
i
i

“Notes” — 2024/1/24 — 7:23 — page 18 — #18 i
i

i
i

i
i

Chapter 3

We have introduced gradient descent and studied its performance
under Lipschitz gradient continuity. This lecture introduces the basic
notions of convexity in optimization. We will discuss convex func-
tions, convex constraints, and whether gradient descent is benefited
by convexity. Apart from standard convexity, we will also introduce
the notion of strong convexity and discuss its e↵ect in practice and
theory.
This chapter continues to evolve around convergence rates and con-
tains some discussion about lower bounds on such rates.

Convexity | Gradient Descent | Strong convexity | Other global assumptions |
Projection onto convex sets

(The discussion in this chapter will primarily focus on the un-
constrained case: minx f(x) unless otherwise stated. Also, the
constants found through proofs might not be the tightest possi-
ble, but the related analysis conveys the same message as the
tightest ones.)

Optimization via only linear algebra concepts.Before we delve
into the main topic of this chapter, which is convexity, let
us first focus on a simple –but significant– problem instance:
that of unconstrained quadratic form minimization. Quadratic
forms appear in the literature i) either because the problem is
described as such: e.g., the principal component analysis prob-
lem involves the minimization/maximization of a quadratic
form; ii) or because one utilizes local quadratic form approxi-
mations of a (potentially) complicated function, through Tay-
lor expansions. In any case, quadratic forms are simple and
complicated enough to provide insights for many of our deci-
sions in general optimization theory.
In math terms, let us define the following function:

f(x) = 1
2x

>Qx� b>x+ r,

where x 2 Rp, Q 2 Rp⇥p is a symmetric matrix, b 2 Rp is
a vector and r is a scalar. We are interested in the following
problem:

min
x2Rp

f(x).

Following the discussion in the previous chapters, we will
use gradients as a tool for our solution. Let us first compute
the gradient of f(·) at a point x:

rf(x) = Qx� b 2 Rp.

One could argue that, based on gradient descent theory, we
are looking for points where rf(x) = 0. I.e., we are looking
for points where:

Qx = b.

Thus far, we have not made any assumptions about the ma-
trix Q other than symmetry. Let us first assume that Q is
full-rank; in that case, the system of linear equations Qx = b
has a unique solution that satisfies this expression. This fur-
ther implies a unique point in f(x) such that the gradient of
f(x) is zero.

This is great thus far! We have found that, given full-rank
Q, we can find a point of interest if we solve the linear system
of equations Qx = b. Yet, what is this point? Is it a mini-
mum? Is it a maximum? Is it a saddle point? To continue our
discussion (and to connect with convexity), we will further
assume that Q is a symmetric matrix with real eigenvalues
L := �1 � �2 � · · · � �p := µ > 0 (without loss of generality,
in descending order). In other words, we say that the eigen-
values of Q “live” in the interval [µ,L], for some constants

µ < L 2 R. The fact that the eigenvalues are all non-zero
originates from the fact that Q is full-rank; the additional as-
sumption is that all eigenvalues are positive.

One way to find a solution for Qx = b or rf(x) = 0 (other
than computing and applying the inverse Q�1) is gradient de-
scent. In particular, gradient descent iteratively points in di-
rections that potentially lead to regions with small gradients.
Based on the previous chapter, we have:

xt+1 = xt � ⌘rf(xt) = xt � ⌘ (Qxt � b)

Let x? be the stationary point such that Qx? = b. Then, the
above recursion becomes:

xt+1 = xt � ⌘ (Qxt � b) = xt � ⌘ (Qxt �Qx?) .

By adding x? on both sides of this expression, we get the fol-
lowing recursion:

xt+1 � x? = (I � ⌘Q) · (xt � x?).

Here, it is important to remember the dimensions of the
quantities involved: I � ⌘Q 2 Rp⇥p, xt � x? 2 Rp and
xt+1 � x? 2 Rp.5 Taking norms on both sides and applying
the Cauchy-Schwarz inequality, we obtain:

kxt+1 � x?k2 = k(I � ⌘Q) · (xt � x?)k2
 kI � ⌘Qk2 · kxt � x?k2 ;

i.e., the distance of the estimate xt+1 from x? is bounded by
the previous distance kxt � x?k2, multiplied by the quantity in
colored text: kI � ⌘Qk2. In words, if kI � ⌘Qk2 > 1, then the
above recursion is not very useful!: it just guarantees that the
next iteration’s distance is bounded above by a larger distance
than the previous iteration; in that scenario, the algorithm
could diverge and still satisfy this recursion!

Thus, it is reasonable to demand that kI � ⌘Qk2 < 1, which
further translates into bounding the eigenvalues of the matrix
I�⌘Q to be less than 1. However, we know that the eigenval-
ues satisfy �i 2 [µ,L] per our assumption. The only way we
can control the spectrum of the matrix I � ⌘Q is by carefully
selecting the step size ⌘:

• Due to the facts that Q is symmetric, and thus diagonaliz-
able in an orthonormal basis, the worst case analysis dic-
tates that the largest value of the quantity kI � ⌘Qk2, for
a fixed ⌘, is that of:

max
�2[µ,L]

|1� ⌘�|.

• The control we can impose is by minimizing that quantity
by carefully selecting ⌘:

min
⌘

✓
max

�2[µ,L]
|1� ⌘�|

◆
.

• Simple geometric arguments on intersecting lines suggests
that the “optimal” step size is that of ⌘ = 2

L+µ = 2
�1+�p

.

In that case, we have:

max
�2[µ,L]

|1� ⌘�| = max
�2[µ,L]

|1� 2�
L+µ |

= |1� 2µ
L+µ |

= 1� 2
+1 2 (0, 1);

5This is a useful check in all your computations involving multi-variate algebra: make sure that the
quantities involved add-up/multiply in a way that comply with the linear algebra rules.

i
i

“Notes” — 2024/1/24 — 7:23 — page 19 — #19 i
i

i
i

i
i

here, = �1
�p

> 1 is a special quantity that will play a sig-

nificant role in the discussions below. We will get back to
this quantity soon. The above recursion becomes:

kxt+1 � x?k2 kI � ⌘Qk2 · kxt � x?k2

⇣
1� 2

+1

⌘
· kxt � x?k2

 · · ·
⇣
1� 2

+1

⌘t+1
· kx0 � x?k2 ;

i.e., as long as the quantity
⇣
1� 2

+1

⌘
< 1, the expo-

nentiated term
⇣
1� 2

+1

⌘t+1
converges exponentially fast

to zero, leading to convergence of the quantity kxt+1 �
x?k2

goes fast to�! 0.
• The above analysis is “optimal” but requires the knowl-

edge of both �1 and �p of Q; we will later see that this
is a stronger requirement in practice for more complicated
functions. Here, a classical choice for step size is that of
⌘ = 1

L = 1
�1

, which leads to (with a similar analysis to the

above):

max
�2[µ,L]

|1� ⌘�| = max
�2[µ,L]

|1� �
L | = 1� 1

 2 (0, 1).

