
i
i

“Notes” — 2024/2/29 — 7:41 — page 41 — #41 i
i

i
i

i
i

Chapter 6

In our attempt to match the lower bounds for gradient descent in
the previous chapter, we “cheated” by using information beyond the
first-order gradient to achieve up to a quadratic convergence rate.
But whether we can match the initial lower bounds by just using
gradients remains open.

In this chapter, we will discuss one way to match these lower bounds
using only gradient information, closing this gap. This is achieved
with the notion of acceleration/momentum, where we will discuss
the Heavy Ball method by Polyak and Nesterov’s optimal methods.

Momentum | Heavy Ball method | Nesterov’s acceleration | Adaptive restarts

and noise in acceleration

We remind again of the limits of gradient descent-based
methods under convex assumptions.

• For convex objective functions with Lipschitz continuous
gradients, with constant L, we can prove that there ex-
ists an instance f such that first-order methods cannot be
better than:

f(xT)� f(x?) � 3Lkx0 � x?k22
32(T + 1)2

= O
�

1
T2

�
.

Under this assumption, and only using gradients, we can-
not achieve better than the above.

• For convex objectives functions with both Lipschitz con-
tinuous gradients and strong convexity, a similar argument
holds. I.e., there is a strongly convex function f such that
gradient descent-based methods cannot be better than:

kxT � x?k22 �
✓p

� 1p
+ 1

◆2T

kx0 � x?k22.

where = L/µ > 1. Here we observe that, while we
have achieved the same convergence rate concerning the
exponent—i.e., in both cases, we have cT , for c < 1—in
the lower bound case, we see

p
 instead of .

Gradient descent and acceleration.We will focus on twomulti-
step gradient descent methods: the Heavy Ball method and
(one of) Nesterov’s accelerated methods. These methods are
called multi-step since they consider the history of points com-
puted to prove convergence. In its most generic form (and
abstractly denoting the algorithm as a function '(·)), these
methods can be written as:

xt+1 = '(xt, xt�1, . . . , xt�`),

where ` here represents the time window in the past from
which we take information to accelerate the process.

In a sense, gradient methods—and even second-order
methods—are one-step methods with ` = 0.

Heavy-ball method.We will start with the Heavy ball method,
which the following recursion can describe:

xt+1 = xt � ⌘rf(xt)| {z }
Gradient step

+ �(xt � xt�1)| {z }
Momentum step

.

Here, xt is the current estimate, ⌘ is the step size, similar to
standard gradient descent, and � is the momentum parameter.
Observe that, following the discussion above, this recursion
belongs to the case:

xt+1 = '(xt, xt�1).

What is the motivation for using such a method? A vital issue
in gradient descent is pathological curvature. When curvature
in di↵erent regions and directions is very di↵erent, for a fixed
learning rate, gradient descent will make slow progress in one
of either the high or low curvature regions/directions. For
pathological curvature, we want to make smaller steps in re-
gions of high curvature to dampen oscillations and make larger
steps and accelerate in areas of low curvature.

Further, we will answer this question through some plots.
See the following figures: instead of unnecessarily zig-zagging
in the case of gradient descent updates, momentum uses past
information to be “biased”, thus achieving a more direct tra-
jectory towards the (local or global) stationary point.

Fig. 38. Motivation for using acceleration in gradient descent. Borrowed from
Boyd’s and Vanderberghe book on “Convex optimization”.

Some physical analogy inspires momentum: Consider we
have a ball that moves along a curved surface (that’s why
the method is called heavy-ball). The motion of the ball in
a potential field under the force of friction is described by a
second-order di↵erential equation:

µ · @2x(t)
@t2

= �rf(x(t))� b @x(t)
@t .

Observe that the intuition of the heavy-ball method comes
from the continuous space, where gradient descent is known
as gradient flow. (The field that studies how we move from
phenomena that happen in the continuous space to the discrete
space is an active research area in optimization and machine
learning). One way to discretize the above continuous di↵er-
ential equation is to obtain:

µ · xt+�t�2xt+xt��t

�t2
= �rf(xt)� b

xt�xt��t

�t ,

which results in the following:

xt+�t = xt � �t2

µ rf(xt) +
⇣
1� b�t

µ

⌘
(xt � xt��t).

This resembles the discrete Heavy-ball description above.

Fig. 39. Motions of the heavy-ball method. If the current gradient step is in the
same direction as the previous step, then move a little further in that direction.

i
i

“Notes” — 2024/2/29 — 7:41 — page 42 — #42 i
i

i
i

i
i

Fig. 40. Motivation for using acceleration in gradient descent. Borrowed from Polyak’s book “Introduction to Optimization”. (a) is Gradient descent, and (b) is the
heavy-ball method.

Locally, at a point xt, the Heavy ball method “makes deci-
sions” according to the figure above.

