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Abstract

Bayesian coresets have emerged as a promising
approach for implementing scalable Bayesian
inference. The Bayesian coreset problem in-
volves selecting a (weighted) subset of the data
samples, such that the posterior inference us-
ing the selected subset closely approximates
the posterior inference using the full dataset.
This manuscript revisits Bayesian coresets
through the lens of sparsity constrained opti-
mization. Leveraging recent advances in ac-
celerated optimization methods, we propose
and analyze a novel algorithm for coreset se-
lection. We provide explicit convergence rate
guarantees and present an empirical evalua-
tion on a variety of benchmark datasets to
highlight our proposed algorithm’s superior
performance compared to state-of-the-art on
speed and accuracy.

1 Introduction

Bayesian coresets have emerged as a promising ap-
proach for scalable Bayesian inference (Huggins et al.,
2016; Campbell & Broderick, 2018, 2019; Campbell &
Beronov, 2019). The key idea is to select a (weighted)
subset of the data such that the posterior inference
using the selected subset closely approximates the pos-
terior inference using the full dataset. This creates a
trade-off, where using Bayesian coresets as opposed to
the full dataset exchanges approximation accuracy for
computational speedups. We study Bayesian coresets
as they are easy to implement, effective in practice,
and come with useful theoretical guarantees that relate
the coreset size with the approximation quality.

The main technical challenge in the Bayesian coreset
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problem lies in handling the combinatorial constraints –
we desire to select a few data points out of many as the
coreset. In terms of optimization, previous approaches
mainly rely on two ideas: convexification and greedy
methods. In convexification (Campbell & Broderick,
2019), the sparsity constraint – i.e., selection of k data
samples – is relaxed into a convex `1-norm constraint.
This allows them to use out-of-the-box solvers such as
Frank-Wolfe (FW) type-of methods (Frank & Wolfe,
1956; Jaggi, 2013). An alternative approach is by us-
ing greedy methods (Campbell & Broderick, 2018),
which constructs a sparse weight vector based on lo-
cal decisions to greedily optimize the approximation
problem (Tropp & Gilbert, 2007; Needell & Tropp,
2009). The resulting method, greedy iterative geodesic
ascent (GIGA), achieves linear convergence with no
hyper-parameter tuning and optimal scaling (Campbell
& Broderick, 2018). More recently, sparse variational
inference (SparseVI) is considered for Bayesian coreset
construction. SparseVI also employs a greedy algo-
rithm to minimize a KL divergence objective. The
method achieves state-of-the-art accuracy, but at a
cost of higher computational requirements. Therefore,
existing work illustrates the trade-off between accuracy
and efficiency, opening a gap for improvements.

We revisit Bayesian coresets through the lens of sparsity
constrained optimization. Sparsity, a kind of noncon-
vexity, appears in a variety of applications in machine
learning and statistics. For instance, compressed sens-
ing (Donoho et al., 2006; Candes, 2008) is an example
where sparsity is used as a complexity measure for
signal representation. Leveraging and building upon
recent advances in non-convex optimization, we solve
the Bayesian coreset problem based on hard thresh-
olding algorithms (Blumensath & Davies, 2009) that
directly work on the non-convex sparsity constraint.
Hard-thresholding schemes are highly flexible, and eas-
ily accommodate variations such as subspace explo-
ration (Dai & Milenkovic, 2009), de-bias steps (Needell
& Tropp, 2009), adaptive step size selections (Kyrillidis
& Cevher, 2011), as well as different types of spar-
sity constraints, such as group sparsity (Baldassarre
et al., 2016), sparsity within groups (Kyrillidis et al.,
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2015), and generic structured sparsity (Baraniuk et al.,
2010). The thresholding step involves a projection
onto the k-sparsity constraint set to determine the se-
lected sample set in each iteration. While we achieve
state-of-the-art accuracy using direct application of this
algorithm, re-building the set in every iteration makes
it slower than previous works. To fix this, we employ
line search for step size selection and momentum based
techniques (Khanna & Kyrillidis, 2018) to accelerate
the algorithm, also achieving state-of-the-art speed.

Contributions. In this paper, we adapt accelerated
iterative hard thresholding schemes to the Bayesian
coreset problem. Despite directly attacking the non-
convex optimization problem, we provide strong con-
vergence guarantees. To summarize our contributions:

• We revisit the Bayesian coreset problem via a non-
convex (sparse) optimization lens, and provide an
IHT-based algorithm that combines hard threshold-
ing and momentum steps;

• We analyze its convergence based on standard as-
sumptions;

• We provide extensive empirical evaluation to show
superior performance of the proposed method vis-à-
vis state-of-the-art algorithms in terms of approxi-
mation accuracy as well as speed.

2 Problem Formulation

Given n observations, one can compute the log-
likelihood Li(θ) of each of the observations, param-
eterized by θ. Assuming observations are conditionally
independent given θ, one can represent the likelihood
of all the observations as the sum of individual log-
likelihoods, i.e., L(θ) =

∑n
i=1 Li(θ). With prior density

π0(θ), the posterior density can be derived as:

π(θ) := 1
Z ·e
L(θ) · π0(θ),

where Z =
∫
eL(θ)π0(θ)dθ is a normalization factor.

However, for most applications, exact posterior esti-
mation is intractable; i.e., π is too hard to evaluate
exactly. Practitioners use algorithms for approximate
inference that may approximate the π in a closed-form
(e.g., using variational inference), or allow for sampling
from the posterior without providing a closed-form
expression (e.g., MCMC methods). Such algorithms
often scale at least linearly with the size of the dataset
n, which makes them prohibitively expensive for large
datasets. As such, designing algorithms to speed up
inference is an area of active research.

One solution to the scalability problem is to use coresets.
Coresets approximate the empirical log-likelihood L =

∑n
i=1 Li using a weighted sum of a subset of all the log-

likelihoods Li. In other words, we use Lw =
∑n
i=1 wiLi

to approximate the true L, where w ∈ Rn+ is a non-
negative sparse vector. It will be useful to view that
L,Li and Lw are functions in a Hilbert space, and
we will use L2-norm to denote the 2-norm defined in
function space, differentiating with the `2-norm defined
in Euclidean space. We enforce the sparsity constraint
as ‖w‖0 ≤ k, for k < n; here ‖ · ‖0 denotes the pseudo-
norm that counts the number of non-zero entries.

When k < n, posterior estimation (e.g., using MCMC
or variational inference) is less expensive on the coreset
as opposed to the entire dataset. However, sparsifying
w involves dropping some samples, which in turn im-
plies deviating from the best performance possible from
using the full dataset. The Bayesian coreset problem
is formulated to minimize this loss in performance.

The Bayesian Coreset Problem. The Bayesian
coreset problem is to control the deviation of coreset
log-likelihood from true log-likelihood via sparsity:

arg min
w∈Rn

f(w) := Dist(L, Lw)

s.t. ‖w‖0 ≤ k, wi ≥ 0,∀i.
(1)

Key components are (i) the weights w ∈ Rn+ over n
data points, (ii) the function f(·) that controls the devi-
ation between the full-dataset log-likelihood L and the
coreset log-likelihood Lw using the distance functional
Dist(·, ·), and (iii) the non-convex sparsity constraint
that restricts the number of nonzeros in w, thus con-
straining the number of active data points in the coreset.
Examples of Dist(·, ·) include the weighted L2-norm
(Campbell & Broderick, 2019) and the KL-divergence
(Campbell & Beronov, 2019). In this manuscript, we
consider the L2(π̂)-norm as the distance metric in the
embedding Hilbert space, i.e.,

Dist(L, Lw)2 = ‖L − Lw‖2π̂,2
= Eθ∼π̂

[
(L(θ)− Lw(θ))2

]
, (2)

where π̂ is a weighting distribution that has the same
support as true posterior π. Ideally, π̂ is the true pos-
terior, which is obviously unknown. However, one can
employ Laplace approximation to derive an inexpen-
sive and reasonable approximation for π̂ (Campbell &
Broderick, 2019).

