
i
i

“Notes” — 2024/1/30 — 13:07 — page 28 — #28 i
i

i
i

i
i

Chapter 4

We will continue our journey within the convex world and discuss
alternatives to (projected) gradient descent. In this chapter, we will
introduce conditional gradient, also known as the Frank-Wolfe al-
gorithm, for a more e�cient convex-constrained optimization. The
Frank-Wolfe algorithm got much attention because of the unique
structure of some essential convex constraints, such as the `1-norm
constraint—surrogate function for sparsity—and the nuclear norm
constraint—surrogate function for low-rankness.

Conditional gradient (Frank-Wolfe) | `1-norm constraint | nuclear norm con-

straint

In this chapter, we will focus on the constrained case:

min
x2Rp

f(x)

subject to x 2 C.

The discussion thus far focuses on (projected) gradient de-
scent, which can be easily motivated by the following set of
motions:

• Under the assumption that f is a L-smooth function (this
a rather mild assumption, that does not even imply con-
vexity), we know that we can upper bound f at a point xt

as follows:

f(x)  f(xt) + hrf(xt), x� xti+ L
2 kx� xtk22.

• This indicates that locally and for any given xt, we can
approximate our optimization problem by optimizing the
surrogate objective:

min
x2Rp

f(xt) + hrf(xt), x� xti+ L
2 kx� xtk22

subject to x 2 C.
• Observe that the surrogate objective itself can be reformu-

lated as:

min
x

�
f(xt) + hrf(xt), x� xti+ L

2 kx� xtk22
 

/ min
x

�
hrf(xt), x� xti+ L

2 kx� xtk22
 

/ min
x

�
L
2 kx� xtk22 + hrf(xt), x� xti+ 1

Lkrf(xt)k22
 

/ min
x

n
L
2 ·
��x�

�
xt � 1

Lrf(xt)
���2

2

o

/ min
x

n��x�
�
xt � 1

Lrf(xt)
���2

2

o

The symbol / denotes that we can remove/add terms in
the objective without a↵ecting the course of the optimiza-
tion since the removed/added terms are considered con-
stants.

• Thus, our problem becomes:

min
x2Rp

��x�
�
xt � 1

Lrf(xt)
���2

2

subject to x 2 C.

• If we denote y := xt � 1
Lrf(xt), then the above problem

is just a projection onto C:

min
x2Rp

kx� yk22
subject to x 2 C,

which by itself motivates the two-step iterative procedure:

xt+1 = ⇧C
�
xt � 1

Lrf(xt)
�
.

What the above motions dictate is that by L-smoothness,
we exploit the local quadratic approximations iteratively to
minimize f , which by itself motivates the projected gradient
descent motions (the same arguments also hold for the non-
projected gradient descent). A key observation of the above
reasoning is that, because of the quadratic form approxima-
tion and the kxt �xk22 term, we can complete the squares and
generate the Euclidean projection operation in the objective.

But is this the only way we can perform/define the projec-
tion? Also, what if we take a di↵erent order in the Taylor
approximation of the objective?

Conditional gradient.The conditional gradient method, also
known as the Frank-Wolfe algorithm (see [42]), is based on
two approximations compared to the discussion above:

• Instead of a local quadratic approximation, we approxi-
mate f locally with a linear function:

min
x2Rp

f(xt) + hrf(xt), x� xti

subject to x 2 C.

Let st be the solution to this problem. To see how st is
derived, it is the minimizer of the following optimization
problem:

min
x2Rp

hrf(xt), xi

subject to x 2 C.

Given st, the direction to move to is dt = st�xt (remember
that the direction is provided by the term x�xt in the Tay-
lor approximation f(xt) + hrf(xt), x� xti). Thus, using
a descent iteration, we have:

xt+1 = xt + ⌘tdt = xt + ⌘t(st � xt)

= (1� ⌘t)xt + ⌘tst.

• Observe that the step for finding st is a type of projection
using the inner product rather than the Euclidean norm.
See the figure above for an illustration.

• Of course, we have yet to describe how the projection for
st is computed. This depends on the set C. More in the
text below.

The above summarizes the conditional gradient algorithm. A
standard way to set up the step size is as follows:

⌘t =
2

t+ 2
;

i.e., using a decreasing step size [43]. We will see below that
this step size selection leads to convergence.

