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Chapter 8

In this chapter, we discuss the problem of sparse model selection,
i.e., how to perform optimization when the desired/unknown model
is constrained by sparsity. While the problem has natural convex
translations, we study the iterative hard thresholding (IHT) algo-
rithm and prove its performance results.

Sparse model selection | Iterative hard thresholding

Over the run of this course, we have mostly been discussing
problems of the form:

min
x2C✓Rp

f(x),

where f(·) represents a convex objective, and x 2 C represents
some constraint. In this lecture, we will be discussing a case
in which C ✓ Rp is not a convex constraint, namely when it
is the requirement that x be k-sparse. To think about this
problem, let us introduce its simplest non-trivial version of
this problem: the sparse linear regression problem, defined as
follows:

minimize
x2Rp

1
2ky �Axk22

subject to kxk0  k.

Here, A 2 Rn⇥p and y 2 Rn. Linear regression problems
can have a “teacher“ generative model assumption where
y = Ax? + noise, where x? is the unknown k-sparse signal
we look for. This problem is interesting when we restrict that
n ⌧ p; i.e., the problem is ill-posed, and classical linear al-
gebra solvers on sets of linear equations do not necessarily
recover x?.

Let us first discuss some procedures that deal with this prob-
lem.

• The above problem is non-convex: the inclusion of the `0-
pseudonorm makes the problem non-convex. Classical ap-
proaches include convexification: the tightest convex relax-
ation of the `0-pseudonorm is that of the `1-norm (assuming
bounded energy on the initial non-convex set). This leads
to the re-definition of the problem as:

minimize
x2Rp

1
2ky �Axk22

subject to kxk1  �.

There is long-listed literature on this subject [54–57]; e.g.,
look into the Rice DSP list of compressed sensing papers
(https://dsp.rice.edu/cs/). One caveat of this approach
is that the � hyperparameter/regularization parameter is
not intuitive to be set up correctly (while sparsity k is eas-
ier to set up).

• An alternative formulation uses the notion of proximal op-
erators and proximal gradient descent:

minimize
x2Rp

1
2ky �Axk22 + ⇢kxk1.

This formulation “moves“ the convex `1-norm constraint
into the objective and uses the following update rule

xt+1 = Prox⇢k·k1(xt � ⌘rf(xt)).

The `1-norm in the objective “biases“ the solution towards
sparsity (could be seen as an approximation to the exact
`1-norm projection). Like the case above, selecting the ⇢
value to achieve good performance is unclear.

• Finally, one could keep the non-convexity and use non-
convex projected gradient descent. This leads to

xt+1 = Hk(xt � ⌘rf(xt)).

This is perhaps somewhat like sorting the input concerning
magnitude and selecting the k largest ones. Similarly to
the above cases, it is not trivial to set up k; yet, in many
cases, choosing k is more intuitive (remember, this is an
integer value) than selecting a continuous-valued regular-
ization parameter like � and ⇢.

The `0-pseudonorm generally introduces hardness in the
problem definition since it suggests we solve the problem in
a combinatorial way. We are looking for the active support
set with k elements and the values for the corresponding ac-
tive entries. If we try to select the k size subsets from p, we
experience a combinatorial explosion. However, the key to fo-
cus on here is the word ”in general”: This chapter will focus
on problem cases where randomness is enough to lead to an
exception to this rule and admit polynomial complexity.

For this chapter, we will mostly focus on the iterative hard
thresholding algorithm [58–67] or, IHT for short. In IHT, we
have:

xt+1 = Hk(xt � ⌘rf(xt)),

where

Hk(z) = argmin
kx0kk

kx� zk22.

Before continuing the discussion on this algorithm, let us
first get a sense of what the hyperparameters we are dealing
with are:

• Starting point x0;
• Step size selection ⌘;
• Sparsity level choice k.

For a second, let’s imagine that we were dealing with the
simple case of A = I, i.e., A is the identity matrix in Rp⇥p.
Note that this is an oversimplification of the problem: in this
case, n = p by definition of the identity matrix. Then, we
would end up with a new problem formulation:

minimize
x2Rp

f(x) = ky � xk22

subject to kxk0  k.

We have seen this problem before in an earlier homework as-
signment—. This is not di�cult to solve. In this scenario, the
problem is the simple projection step Hk(·) as defined above.
What this problem reformulation tells is the following: given
enough data y (in this particular case, also non-perturbed data
since we do not observe y = Ax?, but y = x?), the problem is
easy to solve in closed form solution, even if the problem in-
volves a combinatorially-hard operation; that of a sparse pro-
jection. I.e., we know that Hk(·) introduces some complexity
to the overall problem, but there are cases where this does not
always create issues.

Isometry and restricted isometries..Where we should direct
our attention is when one deviates from A = I and starts
i) perturbing the measurements as in y = Ax?, and ii) even
more importantly, what happens when n ⌧ p, i.e., we do not
have enough measurements to solve the problem with a matrix
inversion.

