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Chapter 1

This chapter introduces optimization through data science and ma-
chine learning applications. We discuss some of the places optimiza-
tion appears and gradually introduce the reasoning that will lead
to the well-known definitions and assumptions usually made in op-
timization. We will fix the mathematical notation of most of the
optimization problems discussed in this course and introduce the no-
tion of Black Box in optimization. This chapter will conclude with a
primer on linear algebra and the basic numerical analysis operations
needed for this course.

What are these notes about | some optimization examples | Black Box oracle |
linear algebra primer

Notation.We obey the following notation: a p-dimensional
vector x (we will assume the real case for most of the course
unless otherwise stated) is denoted by

x = (x1, x2, . . . , xp)
> 2 Rp.

A variant often found in the literature uses brackets [·] in-
stead of parenthesis, which is considered equivalent based on
the context. With a slight abuse of notation, we use plain low-
ercase letters for both scalars and vectors, but the distinction
should be apparent from the context or stated explicitly. The
notation ·> denotes the transpose operation that translates a
column vector into a row vector, and vice versa. Throughout
the course, we might use i) xi to denote the i-th entry of a
vector, ii) xi to denote the putative solution of an iterative
method at the i-th iteration, or iii) xi to denote the i-th col-
umn of a matrix. The distinction should be clear again from
the context.

A general optimization criterion is described as follows [1–5]:

min
x2C✓Rp

f(x)

subject to g(x)  0.

Here, f : Rp ! R is the objective criterion, g : Rp ! R is a
function that represents some of the constraints, and C ✓ Rp is
a restriction on the values that the solution can take. Usually,
C is defined such as:

C = {x 2 Rp | further conditions on x} .

We generally use calligraphic uppercase letters to de-
note sets; e.g., C,S, . . . One can argue that we can
also include g in the description of C, i.e., C =
{x 2 Rp | further conditions on x, g(x)  0}, but we often in-
clude such additional constraints in the description, especially
when we can handle them in a specific/clever way to approxi-
mate the solution for this objective. In any case, both descrip-
tions are equivalent.

The set of x’s that satisfy the intersection of g(x)  0 and C
constitutes the feasible set. Finding the solution x? that min-

imizes the objective while belonging to the feasibility set is the
optimization task.

As it will be an essential description for several problems in
this course, we also describe a matrix version as an optimiza-
tion criterion. A p⇥ d matrix X is denoted as:

X =

2

664

X11 X12 . . . X1d

X21 X22 . . . X2d

...
. . .

...
Xp1 Xp2 . . . Xpd

3

775 2 Rp⇥d.

We will generally use uppercase plain letters for matrices un-
less otherwise stated (E.g., a common use of an uppercase
letter as a non-matrix variable is as a universal constant, say
C or the Lipschitz gradient continuity constant L). Then, af-
ter changes in the domain of f, g, such that f : Rp⇥d ! R
and g : Rp⇥d ! R, we have a matrix-variable optimization
problem as in:

min
X2C✓Rp⇥d

f(X)

subject to g(X)  0.

Types of optimization.

• Constrained optimization: whenever any constraints on x
are present, like in the description above.

• Unconstrained optimization: no constraints; this means
that the problems above look like:

min
x2Rp

f(x) or min
X2Rp⇥d

f(X)

This course will consider only problems with a non-empty fea-
sibility set.

Types of solutions.A key distinction between non-trivial so-
lutions to an optimization criterion is:

• Global solution: we usually denote the global optimal so-
lution with x?. x? has the property that f(x?)  f(x), for
any other x in the feasibility set. (Note that there might
be other x’s that get even smaller objective value, but they
do not satisfy the constraint set.)

• Local solution: let us use here the notation x̄ for a local so-
lution. Then, x̄ satisfies f(x̄)  f(x?). (For the moment,
the way we define the local solutions is arbitrary and con-
tains all the non-global points in the feasibility set, which
is enough for now. The distinction between local mini-
mum/maximum, saddle points, etc., will be provided later
during the course).

Some examples where optimization is used.Let us describe
some classical and some less classical problems that utilize
optimization for their solution.
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Linear regression a.k.a. least squares. [6–8] Let A 2 Rn⇥p be
a given matrix such that:

A =

2

6664

a>
1

a>
2

...
a>
n .

