
i
i

“Notes” — 2024/3/27 — 8:37 — page 61 — #61 i
i

i
i

i
i

Chapter 9

This chapter will consider the case of low-rank recovery/learning.
This case is similar to Chapter 8, where we discussed sparsity con-
straints: pure low-rank constraints are non-convex in nature. The
problem is very similar, where the sparsity of the vector is analogous
to the low-rankness of the matrix. Despite the similarities between
the two cases, the low-rank case will reveal a di↵erent approach to
handle such constraints: that of matrix factorization. Overall, in this
chapter, we will provide motivation, background, and solutions for
a low-rank optimization problem, that of matrix sensing, which is
simple enough to allow us to derive rigorous guarantees and obtain
intuition when and why such methods work in practice.

Low rankness, Matrix sensing

Motivation: Quantum state Tomography.Quantum tomog-
raphy is one of the main procedures to identify the nature of
imperfections and deviations in the quantum processing unit
(QPU) implementation [70,71]. Generally, quantum tomogra-
phy is composed of two main parts: i) measuring the quantum
system, and ii) analyzing the measurement data to obtain an
estimation of the density matrix (in the case of state tomog-
raphy [70]), or of the quantum process (in the case of process
tomography [72]). In this chapter, we focus on the case of
state tomography.

As the number of free parameters defining quantum states
and processes scale exponentially with the number of subsys-
tems, quantum tomography is generally a non-scalable pro-
tocol [73]. In particular, quantum state tomography (QST)
su↵ers from two bottlenecks related to its two main parts.
The first concern is the extensive data one must collect to per-
form tomography; the second concern is numerically searching
in exponentially ample space for a density matrix consistent
with the data.

Simply put, in QST, the goal is to test whether the output
of a quantum circuit (which implements a quantum algorithm,
a quantum simulation, etc) in quantum computer is what we
expect. While this argument reads weird (i.e., if we know what
to expect, why do we run the quantum algorithm in the first
place?), QST is a verification tool: it is used in cases where we
know the answer to the problem, and we measure the system
to see how far we are from that answer (due to inconsisten-
cies, errors in the quantum implementation, etc.). Overall,
a quantum computer is a non-deterministic machine, where
we do not know the final state precisely unless we measure
it (this is where Schröedinger’s cat comes into the picture!).
In QST, we only have measurements of the final state (we
will define it shortly). We cannot see any intermediate state
of the procedure without ruining the whole process: taking
observation in quantum information sciences means that we
“destroy” any quantum process followed up to this point (i.e.,
we cannot “take a look” and then ask the system to continue
its process). Thus, in QST, the procedure is to prepare the
system to output a state that we expect: if we perform the
steps “correctly“, w.h.p. we measure parts of the anticipated
state with some added noise; if we can repeat the measure-
ment many times, we keep the data, and we try to inverse the
procedure to get the value of the state we expect as an output.
This way, we can measure how errors add and propagate in
this implementation of a quantum system, thus leading to a
verification tool.

Setup of QST.The setup we consider here is that of an q-
qubit state under the prior assumption that the state is close
to a pure state, and thus, its density matrix is of low rank.

This assumption is justified by state-of-the-art experiments,
where we aim to manipulate the pure states by unitary maps.
Theoretically, the low-rank assumption means that we can use
compressed sensing techniques, which allow the recovery of the
density matrix from relatively few measurement data [74]. As
we show below, this is similar to a least-square problem, where
we want to measure how close the output of the quantum ma-
chine is to the ground-truth matrix.

A quantum state can be described by a density matrix (i.e.,
the ground-truth matrix) X? 2 R2q⇥2q ; this matrix represents
the state that the quantum system is in, also called q-qubit
state. The measurements of the state are the expected val-
ues of q-qubit Pauli’s observables, which are represented as
matrices Ai 2 C2q⇥2q ; pay attention that we are working on
the complex plane. Then, based on the above, we obtain a
measurement vector yi 2 Rm, which follows the next rule:16

yi = hAi, X
?i+ ei = tr(Ai ·X?) + ei, , i = 1,m,

for some error noise term, ei 2 R. Here, for this particu-
lar problem case, Ai’s are Kronecker products of Pauli opera-
tors.17 In particular, they take the form:

Ai = �i1 ⌦ �i2 ⌦ · · ·⌦ �iq ,

where �ij 2 �x,y,z,I are selected randomly and the matrices
�x,y,z,I are:

�I =

1 0
0 1

�
, �x =

0 1
1 0

�

�y =

0 �i
i 0

�
, �z =

1 0
0 �1

�

Classical quantum state tomography is like solving linear
equations; with no prior knowledge of X? about the low-
rankness, if we have O(2q · 2q) = O(4q) observations yi mea-
surements, it is possible to reverse the procedure and recover
an approximation of X? from yi’s and knowing the used Ai

Pauli matrices. When these notes were written, the current
most extensive quantum computer in the world was utilizing
q = 53; currently, we are even in the q = 127 case. This makes
the size of X? very, very large! Further, asking for O(4q)
measurements is impossible.

Thus, if we do not assume anything about the state X?, the
number of measurements needed is so large (253⇥253 - do the
math!) Similar to measurements in the sparsity problem, if we
know that the state is a low-rank one, one can hope for less
than O(4q) measurements. For instance, if we have a rank-1
matrix for X?, we only need to know the vector of length 2q

and take the outer vector with itself to get the rank-1 matrix
X? 2 R2q⇥2q , instead of knowing the whole matrix that has
2q ·2q measurements. Further, we might know additional infor-
mation about X? (e.g., that is a positive semi-definite matrix).
Overall, quantum states that can be well-approximated with
low-rank density matrices X? are called pure quantum states;
these are states that might not be the most interesting ones
in the quantum community, but they are considered as a first
step before going into more mixed states. In practice, even if
we assume X? is rank-1, it will be heavily contaminated with
noise + other phenomena appear that increase the rank in

16A lot of details are “glossed out” at this stage, and this formulation satisfies the purpose of this
chapter.
17For two matrices A 2 Rm⇥n and B 2 Rp⇥q , the Kronecker product A⌦B is a pm⇥qn
block matrix such that:

A ⌦ B =

2

664

a11B . . . a1nB

...
. . .

