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Chapter 2

This lecture introduces smooth continuous optimization and provides
the background knowledge before we delve into more specialized
classes of objectives, such as convex optimization. To explore these
topics, we will require several basic definitions such as gradients,
Hessian matrices, Taylor Series, etc. This chapter also “scratches”
the surface of properties of optimization functions: for instance, the
Taylor expansion is reviewed, and types of stationary points are intro-
duced. Several special conditions that benefit optimization, including
Lipschitz and Lipschitz gradient continuity, are introduced.
The main algorithm for this chapter will be gradient descent (GD), as
well as projected GD. Additionally, these notes explain convergence
rates. We will see how further global assumptions lead to improved
convergence guarantees.

Lipschitz conditions | Gradient Descent

This course covers general smooth optimization, where the
objective function can be pictured as a continuous curve in
high dimensions. You can easily picture it: A continuous
landscape parameterized by a set of unknowns, and the goal
is to find the global minimum/maximum. However, other im-
portant classes of optimization problems not covered in this
course follow this description, as shown in the figure 1. Some
of them are typically explored as a particular topic, for ex-
ample, discrete optimization and integer programming. This
course is restricted only to smooth functions. The smoothness
will be defined later on in the text. For now, one way to de-
scribe smoothness is by saying that we can compute gradients
on these functions.

Fig. 1. Landscape of optimization

Derivatives, gradients, and Hessians.Algorithms and heuris-
tics in optimization often involve derivatives to approach an
optimal solution. Put shortly; the derivative tells you the
direction (and, in some way, the magnitude) of the steepest
ascent (or descent).

Def inition 1. (First-order Derivative) The derivative of a univari-
ate function f : R ! R at a point x is defined as:

@f
@x

= f 0(x) = lim
✏!0

f(x+ ✏)� f(x)
✏

.

The derivative of f represents the slope f in a neighborhood
of a point x. It explains how much f changes within a small
area when we perturb around a given point.

This suggests the second-order derivative, which is recur-
sively defined as the derivative of the derivative and describes
how rapidly the derivative changes.
Def inition 2. (Second-order Derivative) The second-order deriva-
tive of a univariate function f : R ! R at a point x is defined
as:

@2f
@x2

= f 00(x) = lim
✏!0

f 0(x+ ✏)� f 0(x)
✏

.

The second-order derivative represents the local curvature of
f , i.e., how much the function’s slope changes around a given
point.

Some di↵erentiation rules are:

• (f(x) · g(x))0 = f 0(x) · g(x) + f(x) · g0(x) (Product rule)

•
⇣

f(x)
g(x)

⌘0
= f 0(x)·g(x)�f(x)·g0(x)

g2(x)
(Quotient rule)

• (f(x) + g(x))0 = f 0(x) + g0(x) (Sum rule)
• (f(g(x)))0 = (f � g)0(x) = f 0(g(x)) · g0(x) (Chain rule)
• (c)0 = 0 (Derivative of a constant is zero)
• (c · f(x))0 = c · f 0(x) (Mult. by a constant rule)
• (xn)0 = n · xn�1 (Power rule)

The notions of derivatives have a natural generalization to
higher dimensional cases. In particular, we will start by intro-
ducing the idea of a gradient.
Def inition 3. (Gradient of f) The gradient of a multivariate
function f : Rp ! R is

rf(x) =

2

664

@f
@x1

...
@f
@xp
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Fig. 2. Graphical illustration of first-order derivative
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where

@f
@xi

= lim
✏!0

f(. . . , xi�1, xi + ✏, xi+1, . . .)� f(. . . , xi�1, xi, xi+1, . . .)
✏

=
f(x+ ✏ei)� f(x)

✏
,

where ei 2 Rp denotes the basis/coordinate vector where all
elements are zero, except for the one in the i-th position with
value one.

The following definition computes the rate at which a func-
tion f changes at a point x in the direction of an arbitrary
vector y. This relates linear forms of the gradient (i.e., inner
product) to a one-dimensional derivative evaluated at zero.
Def inition 4. (First-order Directional Derivative) Let f : Rp ! R
be a di↵erentiable function. For two points x, y 2 Rp and for
scalar �, we have:

ryf(x) = rf(x)>y = lim
�!0

f(x+�y)�f(x)
�

ryf(x) is called the directional derivative of f at x in the
direction of y.
To verify this formula, let us first define the “helper” function:

'(�) := f(x+ �y) = f( (�)),

where  (�) := x + �y. Computing the gradient of '(�) with
respect to � is equivalent to computing the gradient of f along
the direction y, for infinitesimal �. In particular, by applying
the chain rule, we obtain:

'0(�) =
pX

i=1

@f( (�))
@ i

·r i(�)

=
pX

i=1

@f( (�))
@ i

· yi

= hrf( (�)), yi
= hrf(x+ �y), yi

Then, we obtain the definition of the directional derivative
when we set � = 0.