Fig. 32. Borrowed from appendix [5] - Illustration of conditional gradient descent



i
i

“Notes” — 2024/1/30 — 13:07 — page 29 — #29 i
i

i
i

i
i

Conditional gradient convergence analysis.The Frank-Wolfe
algorithm has similar convergence rate guarantees with the
projected gradient descent algorithm. In the following theo-
rem, we will make the L-smoothness assumption:

Theorem 3. Let function f : C ! R be convex, L-smooth, and
assume it attains its global minimum at a point x? 2 C. Then,
Frank-Wolfe iterates achieve:

f(xt+1)� f(x?)  2LD2

t+ 2
,

with step size

⌘t =
2

t+ 2
.

Here, D is the diameter of C: D = maxx,y2C kx� yk2.
Proof: By smoothness:

f(xt+1)  f(xt) + hrf(xt), xt+1 � xti+ L
2 kxt+1 � xtk2 .

Sequentially substituting the definition xt+1 in the above re-
cursion:

f(xt+1)  f(xt) + hrf(xt), (1� ⌘t)xt + ⌘tst � xti
+ L

2 kxt+1 � xtk2

= f(xt) + ⌘t hrf(xt), st � xti+ L
2 kxt+1 � xtk2

= f(xt) + ⌘t hrf(xt), st � xti
+ L

2 k(1� ⌘t)xt + ⌘tst � xtk2

= f(xt) + ⌘t hrf(xt), st � xti+ ⌘2
t
L

2 kst � xtk2

By the definition of D, observe that kst � xtk2  D2. The
above inequality then becomes:

f(xt+1)  f(xt) + ⌘t hrf(xt), st � xti+ ⌘2
t
LD2

2 .

Using convexity, we know that

f(x?) � f(xt) + hrf(xt), x
? � xti )

hrf(xt), x
? � xti  f(x?)� f(xt).

But we also know that st is the solution to the problem

min
x2Rp

f(xt) + hrf(xt), x� xti

subject to x 2 C.

which is equivalent to the following problem:

min
x2Rp

hrf(xt), xi

subject to x 2 C.

This implies that:

hrf(xt), sti  hrf(xt), x
?i

and thus:

hrf(xt), st � xti  f(x?)� f(xt).

Combining all the above in the main recursion (after subtract-
ing f(x?) on both sides):

f(xt+1)� f(x⇤)  (1� ⌘t) (f(xt)� f(x?)) +
⌘2
t
LD2

2

We use induction in order to prove f(xt)�f(x?)  2LD2

t+2 based
on above.

Base case t = 0. Observe that the above holds for all t. For
t = 0, we have ⌘t = 2

0+2 = 1. Hence:

f(x1)� f(x?)  (1� ⌘0)(f(x0)� f(x?)) +
⌘2
0LD2

2

= (1� 1)(f(x0)� f(x?)) + LD2

2

= LD2

2

 2LD2

2

Thus, the induction hypothesis holds for our base case.

Inductive step: from t to t + 1. Let us assume that for
iteration count up to t the following holds: f(xt) � f(x?) 
2LD2

t+2 . We need to show that, under this assumption, it also
holds for t+ 1.

By the main recursion, we have:

f(xt+1)� f(x?)  (1� ⌘t) (f(xt)� f(x?)) +
⌘2
t
LD2

2

=
⇣
1� 2

t+2

⌘
(f(xt)� f(x?)) + 4

2(t+2)2
LD2


⇣
1� 2

t+2

⌘
· 2LD2

t+2 + 4
2(t+2)2

LD2

= LD2
⇣

2t
(t+2)2

+ 2
(t+2)2

⌘

= 2LD2 · t+1
(t+2)2

= 2LD2 · t+1
t+2 · 1

t+2

 2LD2 · t+2
t+3 · 1

t+2

= 2LD2 1
t+3

Thus, the inequality also holds for the t+ 1 case.

What if f is also strongly convex. Intuition suggests that we
can achieve a linear convergence rate when f is simultaneously
L-smooth and µ-strongly convex. Unfortunately, this does
not necessarily hold for the Frank-Wolfe/conditional gradient
method when we make no assumptions about C, other than
convexity and other than the minimum of f over C exists.