Then, a similar analysis to the above leads to the following:

kxt+1 � x?k2 kI � ⌘Qk2 · kxt � x?k2

�
1� 1

�
· kxt � x?k2

 · · ·
�
1� 1

�t+1 · kx0 � x?k2 .
What have we proved thus far? First, we saw that, for some

simple objectives, simple arguments originating from linear al-
gebra lead to exciting connections with optimization theory:
i) solutions to systems of linear equations are equivalent to
finding stationary points of functions; ii) the spectrum of ma-
trices related to the function at hand –like Q– characterize
the type of the stationary point we look/aim for; iii) ratios of
eigenvalues from such matrices define the convergence rate of
an algorithm; iv) finally, simple rules can be extracted from
the above on how one selects the step size.

So, overall, quadratic form minimization (under the assump-
tion of symmetric Q with positive eigenvalues) can be e�-
ciently solved to global optimality x? using gradient descent.
I.e., gradient descent can estimate a point close to x? in a
small number of iterations. But this is just a particular in-
stance; can we infer some properties that could lead to more
general analysis and include more complicated functions f?.

What stands out from the assumptions above is that Q has
positive eigenvalues, but what is Q for this f(·)? Given that
f(x) = 1

2x
>Qx� b>x+ r, simple calculus for Hessian calcula-

tion leads to:

r2f(x) = Q.

Fig. 19. f(x) = x
2 + �, for � > 0.

I.e., the Hessian of quadratic forms are the matrices Q them-
selves! Thus, assuming properties on Q is equivalent to mak-
ing assumptions on the Hessian of the function f . Specifically,
positive eigenvalues for Q mean that the Hessian of f is pos-
itive definite, which further implies that the landscape of the
function looks like . . . a bowl! (refer to plots of toy functions
and Hessians in the previous chapter). Or, in math terms, the
landscape of the function is convex.

Convexity.A key consequence of convexity is that any local
solution is global in convex optimization. To understand con-
vexity in functions, we will cover some definitions first.
Def inition 17. (Convex Function) f : R ! R is a univariate con-
vex function if, for 8↵ 2 [0, 1], the following holds:

f(↵x+ (1� ↵)y) ↵f(x) + (1� ↵)f(y), 8x, y.

This dictates that the function value of f at any point in a
given interval [x, y] is lower than any secant connecting two
points within that interval; see Figure 19.

Alternatively, a convex function can be defined as one that
lies above any (hyper)plane tangential to f at any point. Us-
ing the gradient rf(x), this is interpreted as:

f(x) � f(y) + hrf(y), x� yi.

and depicted in low dimensions, as in Figure 20.
But what if f is not uniquely di↵erentiable? I.e., what if f

does not have a unique gradient at all points, but there are
points where we can compute a set of gradients, the subgradi-
ents @f(x)? The same ideas apply in that case; see Figure 21
for the case of f(x) = |x|. In this example, f has a set of
subgradients @f(x) at point x = 0. These subgradients could
take any value in the interval [�1, 1]; i.e., the set of all lines
that touch (0, f(0)) with slope between �1 and 1. In general,
for convex f and any subgradient g 2 @f(y) we have:

f(x) � f(y) + hg, x� yi.

Fig. 20. Convex interpretation via gradients.

Fig. 21. f(x) = |x|.

i
i

“Notes” — 2024/1/24 — 7:23 — page 20 — #20 i
i

i
i

i
i

The opposite (substitute with �) is a concave function.
An advantageous inequality for convex functions is Jensen’s

inequality:
Lemma 2. For a convex function f , Jensen’s inequality states:

f (E [x]) E [f(x)] .

The geometric interpretation of Jensen’s inequality that re-
lates to convex functions is that the function value of the av-
erage of two points is less than the average of the function
values of the two points, i.e.,

f
�
x1+x2

2

�
 1

2f(x1) + 1
2f(x2).

What are some good examples of convex functions that we
observe in practice? Examples are shown in Table 1.

Table 1. Convexity of common functions

Function Example Attributes
`p norms p � 1 kxk2, kxk1, kxk1 convex
`p matrix norms p � 1 kXk2 convex
Square root function p

x concave
Maximum max x1, · · · , xn convex
Minimum min x1, · · · , xn concave
Sum of convex functions convex
Logarithmic functions log(det(X)) convex if X ⌫ 0

A�ne/linear functions P
N

i=1 Xii convex and concave
Eigenvalue functions �max(X) convex if X = X>

Properties of convex functions.There are several alternative
and potentially more practical definitions of a convex function:

f(x) � f(y) + hrf(y), x� yi, 8x, y
hrf(y)�rf(x), y � xi � 0, 8x, y

r2f(x) ⌫ 0, 8x.

A key property of convex functions is the following lemma.
Lemma 3. Any stationary point of a convex function f is a
global minimum.
Proof: Assume that f : Rp ! R. Let bx denote a stationary
point of f , where rf(bx) = 0. Since f is a convex function, we
know that:

f(x) � f(bx) + hrf(bx), x� bxi = f(bx), 8x,

where the last equality is due to rf(bx) = 0. However, the
above holds for all x, and thus for x?, which is/are the global
minimum/minima. Thus, we have:

f(x?) � f(bx), 8x?,

which is a contradiction. This implies that all stationary
points bx are equivalent to the global minimum. ⇤

While this fact provides hope for finding the global mini-
mum, more is needed to guarantee the tractability and prac-
ticality of the proposed algorithms.

Does convexity help convergence rate?.We will study
whether convexity improves the convergence rate of gradient
descent. We remind the reader that, for a di↵erentiable func-
tion f with gradient rf(·), gradient descent satisfies:

xt+1 = xt � ⌘trf(xt), t = 0, 1, . . .

We will make the same baseline assumptions as before: we will
assume that f has Lipschitz continuous gradients:

krf(x1)�rf(x2)k2 L · kx1 � x2k2, 8x1, x2.

The only additional assumption we make is that f is also con-
vex.

We will follow a di↵erent perspective—let x? denote a global
minimum.6 Further, assume we use a constant step size
⌘t = ⌘. Then, the following equality holds:

kxt+1 � x?k22 = kxt � ⌘rf(xt)� x?k22
= kxt � x?k22 + ⌘2krf(xt)k22

� 2⌘ hrf(xt), xt � x?i

We can show that Lipschitz gradient continuity, along with
convexity, leads to the following inequality:

1
L · krf(x1)�rf(x2)k22 hrf(x1)�rf(x2), x1 � x2i .

Substituting x1 ⌘ x?, x2 ⌘ xt, and assuming rf(x?) = 0 in
the above inequality, we get:

1
L · krf(xt)k22 h�rf(xt), x

? � xti)
hrf(xt), xt � x?i � 1

L · krf(xt)k22)
�2⌘ hrf(xt), xt � x?i � 2⌘

L · krf(xt)k22
Combining with the above, we obtain:

kxt+1 � x?k22 kxt � x?k22 � ⌘
�

2
L � ⌘

�
· krf(xt)k22.