...
am1B . . . amnB

3

775

.

i
i

“Notes” — 2024/3/27 — 8:37 — page 62 — #62 i
i

i
i

i
i

practice. However, this chapter assumes that X? is low-rank
(of rank r, for known r). And, similar to the sparsity case, we
will see that for rank-r matrices of size p⇥ p matrix, we need
O(pr) measurements instead of O(p2).

Related work on QST.Over the years, there have been various
approaches to improve the scalability of QST, compared to full
QST [75–77]. Focusing on the data collection bottleneck, prior
information about the unknown quantum state is often as-
sumed to reduce the resources required. For example, in com-
pressed sensing QST [73, 78], it is assumed that the system’s
density matrix is low-rank. In neural network QST [79–81],
one assumes real and positive wavefunctions, which occupy
a restricted place in the landscape of quantum states. Ex-
tensions of neural networks to complex wave-functions, or the
ability to represent density matrices of mixed states, have been
further considered in the literature, after proper reparameter-
ization of the Restricted Boltzmann machines [79]. The prior
information considered in these cases is that they are char-
acterized by structured quantum states, which is the reason
for the very high performances of neural network QST [79].18

Similarly, in matrix-product-state tomography [82,83], one as-
sumes that the state-to-be-estimated can be represented with
low bond-dimension matrix-product state.
Focusing on the computational bottleneck, several works in-

troduce sophisticated numerical methods to improve the ef-
ficiency of QST. Particularly, variations of gradient descent
convex solvers—e.g., [84–87]—are time-e�cient in idealized
(synthetic) scenarios [87], and only after a proper distributed
system design [88]. The problem is that achieving such re-
sults seems to require utilizing special-purpose hardware (like
GPUs). Thus, going beyond current capabilities requires novel
methods that e�ciently search in the space of density matrices
under more realistic scenarios. Importantly, such numerical
methods should come with guarantees on their performance
and convergence.
Indeed, by now, compressed sensing QST is widely used

for estimating highly-pure quantum states, e.g., [73, 89–91].
However, compressed sensing QST usually relies on convex
optimization for the estimation part [78]; this limits the ap-
plicability to relatively small system sizes [73]. On the other
hand, non-convex optimization can perform much faster than
its convex counterpart [92]. Although non-convex optimiza-
tion typically lacks convergence guarantees, it was recently
shown that one could formulate compressed sensing QST as
a non-convex problem and solve it with rigorous convergence
guarantees (under specific but generic conditions), allowing
state estimation of larger system sizes [92].

Matrix sensing.QST is an instance of what is called matrix
sensing. Formally, the matrix sensing problem is as follows:
Given a measurement mechanism A : Rp⇥p ! Rm, matrix
sensing is seeking a solution to the following optimization
problem:19

minimize
X2Rp⇥p

1
2 ·

m�1X

i=0

(yi � (A(X))i)
2

subject to rank(X) r.

Here, the linear measurements are yi, i 2 [0,m � 1], which
is assumed to be generated by the model yi = (A(X?))i :=
hAi, X

?i, where X? 2 Rp⇥p. I.e., (A(·))i = hAi, ·i. Without
constraints or a structural assumption on X?, the problem
is under-determined with infinite solutions. However, given
a rank r matrix and a su�ciently large number of measure-
ments, a unique solution may exist that may be found via
optimization.

Restricted Isometry Property. Similar to the sparsity case, a
pivotal assumption is that the linear map A satisfies the re-
stricted isometry property for low-rank matrices:

Def inition 33. (Restricted Isometry Property (RIP) [93]) A linear
operator A : Cd⇥d ! Rm satisfies the RIP on rank-r ma-
trices, with parameter �r 2 (0, 1), if the following holds for
any rank-r matrix X 2 Cd⇥d, with high probability:

(1� �r) · kXk2F kA(X)k22 (1 + �r) · kXk2F .

Such maps (almost) preserve the Frobenius norm of low-
rank matrices and, as an extension, of low-rank Hermitian
matrices. The intuition behind RIP is that A(·) behaves as
almost a bijection between the subspaces Cd⇥d and Rm when
we focus on low-rank matrices.

Algorithmic solutions for matrix sensing. Similar to the sparse
case, to solve the matrix sensing problem (for now, consider
QST formulation without the PSD and trace constraint), we
have several approaches, split into the convex and nonconvex
camps:

i) Through convexification: Nuclear Norm Minimization. Sim-
ilar to the `0-pseudonorm case where `1-norm is the tightest
convex relaxation, the question is what is the tightest convex
relaxation of the set for matrices A 2 Rp⇥p:

{A : rank(A) = 1, kAkF = 1}?

The answer to this question is that of nuclear norm:

kAk⇤ =
X

i

�i(A).

I.e., by bounding the nuclear norm of the solution, we implic-
itly enforce a “sparsity” constraint on the set of singular values
of the matrix A. More strict nuclear norm bounds lead to a
“sparser” set of singular values, forcing some of them to be
zero (remember, the singular values cannot be negative, so the
lowest point they can get is that of zero), which means that
the matrix starts becoming more and more rank-deficient (the
more singular values of a matrix are zero, the more the rank
of that matrix decreases).

Given this intuition, one can throw away the rank constraint
in the matrix sensing scenario and substitute that with the nu-
clear norm constraint, as follows:

minimize
X2Rp⇥p

1
2 ·

m�1X

i=0

(yi � (A(X))i)
2

subject to kXk⇤ �,

for some � > 0 as a regularizer parameter.
Given this problem formulation, a natural way to solve the

problem is via convex projected gradient descent. The gradi-
ent descent step is projected onto the bounded nuclear norm

18 [79] considers also the case of a completely unstructured case and test the limitation of this
technique, which does not perform as expected due to lack of structure.
19To be precise, in QST, we have the PSD version of the matrix sensing problem with additional
trace constraints:

minimize
X2Rp⇥p

1
2 ·

m�1X

i=0

(yi � (A(X))
i
)2

subject to X ⌫ 0, rank(X) r, tr(X) 1.

i
i

“Notes” — 2024/3/27 — 8:37 — page 63 — #63 i
i

i
i

i
i

Fig. 48. Illustration of some convex relaxations of known non-convex sets. The notation A should not be confused with the linear map in this chapter.
At the top, the set of unit-norm vectors that “live” on the coordinate axes can be “convexified” into a convex hull that matches the `1-norm with the unit norm. At the
bottom, the set of rank-1 matrices A with unit Frobenius norm kAkF = 1 can be “convexified” into a convex hull that matches the nuclear-norm of matrices of the same
dimensions with unit norm.

