
i
i

“Notes” — 2024/2/19 — 16:17 — page 33 — #33 i
i

i
i

i
i

Chapter 5

Thus far, we have focused on methods that are based on the notion
of gradient: At every iteration, we compute first-order (=gradient)
information about the objective, and we use this information to per-
form an educated step towards a local or a global minimum of the
objective, as in gradient descent. We have shown—through theo-
retical analysis—what we can achieve by using gradients concern-
ing convergence rates and what the best we can hope for (=lower
bounds) is.

But what are some ways to accelerate this first set of algorithms
regarding analytical complexity? We will present some approaches
that deviate from simple gradient-based methods and provably and
empirically outperform the methods studied thus far, including New-
ton’s method and quasi-Newton variants. To complete the picture
on the theory side, we will continue working in the convex world and
compare the obtained bounds to understand what we gain and lose
for each of these choices.

Newton’s method | quasi-Newton variants | Natural gradient | derivative-free

optimization

We first remind ourselves what the limits of gradient descent
are. The following summarizes lower bounds we can expect,
by only using gradients in convex optimization, for some types
of objective functions we have previously discussed.

• For the class of L-smooth convex objective functions, one
can prove the existence of functions f such that gradient
descent satisfies:

f(xT)� f(x?) � 3Lkx0 � x?k22
32(T + 1)2

= O
�

1
T2

�
.

Under this assumption, and only using gradients, we can-
not achieve a better convergence rate than O(1/T 2).

• For the class of convex objectives functions with both Lip-
schitz continuous gradients and strong convexity, one can
prove the existence of functions f such that gradient de-
scent satisfies:

kxT � x?k22 �
✓p

� 1p
+ 1

◆2T

kx0 � x⇤k22.

where  = L/µ > 1. Here we observe that, while we
have achieved the same convergence rate concerning the
exponent—i.e., in both cases, we have cT , for c < 1—in the
lower bound case, we “deal with” the term

p
 instead of

. This can be alternatively seen as O(
p
 log 1

") iteration
complexity, compared to O( log 1

") iteration complexity
that we already proved for gradient descent.

But how can we achieve such lower bounds? Can we achieve
something better? This chapter follows a path on di↵erent al-
gorithmic approaches, some of which deviate from using first-
order methods to show what we gain (and lose) in practice.

The (notorious) Newton’s method. Newton’s method
has been and still is one of the most celebrated algorithms in
the numerical scientific community. We mention the research
community here to highlight that there are applications where
we care about accurately resolving a problem. E.g., there
might be cases where the estimation accuracy at the error
level of 10�15 is essential for the problem and the algorithm.
Getting a solution just 10�4-close might be unacceptable.

Let us first derive the Newton’s iteration. Newton’s method,
as another descent method, updates the current estimate x as:

x x+�x,

where �x abstractly defines a direction/update that moves
x to a “better place”, with respect to the objective we try to
minimize. In this chapter, we focus on the unconstrained case:

min
x2Rp

f(x),

where f is assumed to be twice di↵erentiable, with gradient
rf(·) and Hessian r2f(·). By taking the second-order Taylor
expansion of f around x+�x, we have:

f(x+�x) ⇡ f(x) + hrf(x), (x+�x)� xi
+ 1

2

⌦
r2f(x) ((x+�x)� x) , ((x+�x)� x)

↵

⇡ f(x) + hrf(x),�xi+ 1
2

⌦
r2f(x)�x,�x

↵

(Similar reasoning is used for gradient descent to connect �x
with negative gradient, �rf(·), as the best descent direction
for first-order methods.)

Using this characterization, we can locally find the best �x
by finding the root of the quadratic approximation. To see
this, if we set �x ⌘ y, the above expression becomes:

f(x) + hrf(x), yi+ 1
2

⌦
r2f(x)y, y

↵
,

which is a quadratic function with respect to y. Given the
above, one could find �x that makes the gradient of f(x+�x)
be zero:

r�xf(x+�x) = 0
approx.) rf(x) +r2f(x)�x = 0

) �x = �
�
r2f(x)

��1rf(x).

Substituting �x in x+�x, we obtain the Newton’s iteration:

Def inition 26. (Newton’s method) For xt 2 Rp and ⌘t 2 R, we
update our estimate xt on each iteration as follows:

xt+1 = xt � ⌘tH
�1
t rf(xt), Ht := r2f(xt).

Remark 1. As we will show, ⌘t = 1 in theory. However, some
cases require ⌘t < 1 at least at the beginning of the algorithm
or when we initialize the algorithm badly. When ⌘t < 1, we
call the method damped Newton’s method, and its study is
currently outside the scope of this course.

Before we present some theory for Newton’s method, we
need to get the full picture of what we are proposing: With
Newton’s method, we do gradient descent type-of motions.
But before applying the gradient rf(xt), we “translate” it
through the matrix r2f(xt)

�1; i.e., we use the transformed

gradient erf(xt) := r2f(xt)
�1rf(xt).

Remark 2. If H�1
t = diag{h1, . . . , hp}, where not all hi =

1, then using our interpretation above, we can see that in
this condition we are doing gradient descent with coordinate-
specific step sizes (i.e., for coordinate i we use step size ⌘thi).
Notice by default, since ⌘t is scalar, we take equally-scaled
steps in each direction for each descent step, which may be
suboptimal depending on our domain and the distribution of x;
customizing our step sizes coordinate-wise can perform better
in practice in a variety of domains. Coordinate-specific step
sizes are an active area of research at the center of machine
learning research and the adaptive methods used in neural net-
work training. This topic might be covered in later chapters of
the course.

i
i

“Notes” — 2024/2/19 — 16:17 — page 34 — #34 i
i

i
i

i
i

Guarantees of Newton’s method. Let us first study the
behavior of Newton’s method in general, even non-convex, sce-
narios.
Theorem 4. Let minx f(x) be the problem of interest, with f
being twice di↵erentiable. Assume f has Lipschitz continuous
Hessians:

��r2f(x)�r2f(y)
��
2
M · kx� yk2,

and f satisfies at the optimum point x?: r2f(x?) ⌫ µI. As-
suming that we start from a point x0 that is close enough to
x?:

kx0 � x?k2 < 2µ
3M ,

Newton’s method as in:

xt+1 = xt � ⌘tH
�1
t rf(xt), Ht := r2f(xt),

converges according to:

kxt+1 � x?k2 
Mkxt � x?k22

2 (µ�Mkxt � x?k2)
.