But how does it perform in theory? Let us first assume that
we use the heavy-ball method for convex functions f .
Theorem 6. Consider the heavy-ball recursion, with step size ⌘
and momentum parameter �. Let f , the objective function,
be convex, with L-Lipschitz continuous gradients. Further, as-
sume that f is strongly convex with parameter µ, with a unique
global minimum x?. Then, for step size and momentum pa-
rameters satisfying:

⌘ = 4
(
p
µ+

p
L)2

, and � =
⇣p

L�p
µp

L+
p
µ

⌘2

,

the heavy ball recursion gives an estimate xT after T itera-
tions, such that:

kxT � x?k2
⇣p

�1p
+1

⌘T
kx0 � x?k2.

Before we provide the proof, compare this with the lower
bounds provided at the beginning of the chapter: the Heavy-
ball method achieves the lower bounds by just using the value of
the estimates from the previous iteration! I.e., we do not com-
pute or store something extraordinarily large, such as keeping
a long history of gradients or computing the Hessian.

Proof: In contrast to the gradient method, we will focus on
the behavior of two consecutive distances, kxt+1�x?k2, kxt�
x?k2:
����

xt+1 � x?

xt � x?

�����
2

=

����

xt + � (xt � xt�1)� x?

xt � x?

�
� ⌘

rf (xt)

0

�����
2

=

����

(1 + �)I ��I

I 0

�
·

xt � x?

xt�1 � x?

�
� ⌘

r2f (zt) (xt � x?)

0

�����
2

For the last equality, we use the generalization of the mean
value theorem, according to which, for a function f : [↵,�] !
R, di↵erentiable, there exists � 2 (↵,�) such that:

f 0(�) = f(�)�f(↵)
��↵ .

This leads to the following equation for our case: rf(xt) =
r2f(zt)(xt � x?), with zt in the space between xt and x?.
(To see this, consider the substitutions f 0(·) ! r2f(·), f(·) !

rf(·), and the fact that rf(x?) = 0.) Continuing the above
recursion, we have:

����

xt+1 � x?

xt � x?

�����
2

=

����

(1 + �)I � ⌘r2f (zt) ��I

I 0

�
·

xt � x?

xt�1 � x?

�����
2

����

(1 + �)I � ⌘r2f (zt) ��I

I 0

�����
2

·
����

xt � x?

xt�1 � x?

�����
2

In the last step, we apply the Cauchy-Schwarz inequality.
Let us focus on the contraction matrix:

����

(1 + �)I � ⌘r2f (zt) ��I

I 0

�����
2

We know that r2f(·) � 0 by strong convexity, and it has an
eigenvalue decomposition:

r2f (zt) = U⇤U>,

where U is an orthonormal matrix, and ⇤ is a diagonal ma-
trix, with the eigenvalues of r2f(·) on its diagonal. Since
r2f(·) � 0, observe that all the eigenvalues are positive. Let
us denote the eigenvalues as �i. Then, for simplicity of our
arguments, we will get the following equalities under proper
assumptions:
����

(1 + �)I � ⌘r2f (zt) ��I

I 0

�����
2

=

����

U> 0
0 U>

�
·

(1 + �)I � ⌘U⇤U> ��I

I 0

�
·

U 0
0 U

�����
2

=

����

(1 + �)U>IU � ⌘U>U⇤U>U ��U>IU

U>IU 0

�����
2

=

����

(1 + �)I � ⌘⇤ ��I

I 0

�����
2

= T

Let T represent the block diagonal matrix of the above ex-
pression. Now, let’s come back to our entire expression:

����

xt+1 � x?

xt � x?

�����
2

��Tt

��
2
·
����

xt � x?

xt�1 � x?

�����
2

i
i

“Notes” — 2024/2/29 — 7:41 — page 43 — #43 i
i

i
i

i
i

We want to bound
��Tt

��
2
to have convergence. The spectrum

of a diagonal matrix is the eigenvalues of the sub-matrices.
Bounding Tt to the spectral radius, we can use the following
fact:

���T i
���
2
 (⇢(T) + ✏i)

i

For some set of sequences of ✏i � 0. Where ⇢(T) is the spec-
tral radius of T (maximum magnitude of an eigenvalue of T).
Now, rewriting the problem to solve:

max
i

1 + � � ⌘�i ��

1 0

�
+ ✏i

The maximum value is equivalent to finding the maximum
eigenvalue of many 2 ⇥ 2 matrices. We will drop the ✏i by
setting it to 0. To reduce the expression to:

max
i

1 + � � ⌘�i ��

1 0

�

To compute the eigenvalues of such matrices, we need to find
the roots of the equation:

⇠2 � (1 + � � ⌘�i)⇠ + � = 0.

Observe that for � �
�
1�

p
⌘�i

�2
, the roots of the character-

istic equations are imaginary, and both have magnitude
p
�.

By L-smoothness and strong convexity assumptions,

⇣
1�

p
⌘�i

⌘2
 max

n
|1�p

⌘µ|2, |1�
p

⌘L|2
o
.

Then, by letting � = max
�
|1�p

⌘µ|2, |1�
p
⌘L|2

, we have:

����

(1 + �)I � ⌘r2f (zt) ��I

I 0

�����
2

 max
n
|1�p

⌘µ|, |1�
p

⌘L|
o
.

