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Chapter 4

We will continue our journey within the convex world and discuss
alternatives to (projected) gradient descent. In this chapter, we will
introduce conditional gradient, also known as the Frank-Wolfe al-
gorithm, for a more efficient convex-constrained optimization. The
Frank-Wolfe algorithm got much attention because of the unique
structure of some essential convex constraints, such as the /;-norm
constraint—surrogate function for sparsity—and the nuclear norm
constraint—surrogate function for low-rankness.

Conditional gradient (Frank-Wolfe) | £1-norm constraint | nuclear norm con-
straint

In this chapter, we will focus on the constrained case:

& @
subject to z € C.

The discussion thus far focuses on (projected) gradient de-
scent, which can be easily motivated by the following set of
motions:

® Under the assumption that f is a L-smooth function (this
a rather mild assumption, that does not even imply con-
vezity), we know that we can upper bound f at a point x;
as follows:

F(@) < fl@) + (VF(ze), @ —20) + o — xf3.

® This indicates that locally and for any given x:, we can
approximate our optimization problem by optimizing the
surrogate objective:
min

min f(@e) +(Vf(ze), © —
subject to z €C.

z) + Sl — 23

® QObserve that the surrogate objective itself can be reformu-
lated as:

min {f(z:) + (Vf(2e), = — 2:) + 2|z — 3}
s min {(V (@), & — ) + Elle — )
ocmin { § e — zl|3 + (VF(2e), @ — @) + L[|V (@0)lI3}
ccmin { & [la— (20~ £V (x))]2}
o min {[Jo — (@ — £9 @) 2}

The symbol « denotes that we can remove/add terms in
the objective without affecting the course of the optimiza-
tion since the removed/added terms are considered con-
stants.

® Thus, our problem becomes:

min o — (20 = £ VS @)1}
subject to =z € C.

® If we denote y := x¢ — %Vf(mt), then the above problem
is just a projection onto C:

min Iz =yl
rERP 2
subject to x €C,

which by itself motivates the two-step iterative procedure:

Ti+1 = HC (iCt - %Vf(l’t)) .

What the above motions dictate is that by L-smoothness,
we exploit the local quadratic approximations iteratively to
minimize f, which by itself motivates the projected gradient
descent motions (the same arguments also hold for the non-
projected gradient descent). A key observation of the above
reasoning is that, because of the quadratic form approxima-
tion and the ||z; — z||3 term, we can complete the squares and
generate the Euclidean projection operation in the objective.

But is this the only way we can perform/define the projec-
tion? Also, what if we take a different order in the Taylor
approzimation of the objective?

Conditional gradient. The conditional gradient method, also
known as the Frank-Wolfe algorithm (see [42]), is based on
two approximations compared to the discussion above:

® Instead of a local quadratic approximation, we approxi-
mate f locally with a linear function:

min f@) + (Vf(@e), v — x1)
subject to =z € C.

Let s: be the solution to this problem. To see how s; is
derived, it is the minimizer of the following optimization

problem:
min (Vf(ze), x)
subject to x €C.

Given st, the direction to move to is d: = s¢—x+ (remember
that the direction is provided by the term x —x¢ in the Tay-
lor approzimation f(z) + (V f(z:), * — x¢)). Thus, using
a descent iteration, we have:

Te41 = Tt + Nede = Tt + (St — x¢)
= (1 — ne)xe + Nese.

® Observe that the step for finding s; is a type of projection
using the inner product rather than the Euclidean norm.
See the figure above for an illustration.

® Of course, we have yet to describe how the projection for
s¢ is computed. This depends on the set C. More in the
text below.

The above summarizes the conditional gradient algorithm. A
standard way to set up the step size is as follows:

i.e., using a decreasing step size [43]. We will see below that
this step size selection leads to convergence.

St

Fig. 32.