3

7775

Here, n denotes the number of samples/data points we have,
and p is the number of features for the problem. We also have
some observations y 2 Rn. Assume that we know that the
predictor f(x, ai) ⌘ fi(x) = a>

i x is the right model to fit the
data. Then, the goal is to find the vector x that minimizes
the `2-norm discrepancy between the observations yi and the
prediction fi(x) as in:

1

min
x2Rp

(
1
n

nX

i=1

(yi � fi(x))
2 = 1

n

nX

i=1

⇣
yi � a>

i x
⌘2

)

The above objective is the linear regression and the least
squares objective. (Definitions of inner products are provided
in the linear algebra primer that follows.)

Quantum state tomography, a.k.a., least-squares over matri-
ces with low-rank constraints. [9] Assume we have a quantum
computer in our possession. A quantum computer is gener-
ally described by its quantum state. I.e., all approximations
and errors put aside, a quantum computer “evolves” its quan-
tum state from an initial state (initialization) to the final state
(output of the algorithm). That quantum state can be repre-
sented as a density matrix:

X?
t 2 Cd⇥d such that X?

t ⌫ 0,

where the subscript t represents the time index. (In the
quantum information notation, densities are represented as
⇢t). Observe that we work in the complex domain. What
a quantum algorithm does then is, through a series of opera-
tions (= a sequence of quantum gate applications), to produce
X?

0 ! X?
1 ! · · · ! X?

T , such that X?
T somehow contains the

answer to a problem.
Bringing back errors, this sequence of density matrices in-

cludes noise, often magnified from step to step. Thus, even if
we perform the first step X?

0 ! X?
1 , we are not sure whether

the quantum computer’s state is actually (or even approxi-
mately) X?

1 . One of the ways to test the validity of this step
is through tomography : we obtain tomographic measurements
by applying some special structured matrices on (the assumed
to be) X?

1 , and from these observations, we recover the best

matrix that fits the measurements. If that matrix, say bX1, is
close to X?

1 , then we are confident that this step is performed
as expected.
In math, this translates into forming a set of matrices

Ai 2 Cd⇥d that will lead to the set of tomographic measure-
ments. E.g., assume that we take measurements from a state
X?; the measurements look like:

yi = Tr(AiX
?) + "i.

Here, we observe X? indirectly through {yi, Ai}ni=1 measure-
ments, that are contaminated with noise "i.
Now, given {yi, Ai}ni=1, how do we recover X?? If we have

enough measurements, maybe it is su�cient to solve just a
matrix version of the least squares problem:

min
X2Rd⇥d

(
1
n

nX

i=1

(yi � fi(X))2 = 1
n

nX

i=1

(yi � Tr(AiX))2
)

However, we know more about state X?. By its physical
composition, X? has unit trace; i.e., Tr(X?) = 1. We could
include this information in the optimization problem:

min
X2Rd⇥d

1
n

nX

i=1

(yi � Tr(AiX))2

subject to Tr(X) = 1.

But, even then, solving such a problem requires a complete
set of observations; i.e., we need the number of measurements
n to be of the order of O(d2) to solve such a problem. Obtain-
ing such a set of measurements is often infeasible: d is con-
nected exponentially to the number of qubits of the system,
d = 2q, where q is the number of qubits. For a relatively small
number q = 20, the number of measurements becomes enor-
mous to obtain, store, and process. Is there a di↵erent way to
overcome such a di�culty? As we will see in later chapters,
there is, through low-rank matrix recovery procedures.

Fleet allocation for EMS services; a more data science engi-
neered objective. [10] Theoretical work on strategic vehicle al-
location for fire and Emergency Medical Service departments
enjoys a rich and diverse history. The idea is to perform opti-
mal long-term vehicle allocation and location, and most mod-
els are formulated as constrained optimization problems. (You
can skip the following paragraphs till the problem formulation
if you are not interested in the reasoning behind building an
optimization criterion).

These problems attempt to maximize one performance di-
mension of the vehicle response system while subjecting vehi-
cle locations to constraints representative of real-life operat-
ing characteristics. Of these optimization models, here we will
describe how to maximize the number of incidents covered by
emergency vehicles.

Appropriately, these models are referred to as “covering
models”. Notably, these covering models primarily use integer
constraints (i.e., the constraints can be either 0 or 1 in value)
and linear or quadratic objective functions to increase the sim-
plicity with which solutions to the problem formulations are
obtained.