Focus on the following expression - it always holds for
x1, x2 2 Rp and for all � 2 [0, 1):

(1� �)kx1 � x2k22  kI(x1 � x2)k22  (1 + �)kx1 � x2k22.
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The inequalities above hold with equality for � = 0. What is
the purpose of these inequalities? They show how much the
geometry of the vector x1 � x2 changes when someone applies
the operator I on the vector x1�x2. To see this clearly, the left
and right-hand sides of the above expressions indicate by how
much “energy“ we deviate from the true image x1 � x2 (when
� > 0) when we apply x1 � x2 on I. For this toy example, of
course, as we mentioned above, we do not lose anything: the
above expressions hold with equality for � = 0.
The above lead to the notion of isometry : Intuitively, this

means that the matrix I does not perturb the distance be-
tween x1 and x2 too much, in the sense that the resulting
image I(x1 � x2) is identical to that of x1 � x2. The ques-
tion becomes interesting when one deviates from I; e.g., un-
der which conditions do the above expressions hold for some
A matrix and some �? Also, does this hold for any vectors
x1, x2, or should they satisfy some constraints?

The above leads us to the definition of the restricted isom-
etry property for sparse vectors.

Def inition 31. (Restricted Isometry Property (RIP) [68]) A matrix
A 2 Rn⇥p where n  p satisfies the RIP with constant
�k 2 (0, 1) if and only if:

(1� �k)kxk22  kAxk22  (1 + �k)kxk22,

8x 2 Rp such that kxk0  k.

In the literature, other properties like null space and eigen-
values are considered. Still, for this lecture, we will focus
on the restricted isometry property (henceforth RIP) and the
analysis we can do based on this. Note that verifying if a ma-
trix satisfies the RIP is NP-hard. Therefore, let us take for
granted that we have such a matrix and now attempt to prove
convergence given this restriction; later in the chapter, we will
provide proof that this holds a high probability for general
classes of random matrices.

The geometric interpretation of RIP matrices lies in the fol-
lowing two key observations: i) one di�culty for a matrix A
to satisfy RIP is the fact that A might be adversarially picked
such that there is no small constant � that satisfies these two
inequalities; ii) More importantly, even if A is “nice“ enough,
it might be the case that the rows of A, n are so much smaller
than the dimension p. In other words, A “squeezes“ the in-
formation/“energy“ in x when one applies Ax, making it hard
to guarantee that the energy kAxk2 will be comparable to
that of the original kxk2 for a small �. What RIP guaran-
tees is that there might exist matrices A that preserve the
“energy“ (i.e., distances) of high dimensional vectors x 2 Rp,
when “projected“ onto lower-dimensional subspaces Rn, such
that n ⌧ p, when x satisfy some exciting properties (here,
sparsity).

Convergence proof of non-convex IHT algorithm.We will as-
sume that A 2 Rn⇥p satisfies the RIP for some n ⌧ p. To set
up the background, we remind that we consider the following
problem:

minimize
x2Rp

f(x) := 1
2ky �Axk22

subject to kxk0  k.

The IHT algorithm solves this problem with the following
gradient-based recursion:

xt+1 = Hk(xt � ⌘rf(xt)).

This is nothing else but projected gradient descent, but the
projection step is non-convex. Thus, any arguments originat-
ing from convex analysis breaks (see Chapter 3). Consider the

following example: we will try to prove whether the fact

kHk(x1)�Hk(x2)k2  kx1 � x2k2
holds, which is one of the fundamental properties of projec-
tions onto convex sets. Here, we prove that this is not true
anymore. Consider the following two vectors:

x1 =


1
10

�
, x2 =


10
1

�

Consider the case of k = 1. We could use the analysis of
convex projected gradient descent if we could have:

kH1(x1)�H1(x2)k2  kx1 � x2k2 )
����H1

✓
1
10

�◆
�H1

✓
10
1

�◆����
2


����


1
10

�
�

10
1

�����
2

)
����


0
10

�
�

10
0

�����
2


����


1
10

�
�

10
1

�����
2

)

10
p
2  9

p
2,

which is not true; thus, we cannot use this property.
We will start by recalling some relevant details to the proof.

For the linear regression problem, the gradient of the function
satisfies:

rf(xt) = �A>(y �Axt).

