
i
i

“Notes” — 2022/10/17 — 10:25 — page 47 — #47 i
i

i
i

i
i

Chapter 7

In the last chapter, we considered natural ways of accelerating the
performance of gradient descent, by cleverly using previous estimates
via the momentum term. However, while acceleration in that setting
leads to faster convergence in analytical complexity terms, it does
not reduce the per iteration complexity.

In this chapter, we will discuss how we can accelerate the perfor-
mance of gradient methods by computing less per iteration: based on
the empirical risk minimization formulation, we will discuss stochas-
ticity and how the stochastic version of gradient descent can be
beneficial in practice. Definitely, such a choice creates trade-o↵s
(number of iterations to converge vs. computational complexity per
iteration). As an alternative way of accelerating gradient descent,
we also mention the notion of coordinate descent, where we update
individual entries of the variable vector, instead of the full vector,
per iteration (more details in class).

Stochastic gradient descent and its variants | Coordinate descent and its variants

To discuss about stochasticity in optimization, we will first
need a new problem definition, that is amenable to stochas-
ticity. While stochastic optimization and stochastic approx-
imations are large research areas by themselves, a particular
optimization criterion that appears often in the literature is
that of the empirical risk minimization. Let us define that
through an example.

Consider that we have a dataset D that is comprised by n
data points {wi, yi}ni=1:

11 here, we can simplify the discus-
sion by assuming that wi is a vectorized version of an image,
wi 2 Rm, and yi 2 R is the label for that image. We are inter-
ested in designing a predictor function h : Rm ! R that takes
as an input an image wi and predicts its correct label yi. This
predictor is to be learned, and the learning parameters are
described via a real vector x 2 Rp, such that h(x,wi) = yi.
To make this even more explicit, if we were talking specifi-
cally about the case of linear regression, and under the setting
p = m, the predictor should be:

h(x,wi) = x>wi = yi, 8wi.

In the above description, what is vague is the statement
“8wi”. What if we have n = 1000 samples and then we have
1000 more? Should we create a predictor that operates flaw-
lessly on the given dataset, but gives no guarantees how it
operates on unseen data? This leads to the notion of expected
risk : can we find parameters x that minimize the prediction
loss on average, over all possible input-output data points?
I.e., if we measure the loss as (h(w, x)� y)2, can we optimize:

min
x

E{x,y}⇠D
⇥
(h(w, x)� y)2

⇤
.

In reality, we do not have access to the true distribution of
how data is generated. Thus, we cannot practically optimize
this objective, but we can approximate it through the empiri-
cal risk : assuming that each data point is generated i.i.d. in a
uniform way, we can approximate the expected risk with the
empirical risk, and solve:

min
x

1
n

nX

i=1

⇥
(h(wi, x)� yi)

2⇤ .

Let us define fi(x) := (h(wi, x)� yi)
2. Then, the above

objective is written as:

min
x

(
f(x) := 1

n

nX

i=1

fi(x)

)
.

How would we solve this problem? By applying gradient
descent methods! In particular, we can compute the gradient
at the iteration t as:

rf(xt) = r
"

nX

i=1

fi(xt)

#
=

nX

i=1

rfi(xt);

i.e., the full gradient is actually the summation of the gradients
of each individual fi(·). Thus, if the computation of rfi(·)
takes Trfi(·) time, the gradient descent requires n · Trfi(·) it-
eration complexity to compute the full gradient. Assuming
that the problem is convex, L-smooth and µ-strongly convex,
then this implies that the total complexity of gradient descent:

xt+1 = xt � ⌘rf(xt),

to get to an "-solution is:

O
�
n · Trfi(·) · log

1
"

�
.

(We neglect the presence of in the above expression for clar-
ity). But do we really need to compute the full gradient per
iteration?

Prototypical stochastic gradient descent (SGD).The natural
question to ask is “can we remove the n in the above complex-
ity?”. This stems from the fact that we often have massive
amounts of data: imagine that you are working with the Ima-
geNet dataset, that has more than 14 million images. Having
n = 14 · 106 in the complexity above creates a huge burden in
terms of computational resources.