Briefly, all covering models describe the spatial location of
incidents as well as the vehicles and their locations on a di-
rected graph G = (V, W, E) where V (indexed by i) con-
sists of all the demand points (summarizing all the incidents
in a dataset), W consists of the locations of vehicle stations
(indexed by j), and E refers to the set of edges (representing
routes) between every demand point and every vehicle station.
Often, these problem formulations discretize the demand into
distinct “demand” points, which are summaries of the over-
all demand to arrive at a solution tractably. Associated with
each demand point in V is a quantity, di, which represents the
magnitude of the demand associated with the demand point.
xj is an integer scalar representing the number of vehicles at
station j. At the same time, yi is a binary variable equal to 1
if and only if demand points i are covered at least once.

These problems also require several other inputs in addition
to the base variables. Each edge in the graph ei,j is associated
with a weight, ti,j , which denotes the time it would take to

1A small comment on notation compromises: Di↵erent research areas follow a di↵erent notation
convention. E.g., in optimization, the optimization variable is denoted as x; in statistics, it is often
denoted as �; in machine learning, we use w to denote the set of variables = weights of a neural
network. In signal processing, for the set of features in the least squares objective, researchers often
use A or �. In contrast, we commonly use X in statistics and optimization to represent the set
of features or the design matrix. Like additive noise in observations, error terms can be represented
as w, n, or ". In all cases, though, as long as the notation is consistent, the work should not be
judged by the selection of letters used—this is a matter of personal taste in the end. Thus, it is
recommended that readers re-wire their knowledge around concepts (e.g., this is the set of features,
irrespective of which letter is used).
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travel from station j to a demand point i. In these formula-
tions, r refers to the user-defined “response time threshold”
used to determine whether a demand point is “covered” or
not. Lastly, the input quantity p is a number that refers to
the total number of available vehicles. In contrast, pj refers
to the maximum vehicle “capacity” of each station, and Wi

describes a set that consists of the set of vehicles that cover a
given demand point i.

The MEXCLP [10] problem formulation is one of the most
versatile covering model problem formulations, combining a
reasonable degree of simplicity and realistic constraint set-
ting. It is an explicitly probabilistic model, incorporating a
new parameter termed the “busy fraction,” representing the
probability that a given vehicle is not available to respond to a
call despite the call being “covered” by the vehicle in question,
denoting that parameter as q. Its formulation is as follows:

min
x2{0,1}m,y2{0,1}

(
f(y) =

X

i2V

pX

k=1

di(1� q)qk�1yik

)

subject to
X

j2Wi

xj �
pX

k=1

yik, i 2 V,

X

j2W

xj = p,

xj  pj

The above problem formulation shows the versatility of op-
timization criteria: Given a problem description, we can have
continuous variables but also discrete or integer variables; we
can have equality and inequality constraints; we can have one
or multiple constraints, etc. In this class, topics like integer
programming/discrete programming are out of scope.

Training a neural network classifier. [11] Consider a problem
where we are given a set of n input data {xi}ni=1, with corre-
sponding labels yi. To make our discussion concrete, consider
that each input data point xi is a 20-dimensional flattened
image of size 5⇥ 4, with a corresponding label yi belonging to
one out of 10 classes. Thus, each yi can be represented as a
one-hot vector such that yi 2 {0, 1}10, with only one entry of
yi being one at the correct class.

Assume we are certain that the following neural network
architecture is su�cient to train such a classifier.

• The input layer accepts vectors in R20.
• Each input data is transformed via a weight matrix W1 2

R12⇥20 such that h̄1 = W1xi 2 R12.
• h̄1 goes through a non-linear activation function, say � :

R12 ! R12, that operates in an entrywise fashion. This
leads to h1 = �(h̄1) 2 R12.

• Going into the second hidden layer, h1 is further trans-
formed by another weight matrix W2 2 R10⇥12 such that
h̄2 = W2h1 2 R10.

• h̄2 goes through a non-linear activation function, usually
the same as in the previous layer. Thus: h2 = �(h̄2) 2 R10.

• Going into the third hidden layer, h2 is further trans-
formed by another weight matrix W3 2 R10⇥10 such that
h̄3 = W3h2 2 R10.

• h̄3 goes through a non-linear activation function, usually
the same as in the previous layer. Thus: h3 = �(h̄3) 2 R10.