Now, by letting ⌘ = 4
(
p
µ+

p
L)2

, we have:

� =
⇣p

L�p
µp

L+
p
µ

⌘2

, and max
n
|1�p

⌘µ|, |1�
p

⌘L|
o
=

p
�1p
+1

.

This leads finally to:
����

xt+1 � x?

xt � x?

�����
2

⇣p

�1p
+1

⌘����

xt � x?

xt�1 � x?

�����
2

.

Unfolding this recursion and focusing on the top row, we ob-
tain:

kxT � x?k2
⇣p

�1p
+1

⌘T
kx0 � x?k2.

⇤
Thus, the heavy-ball method converges linearly, but, in

Big-Oh notation and given that the factor is an important
one, its iteration complexity is O(

p
 log 1

"), as compared to
O(log 1

") of standard gradient descent. The corresponding
iPython Notebook compares the convergence of gradient de-
scent and the heavy ball method.

What about using the heavy-ball method for convex but just L-
smooth functions? Can we still prove convergence or, even
better, the acceleration? In our thus-far discussion on the
heavy-ball method, we made the following assumptions, on
top of convexity and L-smoothness:

• f is also strongly convex with parameter µ.
• f is twice di↵erentiable.

There are some surprising results when we start dropping some
of these assumptions. (The research on these questions is still
active; thus, if you find any results that disprove any of the
statements below, please let me know.) Zavriev and Kostyuk
in [48] prove that the heavy-ball method trajectories converge
to a stationary point, with su�cient conditions, when the func-
tion f is just L-smooth, but not necessarily convex.

It turns out that current state-of-the-art results for general
L-smooth, and convex function f is the following theorem by
Ghadimi, Feyzmahdavian, and Johansson [49].
Theorem 7. Let f be a convex function with L-Lipschitz con-
tinuous gradients. Consider the heavy-ball recursion with mo-
mentum parameter and step size satisfying: � 2 [0, 1), ⌘ 2⇣
0, 2(1��)

L

⌘
. Then,

f(x̄T)� f(x?) = O
�

1
T

�
,

where x̄T = 1
T+1

PT
t=0 xt.

Sketch of proof: The proof uses the following steps:

• Define pt = �
1�� (xt � xt�1), which leads to heavy-ball re-

cursion: xt+1 + pt+1 = xt + pt � ⌘
1��rf(xt).

• Compute kxt+1 + pt+1 � x?k22 by substituting the quantity
xt+1 + pt+1 and unrolling the square identity.

• Using standard L-smoothness identities, we get to:

2⌘�
(1��)

TX

t=0

(f (xt)� f(x?))

+
TX

t=0

⇣
2⌘�

(1��)2
(f (xt)� f(x?)) + kxt+1 + pt+1 � x?k2

⌘

TX

t=0

⇣
2⌘�

(1��)2
(f (xt�1)� f(x?)) + kxt + pt � x?k2

⌘

for some auxiliary variable � 2 (0, 1].
• This implies that:

2⌘�
(1��)

TX

t=0

(f (xt)� f(x?)) 2⌘�
(1��)2

(f (x0)� f(x?)) + kx0 � x?k2

• Given convexity of f , we have by Jensen’s inequality that:

(T + 1)f(x̄T)
TX

t=0

f(xt).

• The above lead to:

f (x̄T)� f(x?)

 1
T+1

⇣
�

�(1��) (f (x0)� f(x?)) + 1��
2⌘� kx0 � x?k2

⌘

= O(1
T)

⇤
The above result denotes that the average of all estimates

drops with rate O(frac1T); i.e., the current proof for heavy-
ball is similar to that of the simple gradient descent method!
One can use per-iteration specific values for ⌘t and �t, which
further leads to:

f (xT)� f(x?) = O(1
T),

according to Ghadimi, Feyzmahdavian, and Johansson [49].
However, there is still a gap between our current theory and
the possibly achievable lower bounds!

What is more interesting is the following fact: So far, we
focused on the L-smoothness assumption; if we also assume
strong convexity, but we drop the assumption that f is twice
di↵erentiable, there are cases where the heavy-ball method
does not necessarily converge, even using Polyak’s stability
conditions!

i
i

“Notes” — 2024/2/29 — 7:41 — page 44 — #44 i
i

i
i

i
i

Nesterov’s accelerated method. In our discussion so far, for
both theory and practice, we made the following choices:

• Practically, heavy-ball method satisfies the recursion
xt+1 = xt � ⌘rf(xt) + �(xt � xt�1), where the gradient
is computed at the current point xt.

• Theoretically, the heavy-ball method was shown to achieve
the lower bounds for the case of L-smooth and µ-strongly
convex case.

Nesterov, in his seminal paper [50] in 1983, proved that a
slightly di↵erent version of the heavy-ball method can achieve
the lower bounds of O(1

T2) for first-order methods under L-
smoothness assumption; a result that is currently missing for
the simple heavy-ball method.