What if we just computed the gradient on only one sample
per iteration? I.e., we perform:

xt+1 = xt � ⌘rfit(xt),

where it 2 [n] and is selected randomly. We can easily ob-
serve that, in this case, each iteration is very cheap, involving
only the computation of the gradient rfit(xt), corresponding
to one sample. Thus, someone would expect to obtain some-
thing like O

�
Trfi(·) · log

1
"

�
, but unfortunately this is not the

case. Discussing such trade-o↵s is the goal of this chapter:
how we configure SGD algorithms is an active research area.

Some motivation for using SGD.There are both practical and
theoretical motivations in using SGD in practice.

For practical motivation, we can easily construct cases that
intuitively does not make sense using full gradient over SGD.
E.g., consider the case where our dataset D has n copies
of a single data sample w1, y1. In that case, rf(x) =
1
n ·

Pn
i=1 rfi(x) = 1

n ·n ·rf1(x) = rf1(x). Thus, xt+1 = xt�
⌘rf(xt) = xt�⌘rfit(xt), but we have wasted (n�1) ·Trfi(·)
complexity to compute the full gradient. This reasoning stems
from the fact that, in many applications, it is not the case
that all data points provide new information. For p dimen-
sional least-squares objective, the complexity of computing the
full gradient is O(np), whereas n � p is now often the case
(big-data regime), computing the exact gradient might have
diminishing returns. There might be cases where clusters of
data can be well-represented by a single data point, and thus
computing gradients for each data sample is a waste of compu-
tational resources. This issue is handled naturally with SGD.

The above can be empirically observed with real data. In
the figure that follows from the writeup by Bottou, Curtis and
Nocedal, it is obvious that SGD motions can be even faster
than quasi-Newton methods, that exploit the curvature of the
objective, beyond just the gradient information. (Caveat: to

11Usually, datasets are represented as {xi, yi}ni=1 in the ML literature, where xi indicates the
input and yi the observed output. However, since we use x to denote the optimization variables
in these notes, we use the less frequent notation of {wi, yi}ni=1 to denote the above.

i
i

“Notes” — 2022/10/17 — 10:25 — page 48 — #48 i
i

i
i

i
i

achieve this plot though, heavy hyper-parameter tuning was re-
quired for SGD.)

Fig. 45. Binary classification problem using logistic regression and the RCV1
dataset. Borrowed from Bottou, Curtis and Nocedal manuscript on “Optimization
methods for large-scale machine learning” [50].

The theoretical motivation that stems from using SGD lies
in that, while we often do not achieve in theory the same con-
vergence rate than full gradient descent, SGD removes the n
factor in the total complexity, creating an interesting trade-
o↵ for the practitioner. Moreover, it turns out that in the
stochastic optimization setting, SGD yields the same conver-
gence rate, even if we work in the expected risk case. Having
such strong guarantees in the full gradient descent is not pos-
sible, as the latter is not even viable without the ability to
compute the full gradient on, let’s say, countably infinite data
points that can be generated from the data distribution.

Some examples for SGD for common functions.We will con-
sider the classical examples of linear and logistic regression.

Linear regression: In this well-studied setting, we can easily
decompose the full gradient objective 1

2ky�Axk22 into a sum-
mation of smaller objectives:

f(x) := 1
2ky �Axk22 =

nX

i=1

1
2

⇣
yi � ↵>

i x
⌘2

:=
nX

i=1

fi(x).

