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Chapter 6

In our attempt to match the lower bounds for gradient descent in
the previous chapter, we “cheated” by using information beyond the
first-order gradient to achieve up to a quadratic convergence rate.
But whether we can match the initial lower bounds by just using
gradients remains open.

In this chapter, we will discuss one way to match these lower bounds
using only gradient information, closing this gap. This is achieved
with the notion of acceleration/momentum, where we will discuss
the Heavy Ball method by Polyak and Nesterov’s optimal methods.

Momentum ‘ Heavy Ball method ‘ Nesterov's acceleration ‘ Adaptive restarts
and noise in acceleration

We remind again of the limits of gradient descent-based
methods under convex assumptions.

® For convex objective functions with Lipschitz continuous
gradients, with constant L, we can prove that there ex-
ists an instance f such that first-order methods cannot be
better than:

3L||xo — m*||%
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Under this assumption, and only using gradients, we can-
not achieve better than the above.

® For convex objectives functions with both Lipschitz con-
tinuous gradients and strong convexity, a similar argument
holds. I.e., there is a strongly convex function f such that
gradient descent-based methods cannot be better than:
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where K = L/p > 1. Here we observe that, while we
have achieved the same convergence rate concerning the
exponent—i.e., in both cases, we have ¢, for ¢ < 1—in
the lower bound case, we see /k instead of k.

£

Gradient descent and acceleration. We will focus on two multi-
step gradient descent methods: the Heavy Ball method and
(one of) Nesterov’s accelerated methods. These methods are
called multi-step since they consider the history of points com-
puted to prove convergence. In its most generic form (and
abstractly denoting the algorithm as a function ¢(-)), these
methods can be written as:

Tt+1 = (p(a]‘t,ﬂ,’t_h . ,xt,g),

where ¢ here represents the time window in the past from
which we take information to accelerate the process.

In a sense, gradient methods—and even second-order
methods—are one-step methods with ¢ = 0.

Heavy-ball method. We will start with the Heavy ball method,
which the following recursion can describe:

Ter1 = 2t — NV f(x) + BTt — Tt 1) -

Gradient step

Momentum step

Here, x; is the current estimate, 7 is the step size, similar to
standard gradient descent, and [ is the momentum parameter.
Observe that, following the discussion above, this recursion
belongs to the case:

Tepr = (e, Te-1).

What is the motivation for using such a method? A vital issue
in gradient descent is pathological curvature. When curvature
in different regions and directions is very different, for a fixed
learning rate, gradient descent will make slow progress in one
of either the high or low curvature regions/directions. For
pathological curvature, we want to make smaller steps in re-
gions of high curvature to dampen oscillations and make larger
steps and accelerate in areas of low curvature.

Further, we will answer this question through some plots.
See the following figures: instead of unnecessarily zig-zagging
in the case of gradient descent updates, momentum uses past
information to be “biased”, thus achieving a more direct tra-
jectory towards the (local or global) stationary point.

Mhe iterates />( gradient

Gradient descent Extrapolating previous directions

Fig. 38. Motivation for using acceleration in gradient descent. Borrowed from
Boyd's and Vanderberghe book on “Convex optimization”.

Some physical analogy inspires momentum: Consider we
have a ball that moves along a curved surface (that’s why
the method 1is called heavy-ball). The motion of the ball in
a potential field under the force of friction is described by a
second-order differential equation:

p T =~V f(() ~b

ox(t)
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Observe that the intuition of the heavy-ball method comes
from the continuous space, where gradient descent is known
as gradient flow. (The field that studies how we move from
phenomena that happen in the continuous space to the discrete
space is an active research area in optimization and machine
learning). One way to discretize the above continuous differ-
ential equation is to obtain:
xt+At—2$;+9€t—At _

o Ta V() — bR

At

which results in the following:

TitAt = Tt — ATﬁVf(xt) + ( - %) (zt — Tr—nt).

This resembles the discrete Heavy-ball description above.

Vf(xt) (mt — mt_l)
¥~\ .'1
e T
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¢ zy — nV f(z4)
Tt—1

Fig. 39. Motions of the heavy-ball method. If the current gradient step is in the
same direction as the previous step, then move a little further in that direction.
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Fig. 40. Motivation for using acceleration in gradient descent. Borrowed from Polyak’s book “Introduction to Optimization”. (a) is Gradient descent, and (b) is the

heavy-ball method.