• Finally, h3 is normalized according to the softmax layer
to represent a probability distribution. That is, the out-
put byi, corresponding to the input xi, is a 10-dimensional

vector with entries: (yi)j = e
(h3)j

P
`
e(h3)`

.

The above can be depicted in the following neural network
illustration.

In math, the above can be described as:

byi = softmax (� (W3 · � (W2 · � (W1 · xi)))) ,

where Wi are the trainable variables we want to optimize.
A (not-that-natural) way to measure the discrepancy be-

tween the trained output byi and the actual one-hot vector yi
is via

L (byi, yi) := (byi � yi)
2 .

Using all the data we have, our goal is to learn Wi’s via:
2

min
Wi

f(W1,W2,W3) := 1
n

nX

i=1

L (byi, yi) .

Input Layer ∈ ℝ²⁰ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹⁰

Fig. 1. An illustration of the artificial neural network.

2The interesting part of modern machine learning, in terms of optimization, is that we no longer
care about finding the minimum of the objective criterion at hand, but rather find a solution that
will behave nicely in a di↵erent objective function, which we do not have access to. While this
seems an “unfair” requirement, at the same time, it opens new research directions, e.g., how to do
indirect optimization.
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A pessimistic view on optimization.Borrowing from Nes-
terov’s book [2], one of the first bold statements made is the
following:

“In general, optimization problems should be
UNSOLVABLE”

Nevertheless, we use optimization in almost all aspects of
technology. What is the caveat here? We need to define at
what level we are comfortable to accept an approximate solu-
tion as the “optimal” solution. When is a solution bx consid-
ered optimal for linear regression? E.g., would kbx� x?k2  "
su�ce? And, what is an acceptable " value? Should it be
" = 10�3? " = 10�16? " = 10�100? Is the `2-norm the
right metric to check? What about other norms such as `1- or
`1-norm? What if we move to the matrix variable scenarios?
Would a Frobenius norm (Euclidean norm for matrices) be

su�cient, as in k bX �X?kF  "? What about induced norms
or nuclear norms?

Even more importantly, recent applications of optimization
in machine learning have shown that the classical way of think-
ing “solvability” (i.e., for example we ask for kbx � x?k2  ",
for very small ") are suboptimal compared to less accurate but
better generalizable solutions (i.e., solutions that are not per-
fect over the training set, but work amazingly well on unseen
data, compared to a solution that overfits training data).

So, which problems do we know how to solve exactly?
Are there any, or is optimization “doomed” to be compro-
mised with an approximate solution? Consider the case of a
quadratic equation in one dimension:

f(x) = ax2 + bx+ c = 0.

One could use optimization to solve this problem, but fortu-
nately, we know the solution to this problem, up to absolute
accuracy:

x =
�b±

p
b2 � 4ac
2a

.

Another example is the inverse of a 2⇥ 2 matrix. E.g., under
proper assumptions on the range of the entries of the matrix,
a matrix

A =


a b
c d

�

has inverse:

A�1 =


a b
c d

��1

= 1
ad�bc ·


d �b
�c a

�
,

which is provided in closed form. Of course, someone could
have used optimization methods (and there are such methods
in practice; this is how we compute the inverse of a matrix
with arbitrary sizes) to complete this task. But the above
closed-form solution is unbeatable because we can get infinite
accuracy, while numerical methods are restricted by the num-
bers they are limited to represent.

While these problems might seem too simple for some read-
ers, the well-known result on solving least-squares problems
y = Ax as x? = A�1y (under assumptions on A, y - also this
assumes we can compute A�1 up to infinite accuracy) adds to
the problems that are amenable to closed-form solutions.
Finally, some solutions seem unbeatable to a very narrow set

of problems, but overall, they should be considered something
other than sophisticated algorithms for generic problems. E.g.,
consider an algorithm that always returns x? = 0; such an al-
gorithm is the best we can hope for (both in terms of accuracy
and computational e�ciency) for problems with zero as their
optimal solution. But we do not know that a priori and only
a few problems have solutions such as a trivial answer.

The common alternative to closed-form solutions: Iterative
numerical methods.What is the alternative then? The most
natural way of solving optimization problems is iteratively.
We start from an initial point, and we exploit the fact that we
might know something about the objective at hand to make a
more educated guess on where to move next.