Then, SGD looks like the following:

xt+1 = xt � ⌘rfit(xt) = xt + ⌘↵it(yit � ↵>
itxt)

Logistic regression: In logistic regression, the objective func-
tion is similarly the summation of objectives obtained from
samples:

f(x) := 1
n

nX

i=1

log(1 + exp(�yi↵
>
i x)) :=

1
n

nX

i=1

fi(x)

As we shown in Chapter 2:

rfit(xt) =
�yi

1 + exp(yit↵
>
it
xt)

↵it

Then, SGD looks like the following:

xt+1 = xt � ⌘rfit(xt) = xt + ⌘
yi

1 + exp(yit↵
>
it
xt)

↵it

Neural network (MLP): Similar with logistic regression, but
the objective function becomes the loss function of the neural
network. Denote the weights and biases in a simple multi-layer
neural-network as x, then sample prediction can be denoted
as ŷi = gi(x). Take `2-norm loss as an example objective:

f(x) =
1
n

nX

i=1

kyi � ŷik22 =
1
n

nX

i=1

kyi � gi(x)k22 =
1
n

nX

i=1

fi(x)

Then, SGD looks like the following:

xt+1 = xt � ⌘rfit(xt;wit , yit),

where (wit , yit) is from the training set, and rfit is usually
referred to as the stochastic gradient.

Cut-o↵ complexity per iteration for SGD.Figure 46 is from
the process of Gradient Descent and Stochastic Gradient De-
scent on the contour of the parameter space, and the rows
in the purple (GD) and blue columns (SGD) are data sam-
ples. In each step, GD computes the full gradient, and chooses
the “most decreasing direction”, perpendicular to the contour.
SGD computes only part of the gradient by sub-selecting data
samples, and takes a more winding path. Per iteration, the
SGD minimizes a di↵erent objective function; that coming
from randomly picked samples. This is not the same as opti-
mizing the original objective, which is from the summation of
samples, therefore SGD goes in random directions.

It is going to be proven in the next section that, overall,
SGD moves in the correct direction on expectation. This is
a nice feature that allows us to trade-o↵ between high per-
iteration complexity with exactness (full GD) and less per-
iteration complexity with possibly more iterations. In prac-
tice, SGD is often used with momentum and weight-decay, in
order to make use of the information from previous iterations.
Also, the randomness of data selection can be implemented
by randomly shu✏ing the dataset, and taking the data sam-
ples in sequence at each iteration. There are more sophisti-
cated approaches of selecting samples, for example selecting
the “harder” (not well predicted) samples from previous it-
erations, which requires more computation; or selecting data
under fairness considerations.

Fig. 46. SGD vs. GD on the parameter space contour (tribute to Piotr Skalski)

Basics of theory on SGD. Let us first define the notion of un-
biasedness:
Def inition 30. (Unbiasedness) In statistics, we call the variable
✓̂ an unbiased estimation of ✓ if:

E[✓̂] = ✓.

i
i

“Notes” — 2022/10/17 — 10:25 — page 49 — #49 i
i

i
i

i
i

We will use the above definition to show that stochastic gra-
dients are unbiased estimators of the full gradient. In partic-
ular, consider the case where rf(x) = 1

n

Pn
i=1 fi(x), similar

to the empirical risk minimization case. Then:
Claim 7. Let i be selected uniformly at random from the set [n].
Then, the atomic gradient rfi(x) is an unbiased estimator of
the true gradient, rf(x).

Proof:

Ei [rfi(x)] =
nX

j=1

P [j = i]rfj(x)

=
1
n

nX

j=1

rfj(x) = rf(x).

⇤
In this section, we would like to characterize theoretically

the performance of SGD:

xt+1 = xt � ⌘itrfit(xt).

In order to limit the harmful e↵ect of stochasticity, it is re-
quired to assume that the variance of rfit(xt) (its norm) is
being bounded, or in other words one of the following inequal-
ities is being assumed:

• There exist some M,Mf � 0 (we often have small M close
to 0 and Mf close to 1; and the constant M takes e↵ect
when the full gradient is 0, in which case the stochastic gra-
dient is usually not 0 and still needs to be bounded) such
that:

Eit

⇥
krfit(xt)k22

⇤
 M +Mf krf(xt)k22 ;

or

• There exists a C � 0 such that:

Eit

⇥
krfit(xt)k22

⇤
 C.