Proof: For the first step of the analysis, we need to prove
a lemma that derives from the application of Taylor’s theo-
rem / mean value theorem / fundamental theorem of calculus
(Part II) / Newton-Leibniz axiom, which we restate below for
convenience.

Theorem 5. Let f be a real-valued (continuous) function on
[↵,�] with anti-derivative F (i.e., F 0(x) = f(x)). Then:

Z �

↵

f(x) dx = F (�)� F (↵)

Lemma 7. By the Fundamental Theorem of Calculus (i.e.,
above), we have

rf(x)�rf(y) =
Z 1

0

r2f(y + ⌧(x� y))(x� y) d⌧

Proof: Define g0(⌧) = r2f(y + ⌧(x � y)) · (x � y) =
(rf(y + ⌧(x� y)))0. Then:

Z 1

0

r2f(y + ⌧(x� y))(x� y) d⌧

=

Z 1

0

g0(⌧) d⌧

= g(1)� g(0)

= rf(y + 1 · (x� y))�rf(y + 0 · (x� y))

= rf(x)�rf(y).

using g0 = f and g = F . ⌅
Now, using the lemma we just proved to massage the main

recursion of Newton’s method, we have:

xt+1 � x
?

= xt �
�
r2

f(xt)
��1 rf(xt)� x

?

= xt �
�
r2

f(xt)
��1

(rf(xt)�rf(x?))� x
?

= xt �
�
r2

f(xt)
��1

✓Z 1

0
r2

f (x? + ⌧(xt � x
?)) (xt � x

?) d⌧

◆
� x

?

= (xt � x
?)�

�
r2

f(xt)
��1

✓Z 1

0
r2

f (x? + ⌧(xt � x
?)) (xt � x

?) d⌧

◆

=
�
r2

f(xt)
��1 ·Gt(xt � x

?)

where

Gt =

Z 1

0

�
r2f(xt)�r2f (x? + ⌧(xt � x?))

�
d⌧.

We proceed by bounding the terms on the right-hand side.
(Remember that k · k2 for matrices corresponds to the spectral
norm, not the Frobenius norm.)

kGtk2 =

����
Z 1

0

�
r2f(xt)�r2f (x? + ⌧(xt � x?))

�
d⌧

����
2


Z 1

0

��r2f(xt)�r2f (x? + ⌧(xt � x?))
��
2
d⌧


Z 1

0

M · kxt � x? + ⌧(xt � x?)k2d⌧

= Mkxt�x?k2
2

Moreover, we know that, by the Hessian Lipschtiz continuity:
��r2f(x)�r2f(y)

��
2
M · kx� yk2,

we have:

r2f(x)�Mkx� yk2 · I � r2f(y) � r2f(x) +Mkx� yk2 · I,

8x, y, and thus holds for x = xt and y = x?:

r2f(xt) ⌫ r2f(x?)�Mkxt � x?k2 · I ⌫ (µ�Mkxt � x?k2) · I.

Assume that kxt � x?k2  µ
M (to be justified a posteriori), we

have:
��r2f(xt)

�1
��
2
 (µ�Mkxt � x?k2)�1 .

Combining all the above, we get:

kxt+1 � x?k2 
���
�
r2f(xt)

��1 ·Gt · (xt � x?)
���
2


��r2f(xt)

�1
��
2
· kGtk2 · kxt � x?k2

 (µ�Mkxt � x?k2)�1 · Mkxt�x?k2
2 · kxt � x?k2

=
Mkxt � x?k22

2 (µ�Mkxt � x?k2)
.

Let us discuss the initialization assumption: kx0�x?k2  2µ
3M .

Using induction, we have the following two steps.

Basis step: We have:

kx1 � x?k2 
Mkx0 � x?k22

2 (µ�Mkx0 � x?k2)

=
M · 4µ2

9M2

2
�
µ�M · 2µ

3M

�

=
4µ2

9M

2
�
3Mµ�2Mµ

3M

� =
4µ2

9M
2µ
3

= 2µ
3M .

Induction step: Assume that for some t, it holds kxt �
x?k2  2µ

3M . This also justifies the assumption that kxt �
x?k2  2µ

3M 
µ
M which is used in the proof above as an as-

sumption. Then:

kxt+1 � x?k2 
Mkxt � x?k22

2 (µ�Mkxt � x?k2)
= · · · = 2µ

3M .

i
i

“Notes” — 2024/2/19 — 16:17 — page 35 — #35 i
i

i
i

i
i

This completes the proof: i.e., assuming a good enough ini-
tialization, kx0� x?k2  2µ

3M , all the assumptions in the proof
are justified, leading the recursion in the theorem.

⌅

Before we proceed, let’s first understand what this recursion
means. By assumption of initialization, the recursion becomes:

kxt+1 � x?k2 
Mkxt � x?k22

2 (µ�Mkxt � x?k2)

 Mkxt � x?k22
2
�
µ�M 2µ

3M

�

= 3M
2µ · kxt � x?k22 ⌘ c · kxt � x?k22.