Fig. 49. Comparison between matrix multiplication (MM), i.e. X.U where X 2 Rm⇥m and U 2 Rm⇥r and SVD (all methods of truncated SVD) of X . In
both scenarios (varying rank r and varying dimension m), there is a big gap in SVD and matrix multiplication calculation. Theoretically, the complexity is the same for both
operations, but there are many matrix multiplications involved in SVD.

constraint set in each iteration. In math terms, the update
looks like:

Xt+1 = ⇧k·k⇤� (Xt � ⌘rf (Xt)) ,

where f(X) := 1
2ky �A(X)k22, and ⇧k·k⇤�(·) is the result of

the optimization problem:

⇧k·k⇤�(Z) =argmin
X2Rp⇥p

1
2 · kX � Zk2F

subject to kXk⇤ �,

As we have already discussed in previous chapters, the pro-
jection onto the set of bounded nuclear norms is calculated in
the closed form via the singular value decomposition (or recur-
sively using the power iteration method). I.e., to compute the
projection, one needs first to compute the O(p3) SVD to find
the singular values; then, these are “projected” and clipped so
that their summation is bounded by �; finally, the remaining
updated singular values (along with the corresponding singu-
lar vectors) gives us back the answer to this projection step.
The key note here is that the nuclear norm projection does not
guarantee low-rankness: We hope that by successively project-

ing the singular values over many iterations, several will be
suppressed and stay zero throughout the algorithm.

Overall, the above algorithm is convex and comes with ex-
cellent theoretical guarantees. However, by looking at Figure
49, it is clear that the complexity of the nuclear norm is an
expensive operation that scales cubicly with the size of the
problem p. As p increases in modern machine learning and
optimization applications, this is not a viable solution for e�-
cient solutions. This leads to the other alternative below.

ii) By keeping the rank-constraint: Iterative Hard Threshold-
ing. By keeping the rank constraint in the optimization de-
scription, we end up with a non-convex problem, similar to
the sparse problem in the previous chapter. The projection is
now on the rank constraint instead of the nuclear norm. Us-
ing the same notation as in the previous chapter, the rank-r
hard-thresholding projection is defined as:

Hr(Z) =argmin
X2Rp⇥p

1
2 · kX � Zk2F

subject to rank(X) r.

i
i

“Notes” — 2024/3/27 — 8:37 — page 64 — #64 i
i

i
i

i
i

The above problem has a name: it is the well-known Eckart-
Young-Mirsky theorem that proves that the best rank-r ap-
proximation of a given matrix Z (concerning its Frobenius
norm distance) is provided by the rank-r SVD approximation
of the matrix Z (also known as the truncated SVD). But what
is the computational complexity of rank-r truncated SVD?
Based on arguments on power iteration, one can argue that the
complexity is of the order O(rp2), where r is usually indepen-
dent of p. This favorably compares to the nuclear norm min-
imization formulation, where the projection has O(p3) com-
plexity.
Given the above, the definition of the IHT matrix for low-

rank matrix sensing problems is straightforward:

Xt+1 = Hr (Xt � ⌘rf (Xt)) ,

where f(X) := 1
2ky � A(X)k22. Theorems on the matrix ver-

sion of IHT, step size selections, and adaptive schedules from
previous lectures are still present here.

Figure 49 highlights the di↵erent prices we pay, even if we
truncate SVD. It is obvious that even for this case, alternatives
should be devised to get a faster algorithm, if possible.

Low-rank matrices are matrices that are factorized. From now
on, we generalize our discussion to include more generic cases.
In particular, we study matrix problems of the form:

minimize
X2Rp⇥p

f(X),

where the minimizer X? 2 Rp⇥p is rank-r? (r? p), or nearly
low rank; i.e., kX?�X?

r?kF is su�ciently small, for X?
r? being

the best rank-r? approximation of X?. In our discussions, f
is a di↵erentiable convex function. Further assumptions on f
will be described later in the text.

Specific instances of the above problem appear in several
applications in diverse research fields. A non-exhaustive list
includes factorization-based recommender systems [45,94–99],
multi-label classification tasks [100–105], dimensionality re-
duction techniques [106–111], density matrix estimation of
quantum systems [73, 78, 112], phase retrieval applications
[113, 114], sensor localization [115, 116] and protein cluster-
ing [117] tasks, image processing problems [118], as well as
applications in system theory [119]. Thus, it is critical to de-
vise user-friendly, e�cient, and provable algorithms, consider-
ing the (near) low-rank structure of X?.

In general, imposing a low-rank constraint could result in
an NP-hard problem. However, the above minimization with

Fig. 50. Demo on Iterative Hard Thresholding and Nuclear norm minimization.
p = 128, r = 2. Refer to python notebook

a rank constraint can be solved in polynomial time for appli-
cations where f has a specific structure. A prime example
is the matrix sensing problem [93, 98, 120], There, X? can be
recovered in polynomial time by solving the above problem
with a rank-constraint [61, 121–125], or by solving its convex
nuclear-norm relaxation, as in [57,126–130].

Although algorithms operating on X space have attractive
convergence rates, they simultaneously manipulate p⇥ p vari-
ables in X. This is computationally expensive in the high-
dimensional regime: typically, each iteration requires com-
puting at least the top-r singular value/vectors of matrices.
As p scale, the computational demands per iteration are pro-
hibitive.

Optimizing over factors:- In this section, we follow a di↵erent
path: a rank-r matrix X 2 Rp⇥p can be written as a product
of two matrices UV >, where U 2 Rp⇥r and V 2 Rp⇥r. Based
on this, we are interested in solving our problem at hand via
the UV > parametrization:

minimize
U2Rp⇥r,V 2Rp⇥r

f(UV >) where r rank(X?) p.

Note that characterizations of the above and the original prob-
lem are equivalent in the case rank(X?) = r.20 Observe that
such parameterization leads to a particular non-convexity in
f . Proving convergence for these settings becomes a more
challenging task due to the bi-linearity of the variable space.

Motivation. When r is much smaller than p, U 2 Rp⇥r and
V 2 Rp⇥r contain far fewer variables than X = UV >. Thus,
such parametrization makes it easier to update and store the
iterates U, V by construction.

