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Chapter 10

In the previous lectures, we studied non-convex optimization in the
context of sparse feature selection and low rank recovery, where non-
convexity is introduced by the constraints. We considered low-rank
model selection in data science application and went beyond hard
thresholding methods to discuss the non-convex path. We will now
discuss the landscape of non-convex optimization problems in gen-
eral, including the types of stationary points including saddle points
and conditions that would allow escaping from these saddle points.

Saddle points, Matrix sensing

Non-convex optimization problems are NP-hard in general,
although some specific cases can be solved in polynomial time.
Neural networks, the classical example of non-convex opti-
mization, cannot be even solved to global optimality without
a fine grid search over the space of initial points. To further
illustrate the di�culty of non-convex optimization, consider
the example of homogeneous quartics.

Homogeneous Quartics.Homogeneous quartics are functions
of the form

f(x) =
pX

i,j=1

Qijx
2
ix

2
j

If Q ⌫ 0, then f(x) � 0, and x = 0 is the global minimum.
However, if Q is arbitrary, rf(x) at zero is zero but zero can
be a minimum, a maximum, or a saddle point. Checking if
0 is a global minimizer is equivalent to checking if there is a
point that leads to a negative objective. Using a change of
variable ui = x2

i , we transform the original objective function
into f(u) = u>Qu. Looking for a non-negative u such that
u>Qu < 0 is equivalent to checking if Q is co-positive, which
is an NP-hard problem.

Fig. 52. For Q ⌫ 0, 0 is the global minimum, but for any arbitrary Q, 0 can
be a minimum, a maximum, or a saddle point

Previously when we studied the Newton’s method, we have
turned to the Hessian for information about the local cur-
vature. However, for homogeneous quartics, r2f(0) = 0,
the Hessian provides no useful insights. We could use even
higher-order information such as third or fourth-order deriva-
tives, but that would propel the problem into the realm of
NP-hardness. Hence, we see that in non-convex optimization,
determining the identity of a stationary point is a di�cult task
in and of itself. Even if we were at the global minimum, prov-
ing that our solution is indeed globally minimum is NP-hard.
This challenge is not only found in homogeneous quartics but
in many other non-convex problems: quadratic combinatorial
optimization (QCOP), matrix completion and sensing, tensor
decomposition, etc.

Local minima: the next best thing to global minimum.Recall
that a critical or stationary point, x? where rf(x?) = 0, can
be one of the following

• Global minima: all directions go upwards and f(x?) 
f(x), 8x these are desirable but not easily attainable

• Local minima: all directions go upwards and maybe
f(x?) � f(x), 9x; these are the next best thing

• Saddle points: there are upwards, downwards, and/or flat
directions

Having seen convex optimization algorithms and studied
their convergence to globally optimal solutions, we may be
averse to accepting local minima as solutions to non-convex
problems. However, for larger models like neural networks,
local minima tend to yield similar loss values as the global
minimum. While poor local minima exist, it has been shown
that the probability of convergence to a poor local minimum
is near zero for some models. This is consistent with the fact
that, in practice, training a neural network with di↵erent ran-
dom seeds often leads to models that perform similarly well.

Motivation for escaping saddle points.With the knowledge
that good local minima exist for some non-convex optimiza-
tion problems, convergence to local minima can still be a chal-
lenging process. Saddle points can stall the convergence to a
good quality local minimum. In the optimization landscape,
saddle points can be large plateaus or flat regions where the
slope is very slow. Saddle points can dramatically slow down
learning, giving the illusion that we have reached a local min-
imum. Recall that for a generic smooth function, the update
according to gradient descent is given by xt+1 = xt� 1

Lrf(xt).
As t increases, gradient descent converges to the points where
the gradient has zero energy.

Saddle points can be a particularly ubiquitous issue for op-
timization in high dimensions, as saddle points emerge and
their numbers may even increase exponentially with increas-
ing dimensionality. To illustrate this, consider the example
f(x) = (x2 � 2)2, which has two local/global minima, one
local maximum, and no saddle points.

Extending the same function from 1D to 2D, f(x, y) =
(x2 � 2)2 + (y2 � 2)2 + 8, saddle points emerge. The 2D
function’s landscape resembles an egg holder, and there are
4 saddle points, one between each ”slot”. From 1D to 2D, the
number of saddle points has increased from 0 to 4. In fact, the
number of saddle points will continue to increase with higher
dimensions. For the same function in 3D, we will get 8 saddle
points.