Under the assumption that we start from a good initialization
point where kxt � x?k2  1—i.e., 2µ

3M  1—this translates
that the new distance is quadratically decreased, rather than
linearly. That is, if we want kxT � x?k2  ", then this can be
achieved in O

�
log log 1

"

�
iterations. See also the convergence

rate figure.
What if we assume convexity of f? It turns out that, using

convexity, we do not gain anything in terms of convergence
rate. However, assuming convexity, we can achieve global con-
vergence: irrespective of the initialization, there is an analysis
that proves that Newton’s method converges to the global min-
imum. There is a caveat, though: The quadratic convergence
rate holds only locally! I.e., we are guaranteed a quadratic
convergence rate after we perform some steps at a slower rate.
Only after we get inside a region close enough to the global
minimum is the quadratic rate activated!

Some comments on Newton’s method

• Newton’s method exploits the local curvature of the func-
tion. This is depicted in the following figures, borrowed
from Boyd’s and Vandenberghe’s book. In the first case,
the gradient descent method is myopic, and the gradient
suggests a direction almost perpendicular to the direction
we should move.

Fig. 33. Gradient descent behavior in function valleys.

On the other hand, Newton’s method “warps” the func-
tion landscape, where the gradient direction moves more
towards the optimum.

Fig. 34. Newton’s method first changes the function landscape and then per-
forms gradient descent on this space.

• Each iteration of Newton’s method is more expensive com-
putationally than simple gradient descent. Thus, there is
a trade-o↵: while we need a much smaller number of itera-
tions to get to optimum (after good initialization), we pay
much more per iteration. (Think of the case where comput-
ing the Hessian does not fit in the computer’s main mem-
ory). Remember that if rf(x) 2 Rp, then r2f(x) 2 Rp⇥p;

if rf(X) 2 Rp⇥p, then r2f(X) 2 Rp2⇥p2 . Setting
p = 106, we get an idea of how things could scale in prac-
tice.

• Theory so far assumes a good initialization point to achieve
quadratic convergence rate –this is an active research area
even recently– hopefully, more notes will be added to this
bullet in the future.

• Newton’s method is rarely used in machine learning ap-
plications because we often need to care about exact solu-
tions. Newton’s method is critical in cases where accuracy
is key, such as numerical analysis and scientific computing
–this is an active research area even recently– hopefully,
more notes will be added to this bullet in the future.

• Comparing to what we can achieve with gradient descent,
Newton’s method “breaks” the lower bound

kxT � x?k22 �
✓p

� 1p
+ 1

◆2T

kx0 � x⇤k22 ⌘ cT · kx0 � x⇤k22,

since for Newton’s method, we have:

kxT � x?k22  cT · kx0 � x⇤k42.

Spanning the space between gradient descent and
Newton’s method. Newton’s method proposes a di↵erent
way of performing gradient descent: instead of just taking the
gradient per iteration, we compute the Hessian to weigh the
gradient. This raises the question: Does only the true Hessian
work as a weighting factor for the gradient? Can we generate
some approximate Hessian Ht and use it in

xt+1 = xt � ⌘tH
�1
t rf(xt)

to similar success?
This leads to the class of general preconditioning matrices

and preconditioning methods. These methods are often called

i
i

“Notes” — 2024/2/19 — 16:17 — page 36 — #36 i
i

i
i

i
i

Fig. 35. Borrowed from Wikipedia. Illustration of di↵erent convergence rates. Note that the y-axis is in logarithmic scale for all the plots, while the x-axis has a linear
scale. The y-axis denotes a metric that dictates the optimum point; for example, kxk � x

?k2 (We use k as an iteration subscript here). The x-axis represents
the iteration count k. The first two plots represent linear convergence rates: it is called linear as a convention to match the linear curve in the logarithmic y-axis scale.
While the second plot depicts a preferable behavior, the two plots are equivalent in the big-Oh notation. For an error level ", linear convergence rate implies O

�
log 1

"

�
. The

third plot depicts a quadratic convergence rate. For an error level ", linear convergence rate implies O
�
log log 1

"

�
. Finally, the fourth plot represents the sublinear

convergence rate, much slower than the linear rate. Some typical rates are: O
�
1/"2

�
, O (1/") , O

�
1/

p
"
�
.

quasi-Newton methods, as we do not use the exact Hessian
information per iteration.

Def inition 27. (Quasi-Newton method) For xt 2 Rp, we update
our estimate xt on each iteration as follows:

xt+1 = xt � ⌘tBtrf(xt), Bt 2 Rp⇥p.

where Bt ⇡ H�1
t is some approximation to the inverse of the

true Hessian.

There are numerous ways to perform this step—i.e., there are
various ways to generate Bt per iteration—but we will focus
on two of them for now:

• The (L)BFGS approximation;
• The SR1 approximation.

Both of them handle the unconstrained case:

min
x2Rp

f(x).

The Broyden-Fletcher-Goldfarb-Shanno approxima-
tion, a.k.a. BFGS. The BFGS approximation is based
on the following reasoning:

• We know by Taylor’s theorem that we can approximate the
objective f(·) around xt as:

gt(�x) := f(xt) + hrf(xt), �xi+ 1
2 hHt�x, �xi ,

where Ht represents the actual Hessian matrix. Note here
that gt(�x) represents a local quadratic approximation of
f , and �x is a vector that defines the direction we want to
take: xt+1 = xt + �x. Thus, iteratively, we will generate
the sequence . . . , gt�1(·), gt(·), gt+1(·), . . . , where at each
iteration we compute a new �x.

