) +∇L(w)⊤(w − w) +
1

2
(w − w)⊤∇2L(w)(w − w) +O(∥w − w∥3).

Given a gradient approximation g ≈ ∇L(w) and Hessian approximation H ≈ ∇2L(w), (1) can be
reformulated as

min
w∈Rp

Q(w) := L(w) + g⊤(w − w) +
1

2
(w − w)⊤H(w − w) s.t.∥w∥0 ≤ k. (2)

Most commonly in literature, the gradient is approximated by the stochastic gradient and the Hessian
by the empirical Fisher information matrix:

g =
1

n

n∑
i=1

∇ℓi(w) H =
1

n

n∑
i=1

∇ℓi(w)∇ℓi(w)
⊤

2.2.1 Traditional Frameworks

Impact-based pruning methods were initially proposed in the Optimal Brain Damage (OBD) frame-
work [1]. It is commonly assumed, as in the OBD framework, that w is a local optimum of the
loss function, i.e. g = 0 and L(w) can be approximated simply using second-order information, i.e.
L(w) + 1

2 (w − w)⊤H(w − w). With this approximation, OBD searches for individual weights to
prune assuming a diagonal Hessian H , deriving an expression for the saliency of each parameter wi

as w2
i

2H−1
ii

, which approximates the increase in the loss function when wi is eliminated [1]. In order to
prune the network to be k-sparse, the k most salient parameters are selected.

This approach is further expanded in the Optimal Brain Surgeon (OBS) framework, which utilizes the
same local approximation of the loss function, without assuming a diagonal Hessian [2]. A critical
extension of the OBS framework is the additional inclusion of a weight update δw = − wi

H−1
ii

H−1ei,
which is the optimal perturbation of the weights to compensate for removing wi [2].

Note: While this framework traditionally focus on unstructured sparsity, the notion of saliency can
be extended easily to the case of structured sparsity by aggregating the saliency of the individual
parameters that comprise a block [3].

2.2.2 Scaling to Large-Scale Neural Networks

Subsequent work has focused on scaling the traditional OBD/OBS frameworks to large-scale neural
networks. Primarily, as p grows large, computing the Hessian or Hessian-inverse as a p× p matrix
grows increasingly computationally infeasible.
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To resolve this concern, numerous methods have been proposed, which introduce further approx-
imations. For example, the layerwise-OBS algorithm adopts the traditional OBS framework and
update rule but considers the objective of minimizing a quadratic approximation of the layer-wise
reconstruction error rather than the global loss function, while still retaining theoretical guarantees
for the accumulated error of the entire network [4]. Here, the objective is represented as

min
Ẑℓ

E(Ẑℓ) :=
1

n
∥Ẑℓ − Zℓ∥2F (3)

where Ẑℓ and Zℓ are the outputs of the network at layer l before applying an activation function.

More recently, the SparseGPT algorithm extends pruning methods to GPT-scale models by applying
a modified OBS update rule in a similar layer-wise pruning framework [5]. Alternatively, other
large-scale methods such as LLM-pruner, designed for structured pruning of LLMs, avoid Hessian
computation entirely and simply rely on gradient information to estimate the importance or saliency
of parameters [6].

Critically, we observe that, as model size grows, methods incur additional burdens to further ap-
proximate the loss or error of the model, beyond a simple quadratic approximation of the loss
function.

2.2.3 Combinatorial Approaches

The previously described frameworks select each parameter or group of parameters individually by
their saliency score calculated from an approximation of the loss function. However, the pruning
problem is inherently combinatorial in nature, in that removing particular combinations weights
may have significantly more salient effects on the loss than when only considering the impact of
removing each weight individually. However, considering the full combinatorial nature of pruning p
parameters grows exponentially in complexity, and is largely infeasible. Recent work such as the
Combinatorial Brain Surgeon (CBS) algorithm, however, present tractable combinatorial extensions
of the OBS framework, which disentangles the weight selection and update steps and proposes
a greedy randomized algorithm for combinatorial weight selection [7]. While this algorithm still
suffers from the computational constraints of computing a p × p Hessian matrix, alternative such
as that Combinatorial Hessian-free Iterative Thresholding Algorithm (CHITA) algorithm have been
proposed, which utilizes IHT to solve a sparse regression reformulation of the pruning objective,
without any Hessian computation [8].

2.3 Heuristic-Based Methods

Additional pruning methods have been proposed that do not rely on information regarding the loss
function information, but rather are based on alternative heuristics to select weights. Such heuristics
provide simple metrics for pruning neural networks, especially in the absence of labeled data upon
which to approximation information about the loss function as well as in the case that model size
grows larger and gradient computation becomes infeasible.

Perhaps the most simple heuristic is to use the magnitude of weights as a selection criteria. This is
equivalent to finding the weight vector w that satisfies the objective:

min
w∈Rp

∥w − w∥22 s.t.∥w∥0 ≤ k. (4)

Magnitude pruning often serves as a baseline for alternative pruning methods, and experimentally
can provide strong results, especially when integrated into gradual pruning schemes [9].

Numerous more sophisticated heuristics have been proposed, most notably pruning by weights and
activations (Wanda). The Wanda metric quantifies the importance of a given weight wij is a weight
matrix as the product of its magnitude |wij | and its input feature norm ∥Xj∥2, which can be applied to
select weights across the entire network or per layer [10]. Such heuristics, in addition to impact-based
methods, can additionally be augmented based on particular sparsity allocation schemes, rather than
simply layer-wise pruning [11].
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3 Experiments

Ultimately, it can be observed that, as networks grow larger, computational constraints require the use
of more significant approximations of the information provided by the loss function to prune neural
networks. However, it remains unclear how these methods are connected, and whether there exists any
practical hierarchy between sparse training, impact-based, and other heuristic-based methods. Thus,
we seek to experimentally verify how sparse training algorithms compare to methods that leverage
quadratic approximations of the loss function, layer-wise approximations of the reconstruction error,
or that separate loss function information entirely from pruning and rely on alternative heuristics.

3.1 Experimental Setup

We evaluate these pruning methods on two pretrained models, a simple multilayer perception (MLP)
trained on the MNIST dataset [12], and Resnet-20 [13] trained on the CIFAR-10 dataset [14]. For
each model, the accuracy was calculated on a held out test set, using each pruning method to prune to
multiple levels of sparsity from 0.3 to 0.99.

Sparse training was performed using standard mini-batch stochastic gradient descent, with a sparsity
projection onto the larger k parameters in magnitude at each gradient step. Each model was trained
for 50 epochs over the entire dataset, with a step size of 10−3 and batch size of 16.

To evaluate the effectiveness of using a Taylor approximation of the loss function to guide pruning,
we observe, as in [8], that (2) can be reformulated as the following sparse regression problem, with
an additional regularization term:

min
w∈Rp

Q̂(w) :=
1

2
∥b−Aw∥2 + nλ

2
∥w − w∥22 s.t.∥w∥0 ≤ k (5)

where A = [∇ℓ1(w), ...,∇ℓn(w)]
⊤ ∈ Rn×p, b := Aw − e ∈ Rn, and e is a vector of ones.

We use IHT to solve this objective, with an optimal step size selection scheme:

η(w) =
∥∇Q̂(w)∥22

∥A∇Q̂(w)∥22 + nλ∥∇Q̂(w)∥22
and the addition of a debiasing step on each iteration, which computes in closed form the solution to
the unconstrained least-squares problem, with A and w restricted on the current active set, S.

As additional ablation studies, we also study the impact of the sample size, n, and first-order term, g,
on the effectiveness of pruning using an approximation of the loss function:

1. Recent works such as [3] and [7] argue that larger sample size, n, for approximating
the Hessian and gradient approximation yields better accuracy. We validate how pruning
performs at various choices of sample sizes, from 102 to 104 data samples.

2. As previously noted, a common assumption in literature is that the pre-trained network
prior to pruning is at a local minimum of the loss function, and thus we take g = 0, which
corresponds to taking b = Aw in (5). We additionally evaluate the impact of this assumption
on the corresponding pruned models.

Finally, to compare the utility of approximating the loss function with heuristic-based methods, we
benchmark these methods against standard magnitude pruning, both with and without a debiasing
step, for completeness.

3.2 Results

Sparse training yields the strongest results, meeting or exceeding the baseline dense accuracy for
most levels of sparsity (Figure 1).

We observe that minimizing a Taylor approximation of the loss function yields notably reduced test
accuracy as opposed to sparse training, where information about the loss function can be leveraged
at every gradient step (Figure 2). However, the accuracy of pruned models approaches the dense
accuracy as the sample size used to compute the Hessian and gradient approximations increases.
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(a) (b)

Figure 1: Accuracy of (a) MLP and (b) Resnet-20 after sparse training to various levels of sparsity.
The baseline accuracy of the dense network is shown in red.

(a) (b)

Figure 2: Accuracy of (a) MLP and (b) Resnet-20 after pruning according to objective (5) to various
levels of sparsity

Crucially, we find that the assumption that the network is trained to a local minimum and thus that
the gradient of the loss function at w is 0 carries significant weight in the success of pruning methods.
While failing to provide comparable results to sparse training, pruning with this method provides
notably improved test accuracies as opposed to when the gradient is included in the approximation of
the loss function, that meet or near the baseline dense accuracy for low levels of sparsity (Figure 3).

(a) (b)

Figure 3: Accuracy of (a) MLP and (b) Resnet-2 0 after pruning according to objective (5), with the
assumption that g = 0, to various levels of sparsity
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Finally, in the case of magnitude pruning, we observe that the magnitude heuristic yields comparable
results across most levels of sparsity to pruning according to an approximation of the loss function
(Figure 4). Debiasing the selected weights provides little to no improve model accuracy.

(a) (b)

Figure 4: Accuracy of (a) MLP and (b) Resnet-20 after magnitude pruning to various levels of sparsity

4 Discussion and Future Work

While our results establish that pruning methods that incorporate model retraining outperform
post-training pruning methods, such retraining is often computationally prohibitive. Thus, such
sparse training methods can only be used in the case the model size remains small enough to be
computationally feasible.

As an alternative we find that both impact-based methods and heuristic-based methods provide
comparable results in pruning small-scale neural networks such as simple MLP and Resnet-20. In
concurrence with previous work, we find that the sample size used to estimate the Hessian and
gradient for impact-based methods is positively correlated with the resulting test accuracy of the
pruned model. We additionally observe that a frequent and seemingly inconsequential assumption
that the gradient of a pre-trained model is 0 when approximating the loss function in fact poses
significant impacts on the effectiveness of impact-based pruning methods. It remains unclear why the
inclusion of a gradient term in the Taylor approximation of the loss function has such an appreciable
influence.

We further find that heuristic-based methods, particularly magnitude pruning perform nearly identi-
cally to more sophisticated methods that incorporate information about the loss function. However,
literature suggests that the effectiveness of magnitude pruning methods declines as model size grows
larger and the model’s task grows more difficult. In such scenarios, small magnitude weights encode
critical knowledge essential for tackling difficult downstream tasks, a phenomenon referred to as the
junk DNA hypothesis [15].

It remains unclear how these pruning methods are connected and whether there exists a practical
hierarchy between these methods based on what is prohibitive given monetary and computational
constraints. To further explore the effectiveness of the proposed methods, future work will involve
investigating how these methods compare as model size increases, and whether a larger discrepancy
between heuristic and impact-based methods can be observed in this scenario. Furthermore, a more
robust comparison of layer-wise approximations of the reconstruction error per layer as opposed to a
approximation of the global loss over the entire network will be conducted.
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Abstract—Homotopy is a concept that often appears in the
problem of robotics path planning, but is not well-studied. Most
graph-based and potential field methods for collision-free path
planning do not consider the homotopy class of a given path,
which may yield useful information. In this literature review,
we will investigate the Homotopy Continuation Method (HCM),
which is one technique of solving complex systems of nonlinear
equations by deforming a simple solvable system of equations
into the final complex system. By representing the configuration
space as a system of nonlinear equations, HCM can be adapted
to the problem of robotics path planning. We will also briefly
introduce additional graph-based path planning methods that
use the concept of homotopy in path planning.

I. INTRODUCTION

In general, finding collision-free paths is a hard problem.
One must consider constraints on dynamics, environment,
and time. As a result, many path-finding algorithms are only
probabilistically complete, in that they are guaranteed to find
a path asymptotically. Even fewer algorithms make a claim of
asymptotic optimality. The upshot to this tradeoff is that the
algorithms can run much quicker.

Graph algorithms and potential fields are two popular meth-
ods of collision-free path planning. Graph algorithms represent
the configuration space as a graph and perform search algo-
rithms to get from the start to goal nodes. Some landmark
examples of graph algorithms include PRM, which samples
points and constructs them into a roadmap, and RRT*, which
builds a rapidly-exploring tree starting at the star and goal
points and attempts to connect the trees. Newer works have
introduced heuristics to encourage the exploration of more
promising paths, but the fundamental principle of sampling
and evaluating remains the same. While this approach allows
for efficient exploration of high dimensional spaces, graph
algorithms ultimately produce non-smooth paths that may not
be optimal. On the other hand, potential fields methods assign
a potential field to every point in the space. Points around
obstacles are assigned a repulsive field, and the goal point
is assigned an attractive field. Running a gradient descent
algorithm on the field map then produces a valid collision-
free path. It is easy to see that both graph-based and potential
field algorithms fall prey to the local optima problem.

Homotopy path planning methods are an attempt to address
this problem. Information about path homotopy classes is
useful in a couple different ways. They can be used to more
intelligently compute and consider paths in space, since it

doesn’t make much sense to iterate through many potential
paths that all have the same homotopy class. Homotopy
methods also combat the local minima problem since they
can be used to explore new classes of paths and are far less
prone to falling into local optima traps.

While homotopy arises in path planning very often, research
in areas of homotopy path planning is relatively sparse. The
method we will primarily investigate is Homotopy Continua-
tion Methods (HCM), which represents the problem as a sys-
tem of nonlinear equations, and “deforms” a simple system of
equations into the target system of equations using homotopy.
HCM has been used to solve problems in problems that involve
scientific computing and solving systems of polynomial or
partial differential equations, such as in control theory, fluid
dynamics, and quantum theory. In this work, we investigate
how HCM has been applied to the problem of path planning
in robotics.