To account for the shift invariance, we write gi =
Li−Eθ∼π̂Li(θ), so the equivalent optimization problem
is now: minimize ‖

∑n
i=1 gi −

∑n
i=1 wigi‖2π̂,2. Further,

noting that the L2(π̂)-norm is in the form of expec-
tation (equation (2)), it can be approximated by a
finite-dimensional `2-norm which replaces the function
with a vector of sampled evaluations θ ∼ π̂. Thus,
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given S samples {θj}Sj=1, θj ∼ π̂, and using

ĝi = 1√
S
·
[
Li(θ1)− L̄i, . . . ,Li(θS)− L̄i

]> ∈ RS

as projections from function space to standard Eu-
clidean space, where L̄i = 1

S

∑S
j=1 Li(θj), the Bayesian

coreset problem (1) becomes a finite-dimensional sparse
regression problem:

arg min
w∈Rn

f(w) :=

∥∥∥∥∥
n∑
i=1

ĝi −
n∑
i=1

wiĝi

∥∥∥∥∥
2

2

s.t. ‖w‖0 ≤ k, wi ≥ 0,∀i.

(3)

The resulting sparse regression problem is non-convex
due to the combinatorial nature of the constraints.
Previous methods that use this `2-norm formula-
tion (Campbell & Broderick, 2019, 2018) offers
less satisfactory approximation accuracy compared
to the state-of-the-art sparse variational inference
method (Campbell & Beronov, 2019). However, the
high computational cost of the latter method makes it
impractical for real-world large datasets. Nonetheless,
as we will show, our approach for solving equation (3)
using a variant of iterative hard thresholding, achieves
better accuracy and speed.

3 Our approach

Algorithm 1 Vanilla IHT
input Objective f : Rn → R; sparsity k; step size µ
1: Initialize w
2: repeat
3: w ← ΠCk∩Rn

+
(w − µ∇f(w))

4: until Stop criteria met
5: return w

For clarity of exposition, we gradually build up our
approach for solving the optimization problem (3). The
fundamental ingredient of our approach is the vanilla
Iterative Hard Thresholding (IHT) method presented in
Algorithm 1. We develop our approach by augmenting
IHT with momentum updates, step size selection for
line search and active subspace expansion techniques to
accelerate and automate the algorithm (Algorithms 2
& 3). Details follow.

3.1 Iterative Hard Thresholding (IHT)

The classical IHT (Blumensath & Davies, 2009) is a
projected gradient descent method that performs a
gradient descent step and then projects the iterate
onto the non-convex k-sparsity constraint set. We
denote the orthogonal projection of a given z ∈ Rn
to a space C ⊆ Rn as: ΠC(z) := arg minw∈C ‖w − z‖2.
Define the sparsity restricted space as: Ck =

{
w ∈ Rn :

|supp(w)| ≤ k
}
, where supp(w) = {i|wi 6= 0} denotes

the support set of w. Here, we describe the plain
sparsity case, but one can consider different realizations
of Ck as in (Baldassarre et al., 2016; Kyrillidis et al.,
2015; Baraniuk et al., 2010). The projection step in
the classical IHT, i.e.,, ΠCk , can be computed easily
by selecting the top-k elements in O(n log k) time; but
projection can be more challenging for more complex
constraint sets, e.g., if the variable is a distribution on
a lattice (Zhang et al., 2019).

For our problem, we require that the projected sparse
vector only has non-negative values. For vector vari-
ate functions, the projection step in Algorithm 1, i.e.,
ΠCk∩Rn

+
(w) is also straightforward; it can be done opti-

mally in O(n log k) time by simply picking the top k
largest non-negative elements. More discussions about
the projections are presented in section B in appendix.

3.2 Accelerated IHT

For clarity, we rewrite the problem in equation (3) as:

w∗ = arg min
w∈Ck∩Rn

+

f(w) := ‖y − Φw‖22,

where y =
∑n
i=1 ĝi and Φ = [ĝ1, . . . , ĝn]. In this case,

∇f(w) ≡ −2Φ>(y − Φw).

Step size selection in IHT: Classical results on the
performance of IHT algorithms come with rigorous
convergence guarantees (under regularity conditions)
(Blumensath & Davies, 2009; Foucart, 2011). However,
these results require step size assumptions that either
do not work in practice, or rely on strong assumptions.
For example, in (Blumensath & Davies, 2009; Foucart,
2011) strong isometry constant bounds are assumed
to allow step size µ = 1 for all the iterations, and
thus remove the requirement of hyper-parameter tun-
ing. Moreover, the authors in (Blumensath & Davies,
2010) present toy examples by carefully selecting Φ
so that the vanilla IHT algorithm diverges without
appropriate step size selection. In this work, given
the quadratic objective f(w), we perform exact line
search to obtain the best step size per iteration (Blu-
mensath & Davies, 2010; Kyrillidis & Cevher, 2011):
µt := ‖∇̃t‖22/2‖Φ∇̃t‖22; details in Algorithm 2.

Memory in vanilla IHT: Based upon the same
ideas as step size selection, we propose to in-
clude adaptive momentum acceleration; we select
the momentum term as the minimizer of the ob-
jective: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt)) =
〈y−Φwt+1,Φ(wt+1−wt)〉

2‖Φ(wt+1−wt)‖22
, which also comes out as a closed-

form solution. The step zt+1 = wt+1 + τt+1(wt+1−wt)
at the end of the algorithm captures memory in the
algorithm based on the results on acceleration by Nes-
terov (1983) for convex optimization.
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Algorithm 2 Automated Accelerated IHT

input Objective f(w) = ‖y − Φw‖22; sparsity k
1: t = 0, z0 = 0, w0 = 0
2: repeat
3: Z = supp(zt)
4: S = supp(ΠCk\Z (∇f(zt))) ∪ Z where |S| ≤ 3k

5: ∇̃t = ∇f(zt)
∣∣
S

6: µt = arg minµ f(zt − µ∇̃t) =
‖∇̃t‖22

2‖Φ∇̃t‖22
7: wt+1 = ΠCk∩Rn

+
(zt − µt∇f(zt))

8: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt))
= 〈y−Φwt+1,Φ(wt+1−wt)〉

2‖Φ(wt+1−wt)‖22
9: zt+1 = wt+1 + τt+1(wt+1 − wt)
10: t = t+ 1
11: until Stop criteria met
12: return wt

Automated Accelerated IHT for coreset selec-
tion: Combining the ideas above leads to Automated
Accelerated IHT, as presented in Algorithm 2. The
algorithm alternates between the projection step (steps
6 and 7) after the gradient updates, and the momen-
tum acceleration step (step 8). It thus maintains two
sets of iterates that alternatively update each other in
each iteration at only a constant factor increase in per
iteration complexity. The iterate wt at iteration t is
the most recent estimate of the optimizer, while the
iterate zt models the effect of momentum or “memory"
in the iterates. We have shown exact line search that
solves one dimensional problems to automate the step
size selection (µ) and the momentum parameter (τ) for
acceleration. In practice, these parameters can also be
selected using a backtracking line search.