Escaping saddle points: Second-order derivative test.Con-
sider the Hessian, r2f(x) 2 Rp⇥p, at a critical point x. The
Hessian is square and symmetric, which means that we can
compute its eigendecomposition and characterize the critical

Fig. 53. Saddle points emerge and increase in number with higher dimensionality
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point based on the signs of its eigenvalues. If r2f(x) has
only positive eigenvalues, then the critical point x is a local
minimum. To prove this, consider the second-order Taylor’s
expansion and the fact that rf(x) = 0 at the critical point.

f(x+ ⌘u) = f(x) + ⌘hrf(x), ui+ ⌘2

2
hr2f(x)u, ui

= f(x) +
⌘2

2
hr2f(x)u, ui > f(x)

Hence, when r2f(x) has only positive eigenvalues, all direc-
tions go upwards, and the critical point is a local minimum.

Based on similar reasoning, we can devise the following rules
for characterizing a critical point.

• Only positive eigenvalues: local minimum
• Only negative eigenvalues: local maximum
• Only positive and negative eigenvalues: strict saddle point
• Positive, negative, and zero eigenvalues: general saddle

point

At a saddle point, strict or general, the objective function
decreases in the direction of the eigenvector that corresponds
to a negative eigenvalue. By following the direction of this
eigenvector, we can escape a saddle point.

Strict saddle property.A function f(x) satisfies the strict sad-
dle property, if all points x in its domain satisfies the at least
one of the following:

• The gradient is large, i.e. krf(x)k2 � ↵
• The Hessian has at least one negative eigenvalue, bounded

away from zero, i.e. �min(r2f(x))  ��
• x is near a local minimum

Fig. 54. Strict saddle property

For a function that satisfies this property, the minimum
eigenvalue of r2f(x) is bounded by a negative value. There-
fore, there is always an escape route from a saddle point of a
function that satisfies this property. However, finding the min-
imum eigenvalue requires computing the eigendecomposition
of the Hessian, which has O(p3) complexity. Some existing
methods such as cubic regularization and trust-region methods
do not compute the full eigendecomposition but are nonethe-
less time consuming in practice, as they require second-order
information from the Hessian.

Noisy gradient descent.The good news is that it is possible
to escape from saddle points using first-order methods such as
gradient descent. Although gradient at saddle points is null,
strict saddle points are quite unstable. At a strict saddle point
where the Hessian has no zero eigenvalue, if we perturb the
our location even by just a little bit, we will fall and escape
from the saddle point. We can incorporate this perturbation

in the form of noise into the gradient descent step.

xt+1 = xt � ⌘rf(xt) + ✏, ✏ ⇠ ⌘ · Sp�1

Alternatively, an even easier approach is simply using the
stochastic gradient descent, which naturally has noise incor-
porated into each step.

xt+1 = xt�⌘rfit(xt) = xt�⌘rf(xt)+✏, ✏ = ⌘(rf(xt)�rfit(xt))

It has been proven that noisy gradient descent finds a lo-
cal minimum of an objective function that satisfies the strict
saddle property in polynomial time, up to O( 1

✏4
) iterations.

To put this result in perspective, convergence of gradient de-
scent to a critical point (not necessarily a local minimum) has
a running time of O( 1

✏2
), the noisy gradient descent converges

to a local minimum but at the cost of more iterations.

A di↵erent perspective on saddle points.We have seen that
strict saddle points are highly unstable, and we can escape
from them with a little perturbation. Another important per-
spective to consider is that convergence to saddle points de-
pends strongly on initialization. Consider the 2D example
f(x, y) = 1

2x
2 + 1

4y
4 � 1

2y
2. The only saddle point is (0, 0),

and to converge to this saddle point, initialization has to be
of the form (x, 0), which in the case of random initialization,
occurs with a probability of 0. In practice, if you pick any
random initial point, you are safe not to converge to a saddle
point.

Fig. 55. Initialization has to be along the dotted line to converge to the saddle
point (0, 0)

Matrix sensing using RIP and PSD matrix factorization. In
the previous section, methods to escape saddle points were
discussed. Related questions are how to escape local minima
and whether we can infer that local minima are just as good
as global minima in the non-convex setting. To explore this
question, the following will cover matrix sensing using RIP
and PSD matrix factorization.