HCM Is just one way that researchers have incorporated
concepts from mathematical homotopy to solve path planning
problems. Other methods use homotopy information to more
intelligently construct and search graph representations of the
space, or to compute whether two valid paths in a graph
structure are homotopically equivalent. In all cases, the use
of homotopy concepts can produce higher quality motion
trajectories.

II. TERMINOLOGY

A. Algorithmic Robotics

One of the central problems in algorithmic robotics is path
planning. In essence, given a workspace, or set of obstacles,
plus the possible modes of movement of a robot, we want
to find an efficient way to get from one point to another.
In order to formalize this notion, we introduce the notion
of a configuration space. Whereas a point in the workspace
corresponds to a point in the environment, a point in the
configuration space C specifies the exact position of each
controllable part of the robot. For example, a robot that
operates in 2D with free rotation would have a configuration
space of SE(2).

The final definition we must give is that of free space. Given
a set of obstacles {Oi}, we define the free space to be

Wf = W − ∪Oi



, where W is the workspace. Now, suppose f : C → W is
the transformation that takes configurations to positions in the
workspace. Then, a configuration c is free in C if f(c) ∈ Wf ,
and we denote the free space in the configuration space as Cf .

Formalizing the problem, given a start point xstart and
a goal point xgoal, we want to find a continuous path π :
[0, 1]− > C such that

π(0) ∈ f−1(xstart), (1)

π(1) ∈ f−1(xgoal) (2)

and for all 0 ≤ x ≤ 1,

π(x) ∈ Cf

. However, the configuration space is often extraordinarily high
dimensional. A freely translating and rotating robot in R3 has
a configuration space of dimension 6, and actual implementa-
tions of robotic arms routinely exceed 6 dimensions.

In practice, we can define the path in the workspace and do
inverse kinematics to recover a valid path in the configuration
space. Formally, our path becomes

π : [0, 1] → W

, and we require that π(x) ∈ Wf for 0 ≤ x ≤ 1. For a point
robot with no rotation, these formulations are the same. In this
review, we will assume that paths are in the workspace, rather
than in the configuration space.

B. Sampling-based Path Planning

A good example of sampling-based path planning is the
Probabilistic Road Map (PRM) method. The main idea is to
randomly sample the configuration space and connect points
if they are in the free space. Then, the problem becomes a
graph search problem to find the shortest path between the
start and goal points. PRM is probabilistically complete, in
that as t → ∞, the probability that it doesn’t find a valid
path, if one exists, goes to zero.

Other sampling-based path planning techniques fall under
a similar idea of sampling nodes from a distribution of
points in the configuration space, checking for validity, and
appending to a graph representation of the configuration space.
Ultimately, the goal is to adequately capture the complexity of
the configuration space such that the optimal path is very likely
to be found without excessive computation time, regardless of
how difficult it is to find (i.e. paths that run through very
narrow passages).

C. Homotopy

Two functions are homotopic if one can be continuously
deformed into the other, where the deformation is called the
homotopy.

More formally, let X and Y be two topological spaces, and
f, g be two continuous functions from X to Y . A homotopy
is a continuous function

H : X × [0, 1] → Y (3)

Fig. 1: Probabilistic Road Map

such that

H(x, 0) = f(x), (4)
H(x, 1) = g(x) (5)

for all x ∈ X .
Homotopy is an equivalence relation on the set of all

continuous functions from X to Y . The composition of two
homotopic functions is also homotopic.

Let X and Y be two topological spaces, and f, g be two
continuous functions from X to Y . f and g are a homotopy
equivalence if f ◦ g is homotopic to idX , or the identity map
in X . Furthermore, X and Y are homotopically equivalent.
More intuitively, X can be transformed into Y by stretching or
shrinking the space without introducing new holes (no cutting
is allowed).

III. HOMOTOPY CONTINUATION METHODS

Homotopy Continuation Method (HCM) is a technique for
solving systems of polynomial or nonlinear equations. Where
n is the number of variables in our system of equations and
variables x, we can write the system in the form

F (x) = 0, (6)
F : Rn → Rn (7)

Define a homotopy map as

H(F (x), λ) = 0, (8)

H : Rn+1 → R, 0 ≤ λ ≤ 1 (9)

To solve a system F , we can create a homotopy map

Hλ = (1− λ)G+ λF, λ ∈ [0, 1] (10)

where the start system is G = H0 and the target system (to
be solved) is F = H1.

We require
• H0 is simple to solve in the sense that H−1

0 is easy to
find numerically



• H−1
0 is continuous for all λ

By varying λ from 0 towards 1, we can continuously deform
G into F , and thus find solutions of G that lead us towards
solutions of F . We can choose G to get different homotopies.
For example, we can get the Newton homotopy by choosing

G(x) = F (x)− F (x0) (11)

which produces the homotopy equation

H(F (x), λ) = F (x)− (1− λ)F (x0) = 0 (12)

Observe that for λ = 0, we get

H(x, 0) = F (x)− F (x0) = 0 =⇒ F (x) = F (x0) (13)

which is the trivial problem, and that when λ = 1, we get

H(x, 1) = F (x) = 0 (14)

as desired. This process generates homotopy paths γ, such as
below:

Fig. 2: Only γ2 successfully finds a path from point A to point
B. All other trajectories failed to find a feasible path.

To solve this problem numerically, we discretize the λ
domain by choosing a step size ∆λ sufficiently small, and
each mesh point λi ∈ [0, 1] is such that

λi = λi−1 +∆λ (15)

We can choose ∆λ depending on the problem. For example,
we can vary ∆λ depending on the curvature of the homotopy
trajectory. We choose start point (λ0, x0) = (0, x0). Then,
we solve H(λi, x) = 0 to get xi for each i. This can be
achieved by any choice of predictor-corrector method. Some
popular choices are the Euler predictor method and the Newton
corrector method.

HCM is useful for problems that can be modeled as a
system of polynomial or nonlinear equations. In robotics path
planning, the problem to be solved is finding the optimal
collision-free path from a start to goal point in a configuration
space. We will investigate how we can model the configuration
space as a system of nonlinear equations.

IV. HOMOTOPY CONTINUATION METHODS FOR PATH
PLANNING

One branch of recent work formulates the entire config-
uration space as a system of nonlinear equations and uses
homotopy methods to construct a path from scratch. In 2013,
Vazquez-Leal et al proposed the Homotopy Path Planning
Method, one such method. The basis of this method is a spe-
cial case of homotopy continuation methods called Newton’s
homotopy. Specifically, this case puts

G(x) = F (x)− F (x0)

so that the entire homotopy method becomes

Hλ(x) = F (X) + (1− λ)F (x0)

When λ = 0, this homotopy has a trivial solution, and when
λ = 1, we recover F (X), as desired.

A. Homotopy Path Planning Method

The next step is to translate the set of obstacles and start
and goal states into a system of nonlinear equations. For a
point robot, this problem reduces to finding a path through the
workspace. On a high level, one approach is to start with a
linear system of equations whose solution is the goal point, add
the obstacles in as repulsions, and use homotopy continuation
methods to solve the resultant system of equations.

The 2013 paper deals first with point robots in the plane.
Without loss of generality, we start with a linear system of
equations whose solution is (1, 1). The paper does not specify
how values are chosen or how they affect the performance
of the algorithm. Given these equations, the next step is to
augment one with obstacle information.

In that paper, the authors provide the formulation for a
circular object with center (xi, yi) and radius ri as follows:

Ci = (x− xi)
2 + (y − yi)

2 − r2i

We note that this function is zero for points on the circle,
negative for those inside, and positive for those outside. At
first, this function does not seem to create a repulsion around
the object. However, 1/Ci has function values that are very
large in magnitude around the edge of the object and smaller as
one goes further away. Since we assume that we are working
in free space, the contribution from each obstacle will be
positive. Unless the constants from the original linear system
of equations are enormous, which normalizing should help
abate, it is unlikely that the contribution from either line will
be enough to overcome the asymptotic growth of functional
values.

The paper also approximates rectangles by squircles (or 2D
projections of 2n balls for arbitrary n). See the figure for a
sample environment with squircles and circles. For a rectangle
with side lengths 2a and 2b centered at (xi, yi), the paper
proposes the following formulation:

Ri(x, y) = ((x− xi)/a)
2n + ((x− yi)/a)

2n − 1



Fig. 3: 2D map environment

The paper then composes obstacles by multiplication of
their reciprocals; call this product 1/F (x). The paper then
subtracts off 1/(F (1, 1) to ensure that there is still a solution to
the system of equations at (1, 1) and scales the entire obstacle
repulsion expression by an adjustable constant p.

By taking the product of obstacle repulsions rather than the
sum, this method tightens the boundaries around each obstacle.
For a given point x, if 1/Ci(X) < 1, then there would be a
positive contribution to the repulsion factor even though the
obstacle is quite far away. By multiplying instead, obstacles
that are far away reduce the value of 1/F (X). We are not con-
cerned about the path clipping into the obstacle, as 1/F (X)
still grows unboundedly as one approaches the boundary of
the obstacle. We merely must set λ to be sufficiently small.

Putting it all together, we model the 2D workspace with the
following set of equations, where ℓ1 and ℓ2 are the underlying
set of linear equations.

f1(x, y) = ℓ1(x, y) = 0

f2(x, y) = ℓ2(x, y) + p(1/F (x, y)− 1/F (1, 1)) = 0

We can then apply Newton’s homotopy method to these two
equations to recover a path. This method is called HPPM.

B. Generalizing Out

There are a number of ways to generalize HPPM. First,
the original paper suggests setting an individual pi for each
obstacle, rather than one global p. This modification does make
solving the equation harder, but it allows for one to handle
variable environments. Specifically, when obstacles are close,
we want p to be small, so that we don’t accidentally shut off
any paths. However, if the obstacles are sparse, we can let
p be somewhat larger, so that the continuation method has
more direction. Some algebraic manipulation allows for this
modified version of HPPM to be solved by existing homotopy
continuation methods.

The paper also suggests a way to generalize HPPM into
3 dimensions. We start with three linear equations with a
solution of (1, 1, 1), as in the 2D case. The circle approx-
imations become sphere approximations with the addition
of a z constraint, and we approximate rectangular prisms

as the 3D equivalent of circles. We then get a system of
three nonlinear equations, which we can solve using existing
homotopy continuation methods.

One could generalize this method to Rn following the same
steps, though the accumulation of error might render it more
difficult in high-dimensional spaces. Specifically, the curse
of dimensionality might strike in this application. Further,
in robotics, spaces homeomorphic to Rn for n > 3 are
uncommon. Any workspace will likely be R2 or R3, and if
we decide to work in the configuration space instead, there
is often some subspace which is not isomorphic to the reals
due to rotational constraints. For example, a revolute joint
introduces a subspace of S1, which would require a nontrivial
modification to the existing homotopy methods.

C. Applications

Finally, a recent work generalizes HPPM to planar robotic
arms made of revolute joints. In prior work, HPPM imple-
mentations merely returned a path in the workspace, which
assumes that the robot has arbitrary movement in the plane
and is a point. However, a common embodiment that does not
satisfy these constraints is a planar arm. This arm comprises
links attached by joints that can rotate freely. A human arm
restricted to the plane, for example, would have four links and
three joints (shoulder, wrist, and elbow).

In order to apply HPPM to this environment, one must
find a path in the C-Space. Any given path in the workspace
might not be possible given the constraints of the arm, so
instead, we attempt to find a path in the configuration space.
The configuration space is messier, though; circular obstacles
in the workspace can even become multiple obstacles in the
C-Space. The paper approximates transformed obstacles by
dividing each link into keypoints and observing coordinates
where the arm is in collision with an obstacle.

One shortcoming of the paper is that it models the configu-
ration space as Rn for some n, which has a different topology
than the actual (S1)n. If we assume that a link cannot intersect
the previous link, then this approximation might be fine, since
we can place the discontinuity in R on top of the previous
link. However, in many actual embodiments, revolute joints
have more than 360 degrees of freedom, meaning that this
method could miss certain paths that only exist in (S1)n.

The paper tackles a major challenge for probabilistic plan-
ners like PRM and RRT: narrow paths. Probabilistic planners
struggle to find paths in narrow environments because the
probability that one samples a point within the narrow gap is
small. Further, the probability that one can then connect that
point to the existing graph is even smaller. In contrast, the
homotopy method finds a narrow path between two circular
obstacles consistently in a handful of milliseconds for simple
arms, whereas probabilistic planners most likely would take
longer to find the same path.

HPPM was tested in three different case studies, each
of which tested the planner’s ability to navigate complex
environments whose goals require finding narrow passages
with a wide variation on the robot’s complexity. Case study



1 uses a three-link arm, while case study 2 uses a six-link
arm with a gripper attached to one end. Case study 3 uses a
20-link arm to test HPPM’s performance on hyper-redundant
robots. In all three studies, HPPM successfully arrived at the
final position.

This work demonstrates the versatility of HPPM, as it can
be adapted to work with different numbers of robotic arms,
shapes of obstacles, widths of passages, and even with added
grippers. Thre is work to be done to explore the extension of
HCM methods in 3D spaces.

Fig. 4: Case study 1. A three-link planar robotic arm must
pass through the very narrow passage between C1 and C2 to
reach the goal point.

Fig. 5: Case study 2. A six-link planar robotic arm, equipped
with a gripper, must navigate between two ellipsoidal obsta-
cles.

Fig. 6: Case study 3. This tests HPPM on a 20-link hyper-
redundant robot.

Fig. 7: HPPM case study results.

V. OTHER USES OF HOMOTOPY IN PATH PLANNING

A. Topologically-informed Roadmaps

One recent work, Clustering Topological PRM (CTopPRM),
modifies the probabilistically complete algorithm, Informed-
PRM, to create a roadmap that consists only of topologically-
distinct paths. Homotopy information does not extend well
to 3D in that it does not capture a sufficient number of
useful paths, so Visibility Deformation (VD) is often used
to capture the same ideas in 3D; however, performing VD is
computationally expensive. The authors use Uniform Visibility
Deformation (UVD), which is a more efficient extension
of VD, to decrease computation time, and compute a set
of paths that belong to distinct UVD classes. CTopPRM is
probabilistically complete in finding a valid path, if it exists.