Using de-bias steps in Automated Accelerated
IHT: Based on pursuit methods for sparse optimiza-
tion (Needell & Tropp, 2009; Dai & Milenkovic, 2009;
Kyrillidis & Cevher, 2014), we propose a modification
that improves upon Algorithm 2 both in speed and ac-
curacy in empirical evaluation. The modified algorithm
is presented in Algorithm 3 in section A in appendix
due to space limitations. The key differences of Algo-
rithm 3 from Algorithm 2 are that, with additional
de-bias steps, one performs another gradient step and
a line search in the sparsified space in each iteration
for further error reduction. We omit these steps in
the algorithmic description to maintain clarity, since
these steps do not provide much intellectual merit to
the existing algorithm, but help boost the practical
performance of Automated Accelerated IHT.

3.3 Theoretical Analysis

In this subsection, we study the convergence properties
of our main algorithm Automated Accelerated IHT in

Algorithm 2. We make a standard assumption about
the objective – the Restricted Isometry Property or
RIP (Assumption 1), which is a standard assumption
made for analysis of IHT and its variants. In RIP, αk
reflects the convexity and βk reflects the smoothness
of the objective in some sense (Khanna & Kyrillidis,
2018; Kyrillidis & Cevher, 2014). We note that the
assumption may not be necessary but is sufficient to
show convergence theoretically. For example, if the
number of samples required to exactly construct ĝ is
less than the coreset size (ak = 0 in RIP), so that
the system becomes under-determined, then a local
minimum can also be global achieving zero error with-
out assuming that the RIP holds. On the other hand,
when the number of samples goes to infinity, RIP is
saying that the restricted eigenvalues of covariance ma-
trix, cov[Li(θ),Lj(θ)] where θ ∼ π̂, are upper bounded
and lower bounded away from 0. It is an active area
of research in random matrix theory to quantify RIP
constants e.g. see (Baraniuk et al., 2008).
Assumption 1 (Restricted Isometry Property (RIP)).
The matrix Φ in the objective function satisfies the RIP
property, i.e., for ∀w ∈ Ck

αk‖w‖22 ≤ ‖Φw‖22 ≤ βk‖w‖22.

RIP generalizes to restricted strong convexity and
smoothness (Chen & Sanghavi, 2010); thus our results
could potentially be extended to general convex f(·)
functions. We present our main result next, and defer
the details of the theory to section B in the appendix.
Theorem 1. In the worst case scenario, with Assump-
tion 1, the solutions path found by Automated Acceler-
ated IHT satisfies the following iterative invariant.

‖wt+1 − w∗‖2 ≤ ρ|1 + τt| · ‖wt − w∗‖2
+ ρ|τt| · ‖wt−1 − w∗‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and

‖ε‖2 = ‖y − Φw∗‖2 is the optimal error.

The theorem provides an upper bound invariant among
consecutive iterates of the algorithm. To have a better
sense of convergence rate, we can derive linear conver-
gence from our iterative invariant.
Corollary 1. Given the iterative invariant as stated in
Theorem 1, and assuming the optimal solution achieves
‖ε‖2 = 0, the solution found by Algorithm 2 satisfies:

f(wt+1)− f(w?) ≤ φt
(
β2k

α2k
f(w1) +

ρτβ2k

φαk
f(w0)

)
,

where φ = (ρ(1 + τ) +
√
ρ2(1 + τ)2 + 4ρτ)/2 and τ =

maxi∈[t] |τi|. It is sufficient to show linear convergence
to the global optimum, when φ < 1, or equivalently
ρ < 1/(1 + 2τ).



Jacky Y. Zhang, Rajiv Khanna, Anastasios Kyrillidis, Oluwasanmi Koyejo

Thus, Algorithm 2 generates a sequence of iterates that
decrease the quadratic objective in equation (3) at a
geometric rate. The quadratic objective can upper
bound the sum of forward KL and reverse KL diver-
gences between the constructed coreset posterior and
the true posterior under certain conditions, as shown
in Proposition 2 by Campbell & Beronov (2019), which
further justifies our approach of using this objective.

Our theory and algorithm differ from the work
by Khanna & Kyrillidis (2018) in several ways. The
non-negative constraint is unique to the Bayesian core-
set problem, and extending the analysis from the origi-
nal IHT to our setting is non-trivial (see Section B in
appendix). Further, the new analysis we present does
not work with the restricted gradient used by Khanna
& Kyrillidis (2018), which is why we choose to use the
full gradient instead (line 7 in Algorithm 2). We also
observe empirically in our experiments that using the
full gradient performs better for the coreset problem.
Further, we also automated the step-size selection, the
momentum selection, and the de-bias step selection to
minimize the need of tuning. Recall that vanilla IHT
(Algorithm 1) is much slower than the greedy approach
by Campbell & Broderick (2018), and so the enhance-
ments we propose are crucial to ensure that the overall
algorithm is both faster as well as better performing
than the state-of-the-art.

4 Related Work

Other scalable approaches for Bayesian inference in-
clude subsampling and streaming methods for varia-
tional Bayes (Hoffman et al., 2013; Broderick et al.,
2013), subsampling methods for MCMC (Welling &
Teh, 2011; Ahn et al., 2012; Korattikara et al., 2014;
Maclaurin & Adams, 2015), and consensus methods for
MCMC (Srivastava et al., 2015; Rabinovich et al., 2015;
Scott et al., 2016). These algorithms are motivated
by empirical performance and come with few or no
theoretical optimization-based guarantees on the infer-
ence quality, and often do not scale to larger datasets.
Bayesian coresets could be used as part of these ap-
proaches, thus resulting into a universal tool for ap-
proximate MCMC and variational inference.

There have been few studies that study convergence
properties of approximate inference algorithms. Camp-
bell & Beronov (2019) presented a linear convergence
rate, but the assumptions they make are non-standard
as the rate of convergence depends on the how well
individual samples correlate with the overall loss. Ap-
proximation guarantees in terms of KL-divergence are
provided (Koyejo et al., 2014; Khanna et al., 2017) for
structured sparse posterior inference using the greedy
forward selection procedure. Locatello et al. (2017,

2018) study convergence rates for a boosting based
algorithm for iteratively refined variational inference.

Thresholding based optimization algorithms have been
attractive alternatives to relaxing the constraint to a
convex one or to greedy selection. Bahmani et al. (2013)
provide a gradient thresholding algorithm that general-
izes pursuit approaches for compressed sensing to more
general losses. Yuan et al. (2018) study convergence
of gradient thresholding algorithms for general losses.
Jain et al. (2014) consider several variants of thresh-
olding based algorithms for high dimensional sparse
estimation. Additional related works are discussed in
Section D in the appendix.

5 Experiments

We empirically examine the performance of our al-
gorithms to construct coresets for Bayesian posterior
approximation. Three sets of experiments are pre-
sented: Gaussian posterior inference, Bayesian radial
basis function regression, and Bayesian logistic and
Poisson regression using real-world datasets.