Assuming 0 < ⌘ < 2
L , the second term on the right-hand side

is negative. This implies that per iteration, we decrease the
distance to optimum as in:

kxt+1 � x?k22 kxt � x?k22 · · · kx0 � x?k22.

(Question: Would such a statement hold for non-convex sce-
narios? Under which conditions?)

By the analysis of the previous—not necessarily convex—
case in the previous chapter, we also know that:

f(xt+1) f(xt)� ⌘
�
1� L

2 ⌘
�
· krf(xt)k22

By convexity, we also have:

f(x?) � f(xt) + hrf(xt), x
? � xti)

f(xt)� f(x?) hrf(xt), xt � x?i
 kxt � x?k2 · krf(xt)k2
 kx0 � x?k2 · krf(xt)k2.

The last inequality is based on the previous observation that
kxt+1 � x?k2 kx0 � x?k2.

Then, we can combine the above into:

[f(xt+1)� f(x?)] [f(xt)� f(x?)]� ⌘
�
1� L

2 ⌘
�
· krf(xt)k22

 [f(xt)� f(x?)]� ⌘
�
1� L

2 ⌘
�
· [f(xt)�f(x?)]2

kx0�x?k22

Define �t := f(xt)� f(x?). Then:

�t+1 �t �
⌘

✓
1�L

2 ⌘

◆

kx0�x?k22
·�2

t = �t ·

1�

⌘

✓
1�L

2 ⌘

◆

kx0�x?k22
·�t

!
)

�t+1

�t
 1�

⌘

✓
1�L

2 ⌘

◆

kx0�x?k22
·�t)

1
�t+1

� 1
�t

+
⌘

✓
1�L

2 ⌘

◆

kx0�x?k22
· �t

�t+1
� 1

�t
+

⌘

✓
1�L

2 ⌘

◆

kx0�x?k22
,

6Remember there might be multiple equivalent global minima, but we can assume we are converging
to one of them.

i
i

“Notes” — 2024/1/24 — 7:23 — page 21 — #21 i
i

i
i

i
i

for a step size ⌘ = 1
L .

Unfolding the recursion for T iterations:

1
�T

� 1
�0

+
⌘

✓
1�L

2 ⌘

◆

kx0�x?k22
· T,

which leads to:

f(xT)� f(x?) 2L (f(x0)� f(x?)) · kx0 � x?k22
2Lkx0 � x?k22 + T · (f(x0)� f(x?))

= O

✓
1
T

◆
.

The last expression is because all the other quantities are con-
stant and depend on the initialization. Another way to inter-
pret the above result is that if we require f(xT)� f(x?) ",
we have to perform O

�
1
"

�
number of iterations.

How does this compare to the result we already know? Re-
member that assuming only Lipschitz gradient continuity, we
have:

min
t

krf(xt)k2 = O
⇣

1p
T

⌘
,

and we need O
�
1/"2

�
iterations to achieve mint krf(xt)k2

". This reveals that convexity gains are two-fold: i) gradient
descent over convex functions leads to convergence to global
minimum/minima, not just stationary points; ii) gradient de-
scent over convex functions e↵ectively shows improved per-
formance, compared to gradient descent over only L-smooth
functions.

Beyond boilerplate convexity: strong convexity.Achieving
better convergence rates can be achieved by assuming more
than just convexity for f . Strong convexity is one such as-
sumption that can lead to an improved result. In plain words,
it implies that f should be steep enough so that gradient de-
scent can progress (more aggressively). To see this, let us first
provide its definition:

Def inition 18. (Strong Convexity) A function f : Rp ! R is a
strongly convex function if it is convex and, for µ > 0, satis-
fies:

f(y) � f(x) + hrf(x), y � xi+ µ
2
kx� yk22, 8x, y

(In the recent optimization literature, following a “machine
learning” notation, L is usually substituted with � and µ with
↵. Here, we will follow the notation that Nesterov has used.)

A visual illustration of strong convexity is provided in the
next figure.

Fig. 22. Strong convexity interpretation and its relation to Lipschitz gradient
continuity.

To interpret this further, while Lipschitz gradient continuity
implies that, at any point of the domain of f , we can upper
bound f with a quadratic (green curve), strong convexity im-
plies that, at any point of the domain of f , we can lower bound
f with a quadratic (blue curve).

A strongly convex function has a unique minimizer. Re-
member that a convex function has the nice property that
every local minimum is a global minimum. Still, there is no
guarantee that the set of global minima is a singleton.

There are several alternative and equivalent characteriza-
tions of strong convexity to know:

hrf(x)�rf(y), x� yi � µkx� yk22,
f(y) f(x) + hrf(x), y � xi

+
1
2µ

krf(x)�rf(y)k22,

hrf(x)�rf(y), x� yi 1
µ
krf(x)�rf(y)k22,

r2f(x) ⌫ µ · I.

(The convergence rate proof of just a strongly convex function–
not necessarily L-smooth–is left for exercise.)

The L-smooth and µ-strongly convex functions. In convex
optimization research, the two classes of convex functions that
have attracted the most attention are the set of L-smooth
functions (i.e., with Lipschitz continuous gradients) and the
set of L-smooth AND µ-strongly convex functions.

To understand what strong convexity adds w.r.t. conver-
gence rates, we jointly study the performance of gradient de-
scent under these assumptions.

Similar to the proof of L-smooth functions:

kxt+1 � x?k22 = kxt � x?k22 + ⌘2krf(xt)k22
� 2⌘ hrf(xt), xt � x?i

A key property of L-smooth and µ-strongly convex functions
is the following lemma:
Lemma 4. Let f satisfy L-smoothness and µ-strongly convex-
ity. Then:

hrf(x)�rf(y), x� yi � µL
µ+Lkx� yk22

+ 1
µ+L · krf(x)�rf(y)k22

(We will see how this convex condition will “inspire” similar
conditions for non-convex optimization.)

We use the lemma above, with the substitution x ⌘ x?,
y ⌘ xt, and knowing that rf(x?) = 0. This leads to:

�hrf(xt), x
? � xti � µL

µ+Lkxt � x?k22 + 1
µ+L · krf(xt)k22.

Using this in the inequality above, we obtain:

kxt+1 � x?k22 kxt � x?k22 + ⌘2krf(xt)k22
� 2⌘µL

µ+L kxt � x?k22 � 2⌘
µ+L · krf(xt)k22

=
⇣
1� 2⌘µL

µ+L

⌘
· kxt � x?k22

+ ⌘ ·
⇣
⌘ � 2

µ+L

⌘
· krf(xt)k22

Here, assuming that ⌘ 2
µ+L , the second term on the

right-hand side is 0; i.e., we can guarantee that the dis-
tance to x? decreases per iteration since the first term has

i
i

“Notes” — 2024/1/24 — 7:23 — page 22 — #22 i
i

i
i

i
i

⇣
1� 2⌘µL

µ+L

⌘
< 1. However, this does not say anything about

the convergence rate. For that, we observe that:

kxt+1 � x?k22
⇣
1� 2⌘µL

µ+L

⌘
· kxt � x?k22

Assume we use ⌘ = 2
µ+L . Then, we observe:

•
⇣
1� 2⌘µL

µ+L

⌘
=

1�

2
2

µ+LµL

µ+L

!
=
⇣
1� 4µL

(µ+L)2

⌘
� 0.