There is a negative result about this statement:
Claim 6. Consider the following problem:

min
x2Rp

1
2 hQx, xi+ hb, xi

subject to x = Av, vi � 0,
pX

i=1

vi = 1,

for some Q, A matrices with appropriate dimensions, and for
a vector b. Observe that the constraint set represents the con-
vex hull of the columns of A.

Let {xt} denote the putative solutions obtained by running
conditional gradient with exact line search. Then, there is an
initial point x0 such that, for every " > 0, we have:

f(xt)� f(x?) � 1
t1+"

In other words, this claim states that there are problem in-
stances for which we cannot improve upon the O(1/t) con-
vergence rate. Note though, that this does not exclude the
possibility that there is a specific function instance f and a
specific constraint C for which we can provably attain linear
convergence.



i
i

“Notes” — 2024/1/30 — 13:07 — page 30 — #30 i
i

i
i

i
i

Where is conditional gradient useful.A quick comparison with
projected gradient descent can be summarized as follows:

(Proj. Gradient)

O
�

1
T

�
vs

(Cond. Gradient)

O
�

1
T

�

Why then do we care about conditional gradient, given that
the iteration complexity is similar to convex projected gradient
descent? The answer lies in the projection step and what is
the computational complexity needed to complete that step.
To depict this clearly, we will consider specific but widely used
convex constraints C.

(Applications and motivation are provided in the correspond-
ing notebook.)

`1-norm constraint: The convex set C in this case is:

C = {x 2 Rp | kxk1  1} .

(The discussion easily extends to the general case kxk1  ↵
for some ↵ > 0, but we keep unit ball for simplicity.) Then,
our generic problem looks like:

min
x2Rp

f(x)

subject to kxk1  1.

(Why we use the `1-norm will be apparent later on in Chapter
7)

To provide some examples, consider the sparse linear regres-
sion problem (Lasso problem), as in:

min
x2Rp

1
2kAx� bk22

subject to kxk1  1.

In this `1-norm case, if we were to perform the Euclidean norm
projection:

min
x2Rp

kx� yk22
subject to kxk1  1,

this can be completed through the soft-thresholding operator,
where10:

bx = max{y � ✓, 0},

where

✓ = 1
⇢ ·
 

⇢X

i=1

y�(i) � 1

!
,

and

⇢ = max

(
j 2 [p] | y�(j) � 1

j ·
 

jX

q=1

y�(q) � 1

!
> 0

)
.

Here, �(·) is a descending sorting index. In words, to compute
the projection, we need to i) sort the input vector y in (usu-
ally) O(p log p) time, ii) compute quantities ⇢ and ✓, and iii)
apply the entrywise rule: bx = max{y � ✓, 0}, per iteration.

On the other hand, the conditional gradient “projection”
step has the form:

min
x2Rp

hrf(xt), xi

subject to kxk1  1.

It is easy to see that if there were no constraints on x, the
solution to this minimization is unbounded and leads to �1
objective value. Under the C, we restrict our search space
within a bounded `1-norm with radius 1; e.g., see the con-
straint in the figure on the first page of the chapter. We can
prove that (one of) the solution(s) to this problem is to put
all the “energy” on the component of the gradient rf(xt) ac-
cording to:

i? 2 argmax
i-th component

|hrf(xt), eii|

where ei are the basis/coordinate vectors (e.g., e1 is the p-th
dimensional zero vector, except for the first coordinate being
1). Then, st is given by:

st = �1 · sgn (hrf(xt), ei?i) · ei? .
The first term �1 was chosen on purpose; if we had radius ↵,
then we substitute �1 with �↵. In other words, to compute
the Frank-Wolfe “projection”, we need to i) find the maxi-
mum component (in magnitude) of rf(xt) in O(p) time, and
ii) compute st in constant time, per iteration.

Comparing the two approaches and assuming that (under
hidden constants in Big-Oh notation) the number of itera-
tions these algorithms require is the same, the per-iteration
complexity of conditional gradient is lower than that of pro-
jected gradient descent. In conjunction with the fact that the
asymptotic iteration complexity is the same, O( 1

T ), this means
that we might prefer a conditional gradient in practice.

Nuclear norm constraint: While the per iteration improve-
ment in the example above seems negligible (we gain O(log p)
per iteration), things get much more interesting in the matrix
case. Problems such as matrix completion and matrix sens-
ing take the general form (we restrict our attention to square
matrices just for clarity):

min
X2Rp⇥p

f(X) subject to kXk⇤  1.