Besides the Automated Accelerated IHT (Algorithm 2),
we propose Automated Accelerated IHT - II (Algo-
rithm 3 in appendix), that adds a de-bias step that
further improves Algorithm 2 in practice. We refer to
the appendix for detailed explanation and discussion
of Algorithm 3 due to space limitation.

The proposed algorithms, Automated Accelerated IHT
(A-IHT) and Automated Accelerated IHT II (A-IHT
II), are compared with three baseline algorithms, i.e.,
Random (Uniform), Greedy Iterative Geodesic Ascent
(GIGA) (Campbell & Broderick, 2018) and Sparse Vari-
ational Inference (SparseVI) (Campbell & Beronov,
2019). We note that the Frank-Wolfe (FW) method
proposed in (Campbell & Broderick, 2019) has been
shown to be inferior to GIGA and SparseVI in the two
corresponding articles, and thus we believe that com-
paring with GIGA and SparseVI is sufficient. It can
be observed that A-IHT and A-IHT II obtain better
coresets than both GIGA and SparseVI most of the
time, within time comparable to GIGA, while SparseVI
pays a significant computational cost to achieve better
coresets than GIGA, with construction time typically
×104 more than IHT in our experiments. We calcu-
late the Kullback–Leibler (KL) divergence between the
constructed coresets posterior πw and the true poste-
rior π. We measure both the forward KL divergence
DKL(π‖πw) and reverse KL divergence DKL(πw‖π).

Both A-IHT and A-IHT II require minimal tuning, i.e.,
only the stoping criterion is required: ‖wt − wt−1‖ ≤
10−5‖wt‖, or number of iterations > 300 for both A-
IHT and A-IHT II .
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(a) (b)

Figure 1: (a): Bayesian coresets for synthetic Gaussian posterior inference. (b): Experiments on Bayesian radial
basis function regression, with the difference between true posterior and coreset posterior measured in both
forward KL and reverse KL. For both (a) and (b), k is the sparsity setting, and the solid lines are the median KL
divergence between the constructed coreset posterior and true posterior over 10 trials. The shaded area is the KL
divergence between 25th and 75th percentiles.

5.1 Synthetic Gaussian posterior inference

We examine the algorithms in this synthetic experi-
ment, where we have closed-form exact expressions.
Specifically, we compare each of these algorithms in
terms of optimization accuracy without errors from
sampling. For the D-dimensional Gaussian distribu-
tion, we set the parameter θ ∼ N (µ0,Σ0) and draw N
i.i.d. samples xn∼N (θ,Σ), which results in a Gaussian
posterior distribution with closed-form parameters, as
shown in (Campbell & Beronov, 2019). We set the
dimension D = 200, number of samples N = 600, and
maximal sparsity k is set to be 1, . . . , 300. The ini-
tial covariance matrix is set to be Σ0 = Σ = I. The
learning rate for SparseVI is γt = 1/t, and the number
of weight update iterations for Sparse VI is 100, as
suggested by their paper.

Comparison among all the 5 algorithms measuring
the forward KL divergence between the true posterior
and the coreset posterior is presented in Figure 1 (a),
which shows that IHT outperforms SparseVI and GIGA,
achieving nearly optimal results. We observe that Spar-
seVI stops improving once it hits certain sparsity level,
which we suspect is due to the limitations of its greedy
nature. It can also be observed that A-IHT II converges
faster than A-IHT. Additional results are put in the
section E in appendix.

5.2 Bayesian Radial Basis Function
Regression

In this subsection, we explore the performance of pro-
posed methods versus the baselines in terms of the both

forward KL and reverse KL divergence. The SparseVI
algorithm optimizes reverse KL; we show this does not
always imply reduction in the forward KL. Indeed se-
lecting more points to greedily optimizing the reverse
KL can cause an increase in the forward KL!

We aim to infer the posterior for Bayesian radial basis
function regression. Given the dataset1 {(xn, yn) ∈
R2 × R}Nn=1, where xn is the latitude/longitude coor-
dinates and yn is house-sale log-price in the United
Kingdom, the goal is to infer coefficients α ∈ RD for
D radial basis functions bd(x) = exp(− 1

2σ2
d
(x − µd)2)

for d ∈ [D]. The model is yn = b>nα+ εn, where εn ∼
N (0, σ2) with σ2 be the variance of {yn}, and bn =
[b1(xn), . . . , bD(xn)]>. We set prior α ∼ N (µ0, σ

2
0I),

where µ0, σ
2
0 are empirical mean and second moment

of the data. We subsampled the dataset uniformly at
random to N = 1000 records for the experiments, and
generated 50 basis functions for each of the 6 scales
σd ∈ {0.2, 0.4, 0.8, 1.2, 1.6, 2.0} by generating means µd
for each basis uniformly from data. Except for the
300 basis functions, an additional near-constant basis
of scale 100, with mean corresponding to the mean
latitude and longitude of the data, is added. Therefore,
D = 301 basis functions are considered. Each of the
algorithms has access to the closed-form of posterior
distribution and covariance (see (Campbell & Beronov,
2019) for detailed derivation).

1The task is to predict housing prices from the UK
land registry data (https://www.gov.uk/government/
statistical-data-sets/price-paid-data-downloads)
using latitude/longitude coordinates from the Geonames
postal code data (http://download.geonames.org/
export/zip/) as features.

https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
https://www.gov.uk/government/statistical-data-sets/price-paid-data-downloads
http://download.geonames.org/export/zip/
http://download.geonames.org/export/zip/
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Figure 2: Experiments on Bayesian radial basis function regression, where coreset sparsity setting k = 200, 250, 300.
Coreset points are presented as black dots, with their radius indicating assigned weights. When k = 300, posterior
constructed by Accelerated IHT II (top left) shows almost exact contours as the true posterior (top middle),
while posterior constructed by SparseVI (top right) shows deviated contours from the true posterior distribution.

Specific settings for the algorithms are as follows. For
SparseVI, the exact covariance can be obtained, and the
weight update step can be done without Monte Carlo
estimation. For IHT and GIGA, we use true posterior
for constructing the `2 loss function. The learning rate
for SparseVI is set to be γt = 1/t, and iteration number
T = 100, which is the setting SparseVI uses for the
experiment (Campbell & Beronov, 2019).

IHT’s objective indicates both bounded forward KL
and reverse KL. However, SparseVI, which optimizes
the reverse KL, offers no guarantee for the forward KL.
As shown in Figure 1 (b), SparseVI increasingly devi-
ates from the true distribution in forward KL as more
coreset points are selected. However, IHT methods
offers consistently better coresets in both forward KL
and reverse KL metric.

The reverse KL divergence alone is not enough to indi-
cate good approximation, as shown in Figure 2. We plot
the posterior contours for both the true posterior and
coreset posterior at a random trial when sparsity level
k = 200, 250, 300. The coreset posterior constructed
by our Algorithm 3 recovers the true posterior almost
exactly at k = 300, unlike SparseVI. The results for
other trials are provided in section F in the appendix.

5.3 Bayesian logistic and Poisson regression

We consider how IHT performs when used in real appli-
cations where the closed-form expressions are unattain-
able. As the true posterior is unknown, a Laplace
approximation is used for GIGA and IHT to derive the
finite projection of the distribution, i.e., ĝi. Further,
Monte Carlo sampling is used to derive gradients of
DKL for SparseVI. We compare different algorithms esti-
mating the posterior distribution for logistic regression
and Poisson regression. The reverse KL and forward
KL between the coreset posterior and true posterior are
estimated using another Laplace approximation. The
experiment was proposed by Campbell & Broderick
(2019), and is used in (Campbell & Broderick, 2018)
and (Campbell & Beronov, 2019). Due to space limita-
tions, we refer to section G in the appendix for details
of the experimental setup, and extensive additional
results.

