
i
i

“Notes” — 2024/1/30 — 13:07 — page 28 — #28 i
i

i
i

i
i

Chapter 4

We will continue our journey within the convex world and discuss
alternatives to (projected) gradient descent. In this chapter, we will
introduce conditional gradient, also known as the Frank-Wolfe al-
gorithm, for a more e�cient convex-constrained optimization. The
Frank-Wolfe algorithm got much attention because of the unique
structure of some essential convex constraints, such as the `1-norm
constraint—surrogate function for sparsity—and the nuclear norm
constraint—surrogate function for low-rankness.

Conditional gradient (Frank-Wolfe) | `1-norm constraint | nuclear norm con-

straint

In this chapter, we will focus on the constrained case:

min
x2Rp

f(x)

subject to x 2 C.

The discussion thus far focuses on (projected) gradient de-
scent, which can be easily motivated by the following set of
motions:

• Under the assumption that f is a L-smooth function (this
a rather mild assumption, that does not even imply con-
vexity), we know that we can upper bound f at a point xt

as follows:

f(x)  f(xt) + hrf(xt), x� xti+ L
2 kx� xtk22.

• This indicates that locally and for any given xt, we can
approximate our optimization problem by optimizing the
surrogate objective:

min
x2Rp

f(xt) + hrf(xt), x� xti+ L
2 kx� xtk22

subject to x 2 C.
• Observe that the surrogate objective itself can be reformu-

lated as:

min
x

�
f(xt) + hrf(xt), x� xti+ L

2 kx� xtk22
 

/ min
x

�
hrf(xt), x� xti+ L

2 kx� xtk22
 

/ min
x

�
L
2 kx� xtk22 + hrf(xt), x� xti+ 1

Lkrf(xt)k22
 

/ min
x

n
L
2 ·
��x�

�
xt � 1

Lrf(xt)
���2

2

o

/ min
x

n��x�
�
xt � 1

Lrf(xt)
���2

2

o

The symbol / denotes that we can remove/add terms in
the objective without a↵ecting the course of the optimiza-
tion since the removed/added terms are considered con-
stants.

• Thus, our problem becomes:

min
x2Rp

��x�
�
xt � 1

Lrf(xt)
���2

2

subject to x 2 C.

• If we denote y := xt � 1
Lrf(xt), then the above problem

is just a projection onto C:

min
x2Rp

kx� yk22
subject to x 2 C,

which by itself motivates the two-step iterative procedure:

xt+1 = ⇧C
�
xt � 1

Lrf(xt)
�
.

What the above motions dictate is that by L-smoothness,
we exploit the local quadratic approximations iteratively to
minimize f , which by itself motivates the projected gradient
descent motions (the same arguments also hold for the non-
projected gradient descent). A key observation of the above
reasoning is that, because of the quadratic form approxima-
tion and the kxt �xk22 term, we can complete the squares and
generate the Euclidean projection operation in the objective.

But is this the only way we can perform/define the projec-
tion? Also, what if we take a di↵erent order in the Taylor
approximation of the objective?

Conditional gradient.The conditional gradient method, also
known as the Frank-Wolfe algorithm (see [42]), is based on
two approximations compared to the discussion above:

• Instead of a local quadratic approximation, we approxi-
mate f locally with a linear function:

min
x2Rp

f(xt) + hrf(xt), x� xti

subject to x 2 C.

Let st be the solution to this problem. To see how st is
derived, it is the minimizer of the following optimization
problem:

min
x2Rp

hrf(xt), xi

subject to x 2 C.

Given st, the direction to move to is dt = st�xt (remember
that the direction is provided by the term x�xt in the Tay-
lor approximation f(xt) + hrf(xt), x� xti). Thus, using
a descent iteration, we have:

xt+1 = xt + ⌘tdt = xt + ⌘t(st � xt)

= (1� ⌘t)xt + ⌘tst.

• Observe that the step for finding st is a type of projection
using the inner product rather than the Euclidean norm.
See the figure above for an illustration.