Borrowed from appendix [5] - lllustration of conditional gradient descent
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Conditional gradient convergence analysis. The Frank-Wolfe
algorithm has similar convergence rate guarantees with the
projected gradient descent algorithm. In the following theo-
rem, we will make the L-smoothness assumption:

Theorem 3. Let function f : C — R be conver, L-smooth, and
assume it attains its global minimum at a point x* € C. Then,
Frank-Wolfe iterates achieve:

20LD?
t+2°

f(@e1) = f(z") <

with step size
2
"y
Here, D is the diameter of C: D = maxq yec ||z — yl|2-
Proof: By smoothness:

fl@e1) < flze) +

Sequentially substituting the definition x;41 in the above re-
cursion:

(Vf(@e), zeg1 — ze) + £ [|wepr — ||

Fl@err) < fxe) + (VF(me), (1 — ne)xe + nese — @)

+ % e — )?
= f(@e) + e (V (1), 80 — ) + %5 [ we1 — @]
= f(xt) + e AV (1), 5t — m1)

+ L1 = )z + nese — @
= f(ze) + e (Vf(xe), 8¢ — xe) + 0y

2L 2
5 lls¢ — @]

By the definition of D, observe that ||s; — x¢]|> < D?. The
above inequality then becomes:

ni LD?

f(@ir1) < flxe) +ne (V) 80

Using convexity, we know that
f@®) > flze) + (V@) 2" —a0) =
(Vf(@e), 2" —xe) < fa”) = flze).
But we also know that s; is the solution to the problem

min flxe) +(Vf(xe), ©— x)

T ERP

— )+

subject to x € C.

which is equivalent to the following problem:

min (Vf(@e),z)
subject to z € C.

This implies that:

(V@) se) < (Vi) 27)

and thus:

(Vf(xe), 86 —a) < fa¥) = flwe).
Combining all the above in the main recursion (after subtract-
ing f(x*) on both sides):

F@es) = f@®) < (U= m) (f(we) = fla*)) + 252
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*) < 2LD?

pa;) based

We use induction in order to prove f(z;)— f(z
on above.

Base case t = 0. Observe that the above holds for all ¢. For

t =0, we have n; = 04—% = 1. Hence:
Fa) = F(@) < (1= m0)(f(wo) — f(a")) + L2

1—1)(f(xo) — f(z")) + £22

LD?
2

2LD?
2

IN

Thus, the induction hypothesis holds for our base case.

Inductive step: from ¢ to ¢+ 1. Let us assume that for

iteration count up to ¢ the following holds: f(z:) — f(z*) <

Qthgz. We need to show that, under this assumption, it also

holds for ¢t 4 1.
By the main recursion, we have:

) () — f(a*)) + 252
(1 25) (F@0) = £@") + gt LD

< ( %) ' QtLJrD; + 2(t+2)2 LD
LD

(<t+2)2 + <t+2>2)

flar) — fa") < (1 -

= 2LD* (tﬁ?l)z
=2LD* 4. 5
<oLDt 2L
=2LD°

Thus, the inequality also holds for the ¢ + 1 case.

What if f is also strongly convex. Intuition suggests that we
can achieve a linear convergence rate when f is simultaneously
L-smooth and p-strongly convex. Unfortunately, this does
not necessarily hold for the Frank-Wolfe/conditional gradient
method when we make no assumptions about C, other than
convexity and other than the minimum of f over C exists.
There is a negative result about this statement:

Claim 6. Consider the following problem:

min 3 (Qz, z) + (b,x)

P

subject to  x = Av, v; > 0, Zvi =1,

=1

for some Q, A matrices with appropriate dimensions, and for
a vector b. Observe that the constraint set represents the con-
vex hull of the columns of A.

Let {x+} denote the putative solutions obtained by running
conditional gradient with exact line search. Then, there is an
initial point xo such that, for every e > 0, we have:

fla) = f(@") 2 o=

In other words, this claim states that there are problem in-
stances for which we cannot improve upon the O(1/t) con-
vergence rate. Note though, that this does not exclude the
possibility that there is a specific function instance f and a
specific constraint C for which we can provably attain linear
convergence.
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Where is conditional gradient useful. A quick comparison with
projected gradient descent can be summarized as follows:

(Proj. Gradient) (Cond. Gradient)

O(x) v O(z)

Why then do we care about conditional gradient, given that
the iteration complexity is similar to convex projected gradient
descent? The answer lies in the projection step and what is
the computational complexity needed to complete that step.
To depict this clearly, we will consider specific but widely used
convex constraints C.

(Applications and motivation are provided in the correspond-
ing notebook.)

l1-norm constraint: The convex set C in this case is:
C={zeR? | |z|p <1}.

(The discussion easily extends to the general case ||z]1 < «
for some o > 0, but we keep unit ball for simplicity.) Then,
our generic problem looks like:

e f=)
subject to  |lz|l1 < 1.