Therefore, the IHT recursion for this particular problem can
be simplified into:

xt+1 = Hk(xt + ⌘A>(y �Axt))

We will assume that we know k = kx?k0. Also, for the mo-
ment, assume ⌘ = 1; this assumption will be broken in other
variants of IHT.13

But, even if the projection is non-convex, what can we say
about our projection? Denote x̃t = xt + A>(y � Axt). Also,
we know that xt+1 = Hk(x̃t), i.e., xt+1 is the best k-sparse
projection of x̃t, based on the `2-norm distance. With this
notation, this implies:

kxt+1 � x̃tk22  kx? � x̃tk22 )
k(xt+1 � x?) + (x? � x̃t)

2
2k  kx? � x̃tk22 )

kxt+1 � x?k22 + kx? � x̃tk22 + 2hxt+1 � x?, x? � x̃ti  kx? � x̃tk22 )
kxt+1 � x?k22  2hxt+1 � x?, x? � x̃ti

Now, we have an expression that includes kxt+1 �x?k22 on the
left-hand side and an inner product that involves (as we will
see) xt and x? on the right-hand side. To proceed, we will
define U := supp(xt)[supp(xt+1)[supp(x?), where supp(·) is
the support function that, given an argument vector, returns
the index set of non-zero elements. In words, the set U con-
tains the union of the support set of the vectors xt, xt+1, as
well as the optimal set x? (we will not use any information
of the index set of x? in the proof, just the fact that it is a
k-sparse set).

Since by definition y = Ax? and the fact that x̃t = xt +
A>(y �Axt), we have:

x̃t = xt +A>(y �Axt) = xt +A>(Ax? �Axt)

= xt +A>A(x? � xt).

13As we will see, this step size is valid based on the strict assumption that A satisfies the RIP
with symmetry. I.e., the RIP inequalities (1 � �k)kxk22  kAxk22  (1 + �k)kxk22 are

centered in the interval [(1 � �k)kxk22, (1 + �k)kxk22]. However, this symmetry breaks in
reality, so step size selection should be completed more carefully.
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Fig. 47. 2D and 3D representations of some unit norms, both convex and non-convex. The `0-pseudonorm represents the hyperplanes that span the coordinate system,
based on the level of sparsity k.

We will use this definition of x̃t in the inequality above. In
particular, we have:

kxt+1 � x?k22
 2hxt+1 � x?, xt +A>A(x? � xt)� x?i,

where the RHS equals to:

2hxt+1 � x?, (I �A>
UAU ) · (xt � x?)i.

Here, AU indicates the matrix A with only columns restricted
and indexed by the set U . This selection is based on a key
product of the inner product operator to note:

hx,A>yi = x>A>y = (Ax)>y = hAx, yi.

I.e., in the quadratic form, the matrix could be “moved“ to
be applied both on the left and right-hand side of the oper-
ator h·, ·i. This means that we can safely restrict the active
columns of A on the union of the support set of the vectors
xt+1 � x? and xt � x?, which are subsets of the superset U .

For the main term in our recursion, we have:

hxt+1 � x?,(I �A>
UAU )(xt � x?)i

 kxt+1 � x?k2 · k(I �A>
UAU )(xt � x?)k2

 kxt+1 � x?k2 · kI �A>
UAUk2 · kxt � x?k2

where, again, we use Cauchy-Schwartz inequality, and by us-
ing the RIP bounds, we can show that:

kI �A>
UAUk2  max {(1 + �k)� 1, 1� (1� �k)} = �k.

Using the above in our main expression, we obtain:

kxt+1 � x?k22  2�kkxt+1 � x?k2 · kxt � x?k2 =)
kxt+1 � x?k2  2�kkxt � x?k

Let us define ⇢ := 2�k. One logical expectation for convergence
is to assume/require ⇢ < 1, which further assumes �k  1

2 .
(Later on, we will see how the �k requirements a↵ect the num-
ber of measurements n the matrix A should have to guarantee
this convergence, thus the x? recovery).

In what follows, we will unroll our main recursion over t
iterations to obtain the following:

kxt+1 � x?k2  ⇢ · kxt � x?k2
 ⇢t · kx0 � x?k2,

based on ⇢ < 1. To conclude, this implies that we can ob-
tain kxt+1 � x?k2  " by running IHT for O(log kx0�x?k2

" )
iterations.

Step size based on convex optimization analysis. In the analy-
sis above, we have used the fact that ⌘ = 1. Yet, this selection
does not work well in practice (as we can see in the Demo file
of this chapter). This behavior is because, often in practice,
the symmetry in the RIP condition is not always satisfied. I.e.,
bounds:

(1� �k)kxk22  kAxk22  (1 + �k)kxk22,

are not “centered“. More specifically, there might be some
lower and upper bound constants, µk and Lk

14, such that we
still have:

µkkxk22  kAxk22  Lkkxk22,
Can we pick a new step size based on the RIP property?

It is not hard to show that these lower and upper bound
constants are the minimum and maximum eigenvalues of the
Hessian matrix when one is restricted to sparse signals. I.e.,
one can use (µk, Lk), if known, to apply step size selection
techniques, like the ones we used in convex optimization. E.g.,

14The selection for this notation is on purpose.
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• In Convex Optimization, ⌘ = 1
L works well (where L is

the Lipschitz constant of the objective function). L is also
the upper bound on the eigenvalues of the Hessian of the
function.

• In our case, we have Lk (but assumed known for now). In
the symmetric version of RIP, Lk = (1 + �k).