• Of course, we have yet to describe how the projection for
st is computed. This depends on the set C. More in the
text below.

The above summarizes the conditional gradient algorithm. A
standard way to set up the step size is as follows:

⌘t =
2

t+ 2
;

i.e., using a decreasing step size [43]. We will see below that
this step size selection leads to convergence.

Fig. 32. Borrowed from appendix [5] - Illustration of conditional gradient descent
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Conditional gradient convergence analysis.The Frank-Wolfe
algorithm has similar convergence rate guarantees with the
projected gradient descent algorithm. In the following theo-
rem, we will make the L-smoothness assumption:

Theorem 3. Let function f : C ! R be convex, L-smooth, and
assume it attains its global minimum at a point x? 2 C. Then,
Frank-Wolfe iterates achieve:

f(xt+1)� f(x?)  2LD2

t+ 2
,

with step size

⌘t =
2

t+ 2
.

Here, D is the diameter of C: D = maxx,y2C kx� yk2.
Proof: By smoothness:

f(xt+1)  f(xt) + hrf(xt), xt+1 � xti+ L
2 kxt+1 � xtk2 .

Sequentially substituting the definition xt+1 in the above re-
cursion:

f(xt+1)  f(xt) + hrf(xt), (1� ⌘t)xt + ⌘tst � xti
+ L

2 kxt+1 � xtk2

= f(xt) + ⌘t hrf(xt), st � xti+ L
2 kxt+1 � xtk2

= f(xt) + ⌘t hrf(xt), st � xti
+ L

2 k(1� ⌘t)xt + ⌘tst � xtk2

= f(xt) + ⌘t hrf(xt), st � xti+ ⌘2
t
L

2 kst � xtk2

By the definition of D, observe that kst � xtk2  D2. The
above inequality then becomes:

f(xt+1)  f(xt) + ⌘t hrf(xt), st � xti+ ⌘2
t
LD2

2 .

Using convexity, we know that

f(x?) � f(xt) + hrf(xt), x
? � xti )

hrf(xt), x
? � xti  f(x?)� f(xt).

But we also know that st is the solution to the problem

min
x2Rp

f(xt) + hrf(xt), x� xti

subject to x 2 C.

which is equivalent to the following problem:

min
x2Rp

hrf(xt), xi

subject to x 2 C.

This implies that:

hrf(xt), sti  hrf(xt), x
?i

and thus:

hrf(xt), st � xti  f(x?)� f(xt).

Combining all the above in the main recursion (after subtract-
ing f(x?) on both sides):

f(xt+1)� f(x⇤)  (1� ⌘t) (f(xt)� f(x?)) +
⌘2
t
LD2

2

We use induction in order to prove f(xt)�f(x?)  2LD2

t+2 based
on above.

Base case t = 0. Observe that the above holds for all t. For
t = 0, we have ⌘t = 2

0+2 = 1. Hence:

f(x1)� f(x?)  (1� ⌘0)(f(x0)� f(x?)) +
⌘2
0LD2

2

= (1� 1)(f(x0)� f(x?)) + LD2

2

= LD2

2

 2LD2

2

Thus, the induction hypothesis holds for our base case.

Inductive step: from t to t + 1. Let us assume that for
iteration count up to t the following holds: f(xt) � f(x?) 
2LD2

t+2 . We need to show that, under this assumption, it also
holds for t+ 1.

By the main recursion, we have:

f(xt+1)� f(x?)  (1� ⌘t) (f(xt)� f(x?)) +
⌘2
t
LD2

2

=
⇣
1� 2

t+2

⌘
(f(xt)� f(x?)) + 4

2(t+2)2
LD2


⇣
1� 2

t+2

⌘
· 2LD2

t+2 + 4
2(t+2)2

LD2

= LD2
⇣

2t
(t+2)2

+ 2
(t+2)2

⌘

= 2LD2 · t+1
(t+2)2

= 2LD2 · t+1
t+2 · 1

t+2

 2LD2 · t+2
t+3 · 1

t+2

= 2LD2 1
t+3

Thus, the inequality also holds for the t+ 1 case.