Let us define the notion of an oracle: we assume that we
learn more about our objective by asking questions to an or-
acle. Each query comes with a “price,” translating into how
much computational time the oracle needs to answer the ques-
tion. What types of questions might we want to ask? Since
we try to minimize an objective function f(x), one possible
question could be “What is the value of f at a point x?”.
Other questions include gradient information or even second-
order Hessian information (both to be defined later in the text).
Then, the above leads to the following general description of
an iterative method:

1. Start from an initial point x0.
2. Given an oracle O, make queries to O.
3. Obtain the oracle’s answer and exploit such knowledge to

reach a new point as a putative solution.
4. Repeat steps 2.-3. until we get to a point where we are

satisfied, according to a stopping criterion.

There are several issues, or open questions, with the above
description.

• Is there a particular way to select the initial point? How
does such a selection a↵ect the performance of the algo-
rithm?

• What type of oracles would we wish to have? How rea-
sonable (e.g., computationally) is to have such an oracle?
E.g., an oracle that, given an input, tells you whether it is
the optimal point is very valuable, but it rarely exists in
practice.

• How can we exploit the answers from the oracle? In other
words, what method exploits such information and trans-
lates it into a sequence of approximates towards a good
solution?

• How do we stop the procedure? Is there an easy way to
check whether we are close to an acceptable solution?

• What is the total complexity of the algorithm?

These are some of the questions we will briefly answer in
this course. Starting with the last question, we identify two
types of complexity:

• Analytical complexity : The number of accesses to the ora-
cle to meet the stopping criterion.

• Arithmetic complexity : The total number of arithmetic
computations to meet the stopping criterion.

To distinguish between the two, consider the following sce-
nario: one algorithm requires a constant number of queries to
an oracle, and another requires many more queries but uses a
less computationally expensive oracle (that provides the same
information). That being said, the first algorithm has a better
analytical complexity (i.e., hiding the amount of e↵ort an or-
acle makes, it requires less number of iterations). In contrast,
the second algorithm could be more e�cient and have better
arithmetic complexity by introducing a tradeo↵ between the
number of iterations and e↵ort per iteration.

An easy way to compare the two complexities, assuming
that the per iteration complexity is the same in Big-Oh no-
tation, is that the arithmetic complexity is just the compu-
tational complexity per iteration multiplied by the analytical
complexity. More in the chapters that follow.
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The Black-Box model.Actually, we have been describing the
Black-Box model, widely used in optimization. While the idea
is simple, clear descriptions of what is allowed and what is not
were missing in the optimization research’s beginning. The
Black-Box model assumes:

• The only information regarding the problem is through the
oracle.

• The oracle is more often than not assumed local : in the
sense that if we ask a question, it relates to the current
putative solution and how the function behaves locally.

These simple assumptions are necessary to avoid (infeasible
and impractical) oracles that answer questions like “Where is
the optimum?”. But, these assumptions also help us avoid
oracles that provide information that looks “innocent”: e.g.,
assume an oracle that provides as side information what is
the distance to the optimum from the current point xt, say
kxt � x?k2. While it is not direct information about x?, it
can help the optimization and lead to unfair comparisons to
algorithms that do not have access to that information.

Common types of oracles. Some common types of oracles are:

• Zeroth-order oracle: Given a query point x, the oracle only
returns f(x).

• First-order oracle: Given a query point x, the oracle re-
turns f(x), and its gradient at x, rf(x) (assuming di↵er-
entiability).

• Second-order oracle: Given a query point x, the oracle
returns f(x), its gradient rf(x), and the Hessian at x,
r2f(x) (assuming twice-di↵erentiability).

The Black-Box model and the various types of oracles will be
more apparent in the following lectures. We need to remember
that this (very abstract) computational model is the prevail-
ing model for continuous optimization. While this does not
necessarily exclude alternatives, to the best of the author’s
knowledge, it is the most obvious and hard to beat.

What is this class about.Given the above introduction, this
class evolves around the following optimization criterion:

min
x2Rp

f(x)

subject to x 2 C.

In other words, we will only consider minimization problems of
continuous functions with specific constraints on the variable
x. During the class, we will consider:

• Diverse objectives that belong to general classes of func-
tions with characteristic properties.

• Di↵erent strategies to optimize problems within such
classes of functions.

• Approaches that handle the same problems more carefully,
assuming pragmatic restrictions, such as limited computa-
tional resources.

• How constraints can change the above strategies.