First, let us describe Nesterov’s proposal. The idea is based
on the following observation: The Heavy-ball method

xt+1 = xt � ⌘rf(xt) + �(xt � xt�1),

can be equivalently written as a two-step procedure:

ext = xt � ⌘rf(xt)

xt+1 = ext + �(xt � xt�1).

In a way, in Heavy-ball, we end up to xt+1 after computing the
gradient of f at xt and performing the momentum step. But
what if we compute the gradient at a point that looks more
similar to the motions we perform, even after the gradient
calculation in heavy-ball? This leads to Nesterov’s suggestion
where we compute:

ext = xt � ⌘rf(xt + �(xt � xt�1))

xt+1 = ext + �(xt � xt�1).

Locally, at a point xt, the Nesterov’s method “makes deci-
sions” according to the following figure.

Fig. 41. Motions of Nesterov’s accelerated method. If the current gradient step
is in the same direction as the previous step, then move a little further in that direction.
Compare this figure with previous Figure.

The above can be written in the following form, which is
more recognizable as Nesterov’s recursion:

xt+1 = yt � ⌘rf(yt)

yt+1 = xt+1 + �(xt+1 � xt)

What was revolutionary is that Nesterov proposed spe-
cific, time-dependent values for �t—that are simultaneously
practical—which lead provably to acceleration! One such
schedule for the momentum parameters �t satisfies:

✓0 = 1, ✓t+1 =
1+

p
1+4✓2

t

2 , �t =
✓t�1
✓t+1

Let us first consider the case where f is convex and L-
smooth.

Theorem 8. Let f be a convex function with L-Lipschitz contin-
uous gradients. Then, Nesterov’s recursion with �t as defined
above, and ⌘ = 1

L satisfies:

f(xT)� f(x?) 2Lkx0�x?k22
T2 = O

�
1
T2

�
.

I.e., Nesterov’s accelerated method achieves the lower bound
for the case of just L-smooth convex functions!

Further, for strongly convex functions with parameter µ,
one can also show that, similarly to the heavy-ball method,
it achieves the complexity O

�p
 log 1

"

�
; i.e., it also achieves

the lower bound for the case of L-smooth and µ-strongly con-
vex functions! (We omit the proof and leave the discussion of
acceleration in non-convex settings for later.)

Interesting facts about acceleration.Closing this chapter, we
will discuss two exciting facts using acceleration.

Set up: For the first one, we will need an optimal configu-
ration for Nesterov’s accelerated method when we know pre-
cisely the condition number of the convex problem, = L

µ .
The recursion satisfies the following:

xt+1 = yt � 1
Lrf(yt)

yt+1 = xt+1 + �?(xt+1 � xt),

where

�? =
1�

q
µ
L

1+
q

µ
L

=
1�

r
1

1+

r
1

Let us define also q? = 1
 . The above recursion is optimal,

and the proof is omitted; by optimal, we mean that there is a
constant step size along with this momentum parameter that
achieves the lower bounds. However, it requires the exact
knowledge of the Lipschitz gradient continuity parameter L
and strong convex parameter µ. Also, note that this selection
is optimal, assuming convexity.

For the second one, we will assume that the gradient cal-
culation step includes some noise. As before, we assume that
the function satisfies Lipschitz gradient continuity. One natu-
ral way to think of this is to assume that we compute only a
noisy version of the gradient:

erf(yt) = rf(yt) + ⇠.

We will need the following definition of inexact first-order or-
acle for the theory. In the noiseless case, we know that:

0 f(y)� f(x)� hrf(x), y � xi L
2 kx� yk22

Pictorially, at every point x, the function can be “sand-
wiched” between a tangent linear function, hrf(x), y � xi,
and a parabola. For the inexact oracle, we will assume the
same inequality holds with some slack � > 0:

0 f(y)� f(x)� hrf(x), y � xi L
2 kx� yk22 + �

Pictorially, it comes with the same illustration, except now
there’s some slack between the linear approximation and the
parabola. Let us now describe these interesting phenom-
ena. Acceleration often leads to a non-decreasing sequence

of function values. It is common, when running an acceler-
ated method, to have the appearance of ripples in the trace
of the objective value; these are seemingly regular increases in
the objective. The following figure is borrowed from [51] by
O’Donoghue and Candes.

i
i

“Notes” — 2024/2/29 — 7:41 — page 45 — #45 i
i

i
i

i
i

The function we are optimizing here is a simple quadratic
function:

f(x) = 1
2x

>Ax,

where A is a positive definite matrix. First, observe that, in
this case,

min
x

f(x)

has optimal solution x? = 0, and f(x?) = 0. Further, the Lip-
schitz gradient continuity parameter satisfies L = �max(A),
and the strong convexity parameter satisfies µ = �min(A).