Let us drive a deeper connection between the above notions.
By definition of f(·), for x1, x2 that are k-sparse, and using
the definition of the L-Lipschitzness, we have:

krf(x1)�rf(x2)k2 = k�A>(y �Ax1) +A>(y �Ax2)k2
= kA>A(x1 � x2)k2
 max

S:|S|2k
k(A>A)Sk2 · kx1 � x2k2

 (1 + �2k)kx1 � x2k2
by definition of RIP on 2k-sparse vectors. This drives the con-
nection that, similarly to convex optimization that one uses
⌘ = 1

L , one could potentially use ⌘ = 1
1+�2k

as a step size.
Yet, the di�culty of this choice is that �-values are NP-hard
to know a priori. So, a better strategy should be devised.

Adaptive Step Sizes.To close the IHT section, we will con-
sider adaptive step sizes. We want to consider whether
there are e�cient adaptive step size selection formulas ⌘t in
xt+1 = Hk(xt � ⌘t ·rf(xt)).

To do so, let us start with some observations:

• xt is k-sparse;
• xt+1 is k-sparse;
• xt+1 could potentially have intersection with the support

set of xt, as well as the set Hk(�rf(xt)) (outside of
supp(xt)).

Schematically, the above observations lead to the following
picture for the IHT recursion:

= Hk �⌘

We will present the idea of line search. This is the case where
choosing step size is the result of an optimization problem, as
in:

⌘ := argmin
⌘

ky �A(xt � ⌘rf(xt)k2

As we will show in the Demo, such approaches perform better
in practice than any constant step size selection that theory
might suggest. The key attribute for line search approaches is
for ⌘ to be e�ciently computable.

To complete the above, let us define first:

St = supp(xt)

Qt = St [ supp(Hk(rSc
t
f(xt)))

St+1 = supp(xt+1) ✓ Qt,

where Sc represent the complement of a set. Then, based on
the scheme above, observe that:

Hk(xt � ⌘rf(xt)) = Hk(xt � ⌘ ·rQt
f(xt));

i.e., what matters in the gradient rf(xt) is indexed by the set
Qt. This observation changes the line search problem above:

⌘ = argmin
⌘

ky �A(xt � ⌘ ·rQt
f(xt))k22.

But what is the solution to this 1D problem with respect
to ⌘? Define the auxiliary objective g(⌘) := ky � A(xt � ⌘ ·
rQt

f(xt))k22. Taking the derivative and setting it equal to
zero:

0 = rg(⌘)

= 2hArQt
f(xt), y �Axti+ 2⌘kArQt

f(xt)k22

=) ⌘ =
�hArQt

f(xt), y �Axti
kArQt

f(xt)k22
=

krQt
f(xt)k22

kArQt
f(xt)k22

Can we relate ⌘ to the RIP? We know that in the original
definition, the following holds:

1� �  kAxk22
kxk22

 1 + �,

for all sparse vectors x. In our case above, rQt
f(xt) is still a

sparse vector. How much sparse? 2k-sparse! Thus, the term
krQt

f(xt)k22
kArQt

f(xt)k22
has A applying on the sparse gradient vector,

which further leads to (based on the RIP bounds:

1 + �  ⌘  1
1� �

.

But is this computed e�ciently? Well, it turns out that

⌘t =
krQt

f(xt)k22
kArQt

f(xt)k22
. Here, the gradient vector is already com-

puted per iteration; what we only need to compute is the set
Qt, which depends on sorting the elements of the dense gra-
dient vector and selecting the k-sparse best subset out of the
St set. Finally, applying the operation ArQt

f(xt) does not
add much to the overall complexity of the algorithm. Thus,
computing ⌘t is e�cient! And it comes with nice theoretical
properties that we can use!

Proof of Adaptive Step Sizes in IHT. Following the same pro-
cedure as in ⌘ = 1, we have15

kxt+1 � x?k2  2kI � ⌘A>
UAUk2 · kxt � x?k2

By RIP, along with ⌘ inclusion in the equations, we get:

kI � ⌘A>
UAUk2  max{⌘(1 + �)� 1, 1� ⌘(1� �)}

 max
n

1+�
1�� � 1, 1� 1��

1+�

o

 2�
1�� ,

where the last inequality we use the property 1+ �  ⌘  1
1��

of the step size. Then, going back to the original expression:

kxt+1 � x?k2  2 2�
1�� · kxt � x?k2

= 4�
1�� kxt � x?k2.

Assuming:
� < 1

5 ,

we get
4�
1�� =: ⇢ < 1.

We get convergence as shown in the proof of convergence of
regular IHT (in which ⇢ < 1).

1

15We drop the dependence on k in �k for ease of exposition.
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Graphical Model Selection.

The Story

Graphs are increasingly becoming a common problem in mas-
sive datasets. The simplest example is a network of friends:
You are friends with some people, and they have friends until
you have an interconnected web of individuals and relation-
ships. There is a dependent relationship between the con-
nected nodes. Therefore, it may be helpful to determine who
is connected vs who isn’t to provide recommendations or cre-
ate new connections.