Note that UV > reformulation automatically encodes the
rank constraint. Approaches working on X require computing
a truncated SVD21 per iteration, which can get cumbersome
in large-scale settings. In contrast, working with f(UV >) re-
places singular value computations with matrix-matrix multi-
plication operations. This is a more practical and realistic op-
tion when the dimension of the problem is large. E.g., matrix-
matrix multiplications could be parallelized much easier than
SVD computations.

Rank-1 Matrix Approximation Through Rank-1 PCA.To un-
derstand the above, we will consider a simpler rank-1 case.
The PCA problem is not an algorithm because we need SVD
to solve it. To solve the SVD problem, we need an algorithm
such as the power iteration. So, the PCA can be recast to the
following case.
Consider a simpler matrix factorization objective where we
minimize the following objective.

min
x2Rp,w2Rp

���M � xw>
���
2

F
, M 2 Rp⇥p,

where M is rank-1, symmetric matrix, kxk2 = kwk2 = 1. This
is equivalent to

min
Y 2Rp⇥p

kM � Y k2F , rank(Y) = 1.

When we connect the above with matrix sensing, the objective
can also be vectorized:

���M � xw>
���
2

F
=
���vec(M)� vec

⇣
xw>

⌘���
2

2

= ky �A(X)k22

20By equivalent, we mean that the set of global minima in one contains that of the other. It re-
mains an open question whether the reformulation introduces spurious local minima in the factored
space for the majority of f cases.
21This holds in the best scenario; in the convex case, where the rank constraint is “relaxed” by the
nuclear norm, the projection onto the nuclear-norm ball often requires a complete SVD calculation.

i
i

“Notes” — 2024/3/27 — 8:37 — page 65 — #65 i
i

i
i

i
i

where y = vec(M) and A are like an identity mapping that
takes a matrix and makes it into a vector. Hence, it is a matrix
sensing formulation with a rank-1 constraint.

Something we will use for our analysis is the SVD represen-
tation of the M matrix:

M =
pX

i=1

�iuiv
>
i ,

where kuik = kvik = 1,�1 � �2... � �p � 0. Here, the rank
of M is arbitrary; it could be full rank. But, what we care
about is the rank-1 approximation of M . Note that the sin-
gular vectors are orthogonal unless they have the same index,
i.e.,

u>
i uj = 0, v>i vj = 0, for i 6= j.

Given the above, let us try to simplify the objective at hand:

���M � xw>
���
2

F
= kMk2F � 2x>Mw +

���xw>
���
2

F

= kMk2F � 2x>Mw + kxk22 · kwk22

Hence, our objective is:

f(x) = min
x2Rm,w2Rn

�2x>Mw + kxk22 · kwk22

which is a minimization over x and w. So we can do alternate
minimization (fix one and minimize over the other).
Assuming we know x optimal and we only minimize over w.
Let

f(x) = min
w2Rn

�2X>Mw + kxk22 · kwk22,

Where f(x) is convex, �2x>Mw is linear term and kxk22 ·kwk22
is quadratic, thus by convexity

rw = 0 ! �2MTx+ 2kxk22 · w = 0

! w =
MTx
kxk22

Substituting w in the original problem:

f(x,w) = �2x>MM>x
kxk22

+ kxk22 ·
x>MM>x

kxkL2

f(x,w) = f(x) = �2x>Mw + kxk22kwk22

f(x,w) = �x>MM>x
kxk22

Thus, the original problem is equivalent to the following:

min
x,w2Rm

f(x) := �x>MM>x
kxk22

Where we have a closed-form solution for w.

The length of x does not matter; only its direction matters.
To see this, define temporarily y = x

kxk22
. Then

min
x2Rm

f(x) ⌘ min
y2Rm,kyk=1

�y>MM>y

Consider the PCA problem for rank-1, which is usually de-
fined as

max(x>⌃x), kxk2 = 1

Given the covariance matrix ⌃ of the data, we want to find
the direction of the maximum variance(i.e., find the normal-
ized vector that correlates with the direction that best approx-
imates the data). So, putting things together, we have

min(�y>MM>y) = max(y>MM>y) = y>⌃y

This problem is non-convex now, where the objective can be
perceived as finding the max eigenvalue of MM>.

What does the objective look like?: Maximizing on a bowl
(it is not a perfect bowl because of di↵erent eigenvalues) with
a ring constraint. The solution is unique because we assume
no two eigenvalues are the same.

We then want to apply gradient descent on x instead of
power iteration.

Via the inner product expression:

hx, u1i = cos(✓) · ku1k · kxk2

Since ✓ depends on x, and ku1k2 = 1, we have:

✓(x) = cos�1

✓
1

kxk2
< x, u1 >

◆

We do gradient descent to solve this optimization problem
(we can’t do SVD/power iteration as we try to avoid it).

xt+1 = xt � ⌘ ·rf (xt)

Applying quotient rule

rf (xt) =
1

kxk42
·
h
rx

⇣
�x>MM>x

⌘
kxk22

+ x>MM>x ·rxkxk22
i

=
1

kxk42

h
�2kxk22 ·MM>X + 2

⇣
x>MM>x

⌘
· x
i

=
2

kxk42

h⇣
x>MM>x

⌘
x� kxk22 ·MM>x

i

We can write M as

M =

min{m,n}X

i=1

�i · UiV
T
i

�1 > �2 > . . . > 0

The solution corresponds to the biggest/first singular value.

A key observation for gradient descent on PCA is that if
hxt, u1i = 0 (e.g. xt = u2), then hxt+1, u1i = 0, implies we are
going orthogonal to the eigen vector u1. To prove it:

hxt+1, u1i = hxt � ⌘rf (xt) , u1i
= hxt, u1i � ⌘hrf (xt)i = �⌘ hrf (xt) , u1i

i
i

“Notes” — 2024/3/27 — 8:37 — page 66 — #66 i
i

i
i

i
i

hrf (xt) , u1i =
2

kxtk42

h⇣
x>
t MM>xt

⌘
x>
t u1�

kxtk22x>
t MM>u1

i

= � 2

kxtk42
· kxtk22 x>

t MM>u1

= � 2

kxtk22
· x>

t ·

X

i

�2
i uiu

>
i

!
u1

= � 2

kxtk22
· x>

t · (�2
1u1u

>
1)u1

= � 2

kxtk22
�2
1x

>
t u1 = 0

i.e.,

hxt+1, u1i = � 2

kxtk22
�2
1x

>
t u1 = 0

Remark:

i) If xt is orthogonal to u1 then xt+1 is also orthogonal to u1.
This is a no-improvement state.

ii) This further means that if we start from a point such that
hx0, u1i = 0, we fail to recover u1. We will be trapped in
the saddle point here.

iii) However, there is hope that we can start from any point
that is not orthogonal to U1. This is like selecting a point
not from the vector span of ui, i 6= 1. A randomly selected
point x0 2 Rm almost surely has a non-zero component on
the span of u1.