The directional derivative is also often written in the nota-
tion:

ryf(x) = y1 · @f
@x1

+ y2 · @f
@x2

+ · · ·+ yp · @f
@xp

=
pX

i=1

yi · @f
@xi

Next, we will define the derivative for a multivariate vector
function.
Def inition 5. (Jacobian of a function f) The Jacobian of a mul-
tivariate vector function f : Rp ! Rm is given by:

Df(x) =

2

664

@f1
@x1

@f1
@x2

· · · @f1
@xp

...
...

...
@fm
@x1

@fm
@x2

· · · @fm
@xp

3

775 2 Rm⇥p

Loosely speaking, taking the Jacobian of the gradient yields
the Hessian, which contains the second-order local information
about f :
Def inition 6. (Hessian matrix of f) The Hessian of a multivari-
ate function f : Rp ! R is

r2f(x) =

2

6664

@2f
@x2

1

@2f
@x1@x2

· · · @2f
@x1@xp

...
...

...
@2f

@xp@x1

@2f
@xp@x2

· · · @2f
@x2

p

3

7775

The Hessian matrix of a continuous function is symmet-
ric. The Hessian matrix provides information about the cur-
vature of the function f . For example, given a point x?, when
r2f(x?) � 0 holds, then x? is (at least) a strict local min-
imizer of f . Alternatively, when r2f(x?) � 0, then x? is a
strict local maximizer of f . See figure 5 for a geometric inter-
pretation of the above facts.

Similarly to gradients, we can relate quadratic forms of the
Hessian matrix to one-dimensional derivatives.

Def inition 7. (Second-order Directional Derivative) Let f : Rp !
R be a twice-di↵erentiable function. Let x, y 2 Rp and � a
scalar. Then:

⌦
r2f(x+ �y) · y, y

↵
= lim
�!0

rf(x+�y)>y�rf(x)>y
� = @2f(x+�y)

@�2
.

Taylor expansion of a function f .Now that we know what
derivates, gradients, and Hessians are, how can we use them
in practice? The answer to this question will come from an-
swering the following question: Are there any intuitive ways
of approximating the behavior of a function, even locally? The
answer is Yes: the Taylor expansion of the function may be
used to approximate the function locally.

Def inition 8. (Taylor Series) Assuming that f is n-times di↵er-
entiable, then the Taylor series of f centered at ↵ is:

T↵(x) =
1X

k=0

f (k)(↵)(x� ↵)k

k!

=
f(↵)
0!

+
f 0(↵)
1!

(x� ↵) +
f 00(↵)
2!

(x� ↵)2 + · · ·

The k-th order Taylor approximation is the above series
truncated at the kth term in the sum.

Here, f is assumed to be di↵erentiable as often as we would
like. For the rest of this course, we will assume that our func-
tions are di↵erentiable unless stated otherwise. More often
than not, we will focus on the up-to-2nd-order Taylor approx-
imation of functions. We note that the Taylor expansion gives
a reasonable (local) estimate of the function. When we keep
only the first two terms, we call it a linear approximation of
the function near ↵, as is illustrated in figure 3.

Fig. 3. The first-order Taylor expansion provides a good estimation of the func-
tion near the point ↵ but easily drifts away when we move a little bit away from
it.

When we keep the first three terms, we obtain a quadratic
approximation of f , as is illustrated in figure 4.
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Fig. 5. How Hessian looks around interesting points of a two-dimensional function f (z-axis).

Fig. 4. The second-order Taylor expansion estimates a function better near point
↵.

Adding more terms provides a more accurate approxima-
tion, and for a univariate function, this is attainable. However,
the complexity increases significantly in high-order Taylor ex-
pansion of multivariate functions.

Def inition 9. The Taylor expansion of a multivariate function
f : Rp ! R at point ↵ 2 Rp is

f(x) ⇡ f(↵)+hrf(↵), x�↵i+ 1
2
hr2f(↵)(x�↵), (x�↵)i+ . . .

This is a natural generalization of the one-dimensional ver-
sion. For a first-order Taylor expansion approximation, we
obtain:

f(x) ⇡ f(↵) + hrf(↵), x� ↵i, ↵ 2 Rp,

while for a second-order one, we obtain:

f(x) ⇡ f(↵)+hrf(↵), x�↵i+1
2
hr2f(↵)(x�↵), x�↵i, ↵ 2 Rp.

For further discussions, the following fundamental theorem
of calculus (part II) is useful: it will help show that the dif-
ferentiation in the multivariate setting can be expressed as
integrals of univariate functions. The fundamental theorem
reads as follows:
Def inition 10. (Fundamental theorem of calculus, part II) Let f :
[↵,�] ! R be a continuously di↵erentiable function. Then:

Z �

↵

d
dtf(t)dt = f(�)� f(↵).