•
2

2
µ+LµL

µ+L = 4µL
(µ+L)2

= 4
µ
L+2+

L
µ

� 2
+1 .

where := L
µ > 1 is defined as the condition number of f .

Then:

kxT � x?k22
⇣
1� 2

+1

⌘
· kxT�1 � x?k22

⇣
1� 2

+1

⌘T
· kx0 � x?k22

=
⇣

�1
+1

⌘T
· kx0 � x?k22

= O
⇣
cT
⌘
· kx0 � x?k22

for c < 1 constant. This is what we call linear convergence
rate.

To compare the number of iterations required to get to an
"-close solution, we get:

kxT � x?k22 "
Requires�!

⇣
�1
+1

⌘T
· kx0 � x?k22 "

T � log(kx0�x?k22/")
log

+1
�1

.

Compared to just L-smooth convex functions, we have:

O
�
1
"

�
vs O

�
log 1

"

�
.

Thus, if we require a solution that is " = 10�3-close in some
sense, for L-smooth functions, we require O(1000) iterations,
while for strongly convex functions, we require O(3) iterations
(hiding though a lot of constants). Moreover, observe that
the premise in the strongly convex case is stronger: we are
guaranteed to converge to the unique global solution, while
L-smoothness convex itself cannot guarantee anything about
which global solution we converge to.
Please revisit the figures in previous chapters for an illus-

tration and comparison between di↵erent convergence rates.

What should our expectations be: Lower bounds. Let us sum-
marize some of our results, especially under the convexity as-
sumption. We know that:

• For L-smooth convex functions, we have:

f(xT)� f(x?) 2L (f(x0)� f(x?)) · kx0 � x?k22
2Lkx0 � x?k22 + T · (f(x0)� f(x?))

.

• When we also have strong convexity:

kxT � x?k22
⇣

�1
+1

⌘T
· kx0 � x?k22.

But is this the best we can achieve when dealing only with L-
smooth convex functions? E.g., is there another analysis that

leads to f(xT) � f(x?) cT , for some c < 1, when only L-
smoothness holds? Can we achieve a better convergence rate
under L-smooth and µ-strong convexity?

The above leads to the discussion on lower bounds: i.e.,
making the same assumptions—and no more—can we con-
struct functions f that, under these assumptions, we cannot
achieve something better than the above?7

The following summarizes lower bounds on the types of ob-
jective functions we have previously discussed.

• For objective functions with Lipschitz continuous gradi-
ents, with constant L, we can prove that there are f in-
stances such that we cannot achieve something better than:

f(xT)� f(x?) � 3Lkx0 � x?k22
32(T + 1)2

= O
�

1
T2

�
.

Under this assumption, and only using gradients, we can-
not achieve better than the above.

• For objective functions with both Lipschitz continuous gra-
dients and the strong convexity assumption satisfied, there
are f instances with a convergence rate lower bounded by:

kxT � x?k22 �
✓p

� 1p
+ 1

◆2T

kx0 � x⇤k22,

where = L/µ > 1. Here we observe that, while we have
achieved the same convergence rate with respect to the
exponent—i.e.., in both cases, we have cT , for c < 1—in
the lower bound case, we see

p
 instead of .

But how do we obtain such lower bounds? By constructing
special functions f that satisfy our assumptions and provably
show such lower bounds behavior in theory.8

Later in the course, we will see how to achieve these lower
bounds under the same assumptions and rely only on a first-
order oracle.

Other powerful global assumptions.Convexity is a strong as-
sumption that every local minimum is equivalent to a global
minimum. In math, along with L-smoothness and strong con-
vexity, we use the basic condition:

f(x) � f(y) + hrf(y), x� yi,
to obtain the results above. But are there any other assump-
tions we can use to prove similar convergence rates?

In this subsection, we will focus on the notion of Polyak-
 Lojasiewicz (PL) inequality, use it in proof techniques, and
conclude with other global assumptions similar to PL.

The definition of PL is as follows:
Def inition 19. A function f satisfies the PL inequality if the
following holds for some ⇠ > 0:

1
2krf(x)k22 � ⇠ · (f(x)� f(x?)) , 8x.

(Any thoughts on what this inequality implies, concerning sta-
tionary points?)

Let us use this new definition to prove convergence. We will
assume L-smoothness of f (this does not imply anything about
convexity). Using step size ⌘ = 1

L in gradient descent leads
to:

f(xt+1)� f(xt) � 1
2L · krf(xt)k22, 8t.

7 This also includes the assumption that we will only use first-order oracles; if we had the option
to use more information– -say Hessians– -then we could achieve more. We will defer this discussion
to the chapters that follow.
8However, is this a pessimistic way of thinking convergence rates? For the careful reader, this is
similar to characterizing a problem NP-hard by the time we find an instance that is NP-hard. Does
this hold, though, for the most practical f cases? Food for thought.

i
i

“Notes” — 2024/1/24 — 7:23 — page 23 — #23 i
i

i
i

i
i

By PL, we know that:

� 1
2krf(xt)k22 �⇠ · (f(xt)� f(x?)) .

Then:

f(xt+1)� f(xt) � ⇠
L · (f(xt)� f(x?)))

f(xt+1)� f(x?) f(xt)� f(x?)� ⇠
L · (f(xt)� f(x?)))

f(xt+1)� f(x?)
�
1� ⇠

L

�
· (f(xt)� f(x?)) .

Unfolding this recursion:

f(xT)� f(x?)
�
1� ⇠

L

�T · (f(x0)� f(x?)) .

Under the assumption that L � ⇠, this leads to a linear con-
vergence rate.

Some comments:

• We proved linear convergence to the global optimum with-
out assuming strong convexity. This dictates that one
might make di↵erent assumptions that lead to favorable
behavior.

• Further, PL inequality does not imply convexity; i.e., we
proved convergence with linear rate to the global optimum,
even if the objective is not convex.

• PL assumption does not imply uniqueness of the global
optimum; there might be several x? (one of the reasons we
do not have convergence guarantees in kxt � x?k2 terms).

What does a function that satisfies PL inequality look like?
Here is an example we have seen in the previous chapter.

Fig. 23. f(x) = x
2 + 3 sin2(x)

Some other conditions that have been used in convergence
proofs, but we will not focus on this chapter, are:
Def inition 20. A function f satisfies the weak strong convexity
(WSC) condition if the following holds for some µ > 0:

f(x?) � f(x) + hrf(x), x? � xi+ µ
2 kx� x?k22, 8x.

Observe that this inequality holds for only x? on the left-hand
side; this justifies the term “weak” in its name.
Def inition 21. A function f satisfies the restricted secant in-
equality (RSI) if the following holds for some µ > 0:

hrf(x), x� x?i � µkx� x?k22, 8x.