Here, the variable is a matrix in p⇥ p, f(·) is a matrix-valued
function, and kXk⇤ is the nuclear norm that has the closed-
form expression:

kXk⇤ =
pX

i=1

�i(X), where �i(X) is the i-th singular value.

To provide an example, consider the least-squares version of
matrix variables:

min
X2Rp⇥p

1
2kA(X)� bk22 subject to kXk⇤  1,

for some linear transformation mapping A : Rp⇥p ! Rm.

(Why we use the nuclear norm will be apparent later on in
Chapter 8)

If we were to perform the Euclidean norm projection:

min
X2Rp⇥p

kX � Y k2F

subject to kXk⇤  1,

this can be completed, again, through the soft-thresholding
operator over matrices, where instead of “soft-thresholding”
elements of a vector, we now soft-threshold the vector of sin-
gular values:

y ⌘
⇥
�1(X), �2(X), . . . , �p(X)

⇤

10For those interested in understanding this part, the instructor suggests you read the paper “Ef-
ficient projections onto the `1-ball for learning in high dimensions” [44]; it was included in the list
of papers to review in previous homework.



i
i

“Notes” — 2024/1/30 — 13:07 — page 31 — #31 i
i

i
i

i
i

and

by = max{y � ✓, 0}.

(The details how to compute the corresponding ✓ and ⇢ are
left to the reader. Further, details about projections onto nu-
clear norm and low-rank recovery problems will be the task of
Chapter 8.)

The gist of this description is that to compute the projec-
tion of X onto the nuclear ball, we need to compute the full
singular value decomposition of the input matrix X. This fur-
ther implies that, for the Euclidean projection, we need to i)
compute an SVD in O(p3) time, ii) perform soft-thresholding
and apply the entrywise rule: bx = max{y � ✓, 0} in O(p),
per iteration. In real applications (see Netflix recommenda-
tion system [45] and [46]), the size of these matrices could be
in several hundred thousand, if not millions; thus a↵ording a
cubic computational complexity per iteration, is often infeasi-
ble.

On the other hand, the conditional gradient “projection”
step has the form:

min
x2Rp

hrf(Xt), Xi ⌘ Tr
⇣
rf(Xt)

>X
⌘

subject to kXk⇤  1.

Let the SVD of the matrix rf(Xt) be:

rf(Xt) = U⌃V >,

where, without loss of generality, we have sorted ⌃ (and the
corresponding U, V components) to contain the singular values
in descending order. Denote �1(X) ⌘ ⌃1,1, u1 ⌘ U:,1, v1 ⌘
V:,1. Then, the Frank-Wolfe projection is equivalent to the
solution:

St = �1 · u1v
>
1 .

Similarly to the vector case, we substitute the first term �1
with �↵ if we had radius ↵. In words, to compute the Frank-
Wolfe “projection”, we need to i) find the maximum singular
value-vector pair of rf(Xt), and ii) compute St in O(p2), per
iteration. The critical di↵erence between this step and the Eu-
clidean projection is that in this case, we care only about the
top singular value-vector pair, while in the Euclidean projec-
tion step, we need all the singular value-vector pairs.

A simple way to put it is that assuming that in practice,
the SVD (either partial or full) is computed in approxima-
tion through iterative methods—such as the Power Iteration
method or the Lanczos algorithm—the Frank-Wolfe projec-
tion is ⇥O(p) faster, as it can be roughly be computed in
O(p2) complexity. Thus, the central intuition behind using
conditional gradient—as opposed to standard projected gra-
dient descent algorithms— is that, per iteration, we require
the best 1-sparse or rank-1 approximation of the gradient to
proceed, as opposed to the full `1-norm constrained or nu-
clear norm constrained approximation in the former case. For
sparsity, a quick analysis shows that this saves a logarithmic
factor per iteration. In contrast, in the case of low-rankness,
we can save up to ⇥O(p) per iteration, as we are interested
in the rank-1 approximation of the gradient instead of a full
rank soft-thresholding projection.