We want to study the behavior of the potential function.
Define a potential function

 t+1 = 1� hxt+1, u1i2

kxt+1k22
Intuition: if t+1 ! 0, xt+1 aligns with u1 and

hxt+1, u1i2

kxt+1k22
! 1,

which is the optimal thing to achieve for normalized vectors.
We have the following:

kxt+1k22 = kxt � ⌘rf (xt)k22

= kxtk22 � 2⌘x>
t rf (xt) + ⌘2 · krf (xt) k22

Observe that:

x>
t rf (xt) =

2

kxtk42

⇣⇣
x>
t MM>xt

⌘
· kxtk22

� kxtk22
⇣
x>
t MM>xt

⌘⌘

= 0

Hence

kxt+1k22 = kxtk22 � 2⌘x>
t rf (xt) + ⌘2 · krf (xt) k22

= kxtk22 + ⌘2 · krf (xt)k22

Then

 t+1 = 1� hxt+1, u1i2

kxt+1k22

= 1� hxt, u1i2 � 2⌘ · hxt, u1i hrf (xt) , u1i+ ⌘2. hrf (x1i , u1i
kxtk22 + ⌘2 · krf (xt)k22

We know that

hxt, u1i2

kxt+1k22
=

⌧
xt+1

kxt+1k2
, u1

�2

= cos2 (✓ (xt+1))

And 1� cos2(✓(x+ 1)) = sin2 (✓ (xt + 1)).

Using these facts, it turns out that.

sin2 (✓ (xt+1)) sin2 ✓ (xt) +
⌘2

kxtk22
· krf (xt)k22

+
2⌘

kxtk22
· hxt, u1i hrf (xt) , u1i .

1) For the inner product hrf (xt) , u1i we have:

hrf (xt) , u1i 6 � 2
kxtk2

�
�2
1 � �2

2

�
· sin2 ✓ (xt) · cos ✓ (xt) 0

2) For krf (xt)k22 we have:

krf (xt)k22 4

kxtk22

�
�4
1 + �4

2

�
· sin2 ✓ (xt)

Then we will get:

sin2 (✓ (xt+1)) sin2 (✓ (xt))
⇣
1 +

4⌘2

kx1k42

�
�4
1 + �4

2

�

� 4⌘

kxtk22
·
�
�2
1 � �2

2

�
· hxt, u1i2

kxtk22

⌘

If given a proper initialization, we will provide local conver-
gence guarantees; we get convergence to the global minimum.

1) If hxt,u1i2
kxtk22

� c, such that 0 c < 1,

we obtain:

sin2 ✓(xt+1) sin2 ✓(xt)(1 +
4⌘2

kxtk42
(�4

1 + �4
2)�

4⌘

kxtk22
(�2

2 � �2
2) · c)

2) Select ⌘ = c
2 · �2

1��2
2

�4
1+�4

2
· kxtk22

Then

p = 1 + c2 · �
2
1 � �2

2

�2
1 + �2

2

� 2 · c2 · �
2
1 � �2

2

�2
1 + �2

2

= 1� c2 · �
2
1 � �2

2

�2
1 + �2

2

< 1

Thus
sin2 (✓ (xt+1)) ⇢ sin2 (✓ (xt))

Where ⇢ < 1. We achieve linear convergence O(log 1
✏) without

using SVD at any step.

Some properties of the proof:

i
i

“Notes” — 2024/3/27 — 8:37 — page 67 — #67 i
i

i
i

i
i

1. Initialization does matter: e.g., for example, some initial-
izations do not lead to convergence for PCA.

2. After proper initialization, one can prove convergence to
the global minimum. Despite this, such convergence re-
sults are called local convergence guarantees.

3. Often, the theory dictates how to set the step size to obtain
convergence. In some cases, it is a range of values; in other
cases, we rely on a specific step size.

It motivates matrix factorization to be useful.

Alternate minimization.Back to the original problem, we have
a matrix-sensing objective

min
X2Rp⇥p

1
2

nX

i=1

(yi � hAi, Xi)2

With low-rank constraint rank(X) < r. Instead of that, we
can represent X as

X = UV T

The objective now is constraint-free

X = arg min
U2Rn⇥r,V 2Rp⇥r

1
2

m�1X

i=0

(yi � hAi,UVTi)2

Key di↵erences with PCA: 1) The number of observations is
less than the number of parameters, 2) Mapping A is not iden-
tity but satisfies a restricted isometry property.
Now, if we do not restrict the objective to least squares:

X = arg min
U2Rm⇥rr,V 2Rn⇥r

f
⇣
UV >

⌘

Here, Restricted isometry can be substituted by Restricted
Strong Convexity.

To solve this, we perform alternate minimization (not in a
true sense, as we are not using updated Ui+1 from the first
step in the second step). The method is also called Factored
Gradient descent.

Ui+1 = Ui � ⌘rf
⇣
UiV

>
i

⌘
· Vi

Vi+1 = Vi � ⌘rf
⇣
(UiV

>
i

⌘>
· Ui

Although we have a constraint-less optimization problem
now, factorization brings another problem. The objective is
not convex. New saddle points, as well as global and local
minima, have been introduced.

X? = U?V ?T = U?R ·RTV ?T = bU? bV ?T

For all R such that RRT = I
For example, if:

f(X) =
1
2
· ky � vec(A ·X)k22

Where

X? =

1 1
1 1

�

is a unique solution with r = 1

U? =
⇥
1 1

⇤>
or [�1� 1]>

Multiple factorizations are possible. Hence, it ruins convexity.

Another example:
Weighted low-rank approximation

f
⇣
uu>

⌘
=
X

ij

Wij ·
�
X?

ij � uiuj

�2

where

X? =

1 �1
�1 1

�
and W =

100 1
1 100

�

As non-convexity is introduced, proper initialization is the
key.