Fig. 8: Figure from RAPTOR. Comparison between UVD
(left) and VD (right). Each red point on one path is trans-
formed to a green point on the other path. Any two associated
points correspond to the same parameters in UVD, but not in
VD

In summary, CTopPRM begins with a dense roadmap cre-
ated by running Informed-PRM and dividing the nodes into
two initial clusters that contain xstart and xgoal, respectively.



Continue to iteratively create clusters. Between two neighbor-
ing clusters, define a cluster centroid. Using these centroids
as nodes, construct a new sparse roadmap containing only
these vertices. Considering how to intelligently place these
new centroids is imperative for defining an algorithm that
minimizes the order of the graph while capturing all UVD
classes. The algorithm compares the paths between every pair
of connected clusters. If two paths are not deformable by
UVD, then a new centroid is added at the border of the
two clusters. Lastly, CTopPRM shortens found paths, prunes
sub-optimal ones, and filters paths that belong to the same
UVD class. It has a high experimental success rate in finding
the percentage of distinct paths in a windows environment
(environment where the robot navigates through a series of
windows) not only in comparison to other methods, but in
general as well, while taking a similar computation time.

CTopPRM represents a sampling-based approach to incor-
porating homotopy information into path planning by aug-
menting existing road map path planning methods, and ex-
emplifies how homotopy information can improve the quality
of paths in sampling-based planners.

(a) roadmap clustered with initial cen-
troids

(b) fully clustered roadmap

(a) connections between clusters (b) one of the found paths

(a) shortening of the found path (b) filtered distinct paths

Fig. 9: CTopPRM Algorithm

VI. CONCLUSION

In robotics path planning, it would seem natural to consider
homotopy in some way, but this area is surprisingly understud-
ied despite its usefulness. As we discussed in this review, HCM
is used in many other fields to solve polynomial or nonlinear
systems of equations. HCM can be applied to robotics path
planning to solve for a smooth optimal trajectory by modeling

the configuration space as a system of nonlinear equations.
Different works have investigated HCM’s practical applica-
tions, notably in the manipulation of planar robotic arms of
varying degrees of complexity. Others have taken a different
approach to applying homotopy to robotics by augmenting
existing sampling-based methods. CTopPRM is one such work
that takes a dense Informed-PRM, and strategically constructs
a sparse road map that captures distinct UVD classes.

There remains work to be done on how homotopy methods
explicitly compare to more conventional methods, and how
well they generalize to 3D. Homotopy seems like a simple
problem in the 2D plane, but things that are true in 2D are
not necessarily true in 3D. This introduces much complexity
in the problem, which raises questions about computational
tractability. While it remains to be seen whether the compu-
tation involved in homotopy methods is realistic in real-world
applications, this is an area that has yet to be thoroughly inves-
tigated, and it is clear that incorporating homotopy information
is able to yield a higher quality trajectory in robotics path
planning.
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Abstract
In this work, we address two main shortcom-
ings of transformer architectures: input corruption
and rank collapse in their output representation.
We unveil self-attention as an autonomous state-
space model that inherently promotes smoothness
in its solutions, leading to lower-rank outputs
and diminished representation capacity. More-
over, the steady-state solution of the model is
sensitive to input perturbations. We incorporate
a Proportional-Integral-Derivative (PID) closed-
loop feedback control system with a reference
point into the model to improve robustness and
representation capacity. This integration aims to
preserve high-frequency details while bolstering
model stability, rendering it more noise-resilient.
The resulting controlled state-space model is theo-
retically proven robust and adept at addressing the
rank collapse. Motivated by this control frame-
work, we derive a novel class of transformers,
PID-controlled Transformer (PIDformer), aimed
at improving robustness and mitigating the rank-
collapse issue inherent in softmax transformers.
We empirically evaluate the model for advan-
tages and robustness against baseline transform-
ers across various practical tasks, including object
classification, image segmentation, and language
modeling.

1. Introduction
Transformer models (Vaswani et al., 2017) have shown re-
markable achievements across various domains such as re-
inforcement learning (Chen et al., 2021; Janner et al., 2021),
computer vision (Dosovitskiy et al., 2021b; Touvron et al.,
2021; Zhao et al., 2021; Guo et al., 2021), natural language
processing (Devlin et al., 2018; Al-Rfou et al., 2019; Child
et al., 2019; Raffel et al., 2020) and other practical applica-
tions (Zhang et al., 2019; Gulati et al., 2020). At the core
of transformers lies the self-attention mechanism, which

†Co-last authors 1Department of Electrical & Computer Engi-
neering, Rice University, Houston, USA 2Department of Mathe-
matics, National University of Singapore, Singapore. Correspon-
dence to: Tam Nguyen <mn72@rice.edu>.

computes weighted averages of token representations within
a sequence based on the similarity scores between pairs of
tokens, thus capturing diverse syntactic and semantic rela-
tionships effectively (Cho et al., 2014; Parikh et al., 2016).
This flexibility in capturing relationships has been identified
as a key factor contributing to the success of transformers.

1.1. Background: Self-Attention

Given a sequence of tokens Xℓ := [xℓ(1), · · · ,xℓ(N)]⊤,
Xℓ ∈ RN×Dx , the query, key and value matrices at layer ℓ-
th are Qℓ = XWℓ

Q

⊤; Kℓ = XWℓ
K

⊤; and Vℓ = XWℓ
V

⊤,
respectively. The weight matrix Wℓ

Q,W
ℓ
K ∈ RDqk×Dx

and Wℓ
V ∈ RD×Dx . The attention mechanism computes

the output of token i at layer ℓ-th as follows

uℓ(i) =

N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(j), (1)

where qℓ(i) is the row i-th of Qℓ and kℓ(j),vℓ(j) are the
row j-th of Kℓ,Vℓ, respectively. The softmax function
computes the attention score between token i and j, for
all i, j = 1, . . . , N . The self-attention (1) is referred to as
softmax attention. Our work refers to a transformer that
uses softmax attention as a softmax transformer.

Despite their remarkable success, transformers exhibit prac-
tical performance issues in their robustness and representa-
tion capacity. For example, recent studies (Mahmood et al.,
2021; Madry et al., 2017; Zhou et al., 2022) have provided
empirical evidence of Vision Transformer’s susceptibility to
adversarial attacks and common input perturbations, such as
noise or blur. Additionally, deep transformer-based models
have been observed to suffer from rank-collapse in their
outputs, wherein token embeddings become increasingly
similar as the model depth increases (Shi et al., 2022; Dong
et al., 2021; Wang et al., 2022). This issue severely con-
strains the representation capacity of transformers, hinder-
ing their performance in various tasks. Addressing these
issues is crucial for ensuring the reliability and effectiveness
of transformer models across different applications.

1.2. Contribution

We introduce self-attention as a self-evolving state-space
model (SSM) and provide insights into the non-robustness
and rank-collapse issues inherent in transformers. Specif-
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ically, we demonstrate that self-attention can be seen as a
discretization of an SSM from a gradient flow, minimizing
the nonlocal total variation (Gilboa & Osher, 2008) of an
input signal and promoting smoothness. This characteristic
leads to rank collapse and diminishes the output’s represen-
tation capacity. Additionally, the steady-state solution of the
SSM is sensitive to input perturbation. Motivated by this
novel understanding, we propose the Proportional-Integral-
Derivative (PID) control transformer, PIDformer, as a new
transformer class that mitigates both issues. PIDformer is
derived as a discretization of a PID-control integrated SSM
proven to enhance the model’s stability and representation
capacity. Our contributions are four-fold.

1. We present a novel control framework for self-attention
mechanisms, unveiling the connection between self-
attention and the state-space model. Our analysis sheds
light on the shortcomings of transformers, which ex-
hibit non-robust behavior to input perturbations and
are prone to rank collapse.

2. Motivated by these analyses, we propose PID-
former, a new class of transformers, that integrates a
Proportional-Integral-Derivative (PID) controller into
transformers. PIDformer enhances model robustness
and effectively mitigates the rank-collapse issue.

3. We demonstrate how the connection between energy
optimization and our controlled SSMs enhances the
understanding of these models.

4. We theoretically prove that employing softmax self-
attention is inherently sensitive to noise and tends to
produce low-rank outputs. In contrast, our controlled
SSM is guaranteed to exhibit superior robustness and
avoid the rank-collapse issue.

We empirically demonstrate the advantages of PIDformers
on various large-scale applications, including the ImageNet
object classification (Deng et al., 2009) (under diverse in-
put perturbations and robustness benchmarks), ADE20K
image segmentation (Zhou et al., 2018), and WikiText-103
language modeling (Merity et al., 2017). tasks.

Organization. We structure our paper as follows: In Sec-
tion 2, we introduce a control framework for self-attention,
offering insights into the non-robustness and rank-collapse
issues in transformer-based models. In Section 3, we incor-
porate a PID controller into the SSM, providing theoretical
guarantees of its stability and ability to mitigate the rank-
collapse issue. Subsequently, we developed PIDformer, a
discretization of the PID-controlled SSM, and established
the connection between these dynamics and energy opti-
mization for further understanding. In Section 4, we empiri-
cally validate the benefits of PIDformer. We review related
work in Section 5. Finally, we summarize our main contri-

butions and provide additional results, details, and proofs in
the Appendix.

2. A Control Framework for Self-Attention
Consider the value matrix of layer ℓ-th Vℓ :=
[vℓ(1), · · · ,vℓ(N)]⊤ ∈ RN×D in Section 1.1. Let Ω ⊂ R,
x ∈ Ω, and v(x, t) := [v1(x, t), . . . , vD(x, t)]T be a real
vector-valued function, v : Ω × [0,∞) → RD, v ∈
L2(Ω × [0,∞)). Assume the value matrix Vℓ discretizes
the function v(x, t) on the spatial and time dimension. In
the context of a control system, v(x) can be considered as
the state signal of the following state-space model:

dv(x, t)

dt
=

∫
Ω

(v(y, t)− v(x, t))K(x, y, t)dy + z(x, t)

v(x, 0) = v0(x), z(x, t) = 0,∀x ∈ Ω,∀t ≥ 0 (2)

where z ∈ L2(Ω× [0,∞)) is a control input and v0 is the
initial state. The function K(x, y, t) is the kernel function
that captures the proximity of the signal v at positions x, y
at time t. Here, the SSM is autonomous, as no control in-
puts or feedback are fed into the system. In this section,
we illustrate that system in (2) induces smoothness to the
signal by minimizing the nonlocal total variation (Gilboa &
Osher, 2008) of the signal, hence losing detailed informa-
tion as it evolves. Subsequently, we show that self-attention
serves as a discretization of this dynamic. Lastly, we the-
oretically demonstrate that the SSM in 2 is vulnerable to
input perturbation and representation collapse.

2.1. Connection between State Space Model and
Nonlocal Variational Minimization

We show that the gradient flow aimed at minimizing the
following nonlocal functional is a case of our SSM described
in (2)

J(v) =
1

2

∫
Ω×Ω

∥v(x)− v(y)∥22k(x, y)dxdy. (3)

Here, J(v), the sum of the square of the nonlocal
derivative on the spatial dimension ∂yv(x) =

(
v(x) −

v(y)
)√

k(x, y) (Gilboa & Osher, 2008) , represents the
non-local variation of the signal v. k(x, y) captures the
proximity between position x and y in the signal. Mini-
mizing J(v) promotes the smoothness of v and penalizes
high-frequency in the signal.

The gradient of J with respect to v is then given by

∇vJ(v) =

[
∂J

∂v1
,
∂J

∂v2
, . . . ,

∂J

∂vD

]T
. (4)

As shown in the Appendix B.10, the Frechet derivative of J
with respect to vj is

∂J

∂vj
=

∫
Ω

(vj(x)− vj(y)(k(x, y) + k(y, x))dy. (5)

2
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Substituting the formula for ∂J/∂vj in (5) into (4) for
∇vJ(v)(x), we obtain the following gradient flow

dv(x, t)

dt
= −∇vJ(v)

=

∫
Ω

(
v(y, t)− v(x, t)

)(
k(x, y) + k(y, x)

)
dy,

(6)
The autonomous state-space representation in (2) simplifies
to this dynamic when K(x, y, t) := k(x, y)+k(y, x), which
is symmetric and time-invariant. In this scenario, the model
reduces the total nonlocal variance of the signal, resulting in
a smoother solution. This renders the model susceptible to
rank collapse in the output representation. In Section 2.2, we
prove that the model suffers from rank collapse regardless
of whether K(x, y, t) is symmetric.

Connection between SSM and self-attention. We show
that a discretization of our SSM recovers the self-attention
mechanism. Let q,k : Ω× [0,∞) → RDqk , q,k ∈ L2(Ω×
[0,∞)) be real vector-valued functions. Similar to v(x, t),
we can discretize q(x, t),k(x, t) on spatial dimension to
attain the query vectors qℓ(1), . . . , qℓ(N) ∈ RDqk , and the
key vectors kℓ(1), . . . ,kℓ(N) ∈ RDqk of layer ℓ-th.

Applying the Euler method to discretize (2) with the time
step ∆t(x) := 1, the update step of the system becomes

v(x, t+ 1) ≈ v(x, t) +

∫
Ω

(v(y, t)− v(x, t))K(x, y, t)dy + z(x, t)

≈ v(x, t) +

∫
Ω

K(x, y, t)v(y, t)dy − v(x, t)

∫
Ω

K(x, y, t)dy + z(x, t)

(7)
We define the proximity kernel as

K(x, y, t) :=
exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

.

, therefore∫
Ω

K(x, y, t)dy =

∫
Ω

exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

dy = 1

In addition, since in (2) z(x, t) = 0 for all t, we obtain (7)
as

v(x, t+ 1)

≈
∫
Ω

exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

v(y, t)dy.
(8)

Using the Monte-Carlo method (Metropolis & Ulam, 1949)
to approximate the integrals in (8) using the key vectors
k(1), . . . ,k(N) and value vectors v(1), . . . ,v(N), we ob-
tain

v(x, t+ 1) ≈
N∑
j=1

exp
(
q(x)Tk(j)/

√
Dqk

)∑N
j′=1 exp

(
q(x)Tk(j′)/

√
Dqk

)v(j).

Discretizing v(x, t+ 1) on another 1-D grid, and as corre-
spond time t+ 1 with layer l + 1 we attain

vℓ+1(i) ≈
N∑
j=1

exp
(
q(i)Tk(j)/

√
Dqk

)∑N
j′=1 exp

(
q(i)Tk(j′)/

√
Dqk

)v(j)
N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(j).

which recovers uℓ(i), the output token i of self-attention at
layer ℓ-th as in (1). As self-attention discretizes the SSM
outlined in (2), it inherits the characteristics of the model,
making it susceptible to input corruption and output rank
collapse. These properties are theoretically demonstrated in
Section 2.2.