For logistic regression, given a dataset {(xn, yn) ∈
RD × {1,−1} | i ∈ [N ]}, we aim to infer θ ∈ RD+1

based on the model:

yn | xn, θ ∼ Bern
(

1

1 + e−z
>
n θ

)
,

where zn = [x>n , 1]>. We set N = 500 by uniformly
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Top Row: Synthetic dataset

Bottom Row: Phishing dataset

Figure 3: Bayesian coreset construction for logistic regression (LR) using the synthetic dataset (top row) and the
phishing dataset (bottom row). All the algorithms are run 20 times, and the median as well as the interval of
35th and 65th percentile, indicated as the shaded area, are reported. Different maximal coreset size k is tested
from 1 to 100. Forward KL (left column) and reverse KL (middle column) divergence between estimated true
posterior and coreset posterior indicate the quality of the constructed coreset. The smaller the KL divergence,
the better the coreset is. The running time for each algorithms is also recorded (right column).

sub-sampling from datasets due to the high compu-
tation cost of SparseVI. Three datasets are used for
logistic regression. The synthetic dataset consists of
xn sampled i.i.d. from standard normal distribution
N (0, I), and label yn sampled from Bernoulli distribu-
tion conditioned on xn and θ = [3, 3, 0]>. The phishing
dataset2 is preprocessed (Campbell & Beronov, 2019)
via PCA to dimension of D = 10 to mitigate high
computation by SparseVI. The chemical reactivities
dataset3 has D = 10.

We present two sets of experiments, i.e., logistic re-
gression using the synthetic dataset and the phishing
dataset, in Figure 3. One other set of experiments
on logistic regression, and three sets of experiments
on Poisson regression are deferred to section G in ap-
pendix.

It is observed that A-IHT and A-IHT II achieve state-of-

2https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html

3http://komarix.org/ac/ds

the-art performance. The IHT algorithms often obtain
coresets with smaller KL between the coreset posterior
and true posterior than GIGA and SparseVI, with
computing time comparable to GIGA and significantly
less than SparseVI. The experiments indicate that IHT
outperforms the previous methods, improving the trade-
off between accuracy and performance.

Conclusion In this paper, we consider the Bayesian
coreset construction problem from a sparse optimiza-
tion perspective, through which we propose a new algo-
rithm that incorporates the paradigms of sparse as well
as accelerated optimization. We provide theoretical
analysis for our method, showing linear convergence
under standard assumptions. Finally, numerical results
demonstrate the improvement in both accuracy and
efficiency when compared to the state of the art meth-
ods. Our viewpoint of using sparse optimization for
Bayesian coresets can potentially help to consider more
complex structured sparsity, which is left as future
work.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds
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Bayesian Coresets:
Revisiting the Nonconvex Optimization Perspective

Supplementary Materials

A Automated Accelerated IHT with De-bias Step

Algorithm 3 Automated Accelerated IHT - II

input Objective f(w) = ‖y − Φw‖22; sparsity k
1: t = 0, z0 = 0, w0 = 0
2: repeat
3: Z = supp(zt)
4: S = supp(ΠCk\Z (∇f(zt))) ∪ Z where |S| ≤ 3k {active subspace expansion}
5: ∇̃(1) = ∇f(zt)

∣∣
S

6: µ
(1)
t = arg minµ f(zt − µ∇̃(1)) =

‖∇̃(1)‖22
2‖Φ∇̃(1)‖22

{step size selection}

7: xt = ΠCk∩Rn
+

(
zt − µ(1)

t ∇f(zt)
)

{projected gradient descent}

8: ∇̃(2) = ∇f(xt)
∣∣
supp(x)

9: µ
(2)
t = arg minµ f(xt − µ∇̃(2)) =

‖∇̃(2)‖22
2‖Φ∇̃(2)‖22

{step size selection}

10: wt+1 = ΠRn
+

(xt − µ(2)
t ∇̃(2)) {de-bias step}

11: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt)) = 〈y−Φwt+1,Φ(wt+1−wt)〉
2‖Φ(wt+1−wt)‖22

12: zt+1 = wt+1 + τt+1(wt+1 − wt) {momentum step}
13: t = t+ 1
14: until Stop criteria met
15: return wt

In the main text, we mention that Algorithm 2 can be boosted better in practice using de-bias steps. Here we
present the algorithm with de-bias step, as shown in Algorithm 3.

Like Automated Accelerated IHT, Algorithm 3 also starts with active subspace expansion, i.e., line 3 & 4. As
Z = supp(zt) = supp(wt−1) ∪ supp(wt) is a 2k-sparse index set, the expanded index set S is a 3k-sparse index
set that is the union of the support of three elements, i.e.,

S = supp(wt−1) ∪ supp(wt) ∪ supp(ΠCk\Z (∇f(zt))).

We note that, with a little abuse of notation, we use Z to denote both the support set Z ⊂ [n], and the subspace
restricted by the support, i.e., {x ∈ Rn | supp(x) ⊆ Z}.

The subspace corresponding to this index set S is a subspace that the algorithm considers as potential to achieve
low loss within. Therefore, in the next step we perform projected gradient descent in this expanded subspace.
Note that we use ∇f(·)

∣∣
S to denote a sparse subset S of the gradient, i.e., setting the ith entry of ∇f(·) to 0 if

i /∈ S.

The projected gradient descent step consists of three sub-steps, i.e., step size selection (line 6), gradient descent
(line 7), and projection to non-negative k-sparse restricted domain (line 7). The step size selection is performed
by an exact line search to obtain good step size automatically. The projection step (line 7) is where we do “hard
thresholding” to obtain a k-sparse solution xt. As mentioned before, this projection step can be done optimally
in the sense of `2-norm by simply sorting and piking the k-largest non-negative elements.
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Then, we come to the key difference between Algorithm 2 and Algorithm 3, i.e., the de-bias step at line 8, 9 & 10.
With additional de-bias steps, we adjust the solution k-sparse solution xt inside its own sparse space, i.e., the
space corresponding to supp(xt), such that it a better k-sparse solution is found. After computing the gradient
(line 8), another exact line search is performed (line 9). By gradient descent and imposing the non-negativity
constraint (line 10), we have the solution wt+1 for this iteration.

Lastly, the momentum step (line 11 & 12) is the same as Algorithm 2. We select the momentum term as the
minimizer of the objective: τt+1 = arg minτ f(wt+1 + τ(wt+1 − wt)), and then apply the momentum to our
solutions wt+1 and wt as zt+1 = wt+1 + τt+1(wt+1 − wt) to capture memory in the algorithm. Momentum can
offer faster convergence rate for convex optimization (Nesterov, 1983).

B Theoretical Analysis

In this section, we provide a detailed theoretical analysis that is abstracted in the main paper due to space
limitation. All of the proofs are defer to section C for clarity. To begin with, let us show that all of the projection
operators used in our algorithms can be done optimally and efficiently.