To find some guarantees on convergence: We will start
with a general recipe for proving convergence.

kxt+1 � x?k2# = kxt � ⌘rf (xt)� x?k2#
= kxt � x?k2# � 2⌘ hrf (xt) , xt � x?i+

⌘2 krf (xt)k2#

Where # is the norm, it indicates a general class of distance
functions. The geometric intuition of hrf (xt) , xt � x?i:

i
i

“Notes” — 2024/3/27 — 8:37 — page 68 — #68 i
i

i
i

i
i

Fig. 51. Angle between the direction of the gradient and correct direction should
be less than ⇡/2

We need the following to hold true to bound kxt+1 � x?k2#

hrf (xt) , xt � x?i � ↵ kxt � x?k2# + � krf (xt)k2#

for su�cient ↵,� � 0 such that

kxt � x?k2# � 2⌘ hrf (xt) , xt � x?i+ ⌘2 krf (xt)k2#

 kxt � x?k2# � c↵⌘ kxt � x?k2# �
�
c⌘� � ⌘2

�
krf (xt)k2#

This connects with the convex optimization problem we have
seen so far.

hrf(x)�rf(y), x�yi � µL
µ+ L

kx�yk22+
1

µ+ L
krf(x)�rf(y)k22

If y = X? and since rf(X?) = 0

hrf(x), x�X?i � µL
µ+ L

kx�X?k22 +
1

µ+ L
krf(x)k22

It encourages us to ensure that our approach to getting a bond
is correct.

For simplicity, now consider X to be positive semi-definite.
Hence X = UU>.
Define a distance metric, where the distance between any
arbitrary matrix U and U⇤, DIST is defined as:

DIST(U,U⇤) = min
R:R2Or

kU � U⇤RkF

O is the set of r⇥r orthonormal matrices R, such that RTR =
I. R is also called a rotational matrix since UU> = URR>U>.
There can be infinite U⇤, but we need an optimal U where dis-
tance is one with the closest U⇤ up to one rotation R. The
DIST will help us get a good initial point.
We also know

Ut+1 = Ut � ⌘rf
⇣
UtU

>
t

⌘
· Ut = Ut � ⌘rf (Xt) · Ut

Then we have

DIST (Ut+1, U
⇤)2 = min

R2Or

kUt+1 � U⇤Rk2F

6 kUt+1 � U⇤Rtk2F
= kUt+1 � Ut + Ut � U⇤Rtk2F
= kUt+1 � Utk2F + kUt � U⇤Rtk2F
+ 2 hUt+1 � Ut, Ut � U⇤Rti
= kUt+1 � Utk2F +DIST (Ut, U

⇤)2

+ 2 hUt+1 � Ut, Ut � U⇤Rti
= ⌘2 krf (Xt)Utk2F + kUt � U⇤Rtk2F
+ 2⌘ hrf (Xt)Ut, Ut � U⇤Rti

The key result is the fact that we can prove a regulatory
condition:

D
rf (Xt)Ut, U � UkR

E
> 2

3
⌘ · krf (Xt)Uk2F +

3µ
20
�r (X

⇤) ·DIST (Ut, U
⇤)2

Using the last two equations, we have:

DIST (Ut+1, U
⇤)2 6 DIST (Ut � U⇤Rt)

2+⌘2 ·krf (Xt)Utk2F

�4
3
⌘2 krf (Xt)Utk2F � 6µ⌘

20
�r (X

⇤) ·DIST (Ut, U
⇤)2

6
✓
1� 3µ⌘

10
�r (X

⇤)

◆
·DIST (Ut, U

⇤)2

This defines the step size ⌘.
In practice, the paper ”Dropping Convexity for Faster

Semidefinite Optimization” has a more sophisticated but more
practical ⌘. However, to prove the regulatory condition, we re-
quire

DIST (Ut, U
⇤) ⇢ · �r(X

?)
1
2

for all t,
which means

DIST (Ut, U
⇤) ⇢ · �r(X

?)
1
2

leads to good initialization.
As we have gone from convex to the non-convex regime,

we have created a dependence over the singular values of X?,
which we do not know.

In the end, it gives the following convergence guarantee:

THEOREM: LOCAL CONVERGENCE

Theorem 11. If f is a “nice” function and (Ui, Vi) are su�-
ciently close to U?, V ?), then non-convex alternating gradient
descent i) converges to (U?, V ?), and ii) achieves the same
convergence guarantees with convex optimization:

Theorem 12. Global convergence with better initialization: If
the function f is “well-conditioned,” then non-convex alternat-
ing gradient descent converges to the global optimum / optima.

i.e in O(1✏) or in O(log 1
✏) we will have

f
⇣
bU bV >

⌘
� f

⇣
U?V ?>

⌘
 "

Goal: Initialize such that (U0, V0) is su�ciently close to
(U⇤, V ⇤)

i
i

“Notes” — 2024/3/27 — 8:37 — page 69 — #69 i
i

i
i

i
i

Proposed initialization
1) Compute X0 / rf(0n⇥p)
2) Perform one SVD calculation:

X0 = U0V
T
0

If the function f is “well-conditioned,” then non-convex al-
ternating gradient descent converges to the global optimum /
optima.

The impact here will be that instead of SVD at each step,
we will calculate SVD for the first step. The guarantees are
weak, but often, it works in practice!

i
i

“Notes” — 2024/3/27 — 8:37 — page 80 — #80 i
i

i
i

i
i

1. J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

2. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

3. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

4. D. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

5. Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

6. S. Weisberg. Applied linear regression, volume 528. John Wiley & Sons, 2005.

7. T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015.

8. J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, vol-
ume 1. Springer series in statistics New York, 2001.

9. M. Paris and J. Rehacek. Quantum state estimation, volume 649. Springer Science
& Business Media, 2004.

10. M. Daskin. A maximum expected covering location model: formulation, properties
and heuristic solution. Transportation science, 17(1):48–70, 1983.

11. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

12. L. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

13. G. Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge Press
Wellesley, MA, 1993.

14. G. Golub. Cmatrix computations. The Johns Hopkins, 1996.

15. Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. E�cient
backprop. In Neural networks: Tricks of the trade, pages 9–50. Springer, 2002.

16. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

17. Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Conver-
gence and generalization in neural networks. Advances in neural information process-
ing systems, 31, 2018.

18. A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

19. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

20. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems, pages 91–99, 2015.

21. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

22. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

23. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages 1243–1252. JMLR. org,
2017.

24. Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory re-
current neural network architectures for large scale acoustic modeling. In Fifteenth
annual conference of the international speech communication association, 2014.

25. Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilin-
gual convolutional neural networks for LVCSR. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4955–4959. IEEE, 2016.

26. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. page
arXiv:1706.03762, 2017.

27. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. page
arXiv:1810.04805, 2018.

28. Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason J Corso, and Jianfeng
Gao. Unified vision-language pre-training for image captioning and VQA. In AAAI,
pages 13041–13049, 2020.

29. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

30. Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language mod-
els using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019.

31. Colin Ra↵el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

32. Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-
E 2. arXiv preprint arXiv:2204.13807, 2022.

33. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, et al. Highly accurate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589, 2021.

34. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Je↵rey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners, 2020.

35. Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900, 2020.

36. H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak- Lojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016.

37. Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–
235, 1969.

38. Larry Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

39. Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35(67-
68):7, 1999.

40. B. Polyak. Introduction to optimization. Inc., Publications Division, New York, 1,
1987.

41. Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes
of EE392o, Stanford University, Autumn Quarter, 2004:2004–2005, 2003.

42. Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

43. M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th international conference on machine learning, number CONF,
pages 427–435, 2013.

44. J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. E�cient projections onto
the `1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

45. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, (8):30–37, 2009.

46. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2008.

47. T. Booth and J. Gubernatis. Improved criticality convergence via a modified Monte
Carlo power iteration method. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

48. S. Zavriev and F. Kostyuk. Heavy-ball method in nonconvex optimization problems.
Computational Mathematics and Modeling, 4(4):336–341, 1993.

49. E. Ghadimi, H. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-
ball method for convex optimization. In 2015 European control conference (ECC),
pages 310–315. IEEE, 2015.

50. Y. Nesterov. A method of solving a convex programming problem with convergence
rate O(1

k2). In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

51. B. O’Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715–732, 2015.

52. O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex op-
timization with inexact oracle. Mathematical Programming, 146(1-2):37–75, 2014.

53. L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

54. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
review, 43(1):129–159, 2001.

55. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

56. P. Ho↵. Lasso, fractional norm and structured sparse estimation using a Hadamard
product parametrization. Computational Statistics & Data Analysis, 115:186–198,
2017.

57. S. Becker, J. Bobin, and E. Candès. NESTA: A fast and accurate first-order method
for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

58. T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing.
Applied and computational harmonic analysis, 27(3):265–274, 2009.

59. D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301–321,
2009.

60. S. Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

61. J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion.
SIAM Journal on Scientific Computing, 35(5):S104–S125, 2013.

62. K. Wei. Fast iterative hard thresholding for compressed sensing. IEEE Signal pro-
cessing letters, 22(5):593–597, 2014.

63. Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative
hard thresholding. In International Conference on Artificial Intelligence and Statistics,
pages 188–198. PMLR, 2018.

64. Je↵rey D Blanchard and Jared Tanner. GPU accelerated greedy algorithms for com-
pressed sensing. Mathematical Programming Computation, 5(3):267–304, 2013.

65. A. Kyrillidis, G. Puy, and V. Cevher. Hard thresholding with norm constraints. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3645–3648. Ieee, 2012.

66. A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. In Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE
International Workshop on, pages 353–356. IEEE, 2011.

i
i

“Notes” — 2024/3/27 — 8:37 — page 81 — #81 i
i

i
i

i
i

67. X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via
gradient descent. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1524–1534, 2019.

68. Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency information. IEEE
Transactions on information theory, 52(2):489–509, 2006.

69. Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowdhury. Covariance selec-
tion for nonchordal graphs via chordal embedding. Optimization Methods & Software,
23(4):501–520, 2008.

70. Joseph B Altepeter, Daniel FV James, and Paul G Kwiat. 4 qubit quantum state
tomography. In Quantum state estimation, pages 113–145. Springer, 2004.

71. Jens Eisert, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea
Parekh, Ulysse Chabaud, and Elham Kashefi. Quantum certification and benchmark-
ing. arXiv preprint arXiv:1910.06343, 2019.

72. Masoud Mohseni, AT Rezakhani, and DA Lidar. Quantum-process tomography: Re-
source analysis of di↵erent strategies. Physical Review A, 77(3):032322, 2008.

73. D. Gross, Y.-K. Liu, S. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105(15):150401, 2010.

74. Y.-K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances
in Neural Information Processing Systems, pages 1638–1646, 2011.

75. K Vogel and H Risken. Determination of quasiprobability distributions in terms
of probability distributions for the rotated quadrature phase. Physical Review A,
40(5):2847, 1989.

76. Miroslav Ježek, Jaroḿır Fiurášek, and Zdeněk Hradil. Quantum inference of states
and processes. Physical Review A, 68(1):012305, 2003.

77. Konrad Banaszek, Marcus Cramer, and David Gross. Focus on quantum tomography.
New Journal of Physics, 15(12):125020, 2013.

78. A. Kalev, R. Kosut, and I. Deutsch. Quantum tomography protocols with positivity
are compressed sensing protocols. Nature partner journals (npj) Quantum Informa-
tion, 1:15018, 2015.

79. Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko,
and Giuseppe Carleo. Neural-network quantum state tomography. Nat. Phys.,
14:447–450, May 2018.

80. Matthew JS Beach, Isaac De Vlugt, Anna Golubeva, Patrick Huembeli, Bohdan
Kulchytskyy, Xiuzhe Luo, Roger G Melko, Ejaaz Merali, and Giacomo Torlai. Qucum-
ber: wavefunction reconstruction with neural networks. SciPost Physics, 7(1):009,
2019.

81. Giacomo Torlai and Roger Melko. Machine-learning quantum states in the NISQ era.
Annual Review of Condensed Matter Physics, 11, 2019.

82. M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D. Bartlett,
O. Landon-Cardinal, D. Poulin, and Y.-K. Liu. E�cient quantum state tomography.
Nat. Comm., 1:149, 2010.

83. BP Lanyon, C Maier, Milan Holzäpfel, Tillmann Baumgratz, C Hempel, P Jurcevic,
Ish Dhand, AS Buyskikh, AJ Daley, Marcus Cramer, et al. E�cient tomography of a
quantum many-body system. Nature Physics, 13(12):1158–1162, 2017.

84. D. Gonçalves, M. Gomes-Ruggiero, and C. Lavor. A projected gradient method for
optimization over density matrices. Optimization Methods and Software, 31(2):328–
341, 2016.