If the function f is also convex, this is also called restricted
strong convexity.
Def inition 22. A function f satisfies the error bound condition
(EB) if the following holds for some µ > 0:

krf(x)k2 � µkx� x?k2, 8x.

Def inition 23. A function f satisfies the quadratic growth (QG)
condition if the following holds for some µ > 0:

f(x)� f(x?) � µ
2 kx� x?k2, 8x.

In the above definitions, µ does not dictate the same value
for all definitions; we use the same letter for clarity.

Finally, there is a hierarchy of these conditions.

(WSC) ! (RSI) ! (EB) ⌘ (PL) ! (QG)

The above indicates “implications”: e.g., if we assume WSC
holds for a function, then the rest of the conditions are also
satisfied for some constants µ [36].

When we know neither L nor µ. In this subsection, we will
present one (of many) adaptive step size schedules that are
theoretically justified. In the deep learning literature, various
step size schedules are pretty successful (and are used dom-
inantly in practical scenarios), but remain heuristics which
could make them questionable if one “jumps” from one ap-
plication to another, or even from one dataset to another for
the same application. Traditionally, selecting a good step size
that does not rely heavily on knowing some “hard-to-know
or hard-to-approximate” constants is an active research area
with deep roots in the past.

Here, we will focus on the case of the Polyak step size,9

which comes with convergence guarantees for convex functions
but does not rely on unknown constants (there is a caveat here
as we will see later on, but that caveat is milder than assum-
ing we know L or µ). Polyak derived the Polyak step size in
1987 [40]; for generality purposes, we will consider the case
where the f function is just convex, even non-smooth. In this
scenario, we will focus on the generic (sub)gradient descent
algorithm on convex function f :

min
x

f(x)

that follows the recursion:

xt+1 = xt � ⌘tgt,

where gt represents one of the subgradients of f at point xt.
Let us also assume that kgtk2 < G for some constant G. A
similar analysis to the above theorems leads to the following:

kxt+1 � x?k22 = kxt � x?k22 + ⌘2
t kgtk22 � 2⌘t hgt, xt � x?i .

We know that by convexity, the following inequality holds:

f(x?) � f(xt) + hgt, xt � x?i

and the above expression is bounded as:

kxt+1 � x?k22 kxt � x?k22 + ⌘2
t kgtk22 � 2⌘t (f(xt)� f(x?)) .

To choose the step size, one option is to choose ⌘t such that
the right-hand side is minimized, i.e.,

⌘t = argmin
⌘

�
kxt � x?k22 + ⌘2

t kgtk22 � 2⌘t (f(xt)� f(x?))

,

which has a closed-form solution:

⌘t =
f(xt)�f(x?)

kgtk22
.

9Other techniques for finding an acceptable step size/learning rate/step length include Wolfe con-
ditions [37], Armijo conditions [38], Curvature conditions, Goldstein Conditions [39], Backtracking
line search [39]

i
i

“Notes” — 2024/1/24 — 7:23 — page 24 — #24 i
i

i
i

i
i

This is known as the Polyak step size. Substituting this step
size in the expression above, we obtain:

kxt+1 � x?k22 kxt � x?k22 �
(f(xt)�f(x?))2

kgtk22
.

I.e., kxt+1 � x?k22 monotonically decreases per iteration. By
telescoping the above expression over t iterations, we obtain:

kxt+1 � x?k22 kx0 � x?k22 � 1
G2

tX

i=0

(f(xi)� f(x?))2 ,

where we also utilized the assumption kgtk2 < G. Rearrang-
ing the above terms and removing any unnecessary terms, we
obtain:

min
i2[t]

f(xi)� f(x?) G·kx0�x?k2p
t+1

= O(1p
t
).

What is the caveat? Polyak’s step size can be used only when
the optimal value f(x?) is known. Yet, there are references in
the literature [41] that demonstrate that f(x?) = 0 for several
applications (for example, finding a point in the intersection
of convex sets, positive semidefinite matrix completion and
solving convex inequalities). Moreover, in overparameterized
neural networks, this is a common assumption that holds also
in practice, but it is out of the scope of this chapter.

Constrained convex optimization and convex sets. In Chapter
1, we mentioned that the focus of this class will be a subset of
problems of the form:

min
x2Rp

f(x)

subject to x 2 C.

where C is the constraint set on x. The nature of C depends
on the application; there are applications where C is simple
enough and does not a↵ect much how gradient descent be-
haves, and there are applications where C is not of a straight-
forward form (e.g., think of combinatorial constraints). One
such example is the sparsity constraint, where we are looking
for a sparse vector that minimizes f (i.e., there might be dense
vectors that minimize f even further, but we are interested in
sparse solutions).

Similarly to functions, we must define the di↵erence between
convex and non-convex sets. To understand and appreciate
the di�culty of including non-convex constraints, we need to
know how simple, convex constraints a↵ect the performance
of gradient descent.

When is our problem convex or non-convex? First, it is
important to understand what convex optimization can solve
and what it can not. When both the objective and the con-
straints are convex, then the problem (in most cases) can be
solved by standard convex optimization tools (including gra-
dient descent as a solver). When either of the objective or
the constraints are non-convex, or neither of them are convex,
then the problem is non-convex.

To provide a pictorial explanation, look at the following toy
example curve.

Fig. 24. Constrained optimization example, where the constraint set is non-
convex. The purple parts do not belong in the feasibility set.

If we had no constraints, the function would be smooth and
convex; thus, gradient descent would work as expected. How-
ever, including the purple parts on the feasibility set, the opti-
mal could be no longer the bottom of the “bowl”. Also, solving
the problem first without the constraints and then applying
the constraints most often does not lead to a good solution.

It is natural to study constrained convex optimization first.
The following are additional definitions related to convexity
that will become important later in the course.

Def inition 24. (Convex Set) The set C ⇢ Rp is a convex set if
8x1, x2 2 C, it holds that

8↵ 2 [0, 1] : ↵x1 + (1� ↵)x2 2 C.

Fig. 25. Some convex set examples.

Def inition 25. (Convex Hull) The convex hull of a set of points
in Q is the intersection of all convex sets containing Q. For
n points Q := {x1, . . . , xn}, the convex hull is

conv(Q) =

(
nX

j=1

↵jxj : ↵j � 0, 8j,
nX

j=1

↵j = 1

)
.

i
i

“Notes” — 2024/1/24 — 7:23 — page 25 — #25 i
i

i
i

i
i

Fig. 26. Convex hull of a set of points.

Some notable convex sets:

• Linear spaces and halfspaces: e.g., {x 2 Rp | Ax = 0} and
{x 2 Rp | hz, xi � 0}.

• A�ne transformations of convex sets: e.g., if C is a convex
set, then so it is the set {Ax+ b | x 2 C}.

• Intersections of convex sets.
• Special cases that are worth to be mentioned: Norm in-

equality constraints define convex sets (e.g., kxk2 1,
kxk1 �, kXkF c, ky � Axk2 "—however, the
following set kxk2 = 1 is not convex, why?); linear con-
straints define convex sets, such as Ax b; linear matrix
inequalities define convex sets— particular case the PSD
constraint, A ⌫ 0.