Our goal here is to provide a course combining theory and
practice without heavily relying on one of the two perspectives
but following a balanced approach: we will consider applica-
tions in AI/Machine Learning/Signal Processing, but we will
also study how theory helps set up the algorithms.

What is this class NOT about.While optimization as a re-
search field has many di↵erent “branches” that deserve our
attention, our limited time within a semester forces us to re-
strict our scope heavily. This means some of the subjects we
will not cover are: i) parts of convex optimization and analysis
(e.g., we do not cover duality in this course); ii) (mixed) inte-
ger programming; iii) combinatorial optimization algorithms
(e.g., graph algorithms); iv) randomized algorithms; v) online
algorithms (e.g., bandits); vi) Bayesian optimization; and v)
in-depth discussion of deep learning architectures.

Finally, any of the excluded optimization topics, depend-
ing on the audience’s preferences, could be included as “guest
lectures” in future versions of the course.

1
(Some good sources for linear algebra are [12–14])

Vectors.A p-dimensional vector x is denoted by

x = (x1, x2, . . . , xp)
> 2 Rp.

Here, we abuse the notation and use plain lowercase letters
for both scalars and vectors, but the distinction should be
apparent from the context or stated explicitly. The notation
·> denotes the transpose operation that translates a column
vector into a row vector, and vice versa. Some properties of
vectors include:

• Commutative: x+ y = y + x, x, y 2 Rp.
• Associative: (x+ y) + z = x+ (y + z), x, y, z 2 Rp.
• Distributive: x> (y + z) = x>y + x>z, x, y, z 2 Rp.
• 0 + x = x.

The space that span a set of vectors x1, x2 , . . . , xk is
denoted as:

span(x1, x2 , . . . , xk) = {↵1x1 + ↵2x2 + · · ·+ ↵kxk | ↵i 2 R}.
A set of vectors x1, x2 , . . . , xk are said to be linearly inde-

pendent if:

↵1x1 + ↵2x2 + · · ·+ ↵kxk = 0 ) ↵i = 0, 8i.

Question: How does k compare to p, the vector dimension?

The inner product of two vectors in p-dimensions is mathe-
matically defined as:

x>y ⌘ hx, yi =
pX

i=1

(xi · yi).

Here, h·, ·i is a di↵erent notation for the inner product; the
subscripts xi, yi denote the i-th elements of the corresponding
vectors. The inner product can also be interpreted visually as
follows:

Fig. 2. Illustration of inner product.



i
i

“Notes” — 2024/1/4 — 14:09 — page 6 — #6 i
i

i
i

i
i

This is based on the exact characterization of the inner prod-
uct as:

hx, yi = kxk2 · kyk2 · cos ✓

We say that two non-zero vectors are orthogonal if x>y = 0;
in other words, when ✓ = 90o.

Some norms associated with vectors are the following:

• Euclidean or `2-norm: kxk2 =
pP

i x
2
i .

• `1-norm: kxk1 =
P

i |xi|.
• `1-norm: kxk1 = maxi |xi|.
Key properties of norms include:

• kxk � 0.
• kxk = 0 , x = 0.
• k↵xk = |↵| · kxk, 8↵ 2 R.
• Triangle inequality : kx+ yk  kxk+ kyk.
• Cauchy-Schwarz inequality : |x>y|  kxk · kyk.
We will also consider functions over vectors that could be

regarded as norms, but they do not satisfy some of the prop-
erties above (thus, often called pseudo-norms). One such key
function is the `0-“pseudo” norm:

kxk0 ⌘ card(x) = {# of non-zeros in x}.

Question: Why is `0-pseudo norm not a regular norm?

Matrices.A p⇥ d matrix X is denoted as:

X =

2

664

X11 X12 . . . X1d

X21 X22 . . . X2d

...
. . .

...
Xp1 Xp2 . . . Xpd

3

775 2 Rp⇥d.

We will generally use uppercase plain letters for matrices un-
less otherwise stated.
Some key types of matrices include: i) square matrix where

p = d; ii) tall matrix, when p � d; iii) fat matrix, when
p ⌧ d; iv) zero matrix, when all the entries are zero; v) di-
agonal matrix, when all entries are zero outside the diagonal
(usually used for square matrices); vi) identity matrix, a di-
agonal matrix with ones on the diagonal.
The notation ·> denotes the transpose operation that ex-

changes the dimensions of the matrix. In particular, X> 2
Rd⇥p where:

X> =

2

664

X11 X21 . . . Xp1

X12 X22 . . . Xp2

...
. . .