(Why we use the £1-norm will be apparent later on in Chapter

7)

To provide some examples, consider the sparse linear regres-
sion problem (Lasso problem), as in:

. 1 _ 2
min 3 llAz — b2
subject to |lz|1 < 1.

In this £1-norm case, if we were to perform the Euclidean norm
projection:

min llz =yl
TERP
subject to  ||z|j1 <1,

this can be completed through the soft-thresholding operator,
where!?:

Z = max{y — 0, 0},

where

p
0:% (Zyo(z) 1> )
=1

and

J
p = max {j € [pl | yo(s) — % : (Zyo(q) - 1) > 0}~
q=1

Here, o(+) is a descending sorting index. In words, to compute
the projection, we need to %) sort the input vector y in (usu-
ally) O(plogp) time, ii) compute quantities p and 6, and i)
apply the entrywise rule: Z = max{y — 0, 0}, per iteration.

On the other hand, the conditional gradient “projection”
step has the form:

min (Vf(ze),2)
subject to ||lz|1 < 1.

It is easy to see that if there were no constraints on x, the
solution to this minimization is unbounded and leads to —oco
objective value. Under the C, we restrict our search space
within a bounded /¢;-norm with radius 1; e.g., see the con-
straint in the figure on the first page of the chapter. We can
prove that (one of) the solution(s) to this problem is to put
all the “energy” on the component of the gradient V f(x¢) ac-
cording to:

i € argmax

i-th component

KV f(ze), e

where e; are the basis/coordinate vectors (e.g., e1 is the p-th
dimensional zero vector, except for the first coordinate being
1). Then, s; is given by:
st =—1-sgn((Vf(ze),eix)) - eix.

The first term —1 was chosen on purpose; if we had radius «,
then we substitute —1 with —a. In other words, to compute
the Frank-Wolfe “projection”, we need to i) find the maxi-
mum component (in magnitude) of V f(z;) in O(p) time, and
1) compute s; in constant time, per iteration.

Comparing the two approaches and assuming that (under
hidden constants in Big-Oh notation) the number of itera-
tions these algorithms require is the same, the per-iteration
complexity of conditional gradient is lower than that of pro-
jected gradient descent. In conjunction with the fact that the
asymptotic iteration complexity is the same, O(), this means
that we might prefer a conditional gradient in practice.

Nuclear norm constraint: While the per iteration improve-
ment in the example above seems negligible (we gain O(log p)
per iteration), things get much more interesting in the matrix
case. Problems such as matrix completion and matrix sens-
ing take the general form (we restrict our attention to square
matrices just for clarity):

f(X)

min

in X[ < 1.

subject to

Here, the variable is a matrix in p X p, f(-) is a matrix-valued
function, and || X ||« is the nuclear norm that has the closed-
form expression:

P
| X« = Z 0i(X), where 0;(X) is the i-th singular value.
i=1

To provide an example, consider the least-squares version of
matrix variables:

LJA(X) —bll3  subject to | X[l <1,

min
X EeRPXP

for some linear transformation mapping A : RP*P — R™,

(Why we use the nuclear norm will be apparent later on in
Chapter 8)

If we were to perform the Euclidean norm projection:

i X Y|
in [ [
subject to | X+ <1,

this can be completed, again, through the soft-thresholding
operator over matrices, where instead of “soft-thresholding”
elements of a vector, we now soft-threshold the vector of sin-
gular values:

Y= [01(X), o2 (X), ..., ap(X)]

10For those interested in understanding this part, the instructor suggests you read the paper “Ef-
ficient projections onto the £1-ball for learning in high dimensions” [44]; it was included in the list
of papers to review in previous homework.
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and

y =max{y — 6, 0}.

(The details how to compute the corresponding 0 and p are
left to the reader. Further, details about projections onto nu-
clear norm and low-rank recovery problems will be the task of
Chapter 8.)

The gist of this description is that to compute the projec-
tion of X onto the nuclear ball, we need to compute the full
singular value decomposition of the input matrix X. This fur-
ther implies that, for the Euclidean projection, we need to 7)
compute an SVD in O(p?) time, i7) perform soft-thresholding
and apply the entrywise rule: T = max{y — 6, 0} in O(p),
per iteration. In real applications (see Netflix recommenda-
tion system [45] and [46]), the size of these matrices could be
in several hundred thousand, if not millions; thus affording a
cubic computational complexity per iteration, is often infeasi-
ble.