What if f is also strongly convex. Intuition suggests that we
can achieve a linear convergence rate when f is simultaneously
L-smooth and µ-strongly convex. Unfortunately, this does
not necessarily hold for the Frank-Wolfe/conditional gradient
method when we make no assumptions about C, other than
convexity and other than the minimum of f over C exists.

There is a negative result about this statement:
Claim 6. Consider the following problem:

min
x2Rp

1
2 hQx, xi+ hb, xi

subject to x = Av, vi � 0,
pX

i=1

vi = 1,

for some Q, A matrices with appropriate dimensions, and for
a vector b. Observe that the constraint set represents the con-
vex hull of the columns of A.

Let {xt} denote the putative solutions obtained by running
conditional gradient with exact line search. Then, there is an
initial point x0 such that, for every " > 0, we have:

f(xt)� f(x?) � 1
t1+"

In other words, this claim states that there are problem in-
stances for which we cannot improve upon the O(1/t) con-
vergence rate. Note though, that this does not exclude the
possibility that there is a specific function instance f and a
specific constraint C for which we can provably attain linear
convergence.
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Where is conditional gradient useful.A quick comparison with
projected gradient descent can be summarized as follows:

(Proj. Gradient)

O
�

1
T

�
vs

(Cond. Gradient)

O
�

1
T

�

Why then do we care about conditional gradient, given that
the iteration complexity is similar to convex projected gradient
descent? The answer lies in the projection step and what is
the computational complexity needed to complete that step.
To depict this clearly, we will consider specific but widely used
convex constraints C.

(Applications and motivation are provided in the correspond-
ing notebook.)

`1-norm constraint: The convex set C in this case is:

C = {x 2 Rp | kxk1  1} .

(The discussion easily extends to the general case kxk1  ↵
for some ↵ > 0, but we keep unit ball for simplicity.) Then,
our generic problem looks like:

min
x2Rp

f(x)

subject to kxk1  1.

(Why we use the `1-norm will be apparent later on in Chapter
7)

To provide some examples, consider the sparse linear regres-
sion problem (Lasso problem), as in:

min
x2Rp

1
2kAx� bk22

subject to kxk1  1.

In this `1-norm case, if we were to perform the Euclidean norm
projection:

min
x2Rp

kx� yk22
subject to kxk1  1,

this can be completed through the soft-thresholding operator,
where10:

bx = max{y � ✓, 0},

where

✓ = 1
⇢ ·
 

⇢X

i=1

y�(i) � 1

!
,

and

⇢ = max

(
j 2 [p] | y�(j) � 1

j ·
 

jX

q=1

y�(q) � 1

!
> 0

)
.

Here, �(·) is a descending sorting index. In words, to compute
the projection, we need to i) sort the input vector y in (usu-
ally) O(p log p) time, ii) compute quantities ⇢ and ✓, and iii)
apply the entrywise rule: bx = max{y � ✓, 0}, per iteration.

On the other hand, the conditional gradient “projection”
step has the form:

min
x2Rp

hrf(xt), xi

subject to kxk1  1.

It is easy to see that if there were no constraints on x, the
solution to this minimization is unbounded and leads to �1
objective value. Under the C, we restrict our search space
within a bounded `1-norm with radius 1; e.g., see the con-
straint in the figure on the first page of the chapter. We can
prove that (one of) the solution(s) to this problem is to put
all the “energy” on the component of the gradient rf(xt) ac-
cording to:

i? 2 argmax
i-th component

|hrf(xt), eii|

where ei are the basis/coordinate vectors (e.g., e1 is the p-th
dimensional zero vector, except for the first coordinate being
1). Then, st is given by:

st = �1 · sgn (hrf(xt), ei?i) · ei? .
The first term �1 was chosen on purpose; if we had radius ↵,
then we substitute �1 with �↵. In other words, to compute
the Frank-Wolfe “projection”, we need to i) find the maxi-
mum component (in magnitude) of rf(xt) in O(p) time, and
ii) compute st in constant time, per iteration.