The former means that norm of each individual gradient is not
much greater than norm of the full gradient, while the latter
implies that norm of each individual gradient is bounded with
a constant.

SGD for smooth and strongly convex f with constant step
size.We will focus on the following claim:

Claim 8. Assume that f is a i) di↵erentiable, ii) L-smooth, and
iii) a µ-strongly convex function. There exist a constant ⌘ � 0
such that applying SGD from point x0 with step size ⌘, then:

E [f(xt+1)� f(x?)] (1� µ⌘)t (f(x0)� f(x?)) +O(⌘)

where x? is the global minimizer of f .

Proof: By using the assumption of Lipschitz gradients, we
have:

f(xt+1) f(xt) + hrf(xt), xt+1 � xti+ L
2 kxt+1 � xtk22

= f(xt) + hrf(xt), xt � ⌘trfit(xt)� xti
+ L

2 kxt � ⌘trfit(xt)� xtk22
= f(xt)� ⌘ hrf(xt),rfit(xt)i+ L

2 ⌘
2krfit(xt)k22

Let’s assume that indices i0, . . . , it�1 have been selected uni-
formly at random. So, taking the expectation with respect
to it given i0, . . . , it�1 (for brevity we write Eit [.] instead of
Eit|it�1,...,i0 [.]):

Eit [f(xt+1)] f(xt)� ⌘ hrf(xt),Eit [rfit(xt)]i
+ L

2 ⌘
2Eit

⇥
krfit(xt)k22

⇤

 f(xt)� ⌘krf(xt)k22
+ L

2 ⌘
2(M +Mf krf(xt)k22)

which is the result of unbiasedness and boundedness of each
individual gradient norm. Hence:

Eit [f(xt+1)� f(x?)] (f(xt)� f(x?)) + L⌘2M
2

� (⌘ � L⌘2Mf

2) krf(xt)k22 (?)

By strong convexity, we have:

f(xt) f(x?) + hrf(x?), xt � x?i+ 1
2µ krf(xt)�rf(x?)k22

) f(xt)� f(x?) 1
2µ krf(xt)k22

Furthermore, for ⌘ 2
LMf

, it is guaranteed that ⌘� L⌘2Mf

2 �
0. Combining the two above facts in (?), we have:

Eit [f(xt+1)� f(x?)] (f(xt)� f(x?)) + L⌘2M
2

� 2µ
⇣
⌘ � L⌘2Mf

2

⌘
(f(xt)� f(x?))

=
⇣
1� 2µ

⇣
⌘ � L⌘2Mf

2

⌘⌘
(f(xt)� f(x?))

+ L⌘2M
2

(Assume ⌘ = 1
LMf

:) = (1� µ⌘)(f(xt)� f(x?)) + L⌘2M
2

Repeating the chain for it�1, . . . , i0, we have:

E [f(xt+1)� f(x?)] (1� µ⌘)t(f(x0)� f(x?))

+
tX

j=0

(1� µ⌘)j L⌘2M
2

= (1� µ⌘)t(f(x0)� f(x?))

+ L⌘2M
2 . 1�(1�µ⌘)t+1

1�1+µ⌘

(Assume ⌘ 1
µ

:) = (1� µ⌘)t(f(x0)� f(x?))

+ L⌘M
2µ (= O(⌘))

Note that the above result holds for ⌘ min
n

1
LMf

, 1
µ

o
. ⇤

According to the above proof, we observe:

1. Fast linear convergence is connected with smaller (1� µ⌘)
which is subject to selecting (valid) larger value of ⌘.

2. After large enough iterations, the algorithm converges
around a neighborhood of radius O(⌘).

3. When we do full gradient descent, M = 0,Mf = 1.
4. Smaller step sizes (⌘) yield better convergence, although

slower, so there is a trade-o↵ between accuracy and speed
of the algorithm.

i
i

“Notes” — 2022/10/17 — 10:25 — page 50 — #50 i
i

i
i

i
i

SGD for smooth and strongly convex f with decreasing step
sizes.Here, we assume the simpler case:

Eit

⇥
krfit(xt)k22

⇤
 G2

Claim 9. Assume that f is a i) di↵erentiable, ii) L-smooth, and
iii) µ-strongly convex function. If we apply SGD starting from
point x1 with step size ⌘t = 1

µt , then:

E
h
kxt+1 � x?k22

i

max{kx1 � x?k22 ,
G2

µ2 }
t+ 1

=:
�

t+ 1

where x? is the global minimizer of f .