...
X1d X2d . . . Xpd

3

775 .

Similarly to the vector case, some properties of matrices
include:

• Commutative: A+B = B +A, A, B 2 Rp⇥d.
• Associative: (A+B)+C = A+(B+C), A, B, C 2 Rp⇥d.
• Distributive: A · (B + C) = A · B + A · C, A 2

Rp⇥d, B, C 2 Rd⇥m.
• 0 +A = A.
• (A+B)> = A> +B>.

Above, we used matrix multiplication between matrices. For
matrices C 2 Rp⇥m, A 2 Rp⇥d, and B 2 Rd⇥m, this is defined
as:

C =

2

664

C11 C12 . . . C1m

C21 C22 . . . C2m

...
. . .

...
Cp1 Cp2 . . . Cpm

3

775 = A ·B

where

Cij =
dX

`=1

Ai,` ·B`,j .

Special cases of matrix multiplication are vector inner product
(where a vector is seen as a single-column matrix), matrix-
vector multiplication, and vector outer product.

More properties of matrix multiplication include (the corre-
sponding dimensions are clear from the context - we also drop
(·) for clarity):

• A(BC) = (AB)C.
• ↵(AB) = (↵A)B, ↵ 2 R.
• (AB)> = B>A>.
• AB 6= BA in general.

The inner product between two matrices with matching di-
mensions is defined as:

hA,Bi ⌘ Tr(A>B) ⌘ Tr(B>A), 8A,B 2 Rp⇥d.

Here, Tr(·) denotes the linear operator that sums the elements
on the diagonal of its matrix input argument.

Question: how does Tr(B>A) compare to vec(B)>vec(A)?

The rank of a matrix A is defined as the maximum num-
ber of independent columns or rows. The rank of a matrix
is also directly connected with the singular value decomposi-
tion (SVD) of a matrix. In particular, every matrix A has a
singular value decomposition of the form:

A = U⌃V >, U 2 Rp⇥r, ⌃ 2 Rr⇥r, V 2 Rd⇥r.

Here, r denotes the rank of the matrix, which has the following
meanings within the SVD:

• A rank-r matrix A has only r non-zero singular values,
which are the diagonal elements of ⌃. By definition, ⌃ is a
diagonal matrix in SVD.

• A rank-r matrix A has r orthonormal (i.e., orthogonal and
of unit norm) left singular vectors, that span a rank-r sub-
space of the p-dimensional row space of A.

• A rank-r matrix A has r orthonormal (i.e., orthogonal and
of unit norm) right singular vectors, that span a rank-r
subspace of the d-dimensional column space of A.

Finally, an essential class of matrices is that of positive
(semi)definite matrices; we often use the abbreviation PD or
PSD. A PSD (resp. PD) matrix A 2 Rp⇥p has the following
properties:

• A is a square matrix.
• A is symmetric, i.e., A = A>.
• For every non-zero vector x 2 Rp, it holds x>Ax � 0 (resp.

x>Ax > 0).

While the definition of PSD/PD matrices has a clear algebraic
interpretation, we will also provide a geometrical interpreta-
tion. Decomposing the third property of PSD/PD matrices,
define y := Ax 2 Rp. One can see y as the translation of the
original vector x through A: i.e., x 7! Ax. Then, A, being
PSD/PD matrix, has the property that the translated vector,
y, has a positive inner product with the original x: i.e., x and
y point towards non-antithetical directions.

Some norms associated with matrices are the following:
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• Frobenius or `2-norm: kXkF =
qP

ij X
2
ij .

• Nuclear norm: kXk⇤ =
P

i �i(X), where �i(X) is the i-th
singular value.

• Spectral or `2-norm: kXk2 = maxi �i(X).

Properties of norms convey from the vector case to the matrix
case, so we defer to the corresponding part of the vector case.

Finally, we define the notion of an inverse of a matrix. In-
verses are squared matrices, denoted with the superscript ·�1,
such that:

AA�1 = A�1A = I,

where I is the identity matrix with matching dimensions.
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and processes. Physical Review A, 68(1):012305, 2003.

74. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

75. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

76. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

77. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

78. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

79. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.
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