2.2. Stability and Representation Collapse of the State
Space Model

Model robustness is its ability to maintain high performance
despite encountering uncertain or challenging scenarios
such as noisy data, distribution shifts, or adversarial at-
tacks (Wang & Bansal, 2018; Dong et al., 2020). Robustness
also entails stability, wherein the model’s output remains
relatively unchanged even when the input is perturbed.

For the theoretical analysis of our SSMs, we assume that
the kernel K is time-invariant, i.e., K(x, y, t) = K(x, y).
This assumption is practical in the context of transformers,
particularly in deep transformer models, where the attention
matrix tends to remain similar after the initial layers (Shi
et al., 2022). The discretization of model in (2) on the spatial
dimension gives

dv(i, t)

dt
=

N∑
j=1

(v(j, t)− v(i, t))K(i, j),

for i, j = 1, 2, . . . , N By choosing K(i, j) :=
softmax

(
q(i)Tk(j)/

√
Dqk

)
, its corresponding matrix rep-

resentation is obtained as

V′(t)dt = KV(t)−V(t),V(0) = V0, (9)

where K is a right-stochastic matrix with all positive entries.
In the context of transformer, K is the attention matrix and
V = [v0(1), . . . ,v0(N)]T is the value matrix at the first
layer. Lemma 1 sheds light on the stability and representa-
tion collapse of the solution for the SSM in (2).

Lemma 1. Given {α1, α2, . . . , αM},M ≤ N , is the com-
plex spectrum of K − I ∈ RN×N . The solution of the
ordinary differential equation (ODE) (9) is given by

V(t) = P exp(Jt)P−1V0, (10)

where PJP−1 is the Jordan decomposition of K − I , P
is invertible and contains the generalized eigenvectors of

3



PIDformer: Transformer Meets Control Theory

K − I , and J = diag(Jα1,m1
,Jα2,m2

, . . . ,JαM ,mM
) is

the Jordan form of matrix K − I with,

Jαi,mi
=


αi 1 . . . 0
...

. . .
...

αi 1
0 . . . αi

 ∈ Rmi×mi , for i =

1, . . . ,M are Jordan blocks. Here,
∑M

i=1 mi = N .

The proof of Lemma 1 is shown in the Appendix B.2.
Since K is a positive right-stochastic matrix, its largest
and unique eigenvalue α1 is 1 and |αi| < 1 (see Theorem
4.1 in (Bandeira et al., 2020)), meaning Re(αi) ∈ [−1, 1),
for i = 2, . . . ,M . Hence, the matrix K−I, whose eigenval-
ues are α1−1, . . . , αM −1, has a unique largest eigenvalue
of 0 and the real part of other eigenvalues in [−2, 0). This
leads to the rank collapse of the steady-state solution, as
stated in the following Lemma 2.

Lemma 2. limt→∞ V(t) =
[
c1,1p1, . . . , c1,Dx

p1

]
,

where p1 is the eigenvector corresponds with the eigen-
value (α1 − 1) = 0 of K − I , and c1,1, . . . , c1,Dx

are the
coefficients w.r.t p1 of the decomposition of V 0’s columns
in the Jordan basis (column vectors of P ).

The proof of Lemma 2 is shown in the Appendix B.3. This
yields two insights. Firstly, the steady-state solution of
the system depends on the initial V 0, implying that any
perturbation in the input results in changes in the output.
Secondly, the solution experiences rank collapse, with the
rank of its steady state solution being 1 as t → ∞. This
indicates that our SSM in (2) not only yields a non-robust
solution but also experiences information loss (low-rank
output representation). As the self-attention mechanism
discretizes the model in (2), it inherently exhibits both issues.

3. Transformer with PID-Controller for
State-Space Representation

To counteract the loss of detailed information caused by
smoothness and to bolster model stability, a PID controller
is integrated into the state-space representation as follows:

dv(x, t)

dt
=

∫
Ω

(v(y, t)− v(x, t))K(x, y, t)dy + z(x, t)

z(x, t) = λPe(x, t) + λI

∫ t

0

e(x, t) + λD
de(x, t)

dt

v(x, 0) = v0(x), z(x, 0) = 0. (11)

The regularizer term, denoted as e(x, t) = f(x)− v(x, t),
encapsulates the loss of information as v(x, t) becomes
smoother over time. Here, the reference function f(x) rep-
resents a high-frequency signal containing detailed informa-
tion about the original inputs. We select f(x) as the scaled
initial value function, denoted as βv(x, 0). In the context of

a transformer, we set f(i) = βv0(i), representing the value
vector embedding at token index i of the first layer. This
choice is motivated by our desire to have flexibility in de-
termining the detailed information from the input signal we
wish to preserve. This flexibility is governed by the param-
eter β ∈ (0, 1]. The regularizer e(x, t) is fed back into the
system, guiding the model to reintegrate the lost information
while maintaining stability through three components: (P),
(I), and (D).

• The (P) term is directly proportional to the regularizer,
e(x, t). In cases of substantial information loss, the
control input z(x, t) should be proportionately large,
determined by the gain factor λP , to reintroduce the
lost information into the system. A small choice of
λP results in slow convergence, while a large choice
may lead to overshooting issues, causing instability in
reaching the reference point.

• The (I) term accumulates all past errors, given by
λI

∫ t

0
e(x, t). This component aids in reintroducing

any persistent, long-term loss of information that might
persist despite proportional control.

• Finally, the (D) term, λD
de(x, t)

dt
, anticipates future

losses of information by considering the rate at which
the error is changing. A more rapid change in error
prompts a greater control effect, and the derivative
term proves beneficial in enhancing the stability and
responsiveness of the control system.

In this section, we unveil a connection between the two
components, (P) and (I), of the SSM in (11) and different
optimization methods applied to minimize a regularized
functional. This functional is tailored to preserve the de-
tailed information of the solution. Moreover, we show that
the P-control (where λI = λD = 0), PD-control (λI = 0),
and PID-controlled SSM in (11) are theoretically guaranteed
to be more robust and mitigate the issue of rank collapse.
Subsequently, we introduce the PID-controlled transformer
(PIDformer), a novel architecture that enhances performance
and robustness.

3.1. Connection between (P) and (I) Components with
Different Optimization Methods

In Section 2.1, we have shown that the SSM in (2) implic-
itly performs a gradient descent to minimize the nonlocal
variation J(v), which leads to the loss of signal information.
Now, we illustrate that the feedback-controlled state-space
in (11), without the derivative (D) (λD = 0), implicitly
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minimizes the following functional:

E(v,f) = J(v) +G(v,f)

=
1

2

∫
Ω×Ω

∥v(x)− v(y)∥22k(x, y)dxdy

+
λ

2

∫
Ω

∥v(x)− f(x)∥22dx.

(12)

where the data fidelity term G(v,f) = λ
2

∫
Ω
∥v(x) −

f(x)∥22dx (Gilboa & Osher, 2008; 2007) is introduced to pe-
nalize significant information loss. This observation further
validates that systems in (11) retains relevant information
from the reference signal f .

P-controlled SSM as gradient descent to min-
imize E(v,f). The gradient of E w.r.t v is
∇vE(v) = ∇vJ(v) + λ

(
v(x)− f(x)

)
. The derivation of

the derivative is given in Appendix B.10. Using the gradient
descent method, we obtain the gradient flow:

dv(x, t)

dt
= −∇uE(v)

=

∫
Ω

(
v(y, t)− v(x, t)

)(
k(x, y) + k(y, x)

)
dy

+ λ
(
f(x)− v(x, t)

)
.

(13)

If we set K(x, y, t) := k(x, y) + k(y, x) to be symmetric
and time-invariant, and λP = λ, λI = λD = 0, the con-
trolled system in (11) simplifies to the gradient flow of E
in (13). It suggests that integrating the (P) component into
the system in (2) minimizes the functional E and reintro-
duces the lost information to the system.

PI-controlled SSM as Bregman iteration to minimize
E(v,f). An alternative to gradient descent, Bregman itera-
tion (Yin et al., 2008; Zhang et al., 2010) iteratively refines
the solution by minimizing a Bregman divergence, which
measures the discrepancy between the current solution and
a reference point. Given the convex functional J(v), the
Bregman divergence of J between v and s ∈ L2(Ω) is
Dp

J(v, s) := J(v)− J(s)− ⟨p,v − s⟩, where p ∈ ∂J(s),
the subgradient of J at s. Dp

J(v, s) captures the difference
between J(v) and the tangent plane J(s)−⟨p,v−s⟩. The
ℓ+1-th Bregman iteration to minimize minv J(v) with the
contraint G(v,f) is given by:

vℓ+1=argmin
v

Dpℓ

J (v,vℓ) +G(v,f), pℓ ∈ ∂J(vℓ) (14)

The following Lemma 3 shows that the optimization prob-
lem in (14) can be turned into solving iterative subproblems.

Lemma 3. Applying Bregman iteration to minimize E(v,f)

involves solving iterative subproblems:

vℓ+1 = argmin
v

J(v) +
λ

2

∫
Ω

∥v(x)− f(x)− eℓa(x)∥22dx

eℓa(x) =

ℓ∑
m=1

em(x) =

ℓ∑
m=1

(
f(x)− vm(x)

)
, (15)

The proof of Lemma 3 is in Appendix B.4. Here, the term
eℓa(x) captures the accumulated information loss between
the original and the smoothed signals vm(x) of each itera-
tion m = 1, . . . , ℓ. Taking a one-step update in the direction
of gradient descent (see Appendix B.11), we obtain

vℓ+1(x) =

∫
Ω

(
vℓ(y)− vℓ(x)

)(
k(x, y) + k(y, x)

)
dy

+ vℓ(x) + λeℓ(x) + λeℓa(x). (16)

On the other hand, the Euler discretization with ∆t = 1 of
the PI-controlled state-space in (11) (as λD = 0) is:

vℓ+1(x) = vℓ(x) +

∫
Ω

(
vℓ(y)− vℓ(x)

)
K(x, y)dy

+ λPe
ℓ(x) + λI

ℓ∑
m=1

em(x).

(17)

By selecting a time-independent K(x, y, t) := k(x, y) +
k(y, x) and setting λP = λI = λ, the update step of the
PI-controlled model in (17) simplifies to the update step of
Bregman iteration in (16). This connection suggests that the
PI-controlled SSM minimizes E(v,f).

3.2. Stability and Representation Collapse of
PID-Controlled State Space Model

In this section, we aim to show that: (i) Integrating the (P)
term enhances robustness against input perturbations and
mitigates rank collapse of the output representation; (ii)
Adding the (D) term in PD-control further stabilizes the
system by mitigating rapid and unstable changes of V(t),
(iii) finally, integrating the (I) term in the PID-controlled
SSM described in (11) guarantees system stability, making
it robust to input corruption. Following the same assumption
in Section 2.2, we assume that K(x, y, t) is time-invariant
for our theoretical analysis in this section.

3.2.1. ANALYSIS OF P-CONTROL SSM

Robustness of P-controlled SSM. From the SSM in (11),
by choosing λI = λD = 0, and applying Euler discretiza-
tion on the spatial domain, the P-control model is given
as:

dv(i, t)

dt
=

N∑
j=1

(v(j, t)− v(i, t))K(i, j)

+ λP

(
f(i)− v(i, t)

)
,

(18)
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for i, j = 1, 2, . . . , N , and K(i, j) :=
softmax

(
q(i)Tk(j)/

√
Dqk

)
. The corresponding

matrix representation is given as

dV(t)

dt
= KV(t)− (λP + 1)V(t) + λPF ,V(0) = V0.

(19)
where F = [f(1), . . . ,f(N)]T . The following Lemma 4
help us analyze the stability and representation collapse of
the solution for the SSM in (19). Here, since the eigenvalues
of K the has the real part in [0, 1], λP +1 (λP > 0) can not
be one of them. This implies that det(K − (λP + 1)I) ̸= 0
hence the matrix is non-singular.

Lemma 4. Let B := K−(λP +1)I ∈ RN×N , the solution
of the ordinary differential equation (19) is

V(t) = exp(Bt)(V0 +B−1F )− λPB
−1F . (20)

If B has only eigenvalues with negative real parts, then
limt→∞ V (t) = −λPB

−1F .

The proof of Lemma 4 is shown in the Appendix B.5.
As shown in Section 2.2, since the eigenvalues of K has
Re(αi) ∈ [−1, 1], i = 1, . . . ,M , therefore the real parts
of eigenvalues of B must be in the range [−2− λP ,−λp],
which are all negative. As the result of 4, the steady state
solution in (20) limt→∞ V (t) = −λPB

−1F . Therefore,
adding any perturbation to the initial state V0 does not
change the steady state solution. However, in our context
of a transformer, the perturbation also affects the reference
point F , which is chosen to be a scaled βV0, leading to the
steady state solution becomes −λPβB

−1V0. Fortunately,
the P-control system allows the error caused by perturbation
to be as neglectable as desired. The following Proposition 1
confirms the robustness of the P-control SSM.

Proposition 1. Given the coefficient λP > 0 in (11), and
any arbitrary ϵ̄, δ > 0, by adding the perturbation ϵ ∈
RN×D, ∥ϵ∥∞ ≤ ϵ̄ to V0, the corresponding change in the
steady state solution of the system in (19) is independent of
λP and becomes negligible with an amount of at most δ if

β ≤ δ/ϵ̄. (21)

The proof of Proposition 1 is shown in the Appendix B.6.
Proposition 1 suggests that we can select the hyper-
parameter β to make the impact of input perturbation on the
output as small as desired.

P-controlled SSM on representation collapse. Since B−1

is full rank (B is non-singular), hence rank(−λPB
−1F ) =

rank(F ) (Strang, 2006). In the case of a transformer, when
choosing F = βV0, the rank of the steady state solution
equals the rank of the input V0. This implies that the P-
control dynamic in (19) prevents rank collapse.