Let’s extract some information from the plot. The case
where q = 1 leads to:

yt+1 = xt+1 +
1�p

q
1+

p
q (xt+1 � xt) = xt+1

and thus the accelerated version boils down to:

xt+1 = xt � 1
Lrf(xt),

Fig. 42. Behavior of optimal’s accelerated method for a convex function, where
we do not set up the q parameter correctly (in other words, we only approximate the
values L and µ).

the gradient descent method. Also, assuming that the momen-
tum parameter takes values in [0, 1], the maximum parameter
case is when q = 0, where:

� = 1�p
q

1+
p
q = 1.

Ranging the value of �, we observe an interesting phe-
nomenon. Starting with q = 1 (i.e., � = 0), we obtain the
behavior of gradient descent, which from the figure shows the
worst performance (in terms of iteration complexity). On the
other end, for q = 0, we obtain the maximum � value that def-
initely “beats” gradient descent, but there are di↵erent values
of �, between the values 0 and 1, that gives a better perfor-
mance.

More importantly, we observe these interesting ripples in
the plots: the function values do not monotonically decrease
as the iterations increase but rather follow a periodic pattern.

However, despite this behavior, the function values decrease
faster than plain gradient descent. Of course, as expected, the
optimal performance—without any ripples—is achieved by q?.

Overall, slightly over- or under-estimating the optimal value
q (or equivalently of) leads to a presumably severe detrimen-
tal e↵ect on the rate of convergence of the algorithm. Note
the clear di↵erence between the cases where we underestimate
(q < q?) and where we overestimate (q > q?): in the former,
we observe this rippling behavior in the function traces, while
in the latter, we observe the classical monotonic convergence.

To understand better what is happening during the ripples,
we also provide the following plot from the same paper by
O’Donoghue and Candes. The high momentum values cause
the trajectory towards the optimum x? to overshoot and os-
cillate around it. This causes a rippling in the function values
along the trajectory as we get closer but then move further
away from the optimum.

What about Nesterov’s routines on selecting �t? Someone
would wonder “what happens when we use the routine:

✓0 = 1, ✓t+1 =
1+

p
1+4✓2

t

2 , �t =
✓t�1
✓t+1

00

It turns out that, as the iterations increase, the �t values keep
growing towards the maximum value 1, as shown in the plot
next. Thus, Nesterov’s approach naturally often leads to a
rippling behavior we observe in practice.

What could be a solution to this? (Adaptive) restarts of the
momentum � procedure. One approach to avoid ripples is oc-
casionally restarting the �t computation procedure. E.g., one
natural check we can make is to check at every new point
whether the function value starts increasing; in that case, we
can reset ✓t+1 = 0 and compute a new set of �’s. But do these
techniques work in practice? It turns out they do!

Fig. 43. Comparison of behavior between optimal q? and maximum momentum
parameter (q = 0) for a 2-dimensional toy example.

i
i

“Notes” — 2024/2/29 — 7:41 — page 46 — #46 i
i

i
i

i
i

Fig. 44. �t values w.r.t. number of iterations, according to the rule ✓0 =

1, ✓t+1 =
1+

q
1+4✓2

t

2 , �t =
✓t�1
✓t+1

.

Behavior of acceleration under noisy settings. The point of
this subsection is that simple GD is more noise-tolerant than
accelerated methods. The noise tolerance corresponds to the
case where we might not be able to compute the gradient ex-
actly but have a rough approximation.

This statement is based on the work by Devolder, Glineur,
and Nesterov [52]. The main idea is that, even if accelerated
GD converges faster than the plain GD, it must also accumu-
late errors faster (linearly) with the number of iterations.

Let us consider a noisy version of the above experiment. In
particular, instead of computing exactly rf(x) = Ax� b per
iteration, we see rf(x) + ⇠ = Ax � b + ⇠ where ⇠ is a vector
sampled from the n-dimensional normal distribution. Let us
see how this performs in practice.

(See ipython notebook.)

But what can we say theoretically about this phenomenon?
It turns out that what [52] shows is that, for an inexact first-
order oracle that satisfies the Lipschitz gradient continuity
with slack �, we can hope for:

f(xt)�min
x

f(x) O
�
L
t

�
+ �.

I.e., while we know that we decrease the error at a rate O(1
T),

we cannot “beat” the fact that there is an error every step,
and we cannot reduce the error more than within a � radius
around the optimum.

On the other hand, what acceleration probably gives us is
the following:

f(xt)�min
x

f(x) O
�

L
t2

�
+ t · �.

I.e., the same story holds but, at the same time, the error level
that we want to “beat” increases with the number of iterations
(i.e., t1� < t2� for any t1 < t2). Thus, acceleration accumu-
lates errors more quickly while converging faster in a noiseless
setting. (See ipython notebook.)

1

ODEs. Nesterov’s methods can be represented as ordi-
nary di↵erential equations (ODEs). ODEs have long been
connected with optimization. The connection between ODEs
and numerical optimization is often made by having small step

sizes so that the trajectory or solution path converges to a
curve modeled by an ODE. An ODE can model Nesterov’s
algorithm in this manner. More precisely, the ODE represen-
tation of the first-order method is a second-order ODE:

Ẍ +
3
t
Ẋ +rf(X) = 0

for t > 0, with initial conditions X(0) = x0, Ẋ(0) = 0 where
x0 is the starting point in Nesterov’s algorithm. Ẋ = dX

dt de-

notes the time derivative or velocity and Ẍ = d2X
dt2

denotes
the acceleration. The time parameter in this ODE is related
to the step size.