Locally, at a point z, the Heavy ball method “makes deci-
sions” according to the figure above.

But how does it perform in theory? Let us first assume that
we use the heavy-ball method for convex functions f.

Theorem 6. Consider the heavy-ball recursion, with step size n
and momentum parameter 3. Let f, the objective function,
be convex, with L-Lipschitz continuous gradients. Further, as-
sume that f is strongly convex with parameter u, with a unique
global minimum x*. Then, for step size and momentum pa-
rameters satisfying:

- 4 _ (VI-v&E)?®
1= e i 6= (AEE)

the heavy ball recursion gives an estimate xr after T itera-
tions, such that:

T
ler —a*le < (1) llwo — 2"l

Before we provide the proof, compare this with the lower
bounds provided at the beginning of the chapter: the Heavy-
ball method achieves the lower bounds by just using the value of
the estimates from the previous iteration! l.e., we do not com-
pute or store something extraordinarily large, such as keeping
a long history of gradients or computing the Hessian.

Proof: In contrast to the gradient method, we will focus on
the behavior of two consecutive distances, ||z¢+1 —x*||2, ||zt —
33* ||22

*
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For the last equality, we use the generalization of the mean

value theorem, according to which, for a function f : [a, 8] —
R, differentiable, there exists v € (a, 8) such that:

£y) = K,

This leads to the following equation for our case: Vf(z:) =
sz(zt)(xt — z*), with 2z¢ in the space between x; and z*.
(To see this, consider the substitutions f'(-) — V2f(), f(-) =

Vf(-), and the fact that V f(z*) = 0.) Continuing the above

recursion, we have:

*
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In the last step, we apply the Cauchy-Schwarz inequality.
Let us focus on the contraction matrix:

H [(1 + 81 - NV f (2) —51}

< H {(1 +B)I —InVQf(zt) _681}
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2

We know that V2f (-) = 0 by strong convexity, and it has an
eigenvalue decomposition:

V2f(z) =UAU",

where U is an orthonormal matrix, and A is a diagonal ma-
trix, with the eigenvalues of V2f(-) on its diagonal. Since
V2f(-) = 0, observe that all the eigenvalues are positive. Let
us denote the eigenvalues as \;. Then, for simplicity of our
arguments, we will get the following equalities under proper
assumptions:

H [(1 +B)] — V2 (2) 751}

I 0|,
o™ o ] . [(1+,6)1—nUAUT —,31} . {U 0} H
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Let T represent the block diagonal matrix of the above ex-
pression. Now, let’s come back to our entire expression:

Tiy1 — x” Ty —x*
Ty — " Ti1 —xF

<[, |

2 2
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We want to bound HTt H2 to have convergence. The spectrum
of a diagonal matrix is the eigenvalues of the sub-matrices.
Bounding T* to the spectral radius, we can use the following
fact:

|~

, < (1) + o)

For some set of sequences of €; > 0. Where p(T) is the spec-
tral radius of T (maximum magnitude of an eigenvalue of T).
Now, rewriting the problem to solve:

1+8—n\i -8 )
1 0 +€;

The maximum value is equivalent to finding the maximum
eigenvalue of many 2 x 2 matrices. We will drop the ¢; by
setting it to 0. To reduce the expression to:

{1 + B8 —nX\ —ﬂ}
1 0

max [
7

max
2

To compute the eigenvalues of such matrices, we need to find
the roots of the equation:

E—(1+B-n\)E+B=0.

Observe that for g > (1 - \/n)\i)z, the roots of the character-

istic equations are imaginary, and both have magnitude /f.
By L-smoothness and strong convexity assumptions,

(1= vix)" < max {1 v, [1 - L}

Then, by letting 8 = max {|1 — /7a|*, |1 — vnL|*}, we have:

|| B < mas {1 v, - vazl)

Now, by letting n = we have:

4
(VA+VL)??

VL— 2 k—1
8= (ﬁ+£) , and max{|l — |, 11— \/nL|} = £+1'
This leads finally to:

Tep —at || (\/E—l) zy —x”
Ty — 2" = \Vr+1 Ti_1 —TF

Unfolding this recursion and focusing on the top row, we ob-
tain:

2 2

T
lor —a*ll2 < (51) llwo = a2
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Thus, the heavy-ball method converges linearly, but, in
Big-Oh notation and given that the factor x is an important
one, its iteration complexity is O(y/k log é), as compared to
O(rlog 1) of standard gradient descent. The corresponding
iPython Notebook compares the convergence of gradient de-
scent and the heavy ball method.