To bring things back to our realm, there exists the problem
of covariance selection: In a graph representation of the ran-
dom variable X, nodes are the components of X (i.e. Xi’s),
and edges exist when there any two Xi and Xj are condition-
ally dependent; This is also known as a normal (Gaussian)
graphical model of the random variable [69]. Further reading
can be found in [69]. For now, we will look at the concept of
conditional independence.

Conditional Independence [69]

Let x, y, z be random variables with continuous distributions.
We say x and y are conditionally independent given z if...

f(x|y, z) = f(x|z)

This means y has nothing to provide information about x
given that we know about z. For graphical selection, one will
work with random vectors, so determining the independence of
components within a random vector becomes necessary. Find
whether two coe�cients are independent given all the other
coe�cients (notice the absence of xj in the RHS)...

f(xi|x1, x2, ..., xi�1, xi+1, ..., xn) =

f(xi|x1, x2, ..., xi�1, xi+1, ..., xj�1, xj+1, ..., xn)

For Normal variables specifically, this becomes trivial with
the covariance matrix. Suppose X ⇠ N(µ, ✏). We know the
conditional distribution of (xi, xj) given the other components
of X is Gaussian, and has covariance matrix


(⌃�1)ii (⌃�1)ij
(⌃�1)ji (⌃�1)jj

�
.

We can claim conditional independence for xi and xj if their
covariance matrix is diagonal if (⌃�1)ij = 0.

Deep Dive

Now let us go deeper into normal distributions
Let x ⇠ N (µ,⌃). Then its probability density satisfies:

f(x) =
1

(2⇡)p/2 det(⌃)1/2
· exp

⇢
�1
2
(x� µ)>⌃�1(x� µ)

�
.

Define ⇥ = ⌃�1 as the inverse covariance matrix or preci-
sion matrix. Then:

f(x) =
det(⇥)1/2

(2⇡)p/2
· exp

⇢
�1
2
(x� µ)> ·⇥ · (x� µ)

�
.

We now introduce the problem definition: assume we do not
know (µ,⌃), but we have samples {xi}ni=1, xi ⇠ N (µ,⌃). Let’s
see what we can do with these samples. Assume independence

between the xi’s. The log-likelihood function is:

l(µ, ✓) =
nX

i=1

log f(xi)

/
nX

i=1

log det(⇥)1/2 �
nX

i=1

1
2
(xi � µ)>⇥(xi � µ)

=
n
2
log det(⇥)� 1

2

nX

i=1

(xi � µ)> ·⇥ · (xi � µ)

Observe that:

� tr(⇥ · ⌃̂)� (µ� µ̂)>⇥(µ� µ̂)

= � tr

0

@⇥ · 1
n

nX

i=1

 
xi �

1
n

nX

i=1

xi

! 
xi �

1
n

nX

i=1

xi

!>
1

A

�
 
µ� 1

n

nX

i=1

xi

!>

⇥

 
µ� 1

n

nX

i=1

xi

!
,

where we used µ̂ = 1
n

nP
i=1

xi and ⌃̂ = 1
n

nP
i=1

(xi � µ̂)(xi � µ̂)>.

Working further on this expression, we get the following:

� tr(⇥ · ⌃̂)� (µ� µ̂)>⇥(µ� µ̂)

= � 1
n

nX

i=1

(xi �
1
n

nX

i=1

xi)
>⇥(xi �

1
n

nX

i=1

xi)

� (µ� 1
n

nX

i=1

xi)
>⇥(µ� 1

n

nX

i=1

xi)

= � 1
n

nX

i=1

(xi � µ)>⇥(xi � µ).

Thus our l(·, ·) transforms into:

l(µ,⇥) =
n
2

⇣
log det(⇥)� tr(⇥ · ⌃̂)� (µ� µ̂)>⇥(µ� µ̂)

⌘

Maximum likelihood estimation of (µ,⌃) leads to:

min
µ,✓�0

� log det(⇥) + tr(⇥ · ⌃̂) + (µ� µ̂)>⇥(µ� µ̂).

Only the last term in the above expression contains µ; and
since ⇥ � 0, µ⇤ = µ̂. So letting µ⇤ = µ̂, we find:

min
⇥�0

⇥2Rp⇥p

� log det(⇥) + tr(⇥ · ⌃̂) = � log det(⇥) + h⇥, ⌃̂i

As a side note, the determinant of a squared matrix is (rel-
atively) a challenging object/operation to describe. The ge-
ometric way of thinking of it is if we had a unit cube in p
dimensions, then det(⇥) measures the volume of the cube af-
ter applying the rows/columns of ⇥ on that cube. Another
way to see it is:

det(⇥) =
pY

i=1

�i(⇥),

where �i(⇥) is the i-th eigenvalue of ⇥.
Why do we care about all this? A very nice theory connects

undirected graphs under Gaussian assumptions and covari-
ance selection. This theory assumes that variables x(i), x(j)
from x ⇠ N (µ,⌃) are conditionally independent if and only if
⇥⇤

ij = 0. You can see the example drawn out in the slides.