The setting is
y = A(x⇤)

where x is rank r, x⇤ 2 Rn⇥n, and x⇤ � 0. A(·) : Rn⇥n ! Rm

where m << n2. y 2 Rm.
Because x is PSD, x⇤ = UUT . Hence, we are interested in

min
U2Rn⇥r

{f(u) := ky �A(UUT )k22}

and we solve this problem using the recursion

Ut+1 = Ut � ⌘rf(UtU
T
t ) · Ut
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The following assumption is made

RIP : (1� �)kxk2F  1
m

· kA(x)k22  (1 + �)kxk2F

which then leads to

(1� �)kxk2F  1
m

mX

i=1

hAi, xi2  (1 + �)kxk2F

A corollary of RIP is

| 1
m

mX

i=1

hAi, xihAi, yi � hx, yi|  �kxkF kykF

U is a stationary point if rf(U) = 0 which then means
that �2A+(y � A(UUT ))U = 0 and that

Pm
i=1hAi, UUT �

U⇤U⇤T iAiU = 0. This means we can relate the station-
ary point to the global point. Note that

Pm
i=1hAi, UUT �

U⇤U⇤T iAiU 2 Rn⇥r. This last point means that we can also
find

mX

i=1

hAi, UUT � U⇤U⇤T ihAiU, V i = 0

where we have the freedom to choose V , UUT is the local and
U⇤U⇤T optimum. U can further be decomposed as U = QR
which implies V = ZQR�1 such that

|hUUT � U⇤U⇤T , QQTZT i|�kUUT � U⇤U⇤T kF kQQTZT kF

which then further implies

k(UUT � U⇤U⇤T )QQT kF  �kUUT � U⇤U⇤T kF

Note that U 2 Rn⇥r which means that r2f(u) 2 Rnr⇥nr. If
U is a local minimum, then

vec(z)Tr2f(u)vect(z) < 08z 2 Rn⇥r

Using
lim
t!0

[rf(u+ tz)�rf(u)]

and second-order optimality, the following holds

1. kU(U � U⇤R)k2F � 1��
2(1+�)kUUT � U⇤U⇤T k2f

2. kU(U � U⇤R)k2F  1
8kUUT � U⇤U⇤T k2F + 34

8 k(UUT �
U⇤U⇤TQQT k2F

Combining inequalities we then have,
✓

1� �
2(1 + �)

� 1
8

◆
kUUT �U⇤U⇤T k2F  34�2

8
kUUT �U⇤U⇤T k2F

✓
1� �

2(1 + �)
� 1

8
� 34�2

8

◆
kUUT � U⇤U⇤T k2F  0

If the first term
⇣

1��
2(1+� � 1

8 � 34�2

8

⌘
is forced to be greater

than 0, because � is a hyperparameter that cannot be con-
trolled due to the RIP assumption, the local minimum should
be identical to the global minimum. More specifically if
�  1/5, all local minimum are equal to global minimum.

Lastly, for saddle points if �min( 1
mr2f(u))  �4

5 �r(x
⇤),

there is always a direction of escape. If the r-th singular value
is very small, it is not easy to escape from a saddle point and
the matrix is very close to being rank r + 1.



i
i

“Notes” — 2022/11/21 — 9:20 — page 73 — #73 i
i

i
i

i
i

Appendix

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.
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80. D. Gonçalves, M. Gomes-Ruggiero, and C. Lavor. A projected gradient method for
optimization over density matrices. Optimization Methods and Software, 31(2):328–
341, 2016.

81. E. Bolduc, G. Knee, E. Gauger, and J. Leach. Projected gradient descent algorithms
for quantum state tomography. npj Quantum Information, 3(1):44, 2017.

82. Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng. Superfast maximum-likelihood
reconstruction for quantum tomography. Phys. Rev. A, 95:062336, Jun 2017.

83. Zhilin Hu, Kezhi Li, Shuang Cong, and Yaru Tang. Reconstructing pure 14-qubit quan-
tum states in three hours using compressive sensing. IFAC-PapersOnLine, 52(11):188
– 193, 2019. 5th IFAC Conference on Intelligent Control and Automation Sciences
ICONS 2019.

84. Zhibo Hou, Han-Sen Zhong, Ye Tian, Daoyi Dong, Bo Qi, Li Li, Yuanlong Wang,
Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, et al. Full reconstruction of a 14-qubit
state within four hours. New Journal of Physics, 18(8):083036, 2016.
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