Projections onto convex sets.The definition of a projection
onto a set is as the following optimization problem:

⇧C (x) = argmin
z2C

` (x, z) .

Here, C defines the set on which we want to project, x is a
given point, and `(x, z) defines a notion of distance between
x and a point in C, which we want to minimize. Classical ex-
amples for `(x, z) are norms such as `(x, z) = kx� zk22, which
will be the focus here. Thus, a verbal description of

⇧C (x) = argmin
z2C

kx� zk22

is “Given a point x and a set C, find a point in C that is closer
to x with respect to the Euclidean distance”. When the set C is
convex, this defines the Euclidean projection onto the convex
set C.

An illustration of the above is shown below.

Fig. 27. Projection onto convex set C.

Some useful properties for projections onto convex sets are:

• kx�⇧C (x) k22 kx� yk22, 8y 2 C, 8x, with the following
illustration:

Fig. 28. The Euclidean distance from x to its projection onto C is the smallest
among the points in C.

This is the definition of the projection as the minimum
distance.

• h⇧C(x)� y, ⇧C(x)� xi 0, 8y 2 C, 8x, with the follow-
ing illustration:

Fig. 29. The angle between the rays ⇧C(x) � y and ⇧C(x) � x are more
than 90o.

The interpretation is given in the caption above. This
property does not hold for non-convex functions; a coun-
terexample is given in the following figure.

Fig. 30. The above property does not necessarily hold for non-convex sets.

• k⇧C(x)�⇧C(y)k2 kx� yk2, 8x, y.

i
i

“Notes” — 2024/1/24 — 7:23 — page 26 — #26 i
i

i
i

i
i

Fig. 31. The distance between any two points is greater than the distance of
their projections onto a convex set.

Projected gradient descent.Given the notion of projections,
we can define the projected version of gradient descent:

xt+1 = ⇧C (xt � ⌘trf(xt)) , t = 0, 1, . . . ,

which can be alternatively seen as a two-step procedure:

ext+1 = xt � ⌘trf(xt), t = 0, 1, . . . ,

xt+1 = ⇧C (ext+1) , t = 0, 1, . . . ,

But do we lose anything by including the projection step?
Can we preserve the same convergence guarantees?
Claim 5. For a function f : Rp ! R that is L-smooth and µ-
strongly convex, projected gradient descent converges according
to:

kxt+1 � x?k22
⇣
1� 2⌘µL

µ+L

⌘
kxt � x?k22.

Proof: By definition, xt+1 = ⇧C(xt � ⌘rf(xt)). So,

kxt+1 � x?k22 = k⇧C (xt � ⌘rf(xt))� x?k22
= k⇧C (xt � ⌘rf(xt))�⇧C(x

?)k22
 kxt � ⌘rf(xt)� x?k22
 . . . (Similar analysis to GD)

⇣
1� 2⌘µL

µ+L

⌘
kxt � x?k22.

⇤

Convergence of projected gradient descent for L-smooth
functions.A similar analysis holds for the case of just L-
smooth functions. However, we need some care to handle
the analysis in f values. Remember that for just L-smooth
functions, there might be multiple global solutions x? that
minimize the objective, and thus the notion of a distance
kxt+1 � x?k2 does not make sense in a recursion.

We know from the analysis of unconstrained optimization
that, for L-smooth functions and for step size ⌘ = 1

L in gradi-
ent descent:

f(xt+1)� f(xt) � 1
2Lkrf(xt)k22.

This is based on the application of L-smoothness, where:

f(xt+1) f(xt) + hrf(xt), xt+1 � xti+ L
2 kxt+1 � xtk22

(i)
= f(xt) + hrf(xt), xt � ⌘trf(xt)� xti

+ L
2 kxt � ⌘trf(xt)� xtk22

= · · ·

Though, in a constrained case such as,

min
x2Rp

f(x)

subject to x 2 C.

we have:

xt+1 = ⇧C (xt � ⌘rf(xt)) ,

which complicates things, so that equation (i) does not hold.
We will need the notion of gradient mapping to overcome

this di�culty. Without getting into many details (gradient
mapping is not going to be used for the rest of the course), we
can prove the following result:
Lemma 5. Let C ⇢ Rp be a convex set, and let x, y 2 C. Let
f : C ! R be a convex function that we want to minimize and
satisfies L-smoothness. Define: x+ = ⇧C

�
x� 1

Lrf(x)
�
. De-

fine also the function gC(x) = L ·(x�x+). Then, the following
inequality holds:

f(x+)� f(y) hgC(x), x� yi � 1
2LkgC(x)k

2
2.

Proof: Since C is a convex set, by the projection properties,
we know that:

⌦
x+ �

�
x� 1

Lrf(x)
�
, x+ � y

↵
 0)

⌦
x+ � x, x+ � y

↵
+ 1

L

⌦
rf(x), x+ � y

↵
 0)

1
L

⌦
rf(x), x+ � y

↵

⌦
x� x+, x+ � y

↵
)

⌦
rf(x), x+ � y

↵

⌦
gC(x), x

+ � y
↵

Then, we observe the following series of (in)equalities:

f(x+)� f(y) = f(x+)� f(x) + f(x)� f(y)

⌦
rf(x), x+ � x

↵
+ L

2 kx
+ � xk22 + hrf(x), x� yi

=
⌦
rf(x), x+ � y

↵
+ 1

2LkgC(x)k
2
2

⌦
gC(x), x

+ � y
↵
+ 1

2LkgC(x)k
2
2

= hgC(x), x� yi � 1
2LkgC(x)k

2
2

where the first inequality is due to L-smoothness and convex-
ity.

⇤
Given the above and the recursion of projected gradient de-

scent:

xt+1 = ⇧C (xt � ⌘rf(xt)) ,

by the lemma above, we can compute the following:

f(xt+1)� f(xt) � 1
2LkgC(xt)k22,

and

f(xt+1)� f(x?) kgC(xt)k2 · kxt � x?k2

Using similar analysis with the unconstrained case, we can
prove:

�T 3Lkx1 � x?k22 + (f(x1)� f(x?))
T

,

where showing kxt+1 � x?k2 kxt � x?k2 stems from the use
of the above lemma.

Thus, overall, projections do not change the convergence
rate. However, it changes the per iteration complexity: e.g.,
consider a projection procedure as challenging to complete as
the original problem.

i
i

“Notes” — 2024/1/24 — 7:23 — page 27 — #27 i
i

i
i

i
i

Opinion: Convex optimization is a technology.Convex opti-
mization has become one of the most well-studied and well-
understood areas of optimization; another such area is that of
linear programming. To this point, there are several o↵-the-
shelf solvers that are available online

• CVXOPT - https://cvxopt.org
• CVXPy - http://www.cvxpy.org/
• CVX - http://cvxr.com/cvx/
• JuliaOpt - https://www.juliaopt.org/
• TensorFlow - https://www.tensorflow.org/
• PyTorch - https://pytorch.org/

Why do we still care about convex optimization?