Based on the above, Taylor’s expansion implies the follow-
ing:
Lemma 1. Let f : Rp ! R be a di↵erentiable function. Let two
points x, y 2 Rp. Then:

f(y) = f(x) + hrf(x), y � xi+
Z 1

0

(1� �) @
2f(x+�(y�x))

@�2
d�

The above provides an idea of a local approximation of a
function. This leads to the Taylor’s theorem, often called
the multivariate mean-value theorem. Taylor’s theorem be-
low allows the approximation of smooth functions by simple
polynomials.
Theorem 1. (Taylor’s theorem)

• If f is continuously di↵erentiable, then:

f(w) = f(w0) + hrf(tw + (1� t)w0), i, for some t 2 [0, 1].

• If f is twice di↵erentiable, then:

rf(w) = rf(w0) +

Z 1

0

r2f(tw + (1� t)w0) · (w � w0)dt.

• Further, if f is twice di↵erentiable, then, for some t 2 [0, 1]:

f(w) =f(w0) + hrf(w0), w � w0i
+ 1

2

⌦
r2f(tw + (1� t)w0) · (w � w0), w � w0

↵
.

But how are the above useful in optimization?.Consider that
someone gives you the following problem minx f(x) for some
function f . Further, we are told that computing gradients
rf(·) and Hessians r2f(·) is relatively easy. Then, assuming
we start from a point x0, instead of worrying about f itself,
one can do the following steps:

• Compute gradient rf(x0); name this as the h vector.
• Compute Hessian r2f(x0); name this as the H matrix.
• Form the second-order Taylor approximation:

f(x)

⇡ f(x0) + hrf(x0), x� x0i+ 1
2 hr

2f(x0) · (x� x0), x� x0i
= f(x0) + h>(x� x0) + 1

2 (x� x0)
>H(x� x0).

Hence, instead of optimizing directly minx f(x), we first
compute the second-order approximation around a point x0:

min
x

�
f(x0) + hrf(x0), x� x0i+ 1

2 hr
2f(x0)(x� x0), x� x0i

 
,

which in turn is just a minimization of a quadratic function:

min
x

n
h>x+ 1

2x
>Hx

o
.

Solving quadratic problems is a type of optimization we can
e�ciently compute.

The above list suggests that regardless of how di�cult f is
to optimize, one can approximate it through Taylor’s expan-
sion to get to a problem that we can solve: that of a quadratic
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objective! Of course, this does not guarantee that we will get
the optimum of f . E.g., if x0 is far from the optimal x? and
the local quadratic approximation does not follow well f , then
we have no hope of optimizing the original f function. How-
ever, we can make this happen by using iterative procedures
over the above motions for ever-improved x points.

Optima. It is always easy to spot the minimum of a function
whenever it can be drawn on paper. For a computer, though,
this is a complicated problem akin to a grid search. Unfortu-
nately, real problems are usually multidimensional, so we can-
not draw the functions on paper. Furthermore, a direct search
on a multidimensional grid is computationally prohibitive (the
so-called “curse of dimensionality” issue). Consequently, we
have yet to learn of the global shape of the function. We rely
on the limited local information to search for the minimum.
We want to call this agnostic optimization. See Figure 6 and
its solution in Figure 7.

Fig. 6. Agnostic optimization. Given x0 and f(x0) as a starting point, the
landscape looks like this for a computer program: there is no clear path to move from
x0 to a point with a better objective value.

Fig. 7. However, the whole picture is unpredictable. Is it a minimum?

We use a set of notations to refer to the optima of a function.
Without loss of generality, we only discuss minimization.

Def inition 11. The global minimizer x? of a function f satisfies

f(x?)  f(x), 8x in the domain of f.

Def inition 12. A local minimizer x̂ of a function f satisfies

f(x̂)  f(x), 8x 2 Nx̂,

where Nx̂ defines a very small neighborhood around x̂.

We can recognize that a solution is a local minimum by the
following necessary conditions:

• 1st order optimality condition: rf(x̂) = 0.
• 2nd order optimality condition: rf(x̂) = 0 and r2f(x̂) ⌫

0.

Intuitively, the above states that i) the function is flat at the
point of the minimum, and ii) the function looks like a “bowl”
at this point when both conditions are satisfied. The last point
relates to the notion of convexity: this will be defined later in
the class.

Note that these are only necessary conditions, with f(x) =
x3 as a simple counterexample at point x = 0, which satisfies
the two conditions but is not a local minimum.

Lipschitz Conditions
Figures 6 and 7 show di↵erent points where the gradient is
zero. The gradient is not unique at some points, while the
function is discontinuous at other points. In such a general
case, finding the global minima seems complicated unless we
start making some assumptions about the objective f . Many
of the objectives f we want to optimize in practice often satisfy
a form of Lipschitz continuity.

Def inition 13. A function f is called Lipschitz continuous,
when

|f(x)� f(y)|  M · kx� yk2, 8x, y,

for some constant M > 0.

This means a function should not be too steep, where the
constant M controls the steepness. A Lipschitz continuous
function may not have abrupt changes.

Fig. 8. Illustration of a Lipschitz continuous function, where M controls the
cone’s width in white. In a way, Lipschitz continuity states that a function cannot
abruptly change so that it will not “appear” inside the white cone in the picture above.