Concretely, we can ask the question: given samples {xi}ni=1,
can we infer the underlying undirected graph structure?
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Answer #1: We can take many samples and use them to
compute µ̂, ⌃̂. Then we can derive ⌃̂�1. But if p is on the
order of 105 to 106, this is often impossible.

Answer #2: We find the most important part of the graph.
Assuming sparsity in ⌃�1, we find ⇥ = ⌃�1 satisfying:

minimize
⇥�0

� log det(⇥)� tr(⇥ · ⌃̂)

subject to k⇥k0  k.

Note that � log det(⇥)+ tr(⇥ · ⌃̂) is locally Lipschitz gradi-
ent. (More to be added in future versions of this note).

RIP proof for sub-Gaussian matrices.Matrices that satisfy:

PA⇠Dn⇥p [kAxk22 � kxk22] > ✏ · kxk22( 2e�⌦(n),

will also satisfy the RIP property with probability 1�2e�⌦(n),
whenever n � ⌦( k

�2
log p

k ). So, this hints at a way to get RIP
matrices (which, as we mentioned before, were computation-
ally expensive to verify). Gaussian and Bernoulli matrices
A 2 Rn⇥p will satisfy the above property, making good candi-
dates.

Below, we use the following definitions: a random variable
x is called Sub-Gaussian if there exists �, k > 0 such that:

P(|x| � t)  �e�kt2 , 8t > 0

In general, x is called Sub-Exponential if there exist �, k > 0
such that

P(|x| � t)  � · e�kt, 8t > 0

Finally, a vector y 2 Rp is called isotropic if E[|hy, xi|2] =
kxk22, 8x 2 Rp.

Step 1: Let A 2 Rn⇥p with independent, isotropic, and
Sub-Gaussian rows. Then, 8x 2 Rp and 8t 2 (0, 1):

P
✓����

1
n
kAXk22 � kxk22

���� � t · kxk22
◆

 2e�ct2n, c constant

Proof : W.L.O.G., kxk2 = 1. Let ↵1,↵2, . . . ,↵n 2 Rp be the
rows of A. Define zi = |h↵i, xi|2 � kxk22. Since ↵i is isotropic,
E[zi] = 0. Further, zi is Sub-Exponential, since h↵i, xi is Sub-
Gaussian; this means

P(|zi| � r)  �e�kr, 8r > 0

Observe:

1
n
kAxk22 � kxk22 =

1
n

nX

i=1

(|h↵i, xi|2 � kxk22) =
1
2

nX

i=1

zi

Since the ↵i’s are independent, the zi’s are independent.
We will now use Berstein inequality: Let x1, . . . , XM be inde-
pendent, zero-mean, Sub-Exponential random variables, with
constants �, k. Then:

P
 �����

MX

i=1

xi

����� � t

!
 2e�

(kt)2/2
2�M+kt

In our case, this translates into

P
 �����

1
n

nX

i=1

zi

����� � t

!
= P

 �����

nX

i=1

zi

����� � tn

!
 2e�

k
2
n
2
t
2
/2

2�n+knt

 2e�
k
2

4�+2k ·nt2 for t 2 (0, 1)

⇤
Step 2: Assume Step 1 holds. Fix a set S ⇢ [p] with |S| = k

and �, ⇠ 2 (0, 1). If

n � c
�2

✓
7k + 2 ln

✓
2
⇠

◆◆
, c constant

Then W.P. at 1� ⇠:

kA>
s As � Ik2 < �

Proof : We will use the construction of ✏-nets over unit balls.
Let B = {x 2 Rp, kxk2  1}. An ✏-net over B is a set such
that, for every point in B, there is a point in the ✏-net that
is ✏-close by some distance function (e.g., kx� yk2  ✏). The
number of points in such an ✏-net can be bounded by:

N (B, k·k2, ✏) 
✓
1 +

2
✏

◆p

In our case, we generate an ✏-net on B = {x 2 Rp, supp(x) ⇢
S, kxk2  1}. In this case:

N (B, k·k2, ✏) 
✓
1 +

2
✏

◆k

Then, from Step 1:

P
�
|kAuk22 � kuk22| � t · kuk22, for some u in ✏-net

�


X

u in ✏-net

P
���kAuk22 � kuk22

�� � t · kuk22
�

 2 ·
✓
1 +

2
✏

◆k

e�ct2n

Define D = A>
s As � I. Then:

��kAuk22 � kuk2
�� =

���hA>
s Asu, ui � hu, ui

���

=
���h(A>

s As � I)u, ui
���

= |hDu, ui|

Then, our goal is to prove |hDx, xi| < t (for x 2 B, and
proper t) via |hDu, ui| < t where u is in the ✏-net.