Proof: We know that:

Eit

h
kxt+1 � x?k22

i
 kxt � x?k22 + ⌘2

tEit

⇥
krfit(xt)k22

⇤

� 2⌘t hEit [rfit(xt)] , xt � x?i

By strong convexity:

hrf(x)�rf(x?), x� x?i = hrf(x), x� x?i � µ kx� x?k22

Then:

Eit

h
kxt+1 � x?k22

i
 kxt � x?k22 + ⌘2

tG
2 � 2⌘tµ kxt � x?k22

= (1� 2⌘tµ) kxt � x?k22 + ⌘2
tG

2 (??)

Finally, in order to prove the claim 9, let’s use induction.
First, it is trivial that:

E
h
kx1 � x?k22

i
= kx1 � x?k22

max{kx1 � x?k22 ,
G2

µ2 }
1

Assume that for t:

E
h
kxt � x?k22

i

max{kx1 � x?k22 ,
G2

µ2 }
t

=
�
t

Using the chain of expectations, according to assumption of
the induction and (??), we have:

E
h
kxt+1 � x?k22

i

✓
1� 2

t

◆
E
h
kxt � x?k22

i
+

G2

µ2t2

✓
1� 2

t

◆
�
t
+

G2

µ2t2

✓
1
t
� 2

t2

◆
�+

�
t2

=

✓
1
t
� 1

t2

◆
�

 �
t+ 1

⇤

Comparing GD and SGD.We studied both gradient descent
and its stochastic version, carefully for the specific case of
strongly convex functions. Similar arguments (with corre-
sponding changes in the convergence rates) can be made also
for the cases of just convex L-smooth functions, as well as for
general smooth non-convex functions; we skip all these cases,
since –for the purpose of teaching– do not add much to the
discussion we have here.

As we showed in claim 8, for the ideal case of smooth and
strong convex function, having the linear convergence rate,
there is a trade-o↵ between the accuracy and the speed. Then
in claim 9, using a decreasing learning rate, we guaranteed
accuracy of SGD, but lost the linear convergence rate. While,
in previous chapters, we showed that GD, in addition to keep-
ing the accuracy, exploits a linear convergence rate. So, the
number of samples plays a critical role in making the decision
whether to choose GD or SGD: In other words, although GD
converges with less number of iterations to global minimizer of
the function, each iteration can consume a considerable por-
tion of the time. SGD, needs more iterations to converge to
the global minimum, but it needs less complexity per iteration.
Thus, here, the theory justifies what we intuitively expect from
stochastic and full gradient descent.

iteration complexity per-iteration cost total cost
batch GD log 1

" n n log 1
"

SGD 1
" 1 1

"

The above table shows the computational complexity of
batch GD and GD. The overall cost in the right column is com-
puted by multiplying iteration complexity and per-iteration
cost. Therefore the real comparison is between n log 1

" and 1
" .

In a practical sense the algorithm does not have to be “too
accurate” (see e.g., the case of neural networks), for example
✏ = 10�3 and 1

✏ = 1000, meanwhile n is often the order of
millions. This makes SGD more preferable compared to batch
GD. Another reason that people prefer to use SGD is that it
has a better generalization capability (out of scope for this
class).

Variants of SGD.Mini-batch SGD Note that instead of these
two methods, we can use a mini-batch of samples to do a
stochastic gradient descent in each iteration, but using the
expectation analysis regime, the rate of convergence does not
change.

xt+1 = xt � ⌘trfIt (xt) = xt � ⌘t ·
|It|X

j=1

rfj (xt)

In practice, we rarely use single data point SGD (batch size
= 1) because the update direction is arbituary and the vari-
ance compared to the true gradient is too high.