A similar but quite di↵erent assumption is that of Lipschitz
gradient continuity, where we apply the Lipschitz condition to
the gradients of the function.

Def inition 14. A function f has Lipschitz continuous gradients,
when

krf(x)�rf(y)k2  Lkx� yk2, 8x, y,

where L > 0 is a constant scalar. Often, such a function is
also called L-smooth.

Such a condition forbids sudden changes in the gradient.
Using Taylor’s expansion, we can prove that

f(y)  f(x) + hrf(x), y � xi+ L
2 kx� yk22,

which means the function is upper-bounded by a quadratic
function (there is also a lower quadratic bound). There are
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several equivalent characterizations of Lipschitz gradient con-
tinuity to be aware of:

f(y)  f(x) + hrf(x), y � xi+ L
2 kx� yk22,

r2f(x) � L · I, where I = identity and kr2f(x)k2  L.

Comparison of Lipschitz conditions:

• Lipschitz continuity implies that f should not be too steep.
• Lipschitz gradient continuity implies that changes in the

slope of f should not happen suddenly.

Example: Linear regression. In linear regression, the ob-
jective f(x) = 1

2kAx� bk22 is not Lipschitz continuous—it gets
arbitrarily steep when approaching infinity in x—however, it
is Lipschitz gradient continuous as in:

krf(x)�rf(y)k2 = kA>(Ax� b)�A>(Ay � b)k2
 kA>Ak2 · kx� yk2,

where L := kA>Ak2, the largest singular value, serves as the
parameter L. This also justifies the equivalent condition:

r2f(x) � L · I.

But how can we use the Lipschitz gradient continu-
ity in optimization?

A key product of its definition is the inequality:

f(y)  f(↵) + hrf(↵), y � ↵i+ L
2 ky � ↵k22.

Therefore, at a chosen point ↵, we can upper bound the curve
of f (for any y) with a quadratic function, evaluated around
↵. One can depict a one-dimensional simple example as in
figure 9.

Fig. 9. Illustration of how Lipschitz gradient continuity has algorithmic impli-
cations. We want to minimize the one-dimensional f(y) (pink curve). Instead of
minimizing f directly—it could be a very complicated function to minimize directly—
we will successively construct quadratic (upper-bound) approximations around the
current putative solutions and minimize those approximations. In the figure, we are at
point f(↵); one can construct the linear local approximation of f around ↵ (black
curve); Lipschitz gradient continuity goes further and introduces a quadratic term,
“weighted” by the Lipschitz gradient continuity constant L (green curve). Minimiz-
ing this quadratic approximation will provide a new point around which we can form
another quadratic approximation, etc. The key observation regarding L is that the
larger L is, the steepest the quadratic approximation around the current point is
(compare green with khaki curves). The steeper these quadratic approximations are,
the smaller the learning rate/step size in algorithms needs to be to guarantee provable
performance; there are more details later on.

Lipschitz gradient continuity expression f(y)  f(x) +
hrf(x), y � xi + L

2 kx � yk22 can also be proved via Taylor’s

expansion + other properties of Lipschitz gradient continuous
functions. We know from Taylor’s expansion that:

f(y) = f(x) + hrf(x), y � xi+ 1
2 hr

2f(z)(y � x), y � xi,

for some z. Knowing that for a Lipschitz gradient continuous
function, we have:

r2f(x) � L · I ) kr2f(x)k2  kL · Ik2 ) kr2f(x)k2  L.

Then,

1
2 hr

2f(z)(y � x), y � xi  1
2

��r2f(z)(y � x)
��
2
· ky � xk2

 1
2

��r2f(z)
��
2
· ky � xk22

 L
2 ky � xk22.

Combining this with the initial Taylor’s expansion expression,
we get:

f(y)  f(x) + hrf(x), y � xi+ L
2 ky � xk22.

Gradient Descent for Lipschitz continuous gradient f
With Lipschitz gradient continuity, we can establish the con-
vergence of an iterative optimization method, such as gradient
descent. Gradient descent can be derived as the method of
successively minimizing the quadratic approximations around
the current point.

Let us elaborate a bit more before we present gradient de-
scent as the basic algorithm for smooth optimization. Let
minx2Rp f(x) be the problem we are interested in solving. We
assume that f is di↵erentiable, and we can approximate it by
Taylor’s expansion as:

f(x+ �) = f(x) + hrf(x), �i+ o(k�k2).

Minimizing f locally, a promising direction � is such that the
quantity hrf(x), �i is as small as possible. Given that, for
now, we are interested in finding a good direction (and not
how far in that direction to move to), it is easy to see that a
good normalized direction is:

� = � rf(x)
krf(x)k2

or a direction with controllable steps:

� = �⌘rf(x).

Given the above, gradient descent is defined as follows:
Def inition 15. Let f be a di↵erentiable objective with gradient
rf(·). The gradient descent method optimize f iteratively, as
in:

xt+1 = xt � ⌘trf(xt), t = 0, 1, . . . ,

where xt is the current estimate, and ⌘t is the step size or
learning rate.