The Chebyshev Method. Here, we will continue our dis-
cussion at the end of Chapter 3. As a reminder, we consider
the minimization problem of the function:

f(x) = 1
2x

>Qx� b>x+ r,

where x 2 Rp, Q 2 Rp⇥p is a symmetric matrix, b 2 Rp is a
vector and r is a scalar. I.e.,

min
x2Rp

f(x).

Here, we follow the discussion in this chapter, where µ · I �
Q � L·I. Further, we know that rf(x) = Qx�b = Q(x�x?),
assuming that x? solves the problem and thus Qx? = b.

As we implied in Chapter 3, what matters in first-order
methods in quadratic function minimization is the following
problem:

P ?
t = arg min

P :P (0)=1
max
Q2Q

kP (Q)k2,

where in the case where µ · I � Q � L · I turns out to be:

P ?
t = arg min

P :P (0)=1
max

�2[µ,L]
kP (�)k2.

It is known (out of the scope of this course) that polynomials
that solve the above problem are the Chebyshev polynomials
of the first kind ; for more detailed discussion, please look into
approximation theory results. Chebyshev polynomials of the
first kind satisfy the following equations:

T0(x) = 1,

T1(x) = x,

Tt(x) = 2xTt�1(x)� Tt�2(x), for t � 2.

The above expressions define just a recursion; i.e., these are
the conditions a specific polynomial should satisfy (it is not a
constructive argument, but an existential one). However, an
explicit solution could be (out of the scope of this course):

Tt(x) =

8
><

>:

cos(t · acos(x)), x 2 [�1, 1],

cosh(t · acosh(x)), x > 1,

(�1)t · cosh(t · acosh(�x)), x < 1.

It is a fact that this solution satisfies11:

Tt

2t�1 = argmin
P

max
�2[�1,1]

kP (�)k2,

that satisfies our original problem, but for a scaled version: in-
stead of � 2 [µ,L], we have � 2 [�1, 1]. Simple linear mapping

11 In fact, this polynomial satisfies the minimax property as a monic polynomial, i.e., a polynomial
whose coe�cient associated with the highest power is equal to one.

i
i

“Notes” — 2024/2/29 — 7:41 — page 47 — #47 i
i

i
i

i
i

arguments from [µ,L] to [�1, 1], lead to the shifted Chebyshev
polynomials:

C[µ,L]
t (x) =

Tt

✓
2x�(L+µ)

L�µ

◆

Tt

✓�(L+µ)
L�µ

◆

that optimize the original polynomial problem.
Going back to the original definition of Chebyshev polyno-

mials, we get:

C[µ,L]
0 (x) = 1,

C[µ,L]
1 (x) = 1� 2x

L+µ ,

C[µ,L]
t (x) = 2�t

L�µ · (L+ µ� 2x)C[µ,L]
t�1 (x)

+
⇣
1 + 2�t(L+µ

L�µ

⌘
C[µ,L]
t�2 (x), for t � 2,

where �1 = L�µ
L+µ and:

�t = 1

2
L+µ
L�µ��t�1

, for t � 2.

But how is this useful? Let us go back to the original
gradient-based formulation from Chapter 3, where we had:

xt � x? = Pt(Q) · (x0 � x?).

Here, Pt(Q) is any polynomial that satisfies the constraints;
thus, we can substitute this with the Chebyshev-based poly-
nomial to get:

xt � x? = C[µ,L]
t (x) · (x0 � x?).

Using the definition of the polynomial C[µ,L]
t (x), we obtain the

recursion:

xt � x? = 2�t
L�µ · ((L+ µ) · I � 2Q)(xt�1 � x?)

+
⇣
1 + 2�t(L+µ

L�µ

⌘
(xt�2 � x?)

Since the gradient for the quadratic functions satisfies:
rf(xt) = Q(xt � x?), we finally obtain:

xt =
2�t
L�µ · ((L+ µ) · xt�1 � 2rf(xt�1))

+
⇣
1 + 2�t(L+µ

L�µ

⌘
xt�2

= xt�1 � 4�t
L�µrf(xt�1)

+
⇣
1 + 2�t(L+µ

L�µ

⌘
(xt�2 � xt�1)

Compare this expression with the Heavy-Ball’s expression:

xt = xt�1 � ⌘rf(xt�1) + �(xt�1 � xt�2).