SGD with importance sampling. As mentioned in a pre-
vious section, to perform SGD with importance sampling, we
have to ”carefully” select the next sample, which requires more
computing each iteration. Hence there is a trade-o↵ between
per-iteration complexity and possible less iterations.

Stochastic variance-reduced gradient (SVRG). The intuition
is to construct a hybrid version of SGD and GD.

xt+1 = xt � ⌘t (rfit (xt)� (rfit (exq)�rf (exq)))

In addition to SGD, a bias correction term for gradient esti-
mate is computed every few iterations for SVRG, which means
the full-gradient has to be computed by some interval. There
is also theoretical guarantees that SVRG can achive same con-
vergence rate as GD with no additive error.

Coordinate descent. Similar to what we did for samples, the
idea of coordinate descent is to update just one feature (or a
subset of features) in each iteration. This method seems in-
teresting specially for the cases with p � 1 (high-dimensional
case, not enough data). What if we just computed the gradient
on only one feature per iteration? I.e., we perform:

(xt+1)it = (xt)it � ⌘tritf(xt),

i
i

“Notes” — 2022/10/17 — 10:25 — page 51 — #51 i
i

i
i

i
i

where it 2 [p] and is selected randomly. Regarding the fact
that in each iteration, we just compute the gradient with re-
spect to one coordinate, ritf(xt), each iteration is cheaper
than its counterpart in GD. (Something like O

�
Trif(·) · log

1
"

�
,

is expected.)

i
i

“Notes” — 2022/10/17 — 10:25 — page 67 — #67 i
i

i
i

i
i

Appendix

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media,
2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

5. Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends R� in Machine Learning, 8(3-4):231–357, 2015.

6. S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

7. T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

8. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

9. M. Paris and J. Rehacek. Quantum state estimation, volume 649. Springer Science &
Business Media, 2004.

10. M. Daskin. A maximum expected covering location model: formulation, properties
and heuristic solution. Transportation science, 17(1):48–70, 1983.

11. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

12. L. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

13. G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press Welles-
ley, MA, 1993.

14. G. Golub. Cmatrix computations. The Johns Hopkins, 1996.

15. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

16. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

17. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

18. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representa-
tions of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

19. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

20. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

21. Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling. In Fifteenth annual
conference of the international speech communication association, 2014.

22. Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilin-
gual convolutional neural networks for LVCSR. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4955–4959. IEEE, 2016.

23. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. page
arXiv:1706.03762, 2017.

24. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. page
arXiv:1810.04805, 2018.

25. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng
Gao. Unified vision-language pre-training for image captioning and VQA. In AAAI,
pages 13041–13049, 2020.

26. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

27. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models
using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

28. Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

29. Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-E
2. arXiv preprint arXiv:2204.13807, 2022.

30. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. Nature,
596(7873):583–589, 2021.

31. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Je↵rey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners, 2020.

32. Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

33. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- Lojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

34. Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

35. Larry Armijo. Minimization of functions having Lipschitz continuous first partial deriva-
tives. Pacific Journal of mathematics, 16(1):1–3, 1966.

36. Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-
68):7, 1999.

37. B. Polyak. Introduction to optimization. Inc., Publications Division, New York, 1,
1987.

38. Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of
EE392o, Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

39. Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

40. M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th international conference on machine learning, number CONF,
pages 427–435, 2013.

41. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto
the `1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

42. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

43. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in neural
information processing systems, pages 1257–1264, 2008.

44. T. Booth and J. Gubernatis. Improved criticality convergence via a modified Monte
Carlo power iteration method. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

45. S. Zavriev and F. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 4(4):336–341, 1993.

46. E. Ghadimi, H. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European control conference (ECC),
pages 310–315. IEEE, 2015.

47. Y. Nesterov. A method for solving the convex programming problem with convergence
rate o(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

48. B. O‘Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

49. O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

50. L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