The idea behind gradient descent is simple: given the cur-
rent point xt, we can compute the negative gradient �rf(xt)
as the direction that f has the steepest slope (locally). Fol-
lowing that direction, we carefully select ⌘t, the step size, to
dictate how far in that direction we will move.

While gradient descent is quite simple, there are three ac-
tions needed to make it work in practice: i) how to choose
step size ⌘t, ii) initial point x0, and iii) when to terminate
the algorithm.

—Step size: several approaches are known, some more prac-
tical than others, including:
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i) ⌘t = ⌘; i.e., the step size is fixed to a value by the user and
stays fixed for all the iterations;

ii) ⌘t = O
�
c
t

�
or ⌘t = O

⇣
cp
t

⌘
for a constant c > 0; i.e., the

step size keeps decreasing as we go on with the iterations.
It starts aggressively (e.g., for t = 1 it can be c), but very
fast decreases;

iii) ⌘t = argmin⌘ f(xt � ⌘rf(xt)); i.e., find the step size that
minimizes our objective along the direction of gradient de-
scent. This approach makes sense (computationally) only
for a narrow set of problems, where solving the above prob-
lem has i) a closed-form solution, and ii) it is not di�cult
to compute that closed-form solution. In most cases, find-
ing the best ⌘t is computationally prohibited to perform
per iteration, and often, it requires the same e↵ort as find-
ing the solution to the original problem.

iv) Fixed step size procedures, such as the Goldstein-Armijo
rule, are out of this course’s scope and often used in clas-
sical numerical analysis.

—Initial value x0: because we know little about the func-
tion, we usually start from points that make sense (e.g., un-
less the data involved in the function definition have abruptly
large or small values, starting from x0 = 0 makes sense for
some problems) or we pick a random value. How to initialize
is (almost) irrelevant for some classes of problems (e.g., convex
optimization), but it is essential for a broader class of prob-
lems. E.g., in the case of neural networks, there are several
di↵erent initialization techniques, such as the LeCun initializa-
tion [1], the He initialization [2] or the NTK initialization [3],
mostly based on di↵erent probability distributions and proper
scaling. By important, we mean that carefully selecting the
starting point either leads to some theory—but in practice,
several starting points lead to the same performance—or that
is required to get good performance in practice.

—Termination criterion: there are various standard criteria,
like “killing” the execution after T iterations (irrespective of
whether we converged or not), checking how much progress we
make per iteration through kxt+1�xtk2 or f(xt+1)�f(xt), or
by checking if the norm of the gradient is below a threshold,
krf(xt)k2  ".

Performance of gradient descent under smoothness assump-
tions.
Claim 1. Assume that i) f is di↵erentiable, and ii) that f has
L-Lipschitz continuous gradients. Consider the gradient de-
scent iterate: xt+1 = xt � ⌘trf(xt). Then:

f(xt+1)  f(xt)� ⌘t
�
1� ⌘tL

2

�
· krf(xt)k22.

Proof: By using the assumption of Lipschitz gradients, we
have:

f(xt+1)  f(xt) + hrf(xt), xt+1 � xti+ L
2 kxt+1 � xtk22

= f(xt) + hrf(xt), xt � ⌘trf(xt)� xti
+ L

2 kxt � ⌘trf(xt)� xtk22

= f(xt)� ⌘tkrf(xt)k22 +
⌘2
t
L

2 krf(xt)k22
= f(xt)� ⌘t

�
1� ⌘tL

2

�
krf(xt)k22

⇤

The above result indicates that, i) as long as ⌘t
�
1� ⌘tL

2

�

is positive, by performing gradient descent steps, we de-
crease the objective value by a non-positive quantity

�⌘t
�
1� ⌘tL

2

�
krf(xt)k22; ii) we can maximize the decrease

by maximizing the quantity ⌘t
�
1� ⌘tL

2

�
.

Define g(⌘) := ⌘
�
1� ⌘L

2

�
. Knowing that ⌘ > 0, we first

require 1 � ⌘L
2 > 0 ) ⌘ < 2

L . Thus, for 0 < ⌘ < 2
L , we ob-

serve that the g(⌘) is maximized when we require the gradient
satisfies:

g0(⌘) = 0 ) 1� ⌘L = 0 ) ⌘ = 1
L .

We will use ⌘t = ⌘ = 1
L for the rest of our theory. Observe

that this step size requires the knowledge of L; for some ob-
jectives, this is easy to find, e.g., linear regression and logistic
regression, but for others, it is not.

Claim 2. Gradient descent xt+1 = xt � ⌘trf(xt), with ⌘t =
⌘ = 1

L , satisfies:

f(xt+1)  f(xt)� 1
2Lkrf(xt)k22

Proof: This is true by substituting ⌘t = 1
L in the result of

claim 1. ⇤
The above characterizes the drop in function values at the

t-th iteration. The idea of convergence is based on the concept
of relaxation.

Def inition 16. A sequence of real numbers {↵t}1t=0 is called a
relaxation sequence if ↵t+1  ↵t, t � 0.