There are some resemblances! In fact, assuming t ! 1, one
can solve the equation:

�1 = 1

2
L+µ
L�µ��1

to obtain a value for the �1 =
p
L�p

µp
L+

p
µ

that leads to the fol-

lowing expression for Chebyshev method:

xt = xt�1 � 4
(
p
L�p

µ)2
rf(xt�1)

+ (
p
L�p

µ)2

(
p
L+

p
µ)2

(xt�1 � xt�2)

which is exactly the Polyak’s Heavy-Ball method! (Overall,
the intersection of approximation theory, function/real anal-
ysis, and optimization is a fruitful research area with broad
open questions.)

i
i

“Notes” — 2024/2/29 — 7:41 — page 79 — #79 i
i

i
i

i
i

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

5. Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

6. S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

7. T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

8. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

9. M. Paris and J. Rehacek. Quantum state estimation, volume 649. Springer Science
& Business Media, 2004.

10. M. Daskin. A maximum expected covering location model: formulation, properties
and heuristic solution. Transportation science, 17(1):48–70, 1983.

11. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

12. L. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

13. G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

14. G. Golub. Cmatrix computations. The Johns Hopkins, 1996.

15. Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. E�cient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

16. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

17. Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information process-
ing systems, 31, 2018.

18. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

19. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

20. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

21. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

22. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

23. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org,
2017.

24. Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory re-
current neural network architectures for large scale acoustic modeling. In Fifteenth
annual conference of the international speech communication association, 2014.

25. Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilin-
gual convolutional neural networks for LVCSR. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4955–4959. IEEE, 2016.

26. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. page
arXiv:1706.03762, 2017.

27. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. page
arXiv:1810.04805, 2018.

28. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng
Gao. Unified vision-language pre-training for image captioning and VQA. In AAAI,
pages 13041–13049, 2020.

29. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

30. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language mod-
els using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

31. Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

32. Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-
E 2. arXiv preprint arXiv:2204.13807, 2022.

33. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589, 2021.

34. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je↵rey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

35. Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

36. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- Lojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

37. Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

38. Larry Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

39. Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-
68):7, 1999.

40. B. Polyak. Introduction to optimization. Inc., Publications Division, New York, 1,
1987.

41. Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes
of EE392o, Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

42. Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

43. M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th international conference on machine learning, number CONF,
pages 427–435, 2013.

44. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto
the `1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

45. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, (8):30–37, 2009.

46. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2008.

47. T. Booth and J. Gubernatis. Improved criticality convergence via a modified Monte
Carlo power iteration method. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

48. S. Zavriev and F. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 4(4):336–341, 1993.

49. E. Ghadimi, H. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European control conference (ECC),
pages 310–315. IEEE, 2015.

50. Y. Nesterov. A method of solving a convex programming problem with convergence
rate O(1

k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

51. B. O’Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

52. O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex op-
timization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

53. L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

54. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
review, 43(1):129–159, 2001.

55. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

56. P. Ho↵. Lasso, fractional norm and structured sparse estimation using a Hadamard
product parametrization. Computational Statistics & Data Analysis, 115:186–198,
2017.

57. S. Becker, J. Bobin, and E. Candès. NESTA: A fast and accurate first-order method
for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

58. T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

59. D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321,
2009.

60. S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

61. J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion.
SIAM Journal on Scientific Computing, 35(5):S104–S125, 2013.

62. K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal pro-
cessing letters, 22(5):593–597, 2014.

63. Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative
hard thresholding. In International Conference on Artificial Intelligence and Statistics,
pages 188–198. PMLR, 2018.

64. Je↵rey D Blanchard and Jared Tanner. GPU accelerated greedy algorithms for com-
pressed sensing. Mathematical Programming Computation, 5(3):267–304, 2013.

65. A. Kyrillidis, G. Puy, and V. Cevher. Hard thresholding with norm constraints. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3645–3648. Ieee, 2012.

66. A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE
International Workshop on, pages 353–356. IEEE, 2011.

i
i

“Notes” — 2024/2/29 — 7:41 — page 80 — #80 i
i

i
i

i
i

67. X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via
gradient descent. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1524–1534, 2019.

68. Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489–509, 2006.

69. Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowdhury. Covariance selec-
tion for nonchordal graphs via chordal embedding. Optimization Methods & Software,
23(4):501–520, 2008.

70. Joseph B Altepeter, Daniel FV James, and Paul G Kwiat. 4 qubit quantum state
tomography. In Quantum state estimation, pages 113–145. Springer, 2004.

71. Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea
Parekh, Ulysse Chabaud, and Elham Kashefi. Quantum certification and benchmark-
ing. arXiv preprint arXiv:1910.06343, 2019.

72. Masoud Mohseni, AT Rezakhani, and DA Lidar. Quantum-process tomography: Re-
source analysis of di↵erent strategies. Physical Review A, 77(3):032322, 2008.

73. D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105(15):150401, 2010.

74. Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances
in Neural Information Processing Systems, pages 1638–1646, 2011.

75. K Vogel and H Risken. Determination of quasiprobability distributions in terms
of probability distributions for the rotated quadrature phase. Physical Review A,
40(5):2847, 1989.

76. Miroslav Ježek, Jaroḿır Fiurášek, and Zdeněk Hradil. Quantum inference of states
and processes. Physical Review A, 68(1):012305, 2003.

77. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

78. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

79. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

80. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

81. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

82. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.