Comparing the two approaches and assuming that (under
hidden constants in Big-Oh notation) the number of itera-
tions these algorithms require is the same, the per-iteration
complexity of conditional gradient is lower than that of pro-
jected gradient descent. In conjunction with the fact that the
asymptotic iteration complexity is the same, O( 1

T ), this means
that we might prefer a conditional gradient in practice.

Nuclear norm constraint: While the per iteration improve-
ment in the example above seems negligible (we gain O(log p)
per iteration), things get much more interesting in the matrix
case. Problems such as matrix completion and matrix sens-
ing take the general form (we restrict our attention to square
matrices just for clarity):

min
X2Rp⇥p

f(X) subject to kXk⇤  1.

Here, the variable is a matrix in p⇥ p, f(·) is a matrix-valued
function, and kXk⇤ is the nuclear norm that has the closed-
form expression:

kXk⇤ =
pX

i=1

�i(X), where �i(X) is the i-th singular value.

To provide an example, consider the least-squares version of
matrix variables:

min
X2Rp⇥p

1
2kA(X)� bk22 subject to kXk⇤  1,

for some linear transformation mapping A : Rp⇥p ! Rm.

(Why we use the nuclear norm will be apparent later on in
Chapter 8)

If we were to perform the Euclidean norm projection:

min
X2Rp⇥p

kX � Y k2F

subject to kXk⇤  1,

this can be completed, again, through the soft-thresholding
operator over matrices, where instead of “soft-thresholding”
elements of a vector, we now soft-threshold the vector of sin-
gular values:

y ⌘
⇥
�1(X), �2(X), . . . , �p(X)

⇤

10For those interested in understanding this part, the instructor suggests you read the paper “Ef-
ficient projections onto the `1-ball for learning in high dimensions” [44]; it was included in the list
of papers to review in previous homework.
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and

by = max{y � ✓, 0}.

(The details how to compute the corresponding ✓ and ⇢ are
left to the reader. Further, details about projections onto nu-
clear norm and low-rank recovery problems will be the task of
Chapter 8.)

The gist of this description is that to compute the projec-
tion of X onto the nuclear ball, we need to compute the full
singular value decomposition of the input matrix X. This fur-
ther implies that, for the Euclidean projection, we need to i)
compute an SVD in O(p3) time, ii) perform soft-thresholding
and apply the entrywise rule: bx = max{y � ✓, 0} in O(p),
per iteration. In real applications (see Netflix recommenda-
tion system [45] and [46]), the size of these matrices could be
in several hundred thousand, if not millions; thus a↵ording a
cubic computational complexity per iteration, is often infeasi-
ble.

On the other hand, the conditional gradient “projection”
step has the form:

min
x2Rp

hrf(Xt), Xi ⌘ Tr
⇣
rf(Xt)

>X
⌘

subject to kXk⇤  1.

Let the SVD of the matrix rf(Xt) be:

rf(Xt) = U⌃V >,

where, without loss of generality, we have sorted ⌃ (and the
corresponding U, V components) to contain the singular values
in descending order. Denote �1(X) ⌘ ⌃1,1, u1 ⌘ U:,1, v1 ⌘
V:,1. Then, the Frank-Wolfe projection is equivalent to the
solution:

St = �1 · u1v
>
1 .

Similarly to the vector case, we substitute the first term �1
with �↵ if we had radius ↵. In words, to compute the Frank-
Wolfe “projection”, we need to i) find the maximum singular
value-vector pair of rf(Xt), and ii) compute St in O(p2), per
iteration. The critical di↵erence between this step and the Eu-
clidean projection is that in this case, we care only about the
top singular value-vector pair, while in the Euclidean projec-
tion step, we need all the singular value-vector pairs.