Given an index set S ⊆ [n], the projection of w to the subspace with support S is ΠS(w), which can be done
optimally by setting wSc = 0, where Sc denotes the complement of S. We note that, with a little abuse of
notation, we use S to denote both the support set S ⊂ [n], and the subspace restricted by the support, i.e.,
{x ∈ Rn | supp(x) ⊆ S}. The projection to non-negative space, i.e., ΠRn

+
(w), can also be done optimally and

efficiently by setting the negative entries to zero. Moreover, ΠCk is shown to be optimal by simply picking the top
k largest (in absolute value) entries. It is also the case for ΠCk∩Rn

+
(w), where it can be done by picking the top k

largest non-negative entries. The optimality for the above projections is in terms of Euclidean distance.

Let us show the optimality for ΠCk∩Rn
+

(w). Given a k-sparse support S, the optimal projection of w ∈ Rn to
its restricted sparsity space intersecting the non-negative orthant is w′ = ΠS∩Rn

+
(w). We can see that for entry

i ∈ [n], w′i = wi if i ∈ S and wi ≥ 0, and w′i = 0 otherwise. Therefore, the distance between w and its projection
to S ∩Rn+ is ‖w′ −w‖22 = ‖w‖22 −

∑
i∈S,wi>0 w

2
i . As ΠCk∩Rn

+
(w) = minS:|S|≤k ΠS∩Rn

+
(w), we can see that it is the

support with k largest wi that has the least distance. Therefore, simply picking top k largest non-negative entries
gives the optimal projection.

We give the convergence analysis for our main algorithm Automated Accelerated IHT in Algorithm 2. One
standard assumption about the objective is required for the theory to begin, i.e., RIP property, which is a normal
assumption in IHT context, reflecting convexity and smoothness of the objective in some sense (Khanna &
Kyrillidis, 2018; Kyrillidis & Cevher, 2014). We note that the assumption is not necessary but is sufficient. For
example, if the number of samples required to exactly construct ĝ is less than the coreset size (ak = 0 in RIP), so
that the system becomes underdetermined, then local minima can be global one achieving zero-error without the
RIP. On the other hand, when the number of samples goes to infinity, RIP ensures the eigenvalues of covariance
matrix, cov[Li(θ),Lj(θ)] where θ ∼ π̂, are lower and upper bounded. It is an active area of research in random
matrix theory to quantify RIP constants e.g. see (Baraniuk et al., 2008).

Assumption 1 (Restricted Isometry Property). Matrix Φ in the objective function satisfies the RIP property,
i.e., for ∀w ∈ Ck

αk‖w‖22 ≤ ‖Φw‖22 ≤ βk‖w‖22.

It is known that there are connections between RIP and restricted strong convexity and smoothness assumptions
(Chen & Sanghavi, 2010); thus our results could potentially generalized for different convex f(·) functions.

Leading to our main theorem, some useful technical properties are presented. An useful observation is that, for
any set S ⊆ [n], the projection operator ΠS : Rn → Rn is in fact a linear operator in the form of a diagonal
matrix

ΠS = {diag(δi)}ni=1,

where δi is an indicator function: δi = 1 if i ∈ S, and δi = 0 otherwise. This leads to our first lemma.

Lemma 1. Supposing Φ satisfies the RIP assumption, given a sparse set S ⊆ [n] and |S| ≤ k, for ∀w ∈ Rn it
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holds that

αk‖ΠSw‖2 ≤ ‖ΠSΦ>ΦΠSw‖2 ≤ βk‖ΠSw‖2.

Lemma 1 reveals a property of the eigenvalues of ΠSΦ>ΦΠS , which leads to the following lemma that bounds an
iterated projection using the RIP property.
Lemma 2. Supposing Φ satisfies the RIP assumption, given two sets S1,S2 ⊆ [n] and |S1 ∪S2| ≤ k, for ∀w ∈ Rn
it holds that

‖ΠS1Φ>ΦΠSc
1
ΠS2w‖2 ≤

βk−αk

2 · ‖ΠS2w‖2.

Armed with above two lemmas, we are ready to prove convergence for Automated Accelerated IHT (Algorithm 2).
A key observation is that solution wt+1 found by Algorithm 2 is derived by the following two steps:

{wt, wt−1}
1

====⇒
line 9

zt
2

====⇒
line 7

wt+1.

Procedure 1 is a momentum step, with momentum size chosen automatically; procedure 2 aims for exploration
in an expanded subspace spanned by a 3k-sparse subset S, and projecting to k-sparse non-negative subspace.

We break down the proof into two parts. Denoting the optimal solution as

w? = arg min
w∈Ck∩Rn

+

‖y − Φw‖22,

we propose the following two lemmas for the two steps respectively.
Lemma 3. For procedure 1 , the following iterative invariant holds.

‖zt − w?‖2 ≤ |1 + τt| · ‖wt − w?‖2 + |τt| · ‖wt−1 − w?‖2.

For the second procedure, we consider the actual step size µt automatically chosen by the algorithm. Noting that
|supp(∇̃t)| ≤ 3k, according to RIP we can see that the step size µt =

‖∇̃t‖22
2‖Φ∇̃t‖22

is bounded as

1

2β3k
≤ µt ≤

1

2α3k
.

Therefore, using the Lemma 1 and Lemma 2, one can prove the following lemma.
Lemma 4. For procedure 2 , the following iterative invariant holds.

‖wt+1 − w?‖2 ≤ ρ‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

Combining the above two lemmas leads to our main convergence analysis theorem.
Theorem 1 (Restated). In the worst case scenario, with Assumption 1, the solutions path find by Automated
Accelerated IHT (Algorithm 2) satisfy the following iterative invariant.

‖wt+1 − w?‖2 ≤ ρ|1 + τt| · ‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

The theorem provides an upper bound invariant among consecutive iterates of the algorithm. To have better
sense of convergence rate, we assume the optimal solution achieves ‖ε‖2 = 0. Theorem 1 then implies

‖wt+1 − w?‖2 ≤ ρ(1 + |τt|)‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2.

Given the above homogeneous recurrence, we can solve for the following corollary that shows linear convergence
of the proposed algorithm under given conditions.
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Corollary 1 (Restated). Given the iterative invariant as stated in Theorem 1, and assuming the optimal solution
achieves ‖ε‖2 = 0, the solution found by Algorithm 2 satisfies:

f(wt+1)− f(w?) ≤ φt
(
β2k

α2k
f(w1) +

ρτβ2k

φαk
f(w0)

)
,

where φ = (ρ(1 + τ) +
√
ρ2(1 + τ)2 + 4ρτ)/2 and τ = maxi∈[t] |τi|. It is sufficient to show linear convergence to

the global optimum, when φ < 1, or equivalently ρ < 1/(1 + 2τ).

C Proofs

This section provides proofs for the theoretical results the presented in the previous section. For the sake of good
readability, the lemma/theorem to be proven is also restated preceding its proof.

C.1 Proof of Lemma 1

Lemma 1 (Restated). Supposing Φ satisfies the RIP assumption, given a sparse set S ⊆ [n] and |S| ≤ k, for
∀w ∈ Rn it holds that

αk‖ΠSw‖2 ≤ ‖ΠSΦ>ΦΠSw‖2 ≤ βk‖ΠSw‖2.