What about using the heavy-ball method for convex but just L-
smooth functions? Can we still prove convergence or, even
better, the acceleration? In our thus-far discussion on the
heavy-ball method, we made the following assumptions, on
top of convexity and L-smoothness:

® f is also strongly convex with parameter pu.
® f is twice differentiable.

There are some surprising results when we start dropping some
of these assumptions. (The research on these questions is still
active; thus, if you find any results that disprove any of the
statements below, please let me know.) Zavriev and Kostyuk
in [48] prove that the heavy-ball method trajectories converge
to a stationary point, with sufficient conditions, when the func-
tion f is just L-smooth, but not necessarily convex.

It turns out that current state-of-the-art results for general
L-smooth, and convex function f is the following theorem by
Ghadimi, Feyzmahdavian, and Johansson [49].

Theorem 7. Let f be a convex function with L-Lipschitz con-
tinuous gradients. Consider the heavy-ball recursion with mo-
mentum parameter and step size satisfying: 8 € [0,1), n €

(0,2052). Then,

_ * 1
f@r) = fz") =0 (7),

where Tr = %ﬂ Z;‘on Tt.
Sketch of proof: The proof uses the following steps:

¢ Define p; = %(zt — x¢—1), which leads to heavy-ball re-
cursion: Teq1 + Pe+1 = Tt + pr — ﬁvf(ﬂft)

e Compute ||T¢4+1 + pir1 — 7|3 by substituting the quantity
Zi4+1 + pe+1 and unrolling the square identity.

® Using standard L-smoothness identities, we get to:

T
+ 3 (e (@) = S+l + s = 2°IF)

<3 (2 (F o) = S ) + o+ 91— ")

for some auxiliary variable A € (0, 1].
This implies that:
T

T D (f (@) = f@") < 5% (f (x0) = f(a*)) + [lzo — 2|

t=0
Given convexity of f, we have by Jensen’s inequality that:

T
(T+1)f(@r) <Y flae).
t=0
The above lead to:
f(@r) — f(z7)
< 7 (ses (U (o) = £(") + 554 llwo — 2|1
(

1
o(z)

O

The above result denotes that the average of all estimates

drops with rate O(fraclT); i.e., the current proof for heavy-

ball is similar to that of the simple gradient descent method!

One can use per-iteration specific values for 7, and S, which
further leads to:

f(zr) = f(=") = O(7),
according to Ghadimi, Feyzmahdavian, and Johansson [49].
Howewver, there is still a gap between our current theory and
the possibly achievable lower bounds!

What is more interesting is the following fact: So far, we
focused on the L-smoothness assumption; if we also assume
strong convexity, but we drop the assumption that f is twice
differentiable, there are cases where the heavy-ball method
does not necessarily converge, even using Polyak’s stability
conditions!
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Nesterov’'s accelerated method. In our discussion so far, for
both theory and practice, we made the following choices:

® Practically, heavy-ball method satisfies the recursion
Ter1 = @ — NV f(x¢) + B(xt — x4—1), where the gradient
is computed at the current point x:.

® Theoretically, the heavy-ball method was shown to achieve
the lower bounds for the case of L-smooth and p-strongly
convex case.

Nesterov, in his seminal paper [50] in 1983, proved that a
slightly different version of the heavy-ball method can achieve
the lower bounds of O(75) for first-order methods under L-
smoothness assumption; a result that is currently missing for
the simple heavy-ball method.

First, let us describe Nesterov’s proposal. The idea is based
on the following observation: The Heavy-ball method

Tep1 = 2 — NV f (@) + B2 — 20-1),
can be equivalently written as a two-step procedure:

ft =Tt — UVf(JIt)
Tiyr = Te + Bwe — Te1).

In a way, in Heavy-ball, we end up to x:41 after computing the
gradient of f at x; and performing the momentum step. But
what if we compute the gradient at a point that looks more
similar to the motions we perform, even after the gradient
calculation in heavy-ball? This leads to Nesterov’s suggestion
where we compute:

.’T\}'t =Tt — 77Vf(l’z + 6(1% - mtfl))
Te41 = Tt + B(we — Tp—1).

Locally, at a point z¢, the Nesterov’s method “makes deci-
sions” according to the following figure.