83. BP Lanyon, C Maier, Milan Holzäpfel, Tillmann Baumgratz, C Hempel, P Jurcevic,
Ish Dhand, AS Buyskikh, AJ Daley, Marcus Cramer, et al. E�cient tomography of a
quantum many-body system. Nature Physics, 13(12):1158–1162, 2017.

84. D. Gonçalves, M. Gomes-Ruggiero, and C. Lavor. A projected gradient method for
optimization over density matrices. Optimization Methods and Software, 31(2):328–
341, 2016.

85. E. Bolduc, G. Knee, E. Gauger, and J. Leach. Projected gradient descent algorithms
for quantum state tomography. npj Quantum Information, 3(1):44, 2017.

86. Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng. Superfast maximum-likelihood
reconstruction for quantum tomography. Phys. Rev. A, 95:062336, Jun 2017.

87. Zhilin Hu, Kezhi Li, Shuang Cong, and Yaru Tang. Reconstructing pure 14-qubit quan-
tum states in three hours using compressive sensing. IFAC-PapersOnLine, 52(11):188
– 193, 2019. 5th IFAC Conference on Intelligent Control and Automation Sciences
ICONS 2019.

88. Zhibo Hou, Han-Sen Zhong, Ye Tian, Daoyi Dong, Bo Qi, Li Li, Yuanlong Wang,
Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, et al. Full reconstruction of a 14-qubit
state within four hours. New Journal of Physics, 18(8):083036, 2016.

89. C. Riofŕıo, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert.
Experimental quantum compressed sensing for a seven-qubit system. Nature Com-
munications, 8, 2017.

90. Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. Guaranteed recovery
of quantum processes from few measurements. Quantum, 3:171, 2019.

91. S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: Error bounds, sample complexity and e�cient estimators. New Journal of
Physics, 14(9):095022, 2012.

92. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Prov-
able quantum state tomography via non-convex methods. npj Quantum Information,
4(36), 2018.

93. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

94. N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

95. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719. ACM, 2005.

96. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix fac-
torizations. In Proceedings of the 23rd international conference on Machine learning,
pages 249–256. ACM, 2006.

97. J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

98. M. Jaggi and M. Sulovsk. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 471–478, 2010.

99. R. Keshavan. E�cient algorithms for collaborative filtering. PhD thesis, Stanford
University, 2012.

100. R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions
of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. International
World Wide Web Conferences Steering Committee, 2013.

101. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing Sys-
tems, pages 730–738, 2015.

102. G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of se-
mantic classes for image annotation and retrieval. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(3):394–410, 2007.

103. A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In
Computer Vision–ECCV 2008, pages 316–329. Springer, 2008.

104. C. Wang, S. Yan, L. Zhang, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1643–1650. IEEE, 2009.

105. J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

106. Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar. A generalized linear model
for principal component analysis of binary data. In AISTATS, 2003.

107. K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari. Prediction and
clustering in signed networks: A local to global perspective. The Journal of Machine
Learning Research, 15(1):1177–1213, 2014.

108. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, 27, 2014.

109. Koen Verstrepen. Collaborative Filtering with Binary, Positive-only Data. PhD thesis,
University of Antwerpen, 2015.

110. N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting
user preferences. arXiv preprint arXiv:1504.06165, 2015.

111. Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li. Neighborhood regularized logistic ma-
trix factorization for drug-target interaction prediction. PLoS Computational Biology,
12(2):e1004760, 2016.

112. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages
3089–3114. The Royal Society, 2007.

113. E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix
completion. SIAM Review, 57(2):225–251, 2015.

114. I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

115. P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
transactions on automation science and engineering, 3(4):360, 2006.

116. K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1489–1496, 2007.

117. F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with
application to protein clustering. Proceedings of the National Academy of Sciences
of the United States of America, 102(35):12332–12337, 2005.

118. H. Andrews and C. Patterson III. Singular value decomposition (SVD) image coding.
Communications, IEEE Transactions on, 24(4):425–432, 1976.

119. M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4,
pages 3273–3278. IEEE, 2004.

120. E. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772, 2009.

121. P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945,
2010.

122. S. Becker, V. Cevher, and A. Kyrillidis. Randomized low-memory singular value
projection. In 10th International Conference on Sampling Theory and Applications
(Sampta), 2013.

123. L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces
from highly incomplete information. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE, 2010.

124. K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-
mation. Information Theory, IEEE Transactions on, 56(9):4402–4416, 2010.

125. A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal
of mathematical imaging and vision, 48(2):235–265, 2014.

126. Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

127. S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

128. J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

129. Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion.
In Proceedings of The 31st International Conference on Machine Learning, pages
674–682, 2014.

i
i

“Notes” — 2024/2/29 — 7:41 — page 81 — #81 i
i

i
i

i
i

130. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimiza-
tion framework. In Advances in Neural Information Processing Systems 28, pages
3132–3140. 2015.

131. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

132. Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley - benchmarking deep learning optimizers. CoRR, abs/2007.01547,
2020.

133. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul
2011.

134. Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

135. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