• Instead of using the exact Hessian in Ht := r2f(xt), we
look for an approximation of the Hessian. Remember that
we use g(·) to compute the new �x. We need some condi-
tions that this function should satisfy:

1. When we take the gradient of gt+1(·) at the zero point—
meaning that we do not move at all—we should get

back the gradient of the original function. This con-
dition makes sure that the quadratic approximation of
f around its original point xt+1 gives back the original
gradient of the function, rf(xt+1):

rgt+1(0) = rf(xt+1)

2. When we take the gradient of the new function approxi-
mation gt+1(·), evaluated at the point after reversing the
direction ��x, then we should obtain back the gradient
of f at the previous iteration. I.e.,

rgt+1(��x) = rf(xt)

3. Inspired by making the local approximation quadratic,
we also require per iteration to have:

Ht+1 � 0

• Let us use the above information to generate some use-
ful equations. First, observe that by taking gradient of
rgt+1(��x) and using the above equation, we get:

rgt+1(��x) = rf(xt)) Ht+1�x = rf(xt+1)�rf(xt)

This is known as the secant equation. Further, by the as-
sumption that Ht+1 � 0, the above becomes:

h�x, rf(xt+1)�rf(xt)i > 0.

• The above lead to a recipe: per iteration, we are looking
for a matrix Ht+1 � 0 such that the secant equation is
satisfied. But, how many such Ht+1 exist? Quite a lot!
To restrict the search space, the BFGS method solves the
following optimization problem per iteration:

min
H�0

kH �Htk2F

subject to H = H>

H�x = rf(xt+1)�rf(xt)

Solving this problem, we obtain Ht+1; to use Ht+1, we fur-
ther need to invert it and use it as:

xt+2 = xt+1 � ⌘t+1H
�1
t+1rf(xt+1).

i
i

“Notes” — 2024/2/19 — 16:17 — page 37 — #37 i
i

i
i

i
i

In other words, we have found a way to compute a ma-
trix Ht+1, but we still need to invert it, just like Newton’s
method! If so, why don’t we compute r2f(xt+1), which we
know is optimal?

• BFGS method goes a bit further to handle this case: In-
stead of computing in the H domain and then performing
inversion, we define B := H�1, and we substitute that in
the above expression:

min
B�0

kB �Btk2F

subject to B = B>

�x = B (rf(xt+1)�rf(xt))

I.e., we approximate the inverse directly so that xt+1 =
xt � ⌘tBtrf(xt)!

• But, how easy is it to solve the above problem? It turns
out (remember that various matrices satisfy what we need)
that the above problem has a closed-form solution:

Bt+1 =
⇣
I � sty

>
t

s>
t
yt

⌘
Bt

⇣
I � yts

>
t

s>
t
yt

⌘
+

sts
>
t

s>
t
yt

where

st := �x

yt := rf(xt+1)�rf(xt)

Remark 3. How do we initialize? In other words, how do we
set B0? Standard configurations assume B0 = I.

• What is the computational complexity of the above opera-
tions? First, observe that we have all the ingredients com-
puted as if we were performing gradient descent: at the t+1
iteration, we have rf(xt) and rf(xt+1). Because we do
matrix-matrix multiplication, this algorithm is still O(n3),
the same asymptotic complexity as inverting the Hessian!
However, we perform only inner and outer product opera-
tions, often much faster than computing the actual Hessian
and inverting it (e.g., via SVD); the big-O notation hides
this speedup in the constants it elides.

• The BFGS method achieves a convergence rate of

kxt+1 � x?k2  ctkxt � x?k2 where ct ! 0

We call this a super-linear method. It is faster than
sub-linear as the convergence constant shrinks with t but
still slower than the quadratic convergence given by actual
second-order methods (e.g., Newton’s method). Still, that’s
okay, given that BFGS is a method that uses only first-order
information to approximate the second-order information!

The symmetric, rank-1 approximation, a.k.a. SR1/
The BFGS method described above does not assume anything
about the function f other than being di↵erentiable. Thus,
BFGS can be used both for convex and non-convex optimiza-
tion, where we force the secant equation + positive definite-
ness to find the new preconditioner at each iteration. This
means that we approximate the function f per iteration with
a second-order function that always looks upwards! In other
words, we locally approximate f with a “bowl” per iteration,
even if f initially might look locally as a saddle. While this
never happens in the convex case (and thus BFGS sounds like
a great choice when we minimize a convex function), there
might be cases where we minimize a non-convex function, and
it would be great to have di↵erent approaches to handle these
cases.

This is where SR1 approximation could be handy. As its
name indicates, the SR1 approximation approximates a pre-

conditioner matrix through successive rank-1 updates. In par-
ticular, if Ht is the current approximation of second-order in-
formation, SR1 is based on the following approximation:

Ht+1 = Ht + �vv>,

for some vector v with appropriate dimensions, and � 2 {±1}.
Key property is that such updates do not guarantee that the
new approximation is positive definite, which could be a nice
feature when we approximate non-convex functions.

Assuming the secant equation is satisfied, the combination
of the two equations leads to the following update:

Bt+1 = Bt +
(st �Btyt)(st �Btyt)

>

(st �Btyt)>yt
.

Natural gradient: entering methodology in modern
ML. Here, we will discuss the notion of natural gradient, re-
late it to the idea of Hessian in optimization, and set the scene
for adaptive methods in training neural networks. To do so,
we will need the following notions.

Let ✓ 2 Rp denote a set of variables that are unknown to
us and we want to estimate. Here, we will follow more of a
probabilistic approach where given these parameters ✓, we ob-
serve x 2 Rd, according to the distribution p(x|✓). To give a
concrete example, assume that ✓ models the space of human
faces: then, given fixed ✓ := ✓0, the probability of observing
face #1 over face #2 could be:

p(x1|✓ = ✓0) > p(x2|✓ = ✓0),

while, for a di↵erent ✓ realization, ✓ := ✓1, it might be:

p(x1|✓ = ✓1) < p(x2|✓ = ✓1).

Now, assume that we have a data set {xi}ni=1. One way
to learn ✓ is through maximum log-likelihood: we define the
log-likelihood as log p(x|✓), and we are interested in:

b✓ 2 argmax
✓2Rp

�
L(✓) := Ep(x|✓) [log p(x|✓)]

Let us compute the gradient and the Hessian of this new
function. For the gradient, we first compute:

r log p(x|✓) = 1
p(x|✓) ·rp(x|✓)

and thus,

rL(✓) = Ep(x|✓)

h
1

p(x|✓) ·rp(x|✓)
i
.