• Several practical problems are convex.
• Many practical problems can be approximated by convex

ones
• If one does not understand convex optimization, why even

try understanding non-convex optimization? :)

1

As an exciting interlude, we will continue with the discus-
sion that started at the beginning of this chapter. Consider
the minimization problem of the function:

f(x) = 1
2x

>Qx� b>x+ r,

where x 2 Rp, Q 2 Rp⇥p is a symmetric matrix, b 2 Rp is a
vector and r is a scalar. I.e.,

min
x2Rp

f(x).

Here, we follow the discussion in this chapter, where µ · I �
Q � L·I. Further, we know that rf(x) = Qx�b = Q(x�x?),
assuming that x? solves the problem and thus Qx? = b.

By definition of gradient descent, we have the following re-
cursion:

xt+1 � x? = (I � ⌘Q) · (xt � x?).

This further implies that the quantities xt�x? can be exactly
computed by recursive applying the above rule, all the way to
the initial conditions x0, to obtain:

xt � x? = Pt(Q) · (x0 � x?),

where

Pt(Q) = (I � ⌘Q)t.

Here, Pt(Q) is a matrix polynomial, whose value depends on
the behavior of an eigenvalue-based polynomial; the degree of
this polynomial depends on the number of times we repeat this
process, i.e., the number of iterations of the gradient descent
method, t.

In the discussion at the beginning of this chapter, we as-
sumed that kI � ⌘Qk2 < 1 to apply the Cauchy-Schwarz rule
and obtain that result recursively. Here, we would like to high-
light a di↵erent perspective of gradient-based methods, that
of minimax polynomials and how these polynomials could de-
fine the type of gradient-based method we use (or would like
to use). To do so, we take one step back and define as first-
order methods (for quadratic optimization) all the methods
that generate solutions after t iterations, as follows:

xt+1 2 x0 + span{rf(x0),rf(x1), . . . ,rf(xt)}.

I.e., for any iteration t, the estimate we obtain is a linear com-
bination of the initial point x0 and the gradient vectors com-
puted {rf(x0),rf(x1), . . . ,rf(xt)}, up to this point. To see
that gradient descent is an algorithm that belongs to this class,
consider the following (with constant step size):

xt+1 = xt � ⌘rf(xt) = xt�1 � ⌘rf(xt�1)� ⌘rf(xt)

= · · · = x0 � ⌘
tX

i=0

rf(xi)

2 x0 + span{rf(x0),rf(x1), . . . ,rf(xt)}.

Given the above, we are now stating an interesting theorem
(the proof is skipped, but it is not di�cult to show this using
mathematical induction).

Theorem 2. Let starting point x0 2 Rp; consider the quadratic
function, as defined above. Then, the sequence of points:

xt+1 2 x0 + span{rf(x0),rf(x1), . . . ,rf(xt)}

also satisfy the expression:

xt � x? = Pt(Q)(x0 � x?),

for some sequence of polynomials {Pt}t=0,1,..., with Pt of de-
gree at most t, and initial conditions Pt(0) = 1, and vice-versa
(“if and only if” condition).

But why is this important? If you think about it, this the-
orem does not specify an algorithm; it just states that this
should hold for any gradient-based algorithm that “accumu-
lates” gradient estimates. However, all these methods can be
nicely characterized (in terms of convergence and convergence
rates) by finding the associated matrix polynomial Pt and de-
riving the worst-case analysis on that polynomial. I.e., given
the collection of symmetric matrices Q, denoted as Q and
given that we know that kxt � x?k kPt(Q)k2 · kx0 � x?k2,
one could try to characterize what is the best polynomial Pt

(as in minimizer of the quantity kPt(Q)k2, with respect to Pt)
over the worst possible problem instance wrt Q (as in maxi-
mizer of the quantity kPt(Q)k2, with respect to Q). In other
words, one could search over all possible Pt’s such that:

P ?
t = arg min

P :P (0)=1
max
Q2Q

kP (Q)k2.

As we will see in future chapters, one can find new algo-
rithms that are optimal (= faster) than gradient descent by
only looking into what the “limits” of matrix polynomials in
terms of minimizing the worst-case scenario are; then, reverse-
engineering these polynomials, we obtain specific algorithmic
constructions that lead to variants of gradient descent with
provably better performance (spoiler alert: accelerated gradi-
ent descent methods).

i
i

“Notes” — 2024/1/24 — 7:23 — page 79 — #79 i
i

i
i

i
i

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

5. Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

6. S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

7. T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

8. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

9. M. Paris and J. Rehacek. Quantum state estimation, volume 649. Springer Science
& Business Media, 2004.

10. M. Daskin. A maximum expected covering location model: formulation, properties
and heuristic solution. Transportation science, 17(1):48–70, 1983.

11. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

12. L. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

13. G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

14. G. Golub. Cmatrix computations. The Johns Hopkins, 1996.

15. Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. E�cient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

16. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

17. Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information process-
ing systems, 31, 2018.

18. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

19. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

20. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

21. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

22. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

23. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org,
2017.

24. Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory re-
current neural network architectures for large scale acoustic modeling. In Fifteenth
annual conference of the international speech communication association, 2014.

25. Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilin-
gual convolutional neural networks for LVCSR. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4955–4959. IEEE, 2016.

26. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. page
arXiv:1706.03762, 2017.

27. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. page
arXiv:1810.04805, 2018.

28. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng
Gao. Unified vision-language pre-training for image captioning and VQA. In AAAI,
pages 13041–13049, 2020.

29. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

30. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language mod-
els using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

31. Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

32. Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-
E 2. arXiv preprint arXiv:2204.13807, 2022.

33. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589, 2021.

34. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je↵rey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

35. Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

36. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- Lojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

37. Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

38. Larry Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

39. Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-
68):7, 1999.

40. B. Polyak. Introduction to optimization. Inc., Publications Division, New York, 1,
1987.

41. Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes
of EE392o, Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

42. Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

43. M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th international conference on machine learning, number CONF,
pages 427–435, 2013.

44. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto
the `1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

45. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, (8):30–37, 2009.

46. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2008.

47. T. Booth and J. Gubernatis. Improved criticality convergence via a modified Monte
Carlo power iteration method. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

48. S. Zavriev and F. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 4(4):336–341, 1993.

49. E. Ghadimi, H. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European control conference (ECC),
pages 310–315. IEEE, 2015.

50. Y. Nesterov. A method of solving a convex programming problem with convergence
rate O(1

k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

51. B. O’Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

52. O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex op-
timization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

53. L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

54. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
review, 43(1):129–159, 2001.

55. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

56. P. Ho↵. Lasso, fractional norm and structured sparse estimation using a Hadamard
product parametrization. Computational Statistics & Data Analysis, 115:186–198,
2017.

57. S. Becker, J. Bobin, and E. Candès. NESTA: A fast and accurate first-order method
for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

58. T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

59. D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321,
2009.

60. S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

61. J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion.
SIAM Journal on Scientific Computing, 35(5):S104–S125, 2013.