Assume |hDu, ui| < t. This occurs W.P. 1 �
2
�
1 + 2

✏

�k
e�ct2n. Then, for some x 2 B, and some u in ✏-

net such that kx� uk2  ✏ < 1
2 , we get:

|hDu, ui| = |hDu, ui+ hD(x+ u), x� ui|
 |hDu, ui|+ |hD(x+ u), x� ui|
 t+ kDk2 · kx+ uk2 · kx� uk2  t+ 2 · kDk2 · ✏

Taking the maximum over x 2 B:

kDk2 < t+ 2kDk2 · ✏ =) kDk2  t
1� 2✏

Choose t = (1� 2✏) · � ! kDk2 < �. This means:

P
⇣
kA>

s As � Ik2 � �
⌘
 2

✓
1 +

2
✏

◆k

e�c(1�2✏)2�2n

Choosing ✏ = 2
e7/2�1

, we get that kA>
s As � Ik2  � with

probability 1� ⇠ provided

n � c
�2

✓
7k + 2 ln

✓
2
⇠

◆◆
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⇤
Step 3: We proved that kA>

s As � Ik2 < � for a single s.
Taking all

�
p
k

�
subsets S ⇢ [p] with |S| = k, we get:

P
✓
sup
S

kA>
s As � Ik2 � �

◆

X

s

P(kA>
s As � Ik2 � �)

 2

 
p
k

!✓
1 +

2
✏

◆k

· e�c(1�2✏)2�2n

 2

 
ep
k

!k ✓
1 +

2
✏

◆k

e�c(1�2✏)2�2n

Forcing this probability to be less than ⇠, we get

n � O

✓
k ln

⇣ep
k

⌘
+

14
3
k +

4
3
ln

✓
2
⇠

◆◆

⇤
1

Practical Applications: Signal Recovery
One of the most common use cases is extracting information
from a signal, where the data in the signal is embedded in
noise. Typically, this is done by directly reading the raw data
and attempting to remove the noise from it after the fact, but
this can be very ine�cient and may lead to data loss. From
this, we derive the idea of compressive sampling - “for certain
types of signals, a small number of nonadaptive samples car-
ries su�cient information to approximate the signal well“ [59].

To solve this problem, one might represent the sparse input
as a convex optimization problem, where the result of min-
imizing against some program results in the approximation
of the target signal, but this can be computationally intense.
This is where solutions such as CoSaMP algorithm, proposed
by Needell and Tropp [59], can be used, which takes inspira-
tion from restricted isometry in k-sparse signals to estimate
the target signal.

The Basics.Consider the signal reconstruction problem. As
with any sparse model problem, utilizing the most significant
components from the target signal has the best chance of get-
ting the best estimate of the underlying data. Suppose the
sampling matrix � has a significantly small isometry constant.
We can then define y = � ⇤�x where x is our k-sparse signal,
and y is a “proxy“ that provides a mapping to our information.
The k most significant entries in y map to the k most signif-
icant entries in x, so we can obtain this “proxy“ by applying
�⇤ to x. Doing this iteratively, we’re able to approximate the
target signal. Formally, CoSAMP is defined as follows:

Def inition 32. (CoSAMP Algorithm [59]) Suppose that � is an
m ⇥ N sampling matrix with restricted isometry constant
�2s  c. Let u = �x + e be a vector of samples of an ar-
bitrary signal contaminated with arbitrary noise. For a given
precision parameter ⌘, The CoSAMP algorithm produces a 2k-
sparse approximation a that satisfies

kx� ak2  C ·max

⇢
⌘

1p
k
kx� xkk1 + kek2

�

where xk is a best k-sparse approximation to x. The run-
ning time is O

�
L · log

�
kxk2 /⌘

��
, where L bounds the cost of

a matrix-vector multiply with � or �⇤. The working storage
use is O (N).

Algorithm [59].CoSAMP relies on access to the following: we
must have access to a vector with the noisy samples that con-
tain the underlying signal x and the sampling operator �,
information on the sparsity of the approximation k, and some
halting criteria.

With this information, The algorithm first creates the proxy
y = � ⇤�x and, based on residuals from current sample data,
obtains the most significant components of the proxy. These
components are then combined with the elements of the cur-
rent approximation of the signal, where least squares are used
to estimate the target signal. We keep only the largest (k)
entries from this estimation and loop back around with the
remaining residual data to continue estimation. This is done
repeatedly until the halting criteria are reached.

For this to work, there are a few assumptions which need to
be made that are typical in compressive sampling:

• The sparsity k is fixed
• The sampling operator � is m⇥N and has restricted isom-

etry �  0.1
• The sample vector is u = �x+ e
• The input signal is arbitrary x 2 CN

• The noise vector is arbitrary e 2 Cm

In addition, there is certain unrecoverable energy (denoted
as ⌫), essentially an error resulting from the sample input be-
ing non-sparse or containing significant noise. CoSAMP works
best when this value is high, as seen below:

Theorem 9. (CoSAMP Iteration [59]) For each iteration t � 0,
the signal approximation at is k-sparse and...

��x� at+1
��
2
 0.5

��x� at
��
2
+ 10⌫

In particular...