For the Hessian, as the Jacobian of the gradient, we have:

Hlog p(x|✓) = r
⇣

1
p(x|✓) ·rp(x|✓)

⌘

=
Hp(x|✓)·p(x|✓)�rp(x|✓)·rp(x|✓)>

p(x|✓)·p(x|✓)

=
Hp(x|✓)

p(x|✓) �
✓
rp(x|✓)
p(x|✓)

◆
·
✓
rp(x|✓)
p(x|✓)

◆>

where Hp(x|✓) is the Hessian with respect to p(x|✓). Comput-
ing the expectation with respect to p(x|✓), we have:

Ep(x|✓)
⇥
Hlog p(x|✓)

⇤

= Ep(x|✓)


Hp(x|✓)

p(x|✓)

�
� Ep(x|✓)

"✓
rp(x|✓)
p(x|✓)

◆
·
✓
rp(x|✓)
p(x|✓)

◆>
#

=

Z
Hp(x|✓)

p(x|✓) p(x|✓)dx� Ep(x|✓)

"✓
rp(x|✓)
p(x|✓)

◆
·
✓
rp(x|✓)
p(x|✓)

◆>
#

i
i

“Notes” — 2024/2/19 — 16:17 — page 38 — #38 i
i

i
i

i
i

Before we proceed, observe that:

Z
Hp(x|✓)

p(x|✓) p(x|✓)dx ⌘
Z
r
⇣

1
p(x|✓) ·rp(x|✓)

⌘
· p(x|✓)dx

=

Z
r
⇣

1
p(x|✓) ·rp(x|✓) · p(x|✓)

⌘
dx

=

Z
r2 (p(x|✓)) dx

(mild assumptions)
= r2

✓Z
p(x|✓)dx

◆
= r2(1) = 0

Thus,

Ep(x|✓)
⇥
Hlog p(x|✓)

⇤
= �Ep(x|✓)

"✓
rp(x|✓)
p(x|✓)

◆
·
✓
rp(x|✓)
p(x|✓)

◆>
#

where the quantity on the right hand side is the Fisher in-
formation, usually denoted with F . We can see the Fisher
information as a measure of curvature for the log-likelihood
function.

But how will we use this information in optimization? One
can think of the immediate application of F as a replacement
for Hessian in second-order methods. Nevertheless, it is not
apparent why and under which settings.

One key di↵erence so far in our narrative is the introduc-
tion of a probability distribution p(x|✓). In our course thus
far, we have discussed about deterministic optimization: We
are given an objective f(x) that is usually di↵erentiable, and
we try to find the minimum/maximum. However, “under the
rag”, we have implied that any step we perform will be mea-
sured in the Euclidean space. To see this, assume that L(✓)
denotes the negative log-likelihood we want to minimize. Gra-
dient descent is one way: we compute the direction d on the
parameter space ✓ that minimizes the objective. Formally, we
can find that the best direction is the negative gradient:

lim
✏!0

✓
1
✏ arg min

kdk✏
L(✓ + d)

◆
= � rL(✓)
krL(✓)k2

.

i.e., the direction (that is why we have normalization; we care
about the direction, not how far we go on this direction) of
minimum drop on L(·) is the negative gradient.

By definition of this steepest descent direction, though, we
use the Euclidean norm. Thus, the optimization in gradient
descent depends on the Euclidean geometry of the parameter
space.

Though we have introduced the notion of likelihoods and ex-
pectations, stated di↵erently, we have di↵erent objectives by
minimizing the negative log-likelihood loss function, and it is
natural to think of steps in the space of all possible likelihood,
realizable by parameter ✓.

The Kullback-Leibler divergence. First, we need to define the
notion of the Kullback-Leibler (KL) divergence metric.

Def inition 28. (Kullback-Leibler divergence) Let p1(·), p2(·) be
two distributions. Then, the KL divergence is given by:

DKL (p1(·)||p2(·)) = Ep1(·)

h
log p1(·)

p2(·)

i
.

Remark 4. Intuitively, the KL-divergence measures the “close-
ness” of two distributions. A little more rigorously, the KL-
divergence is closely related to information theory; indeed, it
is precisely the relative entropy between distributions p(·) and
q(·). Under this lens, another interpretation of the metric is
the information we gain when using p(·) instead of q(·).

Remark 5. The KL-divergence “metric” is not a valid distance
metric in the measure-theoretic sense, as it is not symmetric
nor satisfies the triangle inequality.

To give an example, consider two Gaussians, with their
means fixed in the two plots to follow (Figure 36; bor-
rowed from https://wiseodd.github.io/techblog/2018/

03/14/natural-gradient), but with di↵erent variances.

Fig. 36. Graphical illustration of distance metrics between distributions.

If we were to use the Euclidean distance between the means
as a metric between the two distributions, it is clear that the
metric would be the same between the two cases: since the
means remain the same, their `2-norm distance is the same.
Nevertheless, the distributions in these two plots are di↵erent;
thus, we should find a metric that mirrors this in its definition.

Properties of the KL divergence: Observe that the KL diver-
gence, by definition, satisfies:

DKL (p1(·)||p2(·)) = Ep1(·)

h
log p1(·)

p2(·)

i

= Ep1(·) [log p1(·)]� Ep1(·) [log p2(·)] .