3.2.2. ANALYSIS OF PD-CONTROLLED SSM

Since λD
de(x,t)

dt = λD
d
dt (f(x) − v(x, t)) = −λD

dv(x,t)
dt ,

from the SSM in (11), by choosing λI = 0, K(i, j) :=
softmax

(
q(i)Tk(j)/

√
Dqk

)
for i, j = 1, 2, . . . , N , and

applying Euler discretization on the spatial domain, the
PD-control model can be represented in the matrix form:

V′(t) = KV(t)− (λP + 1)V(t) + λPF − λDV′(t)

=
1

1 + λD

(
K − (λP + 1)I

)
V(t) +

λP

1 + λD
F ,

(22)
with V(0) = V0. The solution of (22) is provided in the
following Lemma 5.

Lemma 5. Let B := K−(λP +1)I ∈ RN×N , the solution
of the ordinary differential equation (22) is

V(t) = exp(
1

1 + λD
Bt)(V0 +B−1F )− λPB

−1F .

and limt→∞ V (t) = −λPB
−1F .

The proof of Lemma 5 is provided in Appendix B.7. This
intriguing result suggests two key insights. Firstly, incor-
porating the (D) component into the P-control system does
not alter the steady state of the solution. Consequently, the
solution of the PD-controlled SSM retains the advantages
of a P-control model, including avoiding rank collapse and
ensuring bounded error. Secondly, the derivative term offers
an additional benefit of further stabilizing the system by de-
creasing the eigenvalue by a factor of 1/(1 + λD), thereby
mitigating rapid changes in V(t).

3.2.3. ANALYSIS OF PID-CONTROLLED SSM

Following the same analysis in Section 3.2.1, by choosing
K(i, j) := softmax

(
q(i)Tk(j)/

√
Dqk

)
and discretizing

on the spatial domain, the matrix representation of the PID-
controlled SSM reduced from (11) becomes

V′(t) =
1

λD + 1

((
K− (λP + 1)I

)
V(t)

+ λI

∫ t

0

(F −V(t))dt+ λPF

)
,

(23)

where V(0) = V0. To deal with the integral in (23), we take
the derivative of both sides, the equation becomes V′′(t) =

1

λD + 1

((
K−(λP+1)I

)
V′(t)−λIV(t)

)
, which is turned

into a system of 1-st order differential equation:

[
V′(t)
V′′(t)

]
=

 0 I

− λII

λD + 1

K − (λP + 1)I

λD + 1

[V(t)
V′(t)

]
,

(24)
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where V(0) = V0, and V′(0) =
1

λD + 1

(
(K − (λP +

1))V0+λPF
)
. To gain robustness, the steady state solution

of the model should be independent of any perturbation of
the input V0 The following Proposition 2 illustrates the
stability of the system.

Proposition 2. For any λP , λI , λD > 0, the system in (24)
has a stable solution.

The proof of Proposition 2 is in the Appendix B.8. The
Proposition implies that the PID-controlled SSM in (11)
remains robust and stable for any selection of positive values
for λP , λI , λD.

3.3. Transformer with PID Control

By applying the Euler discretization with time step ∆t = 1,
initializing v at t = 0 as v(x, 0) = v0(x), and choosing

K(x, y, t) :=
exp
(
q(x, t)Tk(y, t)/

√
Dqk

)∫
Ω
exp
(
q(x, t)Tk(y′, t)/

√
Dqk

)
dy′

,

the update step of PID-controlled SSM in (11) becomes:

vℓ+1(x)

≈
∫
Ω

(
vℓ(y)− vℓ(x)

) exp
(
qℓ(x)Tkℓ(y)/

√
Dqk

)∫
Ω
exp
(
qℓ(x)Tkℓ(y′)/

√
Dqk

)
dy′

dy

+ vℓ(x) + λPe
ℓ(x) + λI

ℓ∑
m=1

em(x) + λD(eℓ(x)− eℓ−1(x)),

(25)
where em(x) = f(x)−vm(x) for m = 1, . . . , ℓ. Applying
the Monte-Carlo method to approximate the integrals in (25)
and discretizing vl+1(x), vm(x), and v0(x) on a spatial
dimension, and by choosing f(x) = v(x), we attain the
output of the following novel PID-attention at layer ℓ-th is
defined as

Definition 1 (PID-control Transformer (PIDformer)). Given
a set of key and value vectors {kℓ(j),vℓ(j)}Nj=1 in each
layer ℓ, ℓ = 1, . . . , L, for each query vector qℓ(i), i =
1, . . . , N , in the same layer, the self-attention unit at layer
ℓ in a PID-control Transformer (PIDformer) computes the
corresponding output vector uℓ(i) of the query qℓ(i) by the
following attention formula:

uℓ(i) =

N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(y)

+ λPe
ℓ(i) + λI

ℓ∑
m=1

em(i) + λD(eℓ(i)− eℓ−1(i)),

(26)
where eℓ = v0−vℓ, v0(1), . . . ,v0(N) ∈ RD are the value
vectors in the first layer of PIDformer.
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Figure 1. Our proposed PIDformer model at each layer.

Since PID-attention is a discretization of the controlled SSM
in (11), it is inherently a more robust attention mechanism.
Fig. 1 illustrates the architecture of PIDformer.

4. Experimental Results
In this section, we empirically demonstrate the advan-
tages of our proposed PIDformer approach across multiple
tasks, including ImageNet classification (Deng et al., 2009),
ADE20K image segmentation (Zhou et al., 2018), and lan-
guage modeling on WikiText-103 (Merity et al., 2017). Our
objectives are to: (i) illustrate that PIDformer significantly
outperforms the transformer baseline with softmax-attention
across diverse tasks, (ii) highlight that the PID DeiT model
exhibits significantly higher robustness than softmax at-
tention under various adversarial attacks, and for out-of-
distribution generalization, (iii) demonstrate that PID DeiT
does not suffer from rank collapse in output representation.
Throughout our experiments, we compare the performance
of our proposed models with baselines of the same config-
uration. For additional details regarding datasets, models,
and training procedures, please refer to Appendix A.

Object Classification on ImageNet. To demonstrate the ad-
vantage of our PIDformer, we compare it with the DeiT base-
line (Touvron et al., 2021) on the ImageNet image classifi-
cation task. Our PID DeiT surpasses the DeiT baseline, as
shown in Table 1. Notably, our model performs significantly
better than the baseline under white-box attacks, including
fast gradient sign method (FGSM) (Dong et al., 2020), pro-
jected gradient descent method (PGD) (Tramer & Boneh,
2019b); score-based black-box attack method SPSA (Ue-
sato et al., 2018); and sparse L1 descent (SLD) (Tramer
& Boneh, 2019a) method as well as noise-adding attack.
Moreover, the last four rows of Table 1 demonstrate that
PID DeiT is consistently more robust than the DeiT baseline
under other adversarial examples and out-of-distribution
dataset, including the Imagenet-C (common data corruption
and perturbations, such as adding noise and blurring the
images) (Hendrycks & Dietterich, 2019), Imagenet-A (ad-
versarial examples) (Hendrycks et al., 2021b), Imagenet-R
(out of distribution generalization) (Hendrycks et al., 2021a),
and Imagenet-O(out-of-distribution detection) (Hendrycks
et al., 2021b) datasets. Furthermore, in Appendix C.1, we
visualize the performance gap between PID DeiT and the
baseline DeiT model under attacks with escalating pertur-
bation levels. This result demonstrates the significant ad-
vantages PIDformer has over the baseline model in terms of
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Table 1. Evaluation of PID DeiT versus Softmax DeiT on the clean
ImageNet validation set, as well as under various adversarial at-
tacks and out-of-distribution datasets.

Attack Metric/Model Softmax DeiT PID DeiT (%)

Clean Top-1 Acc (%) 72.17 73.13
Top-5 Acc (%) 91.02 91.76

FGSM Top-1 Acc (%) 33.64 38.52
Top-5 Acc (%) 68.18 72.53

PGD Top-1 Acc (%) 12.02 15.08
Top-5 Acc (%) 34.99 39.69

SPSA Top-1 Acc (%) 65.75 67.98
Top-5 Acc (%) 90.07 90.58

SLD Top-1 Acc (%) 69.32 70.84
Top-5 Acc (%) 90.8 91.43

Noise Top-1 Acc (%) 69.2 70.87
Top-5 Acc (%) 89.67 90.77

Imagenet-A Top-1 Acc (%) 6.90 8.82
Imagenet-R Top-1 Acc (%) 32.83 34.89
Imagenet-C mCE (↓) 71.20 68.41
Imagenet-O AUPR 17.47 19.22

Table 2. Single-scale (SS) MIoU and multi-scale MIoU (MS) of
the PID DeiT vs. the DeiT on the ADE20K image segmentation.

Model/Metric SS MIoU MS MIoU (%)

Softmax DeiT 35.72 36.68
PID DeiT 37.42 38.28

Table 3. Test and valid perplexity (Test PPL and Valid PPL) on
WikiText-103 of PIDformer compared to the softmax transformer.

Method/Metric Valid PPL Test PPL

Softmax Transformer 33.15 34.29
PIDformer 32.44 33.45

robustness, further confirming the benefits of our model.

Image Segmentation on ADE20K dataset. We evaluate
the performance of Segmenter models (Strudel et al., 2021)
using both PID DeiT and DeiT backbones on the ADE20K
image segmentation task (Zhou et al., 2017), as outlined in
Table 2. The outcomes illustrate significant performance en-
hancements obtained by employing the PID DeiT backbone
instead of the DeiT backbone across both single-scale (SS)
and multi-scale (MS) Mean Intersection over Union (MIoU)
metrics.

Language Model on WikiText-103. In addition to com-
puter vision tasks, we evaluate our model’s performance
in the language modeling task on the WikiText-103 dataset
(Table 3). Our PIDformer language model surpasses the
softmax transformer model (Xiong et al., 2021) in test and
valid perplexity. These results, combined with findings
across various tasks, empirically demonstrate the significant
advantages of PIDformer models.
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Figure 2. The cosine similarity of token representations in PID
DeiT compared to baseline DeiT models across layers for Ima-
geNet classification. The DeiT baseline demonstrates representa-
tion rank collapse as tokens become increasingly similar as depth
increases. In contrast, PID DeiT models exhibit significantly
greater diversity in tokens, indicating a mitigation in rank-collapse.

Representation Collapse Analysis. We empirically show
PIDformer’s effectiveness in addressing rank collapse in
transformers. In Fig. 2, we compare token representation
cosine similarity across layers in PID DeiT and softmax
baseline models pretrained on Imagenet. PID DeiT exhibits
significantly lower similarity, especially in later layers, al-
leviating rank collapse and enhancing token embedding
diversity. Further details are in Appendix A.6.

5. Related Work
Robust transformer. Ensuring the generalization and ro-
bustness of both vision transformer and language model
remains an ongoing research focus. Large language mod-
els are vulnerable to input corruption (Wang et al., 2021;
Peyrard et al., 2022; Jin et al., 2020; Zang et al., 2019),
posing a challenge in developing robust real-world applica-
tions that can withstand unforeseen adversarial threats. For
ViTs, investigations into model robustness against adversar-
ial attacks, domain shifts, and out-of-distribution data are
crucial for real-world deployment. Techniques such as data
augmentation, regularization, and adversarial training are ac-
tively explored to enhance the robustness and generalization
capabilities of ViTs. Many investigations (e.g., (Yuan et al.,
2023; Paul & Chen, 2022; Mahmood et al., 2021; Bhojana-
palli et al., 2021; Madry et al., 2017; Mao et al., 2022; Zhou
et al., 2022)) have attempted to explain and improve the
resilience of ViT models against typical adversarial attacks.
For example, (Mahmood et al., 2021) empirically mitigates
ViT’s vulnerability to white-box adversarial attacks by in-
troducing a simple ensemble defense strategy that notably
enhanced robustness without sacrificing accuracy on clean
data.

Rank-collapse in transformer. Rank collapse in deep trans-
formers, observed across domains from natural language
processing (Shi et al., 2022) to computer vision (Wang et al.,
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2022; Dong et al., 2021), is evident. In computer vision,
Zhou et al. (2021) find that adding more layers to the Vision
Transformer (ViT) (Dosovitskiy et al., 2021a) quickly sat-
urates its performance. Moreover, their experiments show
that a 32-layer ViT performs worse than a 24-layer ViT,
attributed to token representations becoming identical with
increasing model depth. To address this matter, (Wang
et al., 2022) discovers that self-attention functions as a
low-pass filter, causing token representations in ViTs to
be smoothed. Furthermore, (Shi et al., 2022) identifies a
similar phenomenon in BERT (Devlin et al., 2018), and
investigates rank-collapse from a graph perspective. The
study employs hierarchical fusion techniques to retain the
output of self-attention across all layers. Our work is or-
thogonal to the existing method as we develop a control
framework to tackle the non-robustness and rank-collapse
issues in transformers.

6. Concluding Remarks
In this paper, we present a novel control framework for
self-attention mechanisms, revealing their inherent non-
robustness and susceptibility to rank collapse in token repre-
sentation. Leveraging this control perspective, we introduce
the PIDformer, a novel PID-control Transformer designed
to enhance robustness and mitigate the rank-collapse issue.
Empirical validation across a range of large-scale appli-
cations, including ImageNet object classification (under
various input perturbations and robustness benchmarks),
ADE20K object segmentation, and WikiText-103 language
modeling, confirms PIDformer’s benefits. A limitation of
our paper is the oversight regarding the privacy-preserving
aspects of PIDformer. Exploring the potential of controlled
transformers in enhancing privacy-preserving techniques is
an intriguing avenue for future research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Additional Details on the Experiments in Section 4
This section provides datasets, models, and training details for experiments in Section 4.

A.1. Image Classification on Imagenet

Datasets and Metrics. The ImageNet dataset, as described in (Deng et al., 2009; Russakovsky et al., 2015), consists of
1.28 million images for training and 50, 000 images for validation, covering the classification of 1000 different categories.
Performance evaluation is based on top-1 and top-5 accuracies.

Models and Baselines. Our baseline model is the DeiT-tiny model (Touvron et al., 2021), which consists of 12
transformer layers, 3 attention heads per layer, and a model dimension of 192. For model setting and setting and configura-
tion, we follow (Touvron et al., 2021). Their implementation is available at https://github.com/facebookresearch/deit. The
λP , λI , λD, and β used for our PID DeiT method is 0.8, 0.5, 0.05, and 0.1, respectively.