��x� at
��
2
 2�t kxk2 + 20⌫

Proof can be found in [59].

Regarding measuring the quality of the reconstructed signal,
the signal-to-noise (SNR) is typically used in communications.
An analogous definition for the SNR of a sparse reconstruction
can be established as follows...

R-SNR = 10 log10

✓
kxk2
⌫

◆
dB

...where the SNR is the ratio between the currently recon-
structed signal and the unrecoverable energy...

SNR = 10 log10

✓
kxk2
⌫

◆

Using the iteration definition, we can establish the following
SNR ceiling on the k-th iteration:

R-SNR . 3�min {3k, SNR� 13}

In other words, CoSAMP can reduce the SNR by 3 dB un-
til it reaches the noise floor. Many iterations may be needed
to get a high enough SNR (or the SNR starts extremely
small). As it turns out, this depends on how precise the arith-
metic behind CoSAMP is: Should high precision be available,
CoSAMP can return a high SNR result in a fixed number of
iterations:

Theorem 10. (CoSAMP Iteration Count [59]) If CoSAMP is im-
plemented with high arithmetic precision, then after at most
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6(t + 1) iterations, CoSAMP produces a k-sparse approxima-
tion a that satisfies

kx� ak2  20⌫

Proof can be found in Appendix B of [59]
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89. C. Riofŕıo, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert.
Experimental quantum compressed sensing for a seven-qubit system. Nature Com-
munications, 8, 2017.

90. Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. Guaranteed recovery
of quantum processes from few measurements. Quantum, 3:171, 2019.

91. S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: Error bounds, sample complexity and e�cient estimators. New Journal of
Physics, 14(9):095022, 2012.

92. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Prov-
able quantum state tomography via non-convex methods. npj Quantum Information,
4(36), 2018.

93. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

94. N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

95. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719. ACM, 2005.

96. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix fac-
torizations. In Proceedings of the 23rd international conference on Machine learning,
pages 249–256. ACM, 2006.

97. J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

98. M. Jaggi and M. Sulovsk. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 471–478, 2010.

99. R. Keshavan. E�cient algorithms for collaborative filtering. PhD thesis, Stanford
University, 2012.

100. R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions
of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. International
World Wide Web Conferences Steering Committee, 2013.

101. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing Sys-
tems, pages 730–738, 2015.

102. G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of se-
mantic classes for image annotation and retrieval. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(3):394–410, 2007.

103. A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In
Computer Vision–ECCV 2008, pages 316–329. Springer, 2008.

104. C. Wang, S. Yan, L. Zhang, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1643–1650. IEEE, 2009.

105. J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

106. Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar. A generalized linear model
for principal component analysis of binary data. In AISTATS, 2003.

107. K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari. Prediction and
clustering in signed networks: A local to global perspective. The Journal of Machine
Learning Research, 15(1):1177–1213, 2014.

108. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, 27, 2014.

109. Koen Verstrepen. Collaborative Filtering with Binary, Positive-only Data. PhD thesis,
University of Antwerpen, 2015.

110. N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting
user preferences. arXiv preprint arXiv:1504.06165, 2015.

111. Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li. Neighborhood regularized logistic ma-
trix factorization for drug-target interaction prediction. PLoS Computational Biology,
12(2):e1004760, 2016.

112. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages
3089–3114. The Royal Society, 2007.

113. E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix
completion. SIAM Review, 57(2):225–251, 2015.

114. I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

115. P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
transactions on automation science and engineering, 3(4):360, 2006.

116. K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1489–1496, 2007.

117. F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with
application to protein clustering. Proceedings of the National Academy of Sciences
of the United States of America, 102(35):12332–12337, 2005.

118. H. Andrews and C. Patterson III. Singular value decomposition (SVD) image coding.
Communications, IEEE Transactions on, 24(4):425–432, 1976.

119. M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4,
pages 3273–3278. IEEE, 2004.

120. E. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772, 2009.

121. P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945,
2010.

122. S. Becker, V. Cevher, and A. Kyrillidis. Randomized low-memory singular value
projection. In 10th International Conference on Sampling Theory and Applications
(Sampta), 2013.

123. L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces
from highly incomplete information. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE, 2010.

124. K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-
mation. Information Theory, IEEE Transactions on, 56(9):4402–4416, 2010.

125. A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal
of mathematical imaging and vision, 48(2):235–265, 2014.

126. Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

127. S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

128. J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

129. Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion.
In Proceedings of The 31st International Conference on Machine Learning, pages
674–682, 2014.



i
i

“Notes” — 2024/3/26 — 13:37 — page 81 — #81 i
i

i
i

i
i

130. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimiza-
tion framework. In Advances in Neural Information Processing Systems 28, pages
3132–3140. 2015.

131. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

132. Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley - benchmarking deep learning optimizers. CoRR, abs/2007.01547,
2020.

133. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul
2011.

134. Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

135. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.