To help our discussion and make connections with our prob-
lem so far, we use p1(·) = p(x|✓) and p2(·) = p(x|✓0). Then,
the gradient of KL with respect to ✓0 satisfies:

r✓0
�
DKL

�
p(x|✓)||p(x|✓0)

��

= r✓0Ep(x|✓)[log p(x|✓)]�r✓0Ep(x|✓)[log p(x|✓0)]
= �Ep(x|✓)[r✓0 log p(x|✓0)]

= �
Z

p(x|✓)r✓0 log p(x|✓0) dx.

and the second derivative satisfies:

r2
✓0
�
DKL

�
p(x|✓)||p(x|✓0)

��
= �

Z
p(x|✓)r2

✓0 log p(x|✓0) dx

Then, the Hessian evaluated at ✓0 = ✓ is:

HDKL(p(x|✓)||p(x|✓0)) = �
Z

p(x|✓) r2
✓0 log p(x|✓0)

��
✓0=✓

dx

= �
Z

p(x|✓)Hlog p(x|✓) dx

= � E
p(x|✓)

[Hlog p(x|✓)]

= F,

which is what we have shown above; i.e., the expected Hessian
of the log function is the Fisher information matrix.

2nd-oder Taylor expansion of KL divergence and natural gradi-
ent : Let us now connect the dots. Following similar reasoning
to classical optimization, given an objective function, we can
locally approximate the objective with its second-order Tay-
lor approximation (which involves both the gradient and the
Hessian information) and then locally minimize that approxi-
mation; then, we iterate.

i
i

“Notes” — 2024/2/19 — 16:17 — page 39 — #39 i
i

i
i

i
i

The second-order approximation of the KL divergence met-
ric satisfies:

DKL (p(x|✓)||p(x|✓ + d))

⇡ DKL (p(x|✓)||p(x|✓)) + hrDKL (p(x|✓)||p(x|✓)) , di+ 1
2
hFd, di

=
1
2
hFd, di .

Similar to the Euclidean case, we seek an update vector d
that minimizes the loss function L(✓) in the distribution space.
Analogously to steepest descent:

d? = argminDKL(p(x|✓)||p(x|✓+d))=cL(✓ + d),

where c is some constant. Compare this with the Euclidean
case where:

d? = argminkdk2✏L(✓ + d).

The purpose of fixing the KL-divergence to some constant is
to ensure that we move along the space of distributions with
constant speed, regardless of the curvature.

How do we solve this part? If we write the above minimiza-
tion in Lagrangian form, we get:

d? = argmin
d

{L(✓ + d) + � · (DKL (p(x|✓)||p(x|✓ + d))� c)}

⇡ argmin
d

⇢
L(✓) + hrL(✓), di+ 1

2
� hFd, di � �c

�
.

To solve this minimization, we set its derivative with respect
to d to zero; this will lead to the solution:

d = � 1
�F

�1rL(✓).

The above leads to the definition of the natural gradient
descent method:

• Repeat:

1. Compute the gradient rL(✓t).
2. Compute the Fisher information matrix Ft.

3. Compute the natural gradient direction: dt = F�1
t rL(✓t).

4. For a step size ⌘, compute ✓t+1 = ✓t � ⌘dt.

Take-away messages:

• The natural gradient descent is a generalization of Newton’s
method, as there are cases where we can obtain Newton’s
iteration from the natural gradient descent.

• Remember that, after all, the Fisher information matrix is
computed per iteration and inverted. It turns out that on
expectation, it corresponds to the expected Hessian of the
objective.

• How do we implement the natural gradient method in reality?
Remember the definition of the Fisher information:

F = � E
p(x|✓)

[Hlog p(x|✓)].

In realistic scenarios, we do not have access to the distribu-
tion p(x|✓) but rather have data from that distribution. In
that case, we refer to the empirical Fisher information matrix,
defined as:

F = 1
n

nX

i=1

r log p(xi|✓) ·r log p(xi|✓)>

where {xi}ni=1 denote the training set of examples. In that
case, the main recursion of natural gradient descent becomes:

✓t+1 = ✓t � ⌘

1
n

nX

i=1

r log p(xi|✓t) ·r log p(xi|✓t)>
!�1

·r bL(✓t),

where also the objective and its gradient are evaluated in their
empirical form:

r bL(✓t) := 1
n

nX

i=1

r log p(xi|✓t).

• The main reason we studied natural gradient descent is to mo-
tivate our discussion later on regarding algorithms in training
neural networks. The empirical Fisher information matrix
appears in almost all modern algorithms in ML, usually fur-
ther approximated to be easily computed (e.g., one way to
get around computing the exact empirical Fisher information
matrix is to constrain it to be a diagonal matrix, a tech-
nique that is heavily used in algorithms such as AdaGrad,
AdaDelta, RMSprop, Adam, AMSGrad, Yogi, etc. In other
words, it is the most used algorithm in neural network train-
ing).

1

Zeroth order methods, a.k.a. derivative-free methods.
Until now, we have only analyzed algorithms adhering to the
“black-box” optimization model, where we have some local or-
acle O that we rely on for information at each update step. In
this chapter, we looked at oracles providing us Ht = r2f(xt),
either by directly computing it (Newton’s method) or approx-
imating it (quasi-Newton methods).

We now briefly turn to a class of algorithms with barely any
oracle: we are only allowed a zeroth-order oracle. In other
words, given a query point x, we can only query f(x) from the
oracle; we cannot access gradients or other higher-order in-
formation. Optimization problems fitting this criterion arise
incredibly commonly in practice: perhaps our objective func-
tion is not di↵erentiable, or we have no way of characterizing it
in an analytical form (and thus cannot compute higher-order
information analytically), or it is simply too computationally
expensive to compute gradients. In these cases, we still must
find a way to guarantee convergence using our limited zeroth-
order oracle. Some examples of zeroth-order optimization al-
gorithms are the bisection method, genetic algorithms, simu-
lated annealing, Metropolis methods, etc.

So, how do we even start with such little information to
work with? As before, calculus comes to the rescue yet again.
Recall the definition of the derivative:

f 0(x) = lim
h!0

f(x+ h)� f(x)
h

A natural approximation arises from the definition, for some
✏⌧ 1 :

f 0(x) ⇡ f(x+ ✏)� f(x)
✏

So, we can approximate the derivative using just the function
itself! This realization forms the core of the finite di↵erences
method.