A.2. Image Segmentation on ADK20 dataset

Datasets and Metrics. The ADE20K dataset is renowned for its incorporation of complex scenes featuring detailed labels,
establishing it as one of the most rigorous semantic segmentation datasets. It comprises a training set of 20, 210 images
covering 150 semantic classes. Furthermore, the dataset includes 2, 000 images in the validation set and 3, 352 images
in the test set. Performance in this task is evaluated using the Single-scale mean Intersection over Union (SS mIoU) and
Multi-scale (MS mIoU) metrics.

Models and baselines. The training configuration and setting for our models are followed by (Strudel et al., 2021). The
baseline model is finetuned with the pretrained DeiT-tiny backbone while our segmenter model used the pretrained PID
DeiT-tiny, with λP , λI , λD, and β are 0.5, 0.3, 0.05, and 1, respectively.

A.3. Language Modeling on WikiText-103

Datasets and Metrics. The WikiText-103 dataset is composed of Wikipedia articles tailored to capture extensive contextual
dependencies. Its training set includes roughly 28, 000 articles, totaling around 103 million words. Each article consists of
text blocks averaging about 3, 600 words. The validation and test sets contain 218, 000 and 246, 000 words, respectively,
divided into 60 articles per set and approximately 268, 000 words each. Our experiment adheres to the standard setup
outlined in (Merity et al., 2017; Schlag et al., 2021), which entails segmenting the training data into independent long
segments of length L words. For evaluation, we utilize a batch size of 1 and process the text sequence using a sliding
window of size L. When calculating perplexity (PPL), we only consider the last position, except for the first segment where
all positions are evaluated, consistent with the methodology in (Al-Rfou et al., 2019; Schlag et al., 2021).

Models and baselines. For our language modeling implementation, we rely on the publicly available code
https://github.com/IDSIA/lmtool-fwp developed by (Schlag et al., 2021). In our experiments, we set the dimensions
of keys, values, and queries to 128, while the training and evaluation context length is set to 256. In this experiment,
λP , λI , λD, and β being set to 0.4, 0.5, 0.1 and 0.3, respectively, yields the best performance of PIDformer language model.

A.4. Adversarial Examples and Out-of-distribution datasets

Imagenet-C To assess robustness against typical image corruptions, we employ the ImageNet-C dataset (Hendrycks &
Dietterich, 2019), which comprises 15 categories of artificially generated corruptions spanning five levels of severity.
ImageNet-C evaluates models using the mean corruption error (mCE) metric, where a lower mCE value indicates greater
resilience to corruption.

Imagenet-A ImageNet-A (Hendrycks et al., 2021b) is a dataset consisting of authentic images that have been filtered to
deceive ImageNet classifiers. Specifically, it focuses on a subset of 200 classes chosen from the original 1000 classes in
ImageNet-1K. Errors made within these 200 classes are regarded as significant, encompassing a wide range of categories
represented in ImageNet-1K.

Imagenet-O This dataset comprises examples that have been adversarially filtered to challenge out-of-distribution detectors
for ImageNet (Hendrycks et al., 2021b). It includes samples from the larger ImageNet-22K dataset but excludes those from
ImageNet1K. Specifically, samples are chosen if they are confidently misclassified as an ImageNet-1K class by a ResNet-50
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model. The evaluation metric utilized is the area under the precision-recall curve (AUPR).

Imagenet-R This dataset comprises diverse artistic interpretations of object classes found in the original ImageNet dataset,
a practice discouraged by the creators of the original ImageNet (Hendrycks et al., 2021a). ImageNet-R encompasses
30,000 renditions of images representing 200 classes from the ImageNet dataset, with a selection made from a subset of the
ImageNet-1K classes.

A.5. Adversarial Attacks

We employ fast gradient sign method (FGSM) (Dong et al., 2020), projected gradient descent method (PGD) (Tramer &
Boneh, 2019b); and Sparse L1 descent method as well as noise-adding attack These attacks were applied to the entire
validation set of ImageNet. FGSM and PGD attacks distort the input image with a perturbation budget ϵ = 3/255, and
ϵ = 0.1 for SPSA, under l∞ norm, while the PGD attack uses 20 steps with a step size of α = 0.15. For the SLD and noise
attack, we follow the same setting in https://github.com/cleverhans-lab

A.6. Rank-collapse Analysis

The average cosine similarity between all pairs of token’s representations (xi,xj) in a sequence is computed as

1

N(N − 1)

∑
i̸=j

xT
i xj

∥xi∥2∥xj∥2
.

The result is then averaged over 1000 randomly chosen test data in ImageNet. The result is then reported for each layer, as
in Fig. 2.

B. Technical Proofs
B.1. Solution of the first order ODE

Given Q ∈ Rn×n, Y (t) ∈ RN×P , t > 0, we are interested in the solution of the first order ODE stated as:

Y ′(t) = QY (t),Y (0) = Y 0. (27)

The general solution of (27) is Y (t) = exp(Qt)C, where C ∈ Rn×p is an any constant matrix. Indeed,

Y ′(t) = (I +Qt+
Q2t2

2!
+

Q3t3

3!
+ . . . )′C

= (Q+Q2t+
Q3t

2!
+ . . . )C

= Qexp(Qt)C = QY (t).

(28)

To satisfy the intitial condition, Y (0) = Qexp(Q0)C = Y 0. Hence, C = Y 0 and the solution for the intial
value problem in (27) is exp(Qt)Y 0.

Every square matrix can be Jordan decomposed as the form of Q = SJS−1, where S is invertible and contains
the generalized eigenvectors of Q, and J = diag(Jη1,m1 ,Jη2,m2 , . . . ,JηM ,mM

) is the Jordan form of matrix Q with,

Jηi,mi
=


ηi 1 . . . 0
...

. . .
...

ηi 1
0 . . . ηi

 ∈ Rmi×mi , for i = 1, . . . ,M are Jordan blocks and η1, . . . ηM are eigenvalues of Q.

We rewrite the solution of (27) using the Jordan decomposition as

Y (t) = exp(Qt)Y 0 = exp(SJS−1t)Y 0

= (SS−1 + SJS−1t+
(SJS−1)2t2

2!
+ . . . )Y 0

= Sexp(Jt)S−1Y 0.

(29)

14
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We are now interested in the asymptotic behavior of the solution in (29) as t → ∞.
When Q only has eigenvalues negative real parts. As η1, . . . ηM < 0, we consider

exp(Jηi,mi
t) =

∞∑
k=0

(Jηi,mi
t)k

k!

=



∞∑
k=0

tkηki
k!

∞∑
k=1

tkηk−1
i

(k − 1)!
. . .

∞∑
k=mi

tkηk−mi+1
i

(k −mi + 1)!

...
. . .

0 . . .

∞∑
k=0

tkηki
k!

∞∑
k=1

tkηk−1
i

(k − 1)!

0 . . . 0

∞∑
k=0

tkηki
k!



=


eηit teηit . . . tmi−1eηit

...
. . .

0 . . . eηit teηit

0 . . . 0 eηit



(30)

which is derived from the result Jk
ηi,mi

=


ηki

(
j
1

)
ηk−1
i . . .

(
j

mi − 1

)
ηk−mi+1
i

...
. . .

0 . . . ηki

(
j
1

)
ηk−1
i

0 . . . 0 ηki


Therefore, when t → 0, exp(Jηi,mit) → 0, making exp(Jt) → 0 and hence the solution in (29) will goes to 0 or being
stable.
When Q only has at least one eigenvalue with positive real part. Without the loss of generalization, let Re(η1) > 0. Hence
∥exp(Jη1,mi

t)∥ → ∞ when t → ∞. In other words, the solution of (27) will explode or unstable.

B.2. Proof of Lemma 1

The proof of Lemma 1 is the direct result in Appendix B.1. The solution of the ordinary differential equa-
tion (ODE) in (9) is V(t) = P exp(Jt)P−1V0, where PJP−1 if the Jordan decomposition of K − I , J =
diag(Jα1,m1

,Jα2,m2
, . . . ,JαM ,mM

) and α1 ≥ α2 ≥ . . . ,≥ αM ,M ≤ N are eigenvalues K − I. Consequently,
we have proved the Lemma 1

B.3. Proof of Lemma 2

In Section 2.2, we have shown that K − I has a unique largest eigenvalue λ1 = 0. This means that the Jordan blocks
corresponding with other eigenvalues which has negative real parts will approach exp(Jηi,mi

t) → 0, for i = 1, . . . ,M ; , i ̸=
1, as t → ∞. As the consequence, exp(Jt) are fill with 0 for all entries except for the first entry exp(Jt)(0, 0) = 1. Hence,
the solution in (10) becomes

[
c1,1p1, . . . , c1,Dx

p1

]
.

This concludes the proof.

15



PIDformer: Transformer Meets Control Theory

B.4. Proof of Lemma 3

For vℓ+1 to be the solution of the optimization problem in (14), since 0 ∈ ∂J(vℓ+1) − pℓ + ∂G(vℓ+1,f), hence the
iteration becomes:  vℓ+1 = argmin

v
J(v)− < pℓ,v > +G(v,f)

pℓ+1 ∈ pℓ − ∂G(vℓ+1,f).

When G(v,f) = λ
2

∫
Ω
∥v(x)− f(x)∥22dx,

G(v,f)− ⟨pℓ,v⟩ = λ

2

∫
Ω

((
∥v(x)∥22 − 2⟨v(x),f(x)⟩+ ∥ f(x)∥22

)
+ λ⟨

ℓ∑
m=1

(vm(x)− f(x)) ,v(x)⟩

)
dx

=
λ

2

∫
Ω

(
∥v(x)∥22 − λ⟨f(x)−

ℓ∑
m=1

(
vm(x)− f(x)

)
,v(x)⟩

)
dx+ constant

=
λ

2

∫
Ω

∥v(x)− f ℓ(x)∥22dx+ constant,

where f ℓ(x) = f ℓ−1(x) + f(x)− vℓ(x).
Substituting G(v,f)− ⟨pℓ,v⟩ into the iteration, it becomes vℓ+1 = argmin

v
J(v) +

λ

2

∫
Ω

∥v(x)− f ℓ(x)∥22dx

f ℓ(x) = f ℓ−1(x) + f(x)− vℓ(x).
(31)

The iteration in Lemma 3 can be reformulated as:

vℓ+1 = argmin
v

J(v) +
λ

2

∫
Ω

∥v(x)− f(x)− eℓa(x)∥22dx

where eℓa(x) =
∑ℓ

m=1 e
m(x) =

∑ℓ
m=1

(
f(x)− vm(x)

)
we conclude the proof for Lemma 3.

B.5. Proof of Lemma 4

To find the solution of Eqn 19, firstly, we find the solution for the homogenous ODE:

V(h)′(t) =
(
K− (λP + 1)I

)
V(h)(t) (32)

From the result in Appendix B.1, the solution for this ODE is exp(Bt)C where B = K− (λP + 1)I and C ∈ RN×Dx is
any constant matrix. Secondly, we find a particular solution for (19) by solving V(p)′(t) = BV(t)(p) + λPF = 0. Since
B is invertible, the solution for this equation is V(p)(t) = −λPB

−1F . It is easy to check that V(t) = V(h)(t) +V(p)(t)
is the solution of the V′(t) = BV(t) + λPF . Applying the initial condition, V(0) = C − λPB

−1F = V0, we
find C = V0 + λPB

−1F . Therefore, we have proved that the solution for the IVP problem in (19) is indeed
V(t) = exp(Bt)(V0 +B−1F )− λPB

−1F .

In Section 3.2.1, we show that B has only eigenvalues with negative real parts. As the result in Appendix B.1,
when t → 0, the exp(Bt) → 0 , leading to the vanishing of the V(h)(t). Hence the steady state solution for the ODE
in (19) becomes −λPB

−1F .

This concludes the proof.

B.6. Proof of Proposition 1

We first show that B is a strictly diagonal dominant (SDD) matrix, i.e., |B(i, i)| > |
∑N

j ̸=i B(i, j)|, for i, j = 1, . . . , N . In

fact, |B(i, i)| = |K(i, i)− λp − 1| > |1−K(i, i)| = |
∑N

j ̸=i K(i, j)| = |
∑N

j ̸=i B(i, j)| because K is a right-stochastic

16
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matrix with all entries in (0, 1] and sum of each row is 1.
Hence, following (Morača, 2007), the upper bound of ∥B−1∥∞, when B is an SDD matrix, is given as

∥B−1∥∞ ≤ 1

min
i∈N

(|B(i, i)| − |
N∑
j ̸=i

B(i, j)|)

(33)

=
1

|K(i, i)− λp − 1| − |1−K(i, i)|
=

1

λP
, (34)

where ∥B−1∥∞ =
N

max
i=1

N∑
j=1

|B−1(i, j)|.

On the other hand,
∥ − λPβB

−1ϵ∥∞ ≤ λPβ∥B−1∥∞∥ϵ∥∞

= λPβ
1

λP
ϵ̄ = βϵ̄

(35)

For the bounded error get arbitrarily small, we constraint βϵ̄ ≤ δ, making β ≤ δ
ϵ̄ .

Here in the proof, we used the submultiplicity property of ∥.∥∞ norm of matrices, which is proved as follow:

∥B−1ϵ∥∞ = sup
x

∥B−1ϵx∥∞
∥x∥∞

= sup
x

∥B−1ϵx∥∞∥ϵx∥∞
∥ϵx∥∞∥x∥∞

≤ sup
x

∥B−1ϵx∥∞
∥ϵx∥∞

sup
x

∥ϵx∥∞
∥x∥∞

≤ sup
x

∥B−1x∥∞
∥x∥∞

sup
x

∥ϵx∥∞
∥x∥∞

= ∥B−1∥∞∥ϵ∥∞
With this, we conclude the proof of Proposition 1

B.7. Proof of Lemma 5

To find the solution of (22), firstly, we find the solution for the homogenous ODE:

V(h)′(t) =
1

1 + λD

(
K− (λP + 1)I

)
V(h)(t)

From the result in Appendix B.1, the solution for this ODE is exp(
1

λD + 1
Bt)C where B = K − (λP + 1)I

and C ∈ RN×Dx is any constant matrix. Secondly, we find a particular solution for (22) by solving

V(p)′(t) =
1

λD + 1
(BV(t)(p) +λPF ) = 0. Since B is invertible, the solution for this equation is V(p)(t) = −λPB

−1F .