(Cvt - wt—1)

Vf(x:)

‘V;f(l‘t + Bz — zz—l))’
DN SN .

Tt41
e x4+ Bz — T4-1)

T

© —nV
Ti 1 xy — NV f(xs)

Fig. 41. Motions of Nesterov's accelerated method. If the current gradient step
is in the same direction as the previous step, then move a little further in that direction.
Compare this figure with previous Figure.

The above can be written in the following form, which is
more recognizable as Nesterov’s recursion:

Tep1 =yt — NV f(yt)
Y1 = Te41 + B(Teg1 — xt)

What was revolutionary is that Nesterov proposed spe-
cific, time-dependent values for B,—that are simultaneously
practical—which lead provably to acceleration! One such
schedule for the momentum parameters (3; satisfies:

14+4/1+467

2 ) ﬂt = B =1

o =1, 41 = 041

Let us first consider the case where f is convex and L-
smooth.

Theorem 8. Let f be a convex function with L-Lipschitz contin-
uous gradients. Then, Nesterov’s recursion with B as defined
above, and n = % satisfies:

flor) — fla*) < 22lzoce®ls _ o (1)

I.e., Nesterov’s accelerated method achieves the lower bound
for the case of just L-smooth convex functions!

Further, for strongly convex functions with parameter u,
one can also show that, similarly to the heavy-ball method,
it achieves the complexity O (\/E log %), i.e., it also achieves
the lower bound for the case of L-smooth and p-strongly con-
vex functions! (We omit the proof and leave the discussion of
acceleration in non-convex settings for later.)

Interesting facts about acceleration. Closing this chapter, we
will discuss two exciting facts using acceleration.

Set up: For the first one, we will need an optimal configu-
ration for Nesterov’s accelerated method when we know pre-
cisely the condition number of the convex problem, x = %
The recursion satisfies the following:

T =y — £V (y)
Yt+1 = Te41 + 5*(2%“ — Tt),

where
1
o VE
Let us define also ¢* = % The above recursion is optimal,

and the proof is omitted; by optimal, we mean that there is a
constant step size along with this momentum parameter that
achieves the lower bounds. However, it requires the exact
knowledge of the Lipschitz gradient continuity parameter L
and strong convex parameter p. Also, note that this selection
is optimal, assuming convexity.

For the second one, we will assume that the gradient cal-
culation step includes some noise. As before, we assume that
the function satisfies Lipschitz gradient continuity. One natu-
ral way to think of this is to assume that we compute only a
noisy version of the gradient:

Vi) = Vi) +¢.

We will need the following definition of inexact first-order or-
acle for the theory. In the noiseless case, we know that:

0< f(y) — fla) = (Vf(@),y—z) < Zllz—yll3

Pictorially, at every point z, the function can be “sand-
wiched” between a tangent linear function, (Vf(x),y — z),
and a parabola. For the inexact oracle, we will assume the
same inequality holds with some slack § > 0:

0< fy) = fle) = (Vf(x),y —a) < §llz—yl5+6

Pictorially, it comes with the same illustration, except now
there’s some slack between the linear approximation and the
parabola. Let us now describe these interesting phenom-
ena. Acceleration often leads to a mon-decreasing sequence

of function values. It is common, when running an acceler-
ated method, to have the appearance of ripples in the trace
of the objective value; these are seemingly regular increases in
the objective. The following figure is borrowed from [51] by
O’Donoghue and Candes.
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The function we are optimizing here is a simple quadratic
function:

flz) = 32" Az,

where A is a positive definite matrix. First, observe that, in
this case,

min f(x)
has optimal solution z* = 0, and f(z*) = 0. Further, the Lip-
schitz gradient continuity parameter satisfies L = Amax(A),
and the strong convexity parameter satisfies g = Amin (A4).

Let’s extract some information from the plot. The case
where ¢ = 1 leads to:

Yt+1 = Te41 + %\\/g(fﬂwl —Tt) = Tet1
and thus the accelerated version boils down to:

Ti41 = Tt — %Vf(l't),

fa*) = f*

q=4¢"/10 VN y
07" a=q"/3 R |
q=q" \ o~ /
o q=3q* \ —
q=10q \ N
g=1 \/ \

L L L - Y L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 42. Behavior of optimal’s accelerated method for a convex function, where
we do not set up the g parameter correctly (in other words, we only approximate the
values L and p).

the gradient descent method. Also, assuming that the momen-
tum parameter takes values in [0, 1], the maximum parameter
case is when ¢ = 0, where:

_ 1-va _
B=17l=1.