On the other hand, the conditional gradient “projection”
step has the form:

. _ T
min (VF(X,),X) = Tr (Vf(Xt) X)
subject to || X« <1.

Let the SVD of the matrix V f(X;) be:
V(X)) =USV',

where, without loss of generality, we have sorted ¥ (and the
corresponding U, V components) to contain the singular values
in descending order. Denote o1(X) = 31,1, u1 = U.1, v1 =
V.,1. Then, the Frank-Wolfe projection is equivalent to the
solution:

-
S =—1-uv; .

Similarly to the vector case, we substitute the first term —1
with —a if we had radius a. In words, to compute the Frank-
Wolfe “projection”, we need to i) find the maximum singular
value-vector pair of V f(X;), and 4) compute S; in O(p?), per
iteration. The critical difference between this step and the Fu-
clidean projection is that in this case, we care only about the
top singular value-vector pair, while in the Euclidean projec-
tion step, we need all the singular value-vector pairs.

A simple way to put it is that assuming that in practice,
the SVD (either partial or full) is computed in approxima-
tion through iterative methods—such as the Power Iteration
method or the Lanczos algorithm—the Frank-Wolfe projec-
tion is xO(p) faster, as it can be roughly be computed in
O(p?) complexity. Thus, the central intuition behind using
conditional gradient—as opposed to standard projected gra-
dient descent algorithms— is that, per iteration, we require
the best 1-sparse or rank-1 approximation of the gradient to
proceed, as opposed to the full ¢;-norm constrained or nu-
clear norm constrained approximation in the former case. For
sparsity, a quick analysis shows that this saves a logarithmic
factor per iteration. In contrast, in the case of low-rankness,
we can save up to XO(p) per iteration, as we are interested
in the rank-1 approximation of the gradient instead of a full
rank soft-thresholding projection.

o0

As an interlude, we will study the power iteration method.
For simplicity, we will consider here A € RP*? is a diagonal-
izable matrix (e.g., a real symmetric matrix); thus, our focus
here is on the eigenvalue decomposition of A, where:

A=UAU", UeRP*P AcRP*P,

where the columns of U are orthonormal and represent the
eigenvectors, and A is a diagonal matrix, with the eigenval-
ues, A;, on its diagonal. We will make the assumption the
eigenvalues are sorted such that

A > [Ag] = - = [Ap.

Please pay attention that we assume that there is a gap be-
tween |A1| and |Az|. In that case, A; is considered the dominant
eigenvalue of the matrix.

In other words, the power iteration method approximates
the extremal eigenvalues of the matrix, that is, the eigenvalues
having the largest and smallest modules and their associated
eigenvectors. Power iteration is simple and can be described
by the following two-step procedure:

gi+1 = Ag
qi+1 = gtiJrl
HQH—IH2

Observe that:

® The algorithm requires an initial vector qo € RP.

® The algorithm has no step sizes.

® The algorithm solves a non-convex problem due to the sec-
ond step (a projection step on || - ||2 = 1).

® The algorithm requires mostly matrix-vector multiplica-
tions, which makes it efficient in practice.

Let us analyze the convergence properties of the power it-
eration method. Unfolding the recursion, we observe that:

At(]o
[ A*qoll,”
This relation explains the role played by the powers of the in-
put matrix A. For A in RP*? its eigenvectors w1, usz, ..., Up

form a basis in R?. This means that the initial vector gy can
be represented as:

qit+1 =

p
qo = Zaiui, a; € R.
i=1

Moreover, by definition of the eigenvectors, we have:
Aui = )\iui7 Vi.

The above leads to an equivalent representation of A’qo as:

P P
t t t
Aq():A-Eaiui:EaiAui
i=1 1=1
P
Z t
= azz\zul
i=1
P
t
- : 2 :ﬁ (2 .
= Otl)\l <u1 + a1 ()\ ) UJ> .
Jj=2

Using this representation, we can show the following lemma.

Lemma 6. Assume A € RP*? is a diagonalizable matriz, with
eigenvalues |A1| > |Az2| > -+ > |Ap|. Suppose that a1 # 0;
then, there exists a constant ¢ > 0 such that:

>\2t

2 —will, < c- |22

o t21,

where z: is a scaled version of q::

Ca Al

Zt
Qq )\ﬁ
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Proof: Tt is easy to see that:

for ¢ := ( i (Z—i) ) . O
See also [47].
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