The solution is V(t) = V(h)(t) + V(p)(t). Applying the initial condition, V(0) = C − λPB
−1F = V0, we

find C = V0 + λPB
−1F . Therefore, we have proved that the solution for the IVP problem in (22) is indeed

V(t) = exp(
1

λD + 1
Bt)(V0 +B−1F )− λPB

−1F .

In Section 3.2.1, we show that B has only eigenvalues with negative real parts. As the result in Appendix B.1,

when t → 0, the exp(
1

λD + 1
Bt) → 0 , leading to the vanishing of the V(h)(t). Hence the steady state solution for the

ODE in (22) becomes −λPB
−1F . We have proved Lemma 5.

B.8. Proof of Proposition 2

Let

M =

 0 I

− λII

λD + 1

K − (λP + 1)I

λD + 1

 (36)
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For the solution of (24) to be stable, the real part of eigenvalues of M must be all negative. Let B := K − (λP + 1)I , for
any eigenvalue γ of M

det(M − γI) = det

( −γI I

− λI

λD + 1
I

1

λD + 1
(B − γI)

)

= det
( 1

λD + 1
(−γB + γ2I + λII)

)
, (since B − γI and −λII are commute, see (Silvester, 2000))

= 0
(37)

Notice that γ = 0 is not a solution of (37). This fact is proved by contradiction. If γ = 0 is a solution, det(−γB +
γ2I + λII) = det(λII) = (λI)

Ndet(I) = (λI)
N > 0 because λI > 0. This is contradict to (37). Since γ ̸= 0, we can

rewrite (37) as:

(− γ

λD + 1
)Ndet(B − (γ +

λI

γ
)I) = 0 (38)

⇐⇒ det(B − (γ +
λI

γ
)I) = 0. (39)

Therefore, γ +
λI

γ
are eigenvalues of B. Given κi, for i = 1, . . . ,m;m ≤ N are eigenvalues of B. For each i, we find the

solution of

γi +
λI

γi
= κi (40)

⇐⇒ γ2
i − κγi + λI = 0 (41)

Let γi,1, γi,1 are the solution of (40), and then

{
γi,1 + γi,2 = κi

γi,1γi,2 = λI

⇐⇒


Re(γi,1) + Re(γi,2) = Re(κi)

Im(γi,1) + Im(γi,2) = Im(κi)

Re(γi,1)Re(γi,2)− Im(γi,1)Im(γi,2) = λI

Re(γi,1)Im(γi,2) + Im(γi,1)Re(γi,2) = 0

(42)

In Section 3.2.1, we show that B has only eigenvalues with negative real parts. Hence, Re(κi) < 0. Firstly, without any
loss of generalization, suppose that Re(γi,1) = 0. This means

Re(γi,2) = Re(κi) < 0

−Im(γi,1)Im(γi,2) = λI

Im(γi,1)Re(γi,2) = 0

⇒

{
Im(γi,1) = 0

−Im(γi,1)Im(γi,2) = 0 ̸= λI > 0
(43)

which causes contradiction. Therefore, Re(γi,1) ̸= 0. As the result, Im(γi,2) = − Im(γi,1)Re(γi,2)

Re(γi,1)
, substituting to (42),

we obtain

Re(γi,1)Re(γi,2) = λI − Im(γi,1)
2Re(γi,2)

Re(γi,1)
. (44)

Suppose that Re(γi,1)Re(γi,2) < 0, hence
Re(γi,2)

Re(γi,1)
< 0 leading to −Im(γi,1)

2Re(γi,2)

Re(γi,1)
> 0, (because Im(γi,1)

2 >

0). Therefore the RHS of (44) is greater than 0 (since λI also greater than 0), which contradicts our assumption that
Re(γi,1)Re(γi,2) < 0. As a consequence, we obattain the following result:{

Re(γi,1) + Re(γi,2) = Re(κi) < 0

Re(γi,1)Re(γi,2) > 0
⇐⇒

{
Re(γi,1) < 0

Re(γi,2) < 0,
(45)

for i = 1, . . . ,m. Therefore, all eigenvalues of M as negative real parts. Combined with result in Appendix B.1, we have
the system described by (24) has stable solution when t → 0, for all λP , λI , λD > 0. This concludes our proof.
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B.9. The Fretchet derivation of the derivative of J w.r.t vj .

The partial derivative ∂J/∂vj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary function hj ∈
L2(Ω× [0,∞)) as follows

∂J

∂vj
· hj(x, t) =

d

dτ
J(vj + τhj)

∣∣
τ=0

=
1

2

(
d

dτ

∫
Ω×Ω

(vj(x)− vj(y) + τhj(x)− τhj(y))
2k(x, y)dxdy

) ∣∣∣∣
τ=0

=

(∫
Ω×Ω

(vj(x, t)− vj(y) + τhj(x)− τhj(y, t))(hj(x)− hj(y))k(x, y)dxdy

) ∣∣∣∣
τ=0

=

∫
Ω×Ω

(vj(x)− vj(y))(hj(x)− hj(y))k(x, y)dxdy

=

∫
Ω×Ω

(vj(x)− vj(y))hj(x)k(x, y)dxdy −
∫
Ω×Ω

(vj(x)− vj(y))hj(y)k(x, y)dxdy

Applying a change of variables (x, y) → (y, x) to the second term of the above integral, we have

∂J

∂vj
· hj(x) =

∫
Ω×Ω

(vj(x)− vj(y))hj(x)k(x, y)dxdy −
∫
Ω×Ω

(vj(y)− vj(x))hj(x, t)k(y, x)dxdy

=

∫
Ω×Ω

(vj(x)− vj(y)(k(x, y) + k(y, x))dyhj(x)dx

Thus, the Frechet derivative of J with respect to vj is given by

∂J

∂vj
=

∫
Ω

(vj(x)− vj(y)(k(x, y) + k(y, x))dy.

B.10. The derivation of the gradient flow of E(v, f)

Taking the gradient of E(v,f) with respect to v, we obtain

∇vE = ∇vJ +

[
∂G

∂u1
,
∂G

∂u2
, . . . ,

∂G

∂uD

]T
. (46)

The partial derivative ∂G/∂vj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary function hj ∈ L2(Ω) as
follows

∂G

∂vj
· hj(x) =

d

dτ
G(vj + τhj)

∣∣
τ=0

=
λ

2

(
d

dτ

∫
Ω

(vj(x)− fj(x) + τhj(x))
2dx

) ∣∣∣∣
τ=0

= λ

∫
Ω

(vj(x)− fj(x))hj(x)dx.

Thus, the Frechet derivative of F with respect to vj is given by

∂G

∂vj
= λ(vj(x)− fj(x)) (47)

Substituting the formula for ∂G/∂vj in (47) into (46) for ∇vE(v,f), we obtain the following gradient flow

dv(x, t)

dt
= −∇vE(v,f) = −∇vJ(v)(x) + λ

(
f(x)− v(x)

)
. (48)

This concludes the derivation.
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B.11. The derivation of (16)

Denote H(v,f) :=
λ

2

∫
Ω

∥v(x)− f(x)− eℓ(x)∥22dx. Taking the gradient of J(v) +H(v,f) with respect to v, we obtain

∇vE = ∇vJ +

[
∂H

∂v1
,
∂H

∂v2
, . . . ,

∂H

∂vD

]T
. (49)

The partial derivative ∂H/∂vj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary function hj ∈ L2(Ω) as
follows

∂H

∂vj
· hj(x) =

d

dτ
H(vj + τhj)

∣∣
τ=0

=
λ

2

(
d

dτ

∫
Ω

(vj(x)− fj(x)− eℓj(x) + τhj(x))
2dx

) ∣∣∣∣
τ=0

= λ

∫
Ω

(vj(x)− fj(x)− eℓj)hj(x)dx.

Thus, the Frechet derivative of F with respect to vj is given by

∂H

∂vj
= λ(vj(x)− fj(x)− eℓj) (50)

Substituting the formula for ∂H/∂vj in (50) into (49) for ∇vE(v,f), we obtain the following gradient flow at iteration
ℓ+ 1

dv(x, t)

dt
=

∫
Ω

(
v(y, t)− v(x, t)

)(
k(x, y) + k(y, x)

)
dy

+ λ
(
f(x)− v(x, t) + eℓ(x)

)
.

(51)

Applying Euler method to discretize (51) with ∆t = 1 and v(x, 0) = vℓ(x), we approximate the vℓ+1 with one-step
gradient descent:

vℓ+1(x) =

∫
Ω

(
vℓ(y)− vℓ(x)

)(
k(x, y) + k(y, x)

)
dy

+ vℓ(x) + λeℓ(x) + λeℓa(x).

This concludes the derivation.

C. Additional Experiment results
C.1. PID DeiT and softmax DeiT under escalating perturbation attacks.

We evaluate PID DeiT and softmax DeiT under FGSM and PGD attack methods with increasing perturbation budgets (see
Fig. 3) (scaled by 255). The proposed PID DeiT exhibits stronger defense in both attack methods and various perturbation
budgets.
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Figure 3. The top-1 classification accuracy curves on ImageNet against FGSM and PGD attack methods, plotted against perturbation
budgets (scaled by 255).
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Machine Learning Models in Weather Forecasting

Roger Dai 1 John Ho 1 Eddie Kim 1 Andrew Sun 1

Abstract
This report presents an in-depth analysis of
machine learning models in weather forecasting,
focusing on GraphCast, a foundational model
developed by Google. It provides detailed in-
sights into GraphCast’s architecture, optimization
methods, and its role in improving forecasting
accuracy and efficiency. Furthermore, the
report offers a comparative analysis, evaluating
GraphCast against other ML-based weather
forecasting tools. By examining the evolution and
impact of ML in weather prediction, this report
aims to contribute valuable insights to the field.

1. Introduction
Weather forecasting is important in modern society as it
influences many decisions that range from daily activities to
emergency responses. Traditional numerical and physical
methods such as the Integrated Forecasting System (IFS)
have long been the standard for weather prediction. The
techniques employed by these methods rely on supercomput-
ers to solve complex equations for atmospheric dynamics,
making these highly effective. However, these methods of-
ten fail to fully utilize historical data to improve and enhance
forecasting precision. Rather, they rely heavily on expert-
driven innovations, limiting the scalability and adaptability
of forecast models to evolving weather patterns.

In contrast, the emergence of machine learning-based
weather prediction (MLWP) presents a paradigm shift, of-
fering a direct approach to model training from historical
data. MLWP holds promise in capturing intricate patterns
inherent in weather data, potentially surpassing the limi-
tations of traditional numerical methods. Recent advance-
ments in MLWP have demonstrated superior performance
in scenarios where traditional methods lack, such as sub-
seasonal heat wave prediction and precipitation nowcasting–
providing short-range (0-6 hours) forecast of the rainfall
intensity.

Amidst the rapid evolution of MLWP, the relevance and
importance of integrating machine learning into weather
forecasting become increasingly evident. MLWP not only
offers avenues for enhanced accuracy but also presents op-

portunities for more efficient forecasting, potentially rev-
olutionizing the field. Thus, exploring and understanding
the implications of ML models in weather forecasting hold
significant implications for advancing prediction capabili-
ties and mitigating the impacts of weather-related events on
society.

This report will focus on GraphCast, a model created by
Google, as it stands as one of the most foundational MLWP
tools. It will delve into an in-depth exploration of Graph-
Cast, dissecting its architecture and optimization methods.
Furthermore, the report will undertake a comparative analy-
sis, juxtaposing GraphCast against other ML-based weather
forecasting tools, both preceding and succeeding its incep-
tion. Through this comparative lens, the report aims to
provide comprehensive insights into the efficacy and po-
tential of GraphCast in revolutionizing weather forecasting
methodologies.

2. Model Architecture
2.1. Model overview

The GraphCast model processes input weather states de-
fined on a 0.25° latitude-longitude grid, encompassing a
total of 721 × 1440 = 1,038,240 points(a). For each grid
point, the model takes into account 5 surface variables and
6 atmospheric variables across 37 pressure levels (5 + 6
× 37 = 227 variables), culminating in a graph containing
235,680,480 values representing a weather state. By analyz-
ing two consecutive weather states—six hours prior and the
current state—the GraphCast model can accurately predict
the weather conditions for the subsequent six-hour interval.

xt+1 = GraphCast (xt, xt−1)

Then, by taking the newly predicted state and the previous
state as input, we can generate results for 12 hours later. By
repeating this process iteratively, we can generate predic-
tions along an arbitrary trajectory. This process is known as
autoregression, which is also utilized in traditional numeri-
cal methods.



COMP 414 (Spring 2024)

Figure 1. GraphCast Model Architecture

xt+1:t+T =
(
GraphCast

(
xt, xt−1

)
,

GraphCast
(
xt+1, xt

)
,

. . . , . . . ,GraphCast
(
xt+T−1, xt+T−2

))
(1)

However, due to limitations in accuracy, GraphCast predic-
tion is typically reserved for mid-range forecasts spanning
10 to 14 days.

GraphCast’s architecture is based on GNN(graphical neural
network), specifically comprising three parts: encoder(d);
processor(e); decoder(f). The paper uses GNN since it has
been proven to be effective in learning parietal differen-
tial equations. Also, GNNs have a significant advantage
over other neural network architectures because they enable
interactions among the data representations based on the
structure of the input graph. This allows for the modeling of
arbitrary spatial interactions, unlike Convolutional Neural
Networks (CNNs), which are limited to local or regularly
spaced interactions, and Transformers, which are inefficient
for very large inputs due to their quadratic memory com-
plexity.

2.2. Multi-mesh structure

The development of the multi-mesh structure involves a
series of increasingly refined meshes, starting from a base

mesh, M0, which is a unit-radius icosahedron. This base
mesh has 12 nodes and 20 triangular faces.

The refinement process from one mesh, Mr, to the next,
Mr+1, involves subdividing each triangular face of the mesh
into four smaller triangles. This subdivision adds an extra
node at the midpoint of each edge of the triangle. After
adding these new nodes, they are re-projected onto the sur-
face of the unit sphere to maintain the shape and uniformity
of the sphere.

This iterative process increases the number of nodes and
edges with each refinement step such that at the final step
(M6), for each node, the structure includes thousands of
small edges that we can pass information for local weather
prediction, and it also retains several large edges so that
information can be also be passed continentally(g).