Ranging the value of 3, we observe an interesting phe-
nomenon. Starting with ¢ = 1 (i.e., 8 = 0), we obtain the
behavior of gradient descent, which from the figure shows the
worst performance (in terms of iteration complexity). On the
other end, for ¢ = 0, we obtain the maximum £ value that def-
initely “beats” gradient descent, but there are different values
of B, between the values 0 and 1, that gives a better perfor-
mance.

More importantly, we observe these interesting ripples in
the plots: the function values do not monotonically decrease
as the iterations increase but rather follow a periodic pattern.

However, despite this behavior, the function values decrease
faster than plain gradient descent. Of course, as expected, the
optimal performance—without any ripples—is achieved by ¢*.

Overall, slightly over- or under-estimating the optimal value
q (or equivalently of ) leads to a presumably severe detrimen-
tal effect on the rate of convergence of the algorithm. Note
the clear difference between the cases where we underestimate
(¢ < ¢*) and where we overestimate (¢ > ¢*): in the former,
we observe this rippling behavior in the function traces, while
in the latter, we observe the classical monotonic convergence.

To understand better what is happening during the ripples,
we also provide the following plot from the same paper by
O’Donoghue and Candes. The high momentum values cause
the trajectory towards the optimum z* to overshoot and os-
cillate around it. This causes a rippling in the function values
along the trajectory as we get closer but then move further
away from the optimum.

What about Nesterov’s routines on selecting B:? Someone
would wonder “what happens when we use the routine:

1+4/1+402 9, —11
0o =1, b1 = V5L, B =Gt

It turns out that, as the iterations increase, the 8; values keep
growing towards the maximum value 1, as shown in the plot
next. Thus, Nesterov’s approach naturally often leads to a
rippling behavior we observe in practice.

What could be a solution to this? (Adaptive) restarts of the
momentum [3 procedure. One approach to avoid ripples is oc-
casionally restarting the 8; computation procedure. E.g., one
natural check we can make is to check at every new point
whether the function value starts increasing; in that case, we
can reset 6;11 = 0 and compute a new set of 5’s. But do these
techniques work in practice? It turns out they do!

0.1

0.05

T2
o

-0.05

Fig. 43. Comparison of behavior between optimal q* and maximum momentum
parameter (¢ = 0) for a 2-dimensional toy example.
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Fig. 44. p; values w.r.t. number of iterations, according to the rule 6 =
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Behavior of acceleration under noisy settings. The point of
this subsection is that simple GD is more noise-tolerant than
accelerated methods. The noise tolerance corresponds to the
case where we might not be able to compute the gradient ex-
actly but have a rough approximation.

This statement is based on the work by Devolder, Glineur,
and Nesterov [52]. The main idea is that, even if accelerated
GD converges faster than the plain GD, it must also accumu-
late errors faster (linearly) with the number of iterations.

Let us consider a noisy version of the above experiment. In
particular, instead of computing exactly V f(z) = Ax — b per
iteration, we see V f(z) + £ = Az — b+ £ where £ is a vector
sampled from the n-dimensional normal distribution. Let us
see how this performs in practice.

(See ipython notebook.)

But what can we say theoretically about this phenomenon?
It turns out that what [52] shows is that, for an inexact first-
order oracle that satisfies the Lipschitz gradient continuity
with slack §, we can hope for:

flze) — mb_cinf(m) <O(%)+s.

Le., while we know that we decrease the error at a rate O(7),
we cannot “beat” the fact that there is an error every step,
and we cannot reduce the error more than within a § radius
around the optimum.

On the other hand, what acceleration probably gives us is
the following:

f(xe) = min f(z) <O (f) +1-0.

IL.e., the same story holds but, at the same time, the error level
that we want to “beat” increases with the number of iterations
(i-e., t10 < t20 for any t1 < t2). Thus, acceleration accumu-
lates errors more quickly while converging faster in a noiseless
setting. (See ipython notebook.)

o0

ODESs. Nesterov’s methods can be represented as ordi-
nary differential equations (ODEs). ODEs have long been
connected with optimization. The connection between ODEs
and numerical optimization is often made by having small step

sizes so that the trajectory or solution path converges to a
curve modeled by an ODE. An ODE can model Nesterov’s
algorithm in this manner. More precisely, the ODE represen-
tation of the first-order method is a second-order ODE:

. 3.