1

As an interlude, we will study the power iteration method.
For simplicity, we will consider here A 2 Rp⇥p is a diagonal-
izable matrix (e.g., a real symmetric matrix); thus, our focus
here is on the eigenvalue decomposition of A, where:

A = U⇤U>, U 2 Rp⇥p,⇤ 2 Rp⇥p,

where the columns of U are orthonormal and represent the
eigenvectors, and ⇤ is a diagonal matrix, with the eigenval-
ues, �i, on its diagonal. We will make the assumption the
eigenvalues are sorted such that

|�1| > |�2| � · · · � |�p|.

Please pay attention that we assume that there is a gap be-
tween |�1| and |�2|. In that case, �1 is considered the dominant
eigenvalue of the matrix.

In other words, the power iteration method approximates
the extremal eigenvalues of the matrix, that is, the eigenvalues
having the largest and smallest modules and their associated
eigenvectors. Power iteration is simple and can be described
by the following two-step procedure:

eqt+1 = Aqt

qt+1 =
eqt+1

keqt+1k2
Observe that:

• The algorithm requires an initial vector q0 2 Rp.
• The algorithm has no step sizes.
• The algorithm solves a non-convex problem due to the sec-

ond step (a projection step on k · k2 = 1).
• The algorithm requires mostly matrix-vector multiplica-

tions, which makes it e�cient in practice.

Let us analyze the convergence properties of the power it-
eration method. Unfolding the recursion, we observe that:

qt+1 =
Atq0

kAtq0k2
.

This relation explains the role played by the powers of the in-
put matrix A. For A in Rp⇥p, its eigenvectors u1, u2, . . . , up

form a basis in Rp. This means that the initial vector q0 can
be represented as:

q0 =
pX

i=1

↵iui, ↵i 2 R.

Moreover, by definition of the eigenvectors, we have:

Aui = �iui, 8i.

The above leads to an equivalent representation of Atq0 as:

Atq0 = At ·
pX

i=1

↵iui =
pX

i=1

↵iA
tui

=
pX

i=1

↵i�
t
iui

= ↵1�1 ·
 
u1 +

pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj

!
.

Using this representation, we can show the following lemma.
Lemma 6. Assume A 2 Rp⇥p is a diagonalizable matrix, with
eigenvalues |�1| > |�2| � · · · � |�p|. Suppose that ↵1 6= 0;
then, there exists a constant c > 0 such that:

kzt � u1k2  c ·
����2
�1

���
t
, t � 1,

where zt is a scaled version of qt:

zt =
qt · kAtq0k2

↵1�t
1

= u1 +
pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj .



i
i

“Notes” — 2024/1/30 — 13:07 — page 32 — #32 i
i

i
i

i
i

Proof: It is easy to see that:

kzt � u1k2 =

�����u1 +
pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj � u1

�����
2

=

�����

pX

j=2

↵j

↵1
·
⇣

�j

�1

⌘t
uj

�����
2


 

pX

j=2

⇣
↵j

↵1

⌘2
·
⇣

�j

�1

⌘2t
!1/2


����2
�1

���
t
·
 

pX

j=2

⇣
↵j

↵1

⌘2
!1/2

= c ·
����2
�1

���
t

for c :=

✓Pp
j=2

⇣
↵j

↵1

⌘2◆1/2

. ⇤
See also [47].



i
i

“Notes” — 2024/1/30 — 13:07 — page 79 — #79 i
i

i
i

i
i

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

5. Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

6. S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

7. T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

8. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

9. M. Paris and J. Rehacek. Quantum state estimation, volume 649. Springer Science
& Business Media, 2004.

10. M. Daskin. A maximum expected covering location model: formulation, properties
and heuristic solution. Transportation science, 17(1):48–70, 1983.

11. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

12. L. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

13. G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

14. G. Golub. Cmatrix computations. The Johns Hopkins, 1996.

15. Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. E�cient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

16. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

17. Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information process-
ing systems, 31, 2018.

18. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

19. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

20. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

21. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

22. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

23. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org,
2017.

24. Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory re-
current neural network architectures for large scale acoustic modeling. In Fifteenth
annual conference of the international speech communication association, 2014.

25. Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilin-
gual convolutional neural networks for LVCSR. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4955–4959. IEEE, 2016.

26. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. page
arXiv:1706.03762, 2017.

27. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. page
arXiv:1810.04805, 2018.

28. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng
Gao. Unified vision-language pre-training for image captioning and VQA. In AAAI,
pages 13041–13049, 2020.

29. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

30. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language mod-
els using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

31. Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

32. Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-
E 2. arXiv preprint arXiv:2204.13807, 2022.

33. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589, 2021.

34. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je↵rey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

35. Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

36. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- Lojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

37. Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

38. Larry Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

39. Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-
68):7, 1999.

40. B. Polyak. Introduction to optimization. Inc., Publications Division, New York, 1,
1987.

41. Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes
of EE392o, Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

42. Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

43. M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th international conference on machine learning, number CONF,
pages 427–435, 2013.

44. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto
the `1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

45. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, (8):30–37, 2009.

46. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2008.

47. T. Booth and J. Gubernatis. Improved criticality convergence via a modified Monte
Carlo power iteration method. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

48. S. Zavriev and F. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 4(4):336–341, 1993.

49. E. Ghadimi, H. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European control conference (ECC),
pages 310–315. IEEE, 2015.

50. Y. Nesterov. A method of solving a convex programming problem with convergence
rate O( 1

k2 ). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

51. B. O’Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

52. O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex op-
timization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

53. L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

54. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
review, 43(1):129–159, 2001.

55. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

56. P. Ho↵. Lasso, fractional norm and structured sparse estimation using a Hadamard
product parametrization. Computational Statistics & Data Analysis, 115:186–198,
2017.

57. S. Becker, J. Bobin, and E. Candès. NESTA: A fast and accurate first-order method
for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

58. T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

59. D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321,
2009.

60. S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

61. J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion.
SIAM Journal on Scientific Computing, 35(5):S104–S125, 2013.

62. K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal pro-
cessing letters, 22(5):593–597, 2014.

63. Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative
hard thresholding. In International Conference on Artificial Intelligence and Statistics,
pages 188–198. PMLR, 2018.

64. Je↵rey D Blanchard and Jared Tanner. GPU accelerated greedy algorithms for com-
pressed sensing. Mathematical Programming Computation, 5(3):267–304, 2013.

65. A. Kyrillidis, G. Puy, and V. Cevher. Hard thresholding with norm constraints. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3645–3648. Ieee, 2012.

66. A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE
International Workshop on, pages 353–356. IEEE, 2011.



i
i

“Notes” — 2024/1/30 — 13:07 — page 80 — #80 i
i

i
i

i
i

67. X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via
gradient descent. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1524–1534, 2019.

68. Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489–509, 2006.

69. Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowdhury. Covariance selec-
tion for nonchordal graphs via chordal embedding. Optimization Methods & Software,
23(4):501–520, 2008.

70. Joseph B Altepeter, Daniel FV James, and Paul G Kwiat. 4 qubit quantum state
tomography. In Quantum state estimation, pages 113–145. Springer, 2004.

71. Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea
Parekh, Ulysse Chabaud, and Elham Kashefi. Quantum certification and benchmark-
ing. arXiv preprint arXiv:1910.06343, 2019.

72. Masoud Mohseni, AT Rezakhani, and DA Lidar. Quantum-process tomography: Re-
source analysis of di↵erent strategies. Physical Review A, 77(3):032322, 2008.

73. D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105(15):150401, 2010.

74. Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances
in Neural Information Processing Systems, pages 1638–1646, 2011.

75. K Vogel and H Risken. Determination of quasiprobability distributions in terms
of probability distributions for the rotated quadrature phase. Physical Review A,
40(5):2847, 1989.

76. Miroslav Ježek, Jaroḿır Fiurášek, and Zdeněk Hradil. Quantum inference of states
and processes. Physical Review A, 68(1):012305, 2003.

77. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

78. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

79. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

80. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

81. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

82. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.

83. BP Lanyon, C Maier, Milan Holzäpfel, Tillmann Baumgratz, C Hempel, P Jurcevic,
Ish Dhand, AS Buyskikh, AJ Daley, Marcus Cramer, et al. E�cient tomography of a
quantum many-body system. Nature Physics, 13(12):1158–1162, 2017.

84. D. Gonçalves, M. Gomes-Ruggiero, and C. Lavor. A projected gradient method for
optimization over density matrices. Optimization Methods and Software, 31(2):328–
341, 2016.

85. E. Bolduc, G. Knee, E. Gauger, and J. Leach. Projected gradient descent algorithms
for quantum state tomography. npj Quantum Information, 3(1):44, 2017.

86. Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng. Superfast maximum-likelihood
reconstruction for quantum tomography. Phys. Rev. A, 95:062336, Jun 2017.

87. Zhilin Hu, Kezhi Li, Shuang Cong, and Yaru Tang. Reconstructing pure 14-qubit quan-
tum states in three hours using compressive sensing. IFAC-PapersOnLine, 52(11):188
– 193, 2019. 5th IFAC Conference on Intelligent Control and Automation Sciences
ICONS 2019.

88. Zhibo Hou, Han-Sen Zhong, Ye Tian, Daoyi Dong, Bo Qi, Li Li, Yuanlong Wang,
Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, et al. Full reconstruction of a 14-qubit
state within four hours. New Journal of Physics, 18(8):083036, 2016.

89. C. Riofŕıo, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert.
Experimental quantum compressed sensing for a seven-qubit system. Nature Com-
munications, 8, 2017.

90. Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. Guaranteed recovery
of quantum processes from few measurements. Quantum, 3:171, 2019.

91. S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: Error bounds, sample complexity and e�cient estimators. New Journal of
Physics, 14(9):095022, 2012.

92. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Prov-
able quantum state tomography via non-convex methods. npj Quantum Information,
4(36), 2018.

93. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

94. N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

95. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719. ACM, 2005.

96. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix fac-
torizations. In Proceedings of the 23rd international conference on Machine learning,
pages 249–256. ACM, 2006.

97. J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

98. M. Jaggi and M. Sulovsk. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 471–478, 2010.

99. R. Keshavan. E�cient algorithms for collaborative filtering. PhD thesis, Stanford
University, 2012.

100. R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions
of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. International
World Wide Web Conferences Steering Committee, 2013.

101. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing Sys-
tems, pages 730–738, 2015.

102. G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of se-
mantic classes for image annotation and retrieval. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(3):394–410, 2007.

103. A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In
Computer Vision–ECCV 2008, pages 316–329. Springer, 2008.

104. C. Wang, S. Yan, L. Zhang, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1643–1650. IEEE, 2009.

105. J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

106. Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar. A generalized linear model
for principal component analysis of binary data. In AISTATS, 2003.

107. K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari. Prediction and
clustering in signed networks: A local to global perspective. The Journal of Machine
Learning Research, 15(1):1177–1213, 2014.

108. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, 27, 2014.

109. Koen Verstrepen. Collaborative Filtering with Binary, Positive-only Data. PhD thesis,
University of Antwerpen, 2015.

110. N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting
user preferences. arXiv preprint arXiv:1504.06165, 2015.

111. Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li. Neighborhood regularized logistic ma-
trix factorization for drug-target interaction prediction. PLoS Computational Biology,
12(2):e1004760, 2016.

112. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages
3089–3114. The Royal Society, 2007.

113. E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix
completion. SIAM Review, 57(2):225–251, 2015.

114. I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

115. P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
transactions on automation science and engineering, 3(4):360, 2006.

116. K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1489–1496, 2007.

117. F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with
application to protein clustering. Proceedings of the National Academy of Sciences
of the United States of America, 102(35):12332–12337, 2005.

118. H. Andrews and C. Patterson III. Singular value decomposition (SVD) image coding.
Communications, IEEE Transactions on, 24(4):425–432, 1976.

119. M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4,
pages 3273–3278. IEEE, 2004.

120. E. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772, 2009.

121. P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945,
2010.

122. S. Becker, V. Cevher, and A. Kyrillidis. Randomized low-memory singular value
projection. In 10th International Conference on Sampling Theory and Applications
(Sampta), 2013.

123. L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces
from highly incomplete information. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE, 2010.

124. K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-
mation. Information Theory, IEEE Transactions on, 56(9):4402–4416, 2010.

125. A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal
of mathematical imaging and vision, 48(2):235–265, 2014.

126. Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

127. S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

128. J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

129. Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion.
In Proceedings of The 31st International Conference on Machine Learning, pages
674–682, 2014.



i
i

“Notes” — 2024/1/30 — 13:07 — page 81 — #81 i
i

i
i

i
i

130. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimiza-
tion framework. In Advances in Neural Information Processing Systems 28, pages
3132–3140. 2015.

131. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

132. Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley - benchmarking deep learning optimizers. CoRR, abs/2007.01547,
2020.

133. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul
2011.

134. Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

135. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.