Combining all the iterations, for T iterations, we have:

f(xT+1)  f(xT )� 1
2Lkrf(xT )k22

f(xT )  f(xT�1)� 1
2Lkrf(xT�1)k22

...

f(x1)  f(x0)� 1
2Lkrf(x0)k22

Summing all these inequalities, and under the observation that
f(x?)  f(xT+1), we get the following claim.

Claim 3. Over T iterations, gradient descent generates a se-
quence of points x1, x2, . . . , such that:

1
2L

TX

t=0

krf(xt)k22  f(x0)� f(x?).

First, observe that the right-hand side is a constant quan-
tity, as it does not depend on the number of iterations. Sub-
sequently, the above result implies that, even if we continue
running gradient descent for many iterations, the sum of gra-
dient norms is always bounded by a constant. This indicates
that the gradient norms that we eventually add over time have
to be minor, which further implies convergence to a station-
ary point (also known as a critical point: a point that has a
gradient zero, meaning that it could be a local minimum).

However, the above says nothing about the convergence
rate. For that, we have the following claim.
Claim 4. Assume we run gradient descent for T iterations, and
we obtain T gradients, rf(xt), for t 2 {0, . . . , T}. Then,

min
t2{0,...,T}

krf(xt)k2 
q

2L
T+1 (f(x0)� f(x?))

1
2 = O

⇣
1p
T

⌘
.

Proof: We know that

(T + 1) ·min
t

krf(xt)k22 
TX

t=0

krf(xt)k22.
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Then,

T+1
2L ·min

t
krf(xt)k22  1

2L

>X

t=0

krf(xt)k22  f(x0)� f(x?) )

min
t

krf(xt)k22  2L
T+1 · (f(x0)� f(x?))

min
t

krf(xt)k2 
q

2L
T+1 · (f(x0)� f(x?))

1
2

= O
⇣

1p
T

⌘
.

⇤
This is called sublinear convergence rate. To provide a per-

spective of what it means, focus on Figure 12. In general,
this is a rather pessimistic result. However, remember that
we made no assumptions other than the di↵erentiability of f
and f being a L-smooth function. We will see that making
more assumptions helps improve the convergence radically.

Side note on convergence rates.There are two notations for
convergence rate, one using an error level " based on our stop-
ping criterion and the other using the number of iterations
T . For now, we know that gradient descent has a convergence

rate, with respect to the norm of the gradients, O
⇣
1/

p
T
⌘
.

Pick a small ", and assume we require mint krf(xt)k2  ".
This translates into:

q
2L
T+1 · (f(x0)� f(x?))

1
2  ")

T + 1 � 2L
"2

· (f(x0)� f(x?)) )
T �

⌃
2L
"2

· (f(x0)� f(x?))� 1
⌥

Usually, for our convergence rates to make sense, we pick a
small value for ", e.g. let " = 10�3. Our result dictates that
to get a solution with mint krf(xt)k2  10�3, we will need
approximately O

�
1/"2

�
= O

�
106

�
iterations (hiding all other

constants). This is the meaning of a sublinear convergence
rate: to get " accuracy in some sense, we require 1/"2 iter-
ations. This course will discuss how to achieve better than
sublinear or even better-than-linear rates.

Example: Logistic regression. We already discussed
the case of linear regression, where the objective f(x) =
1
2kAx� bk2 has Lipschitz continuous gradients, with constant

L := kA>Ak2. Here, we consider another famous—and less
straightforward—objective: that of logistic regression. We
know that logistic regression is based on the following premise
for binary classification:

Given a sample feature vector ↵i 2 Rp and a binary class
yi 2 {±1}, define the conditional probability of yi given ↵i as:

P [yi | ↵i, x
?] / 1

1 + exp(�yi↵>
i x

?)
.

The above generative assumption leads to the following ob-
jective:

min
x2Rp

(
f(x) =

1
n

nX

i=1

log(1 + exp(�yi↵
>
i x))

)
.

Following the same recipe with linear regression, one can com-
pute the gradient and Hessian as

rf(x) =
1
n

nX

i=1

r
h
log(1 + exp(�yi↵

>
i x)

i

=
1
n

nX

i=1

1
1+exp(�yi↵

>
i
x)

·rx

h
exp(�yi↵

>
i x)

i

=
1
n

nX

i=1

exp(�yi↵
>
i
x)

1+exp(�yi↵
>
i
x)

·rx

h
�yi↵

>
i x

i

=
1
n

nX

i=1

�yi
1 + exp(yi↵>

i x)
↵>
i

and

r2f(x) =
1
n

nX

i=1

yi
(1+exp(yi↵

>
i
x))2

·r
h
1 + exp(yi↵

>
i x)

i
· ↵>

i

=
1
n

nX

i=1

y2
i

(1+exp(yi↵
>
i
x))2

· exp(yi↵>
i x) · ↵i↵

>
i

=
1
n

nX

i=1

1
(1+exp(yi↵

>
i
x))2

· exp(yi↵>
i x)

| {z }
scalar

· ↵i↵
>
i| {z }

2Rp⇥p

Observe that, for � 2 R,
1

(1+exp(�))2
· exp(�) = 1

1+exp(�) ·
exp(�)

1+exp(�) = 1
1+exp(�) ·

1
1+exp(��)

Define h(�) = 1
1+exp(��) , and observe that h maps to (0, 1).