X+;X+Vf(X) =0
for ¢ > 0, with initial conditions X (0) = zo, X (0) = 0 where
xo is the starting point in Nesterov’s algorithm. X = % de-
notes the time derivative or velocity and X = ‘f;g denotes
the acceleration. The time parameter in this ODE is related
to the step size.

The Chebyshev Method. Here, we will continue our dis-
cussion at the end of Chapter 3. As a reminder, we consider
the minimization problem of the function:

fl@)=1a"Qx bz +r,

where z € RP, Q € RP*? is a symmetric matrix, b € R? is a
vector and r is a scalar. Le.,
mip f(@).

Here, we follow the discussion in this chapter, where p - I <
Q <X L-1. Further, we know that Vf(z) = Qz—b = Q(x—z7),
assuming that z* solves the problem and thus Qz* = b.

As we implied in Chapter 3, what matters in first-order
methods in quadratic function minimization is the following
problem:

P = i P
¢ =arg min max | P(Q)]2,

where in the case where p- I < @Q =< L - I turns out to be:

Pl = i PN
o =arg min max [[P()]2

It is known (out of the scope of this course) that polynomials
that solve the above problem are the Chebyshev polynomials
of the first kind; for more detailed discussion, please look into

approximation theory results. Chebyshev polynomials of the
first kind satisfy the following equations:

To(z) =1,
Ti(z) = =,

Te(z) = 22Ti—1(x) — Te—2(x), fort > 2.

The above expressions define just a recursion; i.e., these are
the conditions a specific polynomial should satisfy (it is not a
constructive argument, but an existential one). However, an
explicit solution could be (out of the scope of this course):

cos(t - acos(z)), z € [-1,1],
cosh(t - acosh(z)), x> 1,
(=1)* - cosh(t - acosh(—=x)), =z < 1.

Ti(x) =

It is a fact that this solution satisfies'!:

siiT = argmin max [PV,

that satisfies our original problem, but for a scaled version: in-
stead of A € [u, L], we have A € [—1,1]. Simple linear mapping

11n fact, this polynomial satisfies the minimax property as a monic polynomial, i.e., a polynomial
whose coefficient associated with the highest power is equal to one.
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arguments from [, L] to [—1, 1], lead to the shifted Chebyshev
polynomials:

2x—(L+p)
(=

W

L—p

¢ H(x) =

that optimize the original polynomial problem.
Going back to the original definition of Chebyshev polyno-
mials, we get:
cy @) =1,

,L
e @) =1- 2,

ClM@) = 225 (L = 20 (a)

+ (1 + 25;}#) cB(x), fort>2,

where §; = ]Z—;z and:

_ 1
§t7W, fort22
L—p~ t—1

But how is this useful? Let us go back to the original
gradient-based formulation from Chapter 3, where we had:

x—x" = P(Q) - (zo — 7).

Here, P(Q) is any polynomial that satisfies the constraints;
thus, we can substitute this with the Chebyshev-based poly-
nomial to get:

z— " =Cc () - (w0 — 27).

Using the definition of the polynomial Ct[“ Ll (z), we obtain the
recursion:
v—at = 2 (Lt p) - T —2Q) (w1 — a¥)
(1 2 (22 — 2
Since the gradient for the quadratic functions satisfies:
Vf(z:) = Q(ze — x*), we finally obtain:
z = % (L4 p) - ze—1 — 2V f(w4-1))
+ (1 + 7262%:”) Ti_2
_ 454
=a1-1— .25 V(@)

+ (1 + %ﬁ#) (t—2 — 21—-1)

Compare this expression with the Heavy-Ball’s expression:
e = xe—1 — NV f(ze—1) + B(Te—1 — T£—2).

There are some resemblances! In fact, assuming ¢ — 0o, one
can solve the equation:

Soo = —ri—r
o 2—’£f5 b

to obtain a value for the doc = VL-Vi that leads to the fol-

0 VL+p
lowing expression for Chebyshev method:

Tt = Tt—1 — ﬁvf(mt—l)
. 2
4 VIV gy y)

(VL+ym)?

which is exactly the Polyak’s Heavy-Ball method! (Owverall,
the intersection of approzimation theory, function/real anal-
ysis, and optimization is a fruitful research area with broad
open questions.)
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