A simple way to put it is that assuming that in practice,
the SVD (either partial or full) is computed in approxima-
tion through iterative methods—such as the Power Iteration
method or the Lanczos algorithm—the Frank-Wolfe projec-
tion is ⇥O(p) faster, as it can be roughly be computed in
O(p2) complexity. Thus, the central intuition behind using
conditional gradient—as opposed to standard projected gra-
dient descent algorithms— is that, per iteration, we require
the best 1-sparse or rank-1 approximation of the gradient to
proceed, as opposed to the full `1-norm constrained or nu-
clear norm constrained approximation in the former case. For
sparsity, a quick analysis shows that this saves a logarithmic
factor per iteration. In contrast, in the case of low-rankness,
we can save up to ⇥O(p) per iteration, as we are interested
in the rank-1 approximation of the gradient instead of a full
rank soft-thresholding projection.

1

As an interlude, we will study the power iteration method.
For simplicity, we will consider here A 2 Rp⇥p is a diagonal-
izable matrix (e.g., a real symmetric matrix); thus, our focus
here is on the eigenvalue decomposition of A, where:

A = U⇤U>, U 2 Rp⇥p,⇤ 2 Rp⇥p,

where the columns of U are orthonormal and represent the
eigenvectors, and ⇤ is a diagonal matrix, with the eigenval-
ues, �i, on its diagonal. We will make the assumption the
eigenvalues are sorted such that

|�1| > |�2| � · · · � |�p|.

Please pay attention that we assume that there is a gap be-
tween |�1| and |�2|. In that case, �1 is considered the dominant
eigenvalue of the matrix.

In other words, the power iteration method approximates
the extremal eigenvalues of the matrix, that is, the eigenvalues
having the largest and smallest modules and their associated
eigenvectors. Power iteration is simple and can be described
by the following two-step procedure:

eqt+1 = Aqt

qt+1 =
eqt+1

keqt+1k2
Observe that:

• The algorithm requires an initial vector q0 2 Rp.
• The algorithm has no step sizes.
• The algorithm solves a non-convex problem due to the sec-

ond step (a projection step on k · k2 = 1).
• The algorithm requires mostly matrix-vector multiplica-

tions, which makes it e�cient in practice.

Let us analyze the convergence properties of the power it-
eration method. Unfolding the recursion, we observe that:

qt+1 =
Atq0

kAtq0k2
.

This relation explains the role played by the powers of the in-
put matrix A. For A in Rp⇥p, its eigenvectors u1, u2, . . . , up

form a basis in Rp. This means that the initial vector q0 can
be represented as:

q0 =
pX

i=1

↵iui, ↵i 2 R.

Moreover, by definition of the eigenvectors, we have:

Aui = �iui, 8i.

The above leads to an equivalent representation of Atq0 as:

Atq0 = At ·
pX

i=1

↵iui =
pX

i=1

↵iA
tui

=
pX

i=1

↵i�
t
iui

= ↵1�1 ·
 
u1 +

pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj

!
.

Using this representation, we can show the following lemma.
Lemma 6. Assume A 2 Rp⇥p is a diagonalizable matrix, with
eigenvalues |�1| > |�2| � · · · � |�p|. Suppose that ↵1 6= 0;
then, there exists a constant c > 0 such that:

kzt � u1k2  c ·
����2
�1

���
t
, t � 1,

where zt is a scaled version of qt:

zt =
qt · kAtq0k2

↵1�t
1

= u1 +
pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj .
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Proof: It is easy to see that:

kzt � u1k2 =

�����u1 +
pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj � u1

�����
2

=

�����

pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj

�����
2


 

pX

j=2

⇣
↵j

↵1

⌘2
·
⇣

�j

�1

⌘2t
!1/2


����2
�1

���
t
·
 

pX

j=2

⇣
↵j

↵1

⌘2
!1/2

= c ·
����2
�1

���
t

for c :=

✓Pp
j=2

⇣
↵j

↵1

⌘2◆1/2

. ⇤
See also [47].
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and processes. Physical Review A, 68(1):012305, 2003.

77. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

78. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

79. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

80. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

81. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

82. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.
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