Def inition 29. (Finite di↵erences method) For xt 2 Rp, we up-
date each iteration of via the rule

xt+1 = xt � ⌘t

✓
f(xt + µtu)� f(xt)

µt

◆
· u

i
i

“Notes” — 2024/2/19 — 16:17 — page 40 — #40 i
i

i
i

i
i

Application: Adversarial examples in neural net training.
Searching for generalizable models is a holy grail topic in
modern-day machine learning research. Unfortunately, we still
have a long way to go — despite many recent advances in neu-
ral net architecture and algorithms, they still fail to generalize
flexibly to examples one would intuitively “expect” an ideal,
generalized model to classify accurately. As a damning exam-
ple of this claim, we briefly investigate the idea of adversarial
examples.

The idea of adversarial examples is as follows: if you take
a valid input but then do a small perturbation, the classically
trained neural net models will suddenly go nuts and no longer
give the correct answer.

More specifically, given a valid input x, we can create an
adversarial example xadv by the update rule

xadv = x+ ✏ · sign(rf(x, ytrue))

Fig. 37. An illustration of how an adversarial perturbation can lead to misclassi-
fication.

Intuitively, one can read this as the adversary is looking to
move the input in directions away from the optimal minimum.
The problem we are trying to solve now is to defend against a
series of adversarial attacks. In other words, we wish to make
our model robust against maliciously crafted input. One such
defense mechanism is to “obfuscate” the gradient information.
In other words, we prevent access to the black box (e.g., the
back-propagation gradient computation).

However, the forward operations remain intact, so the func-
tion evaluations are usually computed. Then, given this, we
can do the finite di↵erences method as an attacker to approxi-
mate the gradient and still do our attack normally. This is the
basis of the SPSA attack (Simultaneous Perturbation Stochas-
tic Approximation).

i
i

“Notes” — 2024/2/19 — 16:17 — page 79 — #79 i
i

i
i

i
i

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

5. Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

6. S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

7. T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

8. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

9. M. Paris and J. Rehacek. Quantum state estimation, volume 649. Springer Science
& Business Media, 2004.

10. M. Daskin. A maximum expected covering location model: formulation, properties
and heuristic solution. Transportation science, 17(1):48–70, 1983.

11. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

12. L. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

13. G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

14. G. Golub. Cmatrix computations. The Johns Hopkins, 1996.

15. Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. E�cient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

16. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

17. Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information process-
ing systems, 31, 2018.

18. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

19. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

20. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

21. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

22. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

23. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org,
2017.

24. Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory re-
current neural network architectures for large scale acoustic modeling. In Fifteenth
annual conference of the international speech communication association, 2014.

25. Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilin-
gual convolutional neural networks for LVCSR. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4955–4959. IEEE, 2016.

26. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. page
arXiv:1706.03762, 2017.

27. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. page
arXiv:1810.04805, 2018.

28. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng
Gao. Unified vision-language pre-training for image captioning and VQA. In AAAI,
pages 13041–13049, 2020.

29. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

30. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language mod-
els using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

31. Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

32. Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-
E 2. arXiv preprint arXiv:2204.13807, 2022.

33. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589, 2021.

34. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je↵rey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

35. Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

36. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- Lojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

37. Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

38. Larry Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

39. Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-
68):7, 1999.

40. B. Polyak. Introduction to optimization. Inc., Publications Division, New York, 1,
1987.

41. Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes
of EE392o, Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

42. Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

43. M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th international conference on machine learning, number CONF,
pages 427–435, 2013.

44. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto
the `1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

45. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, (8):30–37, 2009.

46. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2008.

47. T. Booth and J. Gubernatis. Improved criticality convergence via a modified Monte
Carlo power iteration method. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

48. S. Zavriev and F. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 4(4):336–341, 1993.

49. E. Ghadimi, H. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European control conference (ECC),
pages 310–315. IEEE, 2015.

50. Y. Nesterov. A method of solving a convex programming problem with convergence
rate O(1

k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

51. B. O’Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

52. O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex op-
timization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

53. L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

54. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
review, 43(1):129–159, 2001.

55. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

56. P. Ho↵. Lasso, fractional norm and structured sparse estimation using a Hadamard
product parametrization. Computational Statistics & Data Analysis, 115:186–198,
2017.

57. S. Becker, J. Bobin, and E. Candès. NESTA: A fast and accurate first-order method
for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

58. T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

59. D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321,
2009.

60. S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

61. J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion.
SIAM Journal on Scientific Computing, 35(5):S104–S125, 2013.

62. K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal pro-
cessing letters, 22(5):593–597, 2014.

63. Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative
hard thresholding. In International Conference on Artificial Intelligence and Statistics,
pages 188–198. PMLR, 2018.

64. Je↵rey D Blanchard and Jared Tanner. GPU accelerated greedy algorithms for com-
pressed sensing. Mathematical Programming Computation, 5(3):267–304, 2013.

65. A. Kyrillidis, G. Puy, and V. Cevher. Hard thresholding with norm constraints. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3645–3648. Ieee, 2012.

66. A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE
International Workshop on, pages 353–356. IEEE, 2011.

i
i

“Notes” — 2024/2/19 — 16:17 — page 80 — #80 i
i

i
i

i
i

67. X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via
gradient descent. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1524–1534, 2019.

68. Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489–509, 2006.

69. Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowdhury. Covariance selec-
tion for nonchordal graphs via chordal embedding. Optimization Methods & Software,
23(4):501–520, 2008.

70. Joseph B Altepeter, Daniel FV James, and Paul G Kwiat. 4 qubit quantum state
tomography. In Quantum state estimation, pages 113–145. Springer, 2004.

71. Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea
Parekh, Ulysse Chabaud, and Elham Kashefi. Quantum certification and benchmark-
ing. arXiv preprint arXiv:1910.06343, 2019.