Also observe that h(��) = 1�h(�). Then, one can check that
h(�) · h(��)  1

4 .
Going back to our Hessian derivations:

r2f(x) =
1
n

nX

i=1

h
⇣
yi↵

>
i x

⌘
· h

⇣
�yi↵

>
i x

⌘
· ↵i↵

>
i .

Thus, taking spectral norm on both sides:

kr2f(x)k2  1
4n

�����

nX

i=1

↵i↵
>
i

�����
2

= 1
4n · kA>Ak2 := L.

where A accumulates all ↵i’s as rows.

Example: f(x) = x2 +3 sin2(x). This is a less practical exam-
ple, but it is an example that does not satisfy some of the nice
properties that linear regression and logistic regression satisfy.
The objective looks like:

Fig. 10. f(x) = x
2 + 3 sin2(x)

Let us compute the first and second derivatives of this func-
tion:

f 0(x) = 2x+ 6 sin(x) · cos(x)
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Fig. 12. Borrowed from Wikipedia. Illustration of di↵erent convergence rates. Note that the y-axis is in logarithmic scale for all the plots, while the x-axis has a linear
scale. The y-axis denotes a metric that dictates the optimum point; for example, kxk � x

?k2. The x-axis represents the iteration count k. The first two plots represent
linear convergence rates: it is called linear as a convention to match the linear curve in the logarithmic y-axis scale. While the second plot depicts a preferable behavior,
the two plots are equivalent in the big-Oh notation. For an error level ", linear convergence rate implies O

�
log 1

"

�
. The third plot depicts a quadratic convergence rate.

For an error level ", linear convergence rate implies O
�
log log 1

"

�
. Finally, the fourth plot represents the sublinear convergence rate, much slower than the linear rate.

Some typical rates are: O
�
1/"2

�
, O (1/") , O

�
1/

p
"
�
.

and

f 00(x) = 2 + 6 cos2(x)� 6 sin2(x)

Plotting the Hessian function, we obtain:

Fig. 11. f
00(x) = 2 + 6 cos2(x)� 6 sin2(x)

By inspection (and based on the periodicity of the Hessian
function), we can bound:

|f 00(x)|  8 := L.

1

Deep learning, gradients, and autodi↵. It makes sense to open
a parenthesis here and highlight the importance of (e�cient)
gradient calculation in modern machine learning applications.
We will focus on the case of deep learning and neural network
training. (For a deeper discussion on neural networks, there
are excellent sources online; e.g., one could focus on the Deep
Learning Book [4]).

Deep learning has advanced the state-of-the-art in computer
vision [5–7], natural language processing [8–10] and speech
recognition [11, 12]. At the time of writing this chapter,

the transformer model [13] has revolutionized the NLP re-
search, with machine translation [13], text classification [14],
and image captioning [15]. Transformers are adopted for self-
supervised pre-training and transfer learning, with the pro-
posal of BERT [14]. Some popular science successes that use
transformers or a variant of transformers include the GPT-
3 [16], Megatron-LM [17] and T5 [18] language models, the
DALLE-2 image synthesis model by OpenAI [19], and the Al-
phaFold2 protein-folding predictor by DeepMind [20].

Despite the impact of deep learning, the computational re-
quirements for training such models are significant. Though
pre-trained models are available online, there is a need to train
such models from scratch. Training deep learning models is
expensive (e.g., recent language models cost several million
USD to train [21, 22]). For practitioners, even moderate-scale
tasks can be prohibitive in time and cost due to hyperparam-
eter tuning, which may lead to multiple iterations of model
retraining when the hyperparameter tuning process is taken
into account, where it is typical to retrain models many times
to achieve optimal performance.

At the core of this computational workload is the gradi-
ent calculation. To keep the discussion simple, consider the
simplest version of a neural network: that of fully connected
(FC) layers, or otherwise described as multi-layer perceptrons
(MLPs). The mathematical description of an FC layer is as
follows:

zi+1 = � (W · zi + b)

where zi 2 Rdi is the vector “representation” of the input at
the i-th layer of a multilayer neural network, W 2 Rdi+1⇥di

is a trainable matrix that maps the input representation from
di-dimensions to di+1-dimensions, and b is a bias vector (for
the rest of the discussion, we will assume that b = 0 for sim-
plicity). Finally, � : Rdi+1 ! Rdi+1 is a non-linear –often
operating entrywise– activation function; some classic exam-