85. E. Bolduc, G. Knee, E. Gauger, and J. Leach. Projected gradient descent algorithms
for quantum state tomography. npj Quantum Information, 3(1):44, 2017.

86. Jiangwei Shang, Zhengyun Zhang, and Hui Khoon Ng. Superfast maximum-likelihood
reconstruction for quantum tomography. Phys. Rev. A, 95:062336, Jun 2017.

87. Zhilin Hu, Kezhi Li, Shuang Cong, and Yaru Tang. Reconstructing pure 14-qubit quan-
tum states in three hours using compressive sensing. IFAC-PapersOnLine, 52(11):188
– 193, 2019. 5th IFAC Conference on Intelligent Control and Automation Sciences
ICONS 2019.

88. Zhibo Hou, Han-Sen Zhong, Ye Tian, Daoyi Dong, Bo Qi, Li Li, Yuanlong Wang,
Franco Nori, Guo-Yong Xiang, Chuan-Feng Li, et al. Full reconstruction of a 14-qubit
state within four hours. New Journal of Physics, 18(8):083036, 2016.

89. C. Riofŕıo, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, and J. Eisert.
Experimental quantum compressed sensing for a seven-qubit system. Nature Com-
munications, 8, 2017.

90. Martin Kliesch, Richard Kueng, Jens Eisert, and David Gross. Guaranteed recovery
of quantum processes from few measurements. Quantum, 3:171, 2019.

91. S. Flammia, D. Gross, Y.-K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: Error bounds, sample complexity and e�cient estimators. New Journal of
Physics, 14(9):095022, 2012.

92. A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Prov-
able quantum state tomography via non-convex methods. npj Quantum Information,
4(36), 2018.

93. B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

94. N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2004.

95. J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative
prediction. In Proceedings of the 22nd international conference on Machine learning,
pages 713–719. ACM, 2005.

96. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix fac-
torizations. In Proceedings of the 23rd international conference on Machine learning,
pages 249–256. ACM, 2006.

97. J. Bennett and S. Lanning. The Netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

98. M. Jaggi and M. Sulovsk. A simple algorithm for nuclear norm regularized problems.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 471–478, 2010.

99. R. Keshavan. E�cient algorithms for collaborative filtering. PhD thesis, Stanford
University, 2012.

100. R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions
of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. International
World Wide Web Conferences Steering Committee, 2013.

101. K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing Sys-
tems, pages 730–738, 2015.

102. G. Carneiro, A. Chan, P. Moreno, and N. Vasconcelos. Supervised learning of se-
mantic classes for image annotation and retrieval. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(3):394–410, 2007.

103. A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In
Computer Vision–ECCV 2008, pages 316–329. Springer, 2008.

104. C. Wang, S. Yan, L. Zhang, and H.-J. Zhang. Multi-label sparse coding for automatic
image annotation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 1643–1650. IEEE, 2009.

105. J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

106. Andrew I. Schein, Lawrence K. Saul, and Lyle H. Ungar. A generalized linear model
for principal component analysis of binary data. In AISTATS, 2003.

107. K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari. Prediction and
clustering in signed networks: A local to global perspective. The Journal of Machine
Learning Research, 15(1):1177–1213, 2014.

108. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances in
Neural Information Processing Systems, 27, 2014.

109. Koen Verstrepen. Collaborative Filtering with Binary, Positive-only Data. PhD thesis,
University of Antwerpen, 2015.

110. N. Gupta and S. Singh. Collectively embedding multi-relational data for predicting
user preferences. arXiv preprint arXiv:1504.06165, 2015.

111. Y. Liu, M. Wu, C. Miao, P. Zhao, and X.-L. Li. Neighborhood regularized logistic ma-
trix factorization for drug-target interaction prediction. PLoS Computational Biology,
12(2):e1004760, 2016.

112. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, volume 463, pages
3089–3114. The Royal Society, 2007.

113. E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix
completion. SIAM Review, 57(2):225–251, 2015.

114. I. Waldspurger, A. d’Aspremont, and S. Mallat. Phase recovery, MaxCut and complex
semidefinite programming. Mathematical Programming, 149(1-2):47–81, 2015.

115. P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang. Semidefinite programming
approaches for sensor network localization with noisy distance measurements. IEEE
transactions on automation science and engineering, 3(4):360, 2006.

116. K. Weinberger, F. Sha, Q. Zhu, and L. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems, pages 1489–1496, 2007.

117. F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with
application to protein clustering. Proceedings of the National Academy of Sciences
of the United States of America, 102(35):12332–12337, 2005.

118. H. Andrews and C. Patterson III. Singular value decomposition (SVD) image coding.
Communications, IEEE Transactions on, 24(4):425–432, 1976.

119. M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In American Control Conference, 2004. Proceedings of the 2004, volume 4,
pages 3273–3278. IEEE, 2004.

120. E. Candès and B. Recht. Exact matrix completion via convex optimization. Founda-
tions of Computational mathematics, 9(6):717–772, 2009.

121. P. Jain, R. Meka, and I. Dhillon. Guaranteed rank minimization via singular value
projection. In Advances in Neural Information Processing Systems, pages 937–945,
2010.

122. S. Becker, V. Cevher, and A. Kyrillidis. Randomized low-memory singular value
projection. In 10th International Conference on Sampling Theory and Applications
(Sampta), 2013.

123. L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces
from highly incomplete information. In Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE, 2010.

124. K. Lee and Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approxi-
mation. Information Theory, IEEE Transactions on, 56(9):4402–4416, 2010.

125. A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. Journal
of mathematical imaging and vision, 48(2):235–265, 2014.

126. Z. Lin, M. Chen, and Y. Ma. The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.

127. S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation,
3(3):165–218, 2011.

128. J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

129. Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Coherent matrix completion.
In Proceedings of The 31st International Conference on Machine Learning, pages
674–682, 2014.

i
i

“Notes” — 2024/3/27 — 8:37 — page 82 — #82 i
i

i
i

i
i

130. A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimiza-
tion framework. In Advances in Neural Information Processing Systems 28, pages
3132–3140. 2015.

131. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

132. Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a
crowded valley - benchmarking deep learning optimizers. CoRR, abs/2007.01547,
2020.

133. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, jul
2011.

134. Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew
Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012.

135. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