2.3. Encoder

In the GraphCast model, the encoder maps input data from
the latitude-longitude grid of two previous weather states
onto a learned node representation using the multi-mesh
structure. This process utilizes one layer of a Graph Neural
Network (GNN). Specifically, it first embeds the features
of each grid node, mesh node, mesh edge, grid-to-mesh
edge, and mesh-to-grid edge using Multi-Layer Perceptrons
(MLP). Then, it performs a single message-passing step by
first updating edges using the information from adjacent



COMP 414 (Spring 2024)

nodes, then updating mesh nodes by aggregating informa-
tion from all incoming edges, and finally updating the grid
nodes. After updating all three elements, the model incorpo-
rates a residual connection by reassigning every node and
edge with the sum of the new and old values.
The residual connection can be expressed as below, where
V G
i represents the grid node, V ′G

i is the new grid node; V M
i

are the mesh nodes, V ′M
i is the new grid node; eG2M are

the edges that are connecting grid to mesh nodes and e′G2M

is the updated one.

V G
i ← V G

i + V ′G
i ,

V M
i ← V M

i + V ′M
i ,

eG2M ← eG2M + e′G2M .

2.4. Processor

The processor uses 16 layers of unshared GNN. By employ-
ing deep GNN layers and the multi-mesh structure, which
retains edges of different lengths for each node, each node
in the model can access information from far away, solving
the traditional limitation of GNNs – the inability to reach
distant nodes.
For each layer of the Mesh GNN, the message passing
process is similar to that in the encoder: it first updates
mesh edges using information from adjacent nodes, then
updates mesh nodes by aggregating information from in-
coming edges, and finally applies a residual connection. The
key difference in the message passing between the processor
and the encoder is that the processor only deals with mesh
nodes and edges and does not update grid nodes.

2.5. Decoder

Similar to the encoder, using one layer of GNN, the decoder
performs a single message pass from the mesh to the grid.
The process first updates the grid-to-mesh edges using in-
formation from adjacent nodes. Then it updates grid nodes
using incoming information. Since the focus at the end is on
grid information, there is no need to update the mesh nodes
again. A residual connection is added here as well, and the
results are output using another MLP.

3. Model Training
3.1. Training Data Split

Data used to develop GraphCast was split into a training set,
validation set, and test set, as is standard among Machine
Learning practices. The training set comprised data from
the years 1979-2016, the validation set included 2016-2017,
and the test set included 2018-2021.

GraphCast was trained according to an objective function
developed by the researchers. They used 12-step forecasts

in their training, which corresponded to 3 days, and the
objective was the MSE between the target output and the
predicted output.

• τ ∈ 1 : Ttrain are the lead times that correspond to the
Ttrain autoregressive steps

• d0 ∈ Dbatch represent forecast initialization date-times
in a batch of forecasts in the training set

• j ∈ J indexes the variable, and for atmospheric vari-
ables the pressure level.

• i ∈ G0.25◦ are the location (latitude and longitude
coordinates in the grid

• x̂d0+τ
j,i and xd0+τ

j,i are predicted and target values for
some variable-level, location, and lead time

• sj is the per-variable-level inverse variance of time
differences

• wj is the per-variable-level loss weight

• ai is the area of the latitude-longitude grid cell, which
varies with latitude and is normalized to unit mean over
the grid

3.2. Autoregressive Training

The researchers used an autoregressive training scheme
for GraphCast, meaning that the model’s predictions were
reused as inputs for new predictions. At each step of the
autoregressive forecast, loss was computed with respect to
the ground truth corresponding to the step. Error gradients
with respect to the model parameters were back-propagated
through all iterations of the model.
Model training followed the schedule highlighted in Figure
2. It consisted of three phases:
Phase 1: 1,000 gradient descent updates, 1 autoregressive
step, linearly increasing scheduled learning rate from 0 to
1e-3.
Phase 2: 299,000 gradient descent updates, 1 autoregressive
step, half-cosine decay scheduled learning rate from 1e-3 to
0.
Phase 3: 11,000 gradient descent updates, 2-12 autoregres-
sive steps (+1 every 1000 updates), fixed learning rate of
3e-7.
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Figure 2. Training Schedule. Plots correspond to the three phases of model training designed by the researchers.

3.3. AdamW Optimization

The training objective function was minimized using the
AdamW optimizer. Adam is the extension of gradient de-
scent that implements adaptive learning rates by taking esti-
mates of the first and second moments of the gradients. This
allows for dynamic adjustments of learning rates, which
generally leads to more efficient convergence when training
machine learning models. AdamW is an adaptation of Adam
that includes weight decay to penalize large weights, instead
of L2 regularization. In AdamW, weight decay is only added
after controlling the parameter-wise step size, which one
can observe in step 12 of Figure 3. Ilya Loshchilov and
Frank Hutter show in their research proposing AdamW that
this approach leads to generally better results for conver-
gence, and leads to a version of Adam that is much more
competitive with SGD with momentum [5].

4. GraphCast Verification
4.1. Verification Methods

GraphCast’s forecasting accuracy was evaluated by compar-
ing its predictions to those of HRES, the high-resolution
model from ECMWF (European Centre for Medium-Range
Weather Forecasts), across various model configurations.
To quantify these accuracies, researchers used Root Mean
Square Error and Anomaly Correlation Coefficient.
GraphCast produces 227 predictions of different variables
at each grid point on the map, and 69 of these predictions
were chosen (based on WeatherBench and ECMWF’s
Forecast Scorecard) for comparison against HRES. Two
main factors were considered in establishing how skill
was measured: (1) Selection of Ground Truth, and (2)
Accounting for the data assimilation windows used to
ground data with observations. Since ERA5 was the dataset
used to train GraphCast, it would work fine as a ground

truth comparison for the model. HRES however, is not
predicted from ERA5, and so to prevent initial forecasting
error, the researchers compiled an HRES forecast inputs
dataset, which essentially relabeled future prediction inputs
as current ground truth. The researchers also only evaluated
GraphCast forecasts from inputs that carried +3h of future
observations, in order to match the information amount that
HRES uses.

4.2. Verification Results

The researchers found that GraphCast did produce better 10-
day forecasts than HRES at a horizontal resolution of 0.25°.
As Figure 4 shows, Both the RMSE graphs and the ACC
graphs show GraphCast predictions outperforming HRES
in terms of prediction skill, especially as lead times increase.
The skill score improvement margins lay at around 7%-14%
better for GraphCast compared to HRES.

It is important to note that according to the Scorecards
in 4d, HRES performs better at the lowest pressure level.
However, these regions were disproportionately localized in
the stratosphere and had the lowest training loss weight.

4.3. Training Data Recency

The researchers proposed the idea of retraining GraphCat
as new weather data is collected to capture weather pat-
terns that may change over time. To test this theory, they
trained GraphCast with data that began in 1979, but ended
in 2017, 2018, 2019, and 2020, and compared the perfor-
mances of these models with HRES when predicting 2021
test data. Figure 5 shows the results of testing these models.
Researchers found that their theory proved to be correct, as
prediction accuracy increased gradually as training data was
more recent to the prediction time.



COMP 414 (Spring 2024)

Figure 3. Adam and AdamW Algorithm Comparison. A step-by-step outline of the Adam and AdamW algorithms, where the added
term unique to Adam is highlighted in purple, and the term unique to AdamW is highlighted in green. For the purpose of GraphCast,
optimization was initialized with parameters: β1 = 0.9, β2 = 0.95, λ = 0.1.

Figure 4. Plots of Forecast Skill for GraphCast and HRES a) Plot of RMSE for GraphCast and HRES, as a function of lead time, with
95% Confidence Intervals. A lower score means less error, which is preferred. b) Plot of RMSE for HRES and GraphCast, normalized
with respect to HRES forecast skill. c) Plot of ACC for GraphCast and HRES as a function of lead time. d) Scorecard in ECMWF format,
for GraphCast, with respect to HRES. The rows of each map correspond to physical levels in the atmosphere, and each map corresponds
to a different predicted variable. Red represents a better forecast by HRES, and blue represents a better forecast by GraphCast.
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Type Variable name Role
Atmospheric Geopotential Input/Predicted
Atmospheric Specific humidity Input/Predicted
Atmospheric Temperature Input/Predicted
Atmospheric U component of wind Input/Predicted
Atmospheric V component of wind Input/Predicted
Atmospheric Vertical velocity Input/Predicted
Single 2 metre temperature Input/Predicted
Single 10 metre u wind component Input/Predicted
Single 10 metre v wind component Input/Predicted
Single Mean sea level pressure Input/Predicted
Single Total precipitation Input/Predicted
Single TOA incident solar radiation Input (1h)
Static Geopotential at surface Input
Static Land-sea mask Input
Static Latitude Input
Static Longitude Input
Clock Local time of day Input
Clock Elapsed year progress Input

Table 1. List of ECMWF variables used in the datasets. The Type column indicates whether the variable is a time-varying atmospheric
property, a time-varying single-level property, or a static property (e.g., not time-varying).

Figure 5. Retraining GraphCast. Colored lines represent the RMSE
of GraphCast trained on a different number of years, with respect
to the lead time. The black line represents the RMSE of HRES.

5. Model Comparisons
5.1. Comparison of GraphCast and ClimaX

5.1.1. ARCHITECTURE COMPARISON

GraphCast and ClimaX are both advanced models designed
for weather and climate forecasting but differ significantly
in their architectural approach and underlying technology.

GraphCast primarily leverages graph neural networks to
model the complex interactions between various atmo-
spheric variables. This model type is particularly adept at
capturing spatial relationships and dependencies within data,
making it highly suitable for tasks where interaction dynam-
ics are complex and non-linear. GraphCast’s architecture
allows for the dynamic incorporation of nodes and edges,
representing different geographical locations and their in-
terconnections, respectively. This structure is inherently
flexible and can adapt to various scales of input data.

ClimaX, on the other hand, extends the Transformer archi-
tecture, which is fundamentally different from graph-based
models. ClimaX introduces novel encoding and aggregation
blocks that enhance the Transformer’s ability to handle spa-
tial and temporal data effectively. This model is designed
to be a foundation model, meaning it can be pre-trained on
a wide range of climate datasets and fine-tuned for specific
tasks. This versatility is achieved through its ability to han-
dle variable tokenization and aggregation, which optimizes
compute resources while maintaining utility across different
spatiotemporal scales.
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Figure 6. Pretraining phase of ClimaX. Variables are encoded using variable-separate tokenization and subsequently aggregated using
variable aggregation. Together with position embedding and lead time embedding those are fed to the ViT backbone.

5.1.2. PREDICTION RESULTS

GraphCast is tailored for medium-range forecasting, typ-
ically providing predictions for up to a week ahead. Its
graph-based structure allows it to maintain high accuracy
over this time frame by effectively capturing the dynamics
between atmospheric variables at different locations. The
resolution of predictions depends on the granularity of the
input data and the configuration of the graph nodes, which
can be adjusted to balance detail and computational effi-
ciency.

ClimaX demonstrates superior performance in both weather
forecasting and long-term climate projections. It can handle
various forecasting tasks with different lead times, from
hours to years, due to its robust pre-training and fine-tuning
methodology. It’s designed to handle resolutions from about
10 km for regional models to 50 km for global models in
pre-training, with the ability to fine-tune for higher resolu-
tions. Temporal resolution can vary widely as it is suitable
for both short-term forecasting from hours to days, to long-
term climate projections like months to years in advance.
The model’s ability to perform well even when pre-trained
at lower resolutions and compute budgets highlights its effi-
ciency and scalability. ClimaX can also be used for down-
scaling, which improves the resolution of output predictions
from coarser model outputs, making it highly effective for
detailed regional climate analyses.

5.2. Comparison of GraphCast and FourCastNet

5.2.1. ARCHITECTURE COMPARISON

While GraphCast uses a graph-based approach, FourCast-
Net employs the Adaptive Fourier Neural Operator (AFNO),
which integrates Fourier transformations into deep learning

frameworks. This method allows FourCastNet to perform
global convolutions efficiently, which is crucial for cap-
turing the wide-ranging spatial dependencies inherent in
atmospheric data.

FourCastNet’s architecture is highly optimized for parallel
computing environments and is capable of scaling across
thousands of GPUs, a feature that supports extremely high-
resolution modeling and rapid computation speeds. This
scaling capability is essential for handling the complex, high-
dimensional data involved in global weather forecasting.

5.2.2. PREDICTION RESULTS

FourCastNet has been demonstrated to generate accurate
weather predictions globally with a lead time of up to a
week, similar to GraphCast. However, FourCastNet stands
out due to its ability to produce these predictions at a much
higher resolution up to 1 km for global weather simulations,
which is exceptionally detailed compared to traditional mod-
els, at speeds significantly faster than traditional numerical
weather prediction models due to its use of Fourier transfor-
mations. For instance, FourCastNet can perform an 80,000
times faster inference compared to state-of-the-art numerical
models, with the ability to handle resolutions that are much
finer, thanks to its use of AFNO and the massive parallel
computing power it leverages.

6. Conclusion
In conclusion, our discussion of GraphCast, an ML-based
weather prediction tool, highlights the potential of machine
learning in the field of meteorology. By using advanced ar-
chitectures like Graph Neural Networks, models like Graph-
Cast can approach weather forecasting and significantly ben-



COMP 414 (Spring 2024)

Figure 7. The Fourcast Net architecture showing the key operations per- formed on the input tensor with dimensions (20×720×1440) to
produce a 6-hour single-time step forecast with the same dimensions. Model parallelism is implemented by splitting the channels (feature
maps) across GPUs. Channel mixing MLP operations require communication across the model parallel ranks, while the FFT-based
spatial-mixing operates on disjoint blocks that are embarrassingly parallel.

efit from enhanced accuracy and efficiency. This report has
demonstrated that GraphCast’s ability to learn from histori-
cal weather data and atmospheric patterns offers a consider-
able improvement over traditional forecasting methods. Our
comparative analysis further indicates that while newer ML-
based models continue to evolve, GraphCast remains a very
strong option in this rapidly growing field, providing critical
insights and methodologies that continue to influence emerg-
ing weather prediction technology. Future research should
focus on refining these models, expanding their predictive
capabilities, and integrating more real-time data adaptation
to ensure more reliable and actionable forecasts, ultimately
aiding in better preparedness for weather-related challenges.
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