1 In an actual neural network implementation, there might be additional layers or functions per layer
that modify further the inputs at each layer (e.g., pooling layers, batch normalization layers, softmax
layers). Still, it is out of the scope of this chapter to delve into these. At this stage, consider that a
deep learning model is a black box machine that transforms the input through a sequence of layers,
each of which operates di↵erently and based on the application at hand.
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ples (either smooth or nonsmooth) are the ReLU, the sigmoid
function, and the tanh function.1

To help visualize how a neural network would look like, con-
sider the following:

Fig. 13. 2-layer MLP

We consider as input a vector x = (x1, x2, . . . , xn) (you can
think xi as pixels of a flattened image), and the task is to
transform the input x such that the decision/output of the
neural network y represents an “answer to a question”; e.g.,
the output often is a one-hot encoding where y is a proba-
bility distribution over several classes and the task is that of
image classification. This toy model has two hidden layers,
each with trainable parameters Wi, represented as matrices of
appropriate dimensions.

Let us go through this model and see how the input is trans-
formed as we propagate “forward” from left to right:

• Given the input x, the first set of parameters generate the
intermediate result W1 · x.

• Given this intermediate result, the neural network inserts
that to the first set of neurons, with a nonlinear activation
function, to get z1 = �(W1 · x). This is the output of the
first layer.

• Given z1, we now get into the second layer: we first com-
pute the intermediate result by applying the second set of
trainable parameters, W2: i.e., W2 · z1 = W2 · �(W1 · x).
Observe the compositional formulation that a neural net-
work takes: the input is being propagated through a series
of layers that transform the initial representation to extract
useful features.

• Finally, this intermediate result also goes into the non-
linear activation functions of the second set of neurons to
get z2 = �(W2 · �(W1 · x)).

• (If we had more layers, this discussion would go on . . . )

The goal in deep learning (and in machine learning in gen-
eral) is to train these Wi tensors (here, 2-way tensors are ma-
trices), such that the output of the model (i.e., here, the neural
network) maps to the correct “labels”: i.e., given a dataset D
of images x and their corresponding correct labels y?, we want
the outcome of our neural network, say y = MLP(x), to be as
close as possible to the ground truth y? for all the images in
the data source (which further implies we know, say, how to
classify the input images).2

Mathematically, a way to measure the distance of the
“learned” output y to the actual labels y? is by using a loss
function. Here, for simplicity, we will use the `2-norm dis-

tance, and we will define the training problem as:

min
W1,W2

X

(x,y?)2D

ky? � yk22 =
X

(x,y?)2D

ky? �MLP(x)k22

This is the optimization problem one needs to solve to train
neural networks. I.e., suppose we abstract all the above (and
with the abuse of notation where we use x for the variables
in this course). In that case, the above is no di↵erent than a
regular optimization problem:

min
x

f(x)

Gradient calculation in neural networks is no di↵erent than
applying the chain rule of derivatives. Automatic di↵erentia-
tion or autodi↵ is the field that provides e�cient algorithms
to compute any function’s gradients, especially if written as
a composition of di↵erentiable building blocks. E.g., in our
discussion above, the building blocks are matrix-vector multi-
plications (e.g., W1 · x), nonlinear function applications (e.g.,
�(W1 · x)), etc. Autodi↵ is based on dynamic programming
tools that wisely choose what quantities can be stored through
the process and what the optimal sequence of operations is so
that the gradient calculation is e�ciently computed. This way,
gradient calculations become an abstraction for practitioners
(that, these days, they do not need to worry about), and this
allows researchers to focus on the modeling part of neural net-
works, by defining other more informative/structured building
blocks, based on the application: this has led to the creation
of convolutional layers, residual layers, transformer layers, etc.

That being said, autodi↵ e�ciently implements the back-
propagation algorithm, calculating the gradient of a composi-
tion of functions. In particular, given the forward output of a
neural network, the backpropagation algorithm measures the
discrepancy of the output with respect to the ground truth y?:
i.e., ky? � yk22. Based on this value, it is reasonable to infer
the following rules:

• If the loss ky? � yk22 is small, it means the neural network
does not have to change much;

• If the loss ky? � yk22 is significant, we need to update the
trainable parameters in the direction to minimize this loss.
And, this direction along the negative of the gradient! I.e.,
we update the parameters based on gradient-descent mo-
tions!

That being said, the following picture represents our neural
network with the help of modules:

Fig. 14. Module-based representation of our toy neural network

2This is the case of supervised learning where D is a dataset that has both inputs x and the
correct labels y? ; these y? will help the model update its parameters in order the output to be as
close as possible to these y? .
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It turns out that the backpropagation for this model is the
e�cient calculation and reuse of the intermediate steps, as
shown in the following picture:

Fig. 15. Chain of derivatives

The idea of these calculations is that they define a graph of
intermediate calculations that can be reused to complete the
full gradient computation: e�ciently calculating, storing, and
reusing these intermediate steps is at the core of autodi↵.

Fig. 16. Graph representation of autodi↵
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1. Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. E�cient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

2. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

3. Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information process-
ing systems, 31, 2018.

4. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

5. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

6. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

7. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

8. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

9. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

10. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org,
2017.
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