62. K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal pro-
cessing letters, 22(5):593–597, 2014.

63. Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative
hard thresholding. In International Conference on Artificial Intelligence and Statistics,
pages 188–198. PMLR, 2018.

64. Je↵rey D Blanchard and Jared Tanner. GPU accelerated greedy algorithms for com-
pressed sensing. Mathematical Programming Computation, 5(3):267–304, 2013.

65. A. Kyrillidis, G. Puy, and V. Cevher. Hard thresholding with norm constraints. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3645–3648. Ieee, 2012.

66. A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE
International Workshop on, pages 353–356. IEEE, 2011.

i
i

“Notes” — 2024/1/24 — 7:23 — page 80 — #80 i
i

i
i

i
i

67. X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via
gradient descent. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1524–1534, 2019.

68. Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489–509, 2006.

69. Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowdhury. Covariance selec-
tion for nonchordal graphs via chordal embedding. Optimization Methods & Software,
23(4):501–520, 2008.

70. Joseph B Altepeter, Daniel FV James, and Paul G Kwiat. 4 qubit quantum state
tomography. In Quantum state estimation, pages 113–145. Springer, 2004.

71. Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea
Parekh, Ulysse Chabaud, and Elham Kashefi. Quantum certification and benchmark-
ing. arXiv preprint arXiv:1910.06343, 2019.

72. Masoud Mohseni, AT Rezakhani, and DA Lidar. Quantum-process tomography: Re-
source analysis of di↵erent strategies. Physical Review A, 77(3):032322, 2008.

73. D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105(15):150401, 2010.

74. Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances
in Neural Information Processing Systems, pages 1638–1646, 2011.

75. K Vogel and H Risken. Determination of quasiprobability distributions in terms
of probability distributions for the rotated quadrature phase. Physical Review A,
40(5):2847, 1989.

76. Miroslav Ježek, Jaroḿır Fiurášek, and Zdeněk Hradil. Quantum inference of states
and processes. Physical Review A, 68(1):012305, 2003.

77. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

78. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

79. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

80. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

81. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

82. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.

83. BP Lanyon, C Maier, Milan Holzäpfel, Tillmann Baumgratz, C Hempel, P Jurcevic,
Ish Dhand, AS Buyskikh, AJ Daley, Marcus Cramer, et al. E�cient tomography of a
quantum many-body system. Nature Physics, 13(12):1158–1162, 2017.

84. D. Gonçalves, M. Gomes-Ruggiero, and C. Lavor. A projected gradient method for
optimization over density matrices. Optimization Methods and Software, 31(2):328–
341, 2016.

85. E. Bolduc, G. Knee, E. Gauger, and J. Leach. Projected gradient descent algorithms
for quantum state tomography. npj Quantum Information, 3(1):44, 2017.

86. Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng. Superfast maximum-likelihood
reconstruction for quantum tomography. Phys. Rev. A, 95:062336, Jun 2017.

87. Zhilin Hu, Kezhi Li, Shuang Cong, and Yaru Tang. Reconstructing pure 14-qubit quan-
tum states in three hours using compressive sensing. IFAC-PapersOnLine, 52(11):188
– 193, 2019. 5th IFAC Conference on Intelligent Control and Automation Sciences
ICONS 2019.

88. Zhibo Hou, Han-Sen Zhong, Ye Tian, Daoyi Dong, Bo Qi, Li Li, Yuanlong Wang,
Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, et al. Full reconstruction of a 14-qubit
state within four hours. New Journal of Physics, 18(8):083036, 2016.

89. C. Riofŕıo, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert.
Experimental quantum compressed sensing for a seven-qubit system. Nature Com-
munications, 8, 2017.

90. Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. Guaranteed recovery
of quantum processes from few measurements. Quantum, 3:171, 2019.

91. S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: Error bounds, sample complexity and e�cient estimators. New Journal of
Physics, 14(9):095022, 2012.

92. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Prov-
able quantum state tomography via non-convex methods. npj Quantum Information,
4(36), 2018.

93. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

94. N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

95. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719. ACM, 2005.

96. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix fac-
torizations. In Proceedings of the 23rd international conference on Machine learning,
pages 249–256. ACM, 2006.

97. J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

98. M. Jaggi and M. Sulovsk. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 471–478, 2010.

99. R. Keshavan. E�cient algorithms for collaborative filtering. PhD thesis, Stanford
University, 2012.

100. R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions
of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. International
World Wide Web Conferences Steering Committee, 2013.

101. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing Sys-
tems, pages 730–738, 2015.

102. G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of se-
mantic classes for image annotation and retrieval. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(3):394–410, 2007.

103. A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In
Computer Vision–ECCV 2008, pages 316–329. Springer, 2008.

104. C. Wang, S. Yan, L. Zhang, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1643–1650. IEEE, 2009.

105. J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

106. Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar. A generalized linear model
for principal component analysis of binary data. In AISTATS, 2003.

107. K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari. Prediction and
clustering in signed networks: A local to global perspective. The Journal of Machine
Learning Research, 15(1):1177–1213, 2014.

108. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, 27, 2014.

109. Koen Verstrepen. Collaborative Filtering with Binary, Positive-only Data. PhD thesis,
University of Antwerpen, 2015.

110. N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting
user preferences. arXiv preprint arXiv:1504.06165, 2015.

111. Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li. Neighborhood regularized logistic ma-
trix factorization for drug-target interaction prediction. PLoS Computational Biology,
12(2):e1004760, 2016.

112. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages
3089–3114. The Royal Society, 2007.

113. E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix
completion. SIAM Review, 57(2):225–251, 2015.

114. I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

115. P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
transactions on automation science and engineering, 3(4):360, 2006.

116. K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1489–1496, 2007.

117. F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with
application to protein clustering. Proceedings of the National Academy of Sciences
of the United States of America, 102(35):12332–12337, 2005.

118. H. Andrews and C. Patterson III. Singular value decomposition (SVD) image coding.
Communications, IEEE Transactions on, 24(4):425–432, 1976.

119. M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4,
pages 3273–3278. IEEE, 2004.

120. E. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772, 2009.

121. P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945,
2010.

122. S. Becker, V. Cevher, and A. Kyrillidis. Randomized low-memory singular value
projection. In 10th International Conference on Sampling Theory and Applications
(Sampta), 2013.

123. L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces
from highly incomplete information. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE, 2010.

124. K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-
mation. Information Theory, IEEE Transactions on, 56(9):4402–4416, 2010.

125. A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal
of mathematical imaging and vision, 48(2):235–265, 2014.

126. Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

127. S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

128. J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

129. Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion.
In Proceedings of The 31st International Conference on Machine Learning, pages
674–682, 2014.

i
i

“Notes” — 2024/1/24 — 7:23 — page 81 — #81 i
i

i
i

i
i

130. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimiza-
tion framework. In Advances in Neural Information Processing Systems 28, pages
3132–3140. 2015.

131. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

132. Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley - benchmarking deep learning optimizers. CoRR, abs/2007.01547,
2020.

133. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul
2011.

134. Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

135. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