Proof. Recall that ΠS is a linear operator that projects a vector w ∈ Rn to sparse restricted set with support S
by simply setting wi = 0 for each i /∈ S. As a result, for a k-sparse set S, ΠSw is a k-sparse vector. Given that
Φ ∈ Rm×n satisfies RIP property, for ∀w ∈ Rn, it holds that

αk‖ΠSw‖22 ≤ ‖ΦΠSw‖22 ≤ βk‖ΠSw‖22. (4)

Let us denote b = ΦΠSw, and 〈·, ·〉 as standard Euclidean inner product. With regular linear algebra manipulation,
the following stands:

‖ΠSΦ>b‖22 = max
x∈Rn:‖x‖2=1

(
〈ΠSΦ>b, x〉

)2
= max
x∈Rn:‖x‖2=1

(
b>ΦΠSx

)2
= max
x∈Rn:‖x‖2=1

(〈b,ΦΠSx〉)2

= max
x∈Rn:‖x‖2=1

(〈ΦΠSw,ΦΠSx〉)2
, (5)

where the second equality is due to the fact that ΠS is symmetric, i.e., (ΠSΦ>b)> = b>ΦΠS .

Letting x? be the solution of (5), we have the upper bound of (5):

(5) = (〈ΦΠSw,ΦΠSx
?〉)2 ≤ ‖ΦΠSw‖22 · ‖ΦΠSx

?‖22,

where the inequality is by Cauchy-Schwarz inequality applying on inner product.

On the other hand, the lower bound can be obtained by removing the maximizing operator and setting x =
ΠSw/‖ΠSw‖2, as follows. Denoting x′ = ΠSw/‖ΠSw‖2, we have,

(5) ≥ (〈ΦΠSw,ΦΠSx
′〉)2

= ‖ΦΠSw‖22 · ‖ΦΠSx
′‖22,

where the last equality is due to that ΠSw and x′ are parallel.

Applying (4) to the above upper bound and lower bound, it follows that

(5) ≤ ‖ΦΠSw‖22 · ‖ΦΠSx
?‖22 ≤ βk‖ΠSw‖22 · βk‖ΠSx?‖22,

(5) ≥ ‖ΦΠSw‖22 · ‖ΦΠSx
′‖22 ≥ αk‖ΠSw‖22 · αk‖ΠSx′‖22. (6)
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Noting that x? is an unit-length vector, and the projection ΠS is done by setting elements to zero, we can see
that ‖Πx?‖2 ≤ 1. As x′ = ΠSw/‖ΠSw‖2 has already been a sparse vector in the restricted space by S, we can
see that ‖ΠSx′‖2 = ‖x′‖2 = 1. Plugging them in (6), it holds that

α2
k‖ΠSw‖22 = αk‖ΠSw‖22 · αk‖ΠSx′‖22 ≤ (5) ≤ βk‖ΠSw‖22 · βk‖ΠSx?‖22 ≤ β2

k‖ΠSw‖22.

Plugging that (5) = ‖ΠSΦ>b‖22 = ‖ΠSΦ>ΦΠSw‖22, and taking the square root, we finally have

αk‖ΠSw‖2 ≤ ‖ΠSΦ>ΦΠSw‖2 ≤ βk‖ΠSw‖2.

C.2 Proof of Lemma 2

Lemma 2 (Restated). Supposing Φ satisfies the RIP assumption, given two sets S1,S2 ⊆ [n] and |S1 ∪ S2| ≤ k,
for ∀w ∈ Rn it holds that

‖ΠS1Φ>ΦΠSc
1
ΠS2w‖2 ≤

βk−αk

2 · ‖ΠS2w‖2.

Proof. Similar to the proof of Lemma 1, we first write the norm in the form of an inner product. Given two sets
S1,S2 ⊆ [n] and |S1 ∪ S2| ≤ k, for ∀w ∈ Rn, with regular linear algebra manipulation, it holds that

‖ΠS1Φ>ΦΠSc
1
ΠS2w‖2

= max
b∈Rn:‖b‖2=1

|〈b,ΠS1Φ>ΦΠSc
1
ΠS2w〉|

= max
b∈Rn:‖b‖2=1

|〈ΦΠS1b,ΦΠSc
1
ΠS2w〉|, (7)

where the second equality is due to the fact that ΠS1 is symmetric.

Define two unit-length vectors

X =
ΠSc

1
ΠS2w

‖ΠSc
1
ΠS2w‖2

, Y =
ΠS1b

‖ΠS1b‖
,

and we can see that 〈X,Y 〉 = 0, as Sc1 and S1 are disjoint. As a result, ‖X + Y ‖22 = ‖X‖22 + ‖Y ‖22 = 2. Moreover,
given that |S1 ∪ S2| ≤ k, we can see that X + Y is k-sparse. Applying the RIP property, the following holds:

2αk = αk‖X + Y ‖22 ≤ ‖ΦX + ΦY ‖22 ≤ βk‖X + Y ‖22 = 2βk.

Similarly, ‖X − Y ‖22 = 2 and X − Y is also k-sparse:

2αk ≤ ‖ΦX − ΦY ‖22 ≤ 2βk.

Noting that

〈ΦX,ΦY 〉 =
‖ΦX + ΦY ‖22 − ‖ΦX − ΦY ‖22

4
,

we can see the following,

−βk − αk
2

≤ 〈ΦX,ΦY 〉 ≤ βk − αk
2

. (8)

Recall that
(7) = max

‖b‖2=1
|〈ΦX,ΦY 〉| · ‖ΠS1b‖2 · ‖ΠSc

1
ΠS2w‖2,

and apply (8) to the above, we conclude that

(7) ≤ max
‖b‖2=1

βk − αk
2

· ‖ΠS1b‖2 · ‖ΠSc
1
ΠS2w‖2

≤ βk − αk
2

‖ΠS2w‖2.
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C.3 Proof of Lemma 3

Lemma 3 (Restated). For procedure 1 , the following iterative invariant holds.

‖zt − w?‖2 ≤ |1 + τt| · ‖wt − w?‖2 + |τt| · ‖wt−1 − w?‖2.

Proof. According to line 9 in Algorithm 2, with some regular linear algebra manipulation, we can derive

‖zt − w?‖2 = ‖wt + τt(wt − wt−1)− w?‖2
= ‖(1 + τt)(wt − w?) + τt(w

? − wt−1)‖2
≤ |1 + τt|‖wt − w?‖2 + |τt|‖wt−1 − w?‖2,

where the last inequality is done by triangle inequality.

C.4 Proof of Lemma 4

Lemma 4 (Restated). For procedure 2 , the following iterative invariant holds.

‖wt+1 − w?‖2 ≤ ρ‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

Proof. Denoting v = zt − µt∇f(zt), and set S? = supp(wt+1) ∪ supp(w?), we begin by the projection at line 7 in
Algorithm 2. Applying the triangle inequality,

‖wt+1 − w?‖2 ≤ ‖wt+1 −ΠS?v‖2 + ‖ΠS?v − w?‖2. (9)

As S? = supp(wt+1) ∪ supp(w?), we can observe that 〈wt+1,ΠS?cv〉 = 0 and 〈w?,ΠS?cv〉 = 0. As a result,

‖wt+1 −ΠS?v‖22 = ‖wt+1 − v + ΠS?cv‖22
= ‖wt+1 − v‖22 + ‖ΠS?cv‖22 + 2〈wt+1 − v,ΠS?cv〉
= ‖wt+1 − v‖22 + ‖ΠS?cv‖22 + 2〈−v,ΠS?cv〉
≤ ‖w? − v‖22 + ‖ΠS?cv‖22 + 2〈−v,ΠS?cv〉
= ‖w? − v‖22 + ‖ΠS?cv‖22 + 2〈w? − v,ΠS?cv〉
= ‖w? − v + ΠS?cv‖22
= ‖w? −ΠS?v‖22,

where the inequality is due to the projection step wt+1 = ΠCk∩Rn
+
v is done optimally, and w? ∈ Ck ∩Rn+. Plugging

the above inequality into (9), it holds that

‖wt+1 − w?‖2 ≤ 2‖ΠS?v − w?‖2. (10)

Expanding v and denoting ε = Φw? − y, we have

v = zt − µt (∇f(zt))

= zt − µt
(
2Φ>(Φzt − y)

)
= zt − µt

(
2Φ>Φ(zt − w?) + 2Φ>(Φw? − y)

)
= zt − 2µtΦ

>Φ(zt − w?)− 2µtΦ
>ε.