72. Masoud Mohseni, AT Rezakhani, and DA Lidar. Quantum-process tomography: Re-
source analysis of di↵erent strategies. Physical Review A, 77(3):032322, 2008.

73. D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105(15):150401, 2010.

74. Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances
in Neural Information Processing Systems, pages 1638–1646, 2011.

75. K Vogel and H Risken. Determination of quasiprobability distributions in terms
of probability distributions for the rotated quadrature phase. Physical Review A,
40(5):2847, 1989.

76. Miroslav Ježek, Jaroḿır Fiurášek, and Zdeněk Hradil. Quantum inference of states
and processes. Physical Review A, 68(1):012305, 2003.

77. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

78. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

79. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

80. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

81. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

82. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.

83. BP Lanyon, C Maier, Milan Holzäpfel, Tillmann Baumgratz, C Hempel, P Jurcevic,
Ish Dhand, AS Buyskikh, AJ Daley, Marcus Cramer, et al. E�cient tomography of a
quantum many-body system. Nature Physics, 13(12):1158–1162, 2017.

84. D. Gonçalves, M. Gomes-Ruggiero, and C. Lavor. A projected gradient method for
optimization over density matrices. Optimization Methods and Software, 31(2):328–
341, 2016.

85. E. Bolduc, G. Knee, E. Gauger, and J. Leach. Projected gradient descent algorithms
for quantum state tomography. npj Quantum Information, 3(1):44, 2017.

86. Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng. Superfast maximum-likelihood
reconstruction for quantum tomography. Phys. Rev. A, 95:062336, Jun 2017.

87. Zhilin Hu, Kezhi Li, Shuang Cong, and Yaru Tang. Reconstructing pure 14-qubit quan-
tum states in three hours using compressive sensing. IFAC-PapersOnLine, 52(11):188
– 193, 2019. 5th IFAC Conference on Intelligent Control and Automation Sciences
ICONS 2019.

88. Zhibo Hou, Han-Sen Zhong, Ye Tian, Daoyi Dong, Bo Qi, Li Li, Yuanlong Wang,
Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, et al. Full reconstruction of a 14-qubit
state within four hours. New Journal of Physics, 18(8):083036, 2016.

89. C. Riofŕıo, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert.
Experimental quantum compressed sensing for a seven-qubit system. Nature Com-
munications, 8, 2017.

90. Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. Guaranteed recovery
of quantum processes from few measurements. Quantum, 3:171, 2019.

91. S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: Error bounds, sample complexity and e�cient estimators. New Journal of
Physics, 14(9):095022, 2012.

92. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Prov-
able quantum state tomography via non-convex methods. npj Quantum Information,
4(36), 2018.

93. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

94. N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

95. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719. ACM, 2005.

96. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix fac-
torizations. In Proceedings of the 23rd international conference on Machine learning,
pages 249–256. ACM, 2006.

97. J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

98. M. Jaggi and M. Sulovsk. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 471–478, 2010.

99. R. Keshavan. E�cient algorithms for collaborative filtering. PhD thesis, Stanford
University, 2012.

100. R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions
of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. International
World Wide Web Conferences Steering Committee, 2013.

101. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing Sys-
tems, pages 730–738, 2015.

102. G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of se-
mantic classes for image annotation and retrieval. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(3):394–410, 2007.

103. A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In
Computer Vision–ECCV 2008, pages 316–329. Springer, 2008.

104. C. Wang, S. Yan, L. Zhang, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1643–1650. IEEE, 2009.

105. J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

106. Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar. A generalized linear model
for principal component analysis of binary data. In AISTATS, 2003.

107. K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari. Prediction and
clustering in signed networks: A local to global perspective. The Journal of Machine
Learning Research, 15(1):1177–1213, 2014.

108. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, 27, 2014.

109. Koen Verstrepen. Collaborative Filtering with Binary, Positive-only Data. PhD thesis,
University of Antwerpen, 2015.

110. N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting
user preferences. arXiv preprint arXiv:1504.06165, 2015.

111. Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li. Neighborhood regularized logistic ma-
trix factorization for drug-target interaction prediction. PLoS Computational Biology,
12(2):e1004760, 2016.

112. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages
3089–3114. The Royal Society, 2007.

113. E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix
completion. SIAM Review, 57(2):225–251, 2015.

114. I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

115. P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
transactions on automation science and engineering, 3(4):360, 2006.

116. K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1489–1496, 2007.

117. F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with
application to protein clustering. Proceedings of the National Academy of Sciences
of the United States of America, 102(35):12332–12337, 2005.

118. H. Andrews and C. Patterson III. Singular value decomposition (SVD) image coding.
Communications, IEEE Transactions on, 24(4):425–432, 1976.

119. M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4,
pages 3273–3278. IEEE, 2004.

120. E. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772, 2009.

121. P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945,
2010.

122. S. Becker, V. Cevher, and A. Kyrillidis. Randomized low-memory singular value
projection. In 10th International Conference on Sampling Theory and Applications
(Sampta), 2013.

123. L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces
from highly incomplete information. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE, 2010.

124. K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-
mation. Information Theory, IEEE Transactions on, 56(9):4402–4416, 2010.

125. A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal
of mathematical imaging and vision, 48(2):235–265, 2014.

126. Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

127. S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

128. J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

129. Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion.
In Proceedings of The 31st International Conference on Machine Learning, pages
674–682, 2014.

i
i

“Notes” — 2024/2/19 — 16:17 — page 81 — #81 i
i

i
i

i
i

130. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimiza-
tion framework. In Advances in Neural Information Processing Systems 28, pages
3132–3140. 2015.

131. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

132. Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley - benchmarking deep learning optimizers. CoRR, abs/2007.01547,
2020.

133. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul
2011.

134. Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

135. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