Plugging the above into inequality (10), we can further expand

‖wt+1 − w?‖2 ≤ 2‖ΠS?(zt − 2µtΦ
>Φ(zt − w?)− 2µtΦ

>ε)− w?‖2
= 2‖ΠS?(zt − w?)− 2µtΠS?Φ>Φ(zt − w?)− 2µtΠS?Φ>ε‖2
≤ 2‖ΠS?(zt − w?)− 2µtΠS?Φ>Φ(zt − w?)‖2 + 4µt‖ΠS?Φ>ε‖2
= 2‖ΠS?(zt − w?)− 2µtΠS?Φ>ΦI(zt − w?)‖2 + 4µt‖ΠS?Φ>ε‖2. (11)
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Expanding the identity matrix by I = ΠS? + ΠS?c , we have

(11) ≤ 2‖(I − 2µtΠS?Φ>ΦΠS?)ΠS?(zt − w?)‖2︸ ︷︷ ︸
A

+ 4µt‖ΠS?Φ>ΦΠS?c(zt − w?)‖2︸ ︷︷ ︸
B

+ 4µt‖ΠS?Φ>ε︸ ︷︷ ︸
C

‖2.

Now we bound the three terms respectively.

Noting that |S?| ≤ 2k, according to Lemma 1, in the subspace with support S?, i.e., {w | supp(w) = S?}, the
eigenvalues α2k ≤ λS?(ΠS?Φ>ΦΠS?) ≤ β2k. Therefore, eigenvalues

λS?(I − 2µtΠS?Φ>ΦΠS?) ∈ [1− 2µtβ2k, 1− 2µtα2k],

which means

A ≤ 2 max{2µtβ2k − 1, 1− 2µtα2k}‖ΠS?(zt − w?)‖2
≤ 2 max{β2k/α3k − 1, 1− α2k/β3k}‖zt − w?‖2.

For term B, demoting S ′ = supp(zt) ∪ supp(w?), it can be observed that

B = 4µt‖ΠS?Φ>ΦΠS?cΠS′(zt − w?)‖2.

Noting that |S ′ ∪ S?| ≤ 4k, by directly applying Lemma 2 we have

B ≤ 4µt
β4k − α4k

2
‖ΠS′(zt − w?)‖2

≤ β4k − α4k

α3k
‖zt − w?‖2.

To complete the proof, let us deal with the last piece. Similar to the techniques used in the proof on Lemma 1,

‖ΠS?Φ>ε‖2 = max
x∈Rn:‖x‖2=1

〈ΠS?Φ>ε, x〉

= max
x∈Rn:‖x‖2=1

ε>ΦΠS?x

= max
x∈Rn:‖x‖2=1

〈ε,ΦΠS?x〉

≤ max
x∈Rn:‖x‖2=1

‖ε‖2 · ‖ΦΠS?x‖2

≤
√
β2k‖ε‖2,

where the last inequality is done by directly applying the definition of RIP. Therefore,

C ≤ 4µt
√
β2k‖ε‖2 ≤ 2β3k

√
β2k‖ε‖2.

Combining the 3 pieces together, we finally derive

‖wt+1 − w?‖2 ≤ 2 max{β2k

α3k
− 1, 1− α2k

β3k
}‖zt − w?‖2

+
β4k − α4k

α3k
‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2.

Rearranging the inequality completes the proof.
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C.5 Proof of Theorem 1

Theorem 1 (Restated). In the worst case scenario, with Assumption 1, the solutions path find by Automated
Accelerated IHT (Algorithm 2) satisfy the following iterative invariant.

‖wt+1 − w?‖2 ≤ ρ|1 + τt| · ‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2 is the optimal objective value.

Proof. Lemma 3 suggests

‖zt − w?‖2 ≤ |1 + τt|‖wt − w?‖2 + |τt|‖wt−1 − w?‖2.

Combining with lemma 4, i.e.,

‖wt+1 − w?‖2 ≤ ρ‖zt − w?‖2 + 2β3k

√
β2k‖ε‖2,

where ρ =
(

2 max{ β2k

α3k
− 1, 1− α2k

β3k
}+ β4k−α4k

α3k

)
, and ‖ε‖2 = ‖y − Φw?‖2, we have

‖xt − w?‖2 ≤ρ|1 + τt|‖wt − w?‖2 + ρ|τt|‖wt−1 − w?‖2 + 2β3k

√
β2k‖ε‖2,

which completes the proof.

C.6 Proof of Corollary 1

Corollary 1 (Restated). Given the iterative invariant as stated in Theorem 1, and assuming the optimal solution
achieves ‖ε‖2 = 0, the solution found by Algorithm 2 satisfies:

f(wt+1)− f(w?) ≤ φt
(
β2k

α2k
f(w1) +

ρτβ2k

φαk
f(w0)

)
,

where φ = (ρ(1 + τ) +
√
ρ2(1 + τ)2 + 4ρτ)/2 and τ = maxi∈[t] |τi|. It is sufficient to show linear convergence to

the global optimum, when φ < 1, or equivalently ρ < 1/(1 + 2τ).›

Proof. Theorem 1 provides an upper bound invariant among consecutive iterates of the algorithm. To have better
sense of convergence rate, we assume the optimal solution achieves ‖ε‖2 = 0. Theorem 1 then implies

‖wt+1 − w?‖2 ≤ ρ(1 + |τt|)‖wt − w?‖2 + ρ|τt| · ‖wt−1 − w?‖2
≤ ρ(1 + τ)‖wt − w?‖2 + ρτ · ‖wt−1 − w?‖2.

Rearranging the inequality with some regular algebraic manipulations, we have

‖wt+1 − w?‖2 +
ρτ

φ
‖wt − w?‖2 ≤ φ

(
‖wt − w?‖2 +

ρτ

φ
‖wt−1 − w?‖2

)
≤ φt

(
‖w1 − w?‖2 +

ρτ

φ
‖w0 − w?‖2

)
,

where φ =

√
ρ2(1+τ)2+4ρτ+ρ(1+τ)

2 .

Noting that all ρ, τ, φ are non-negative, we can relax the inequality a bit to be

‖wt+1 − w?‖2 ≤ φt
(
‖w1 − w?‖2 +

ρτ

φ
‖w0 − w?‖2

)
. (12)
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It is sufficient for linear convergence when φ < 1, i.e.,√
ρ2(1 + τ)2 + 4ρτ + ρ(1 + τ)

2
< 1

⇐⇒
√
ρ2(1 + τ)2 + 4ρτ < 2− ρ(1 + τ)

⇐⇒

{
ρ2(1 + τ)2 + 4ρτ < (2− ρ(1 + τ))2

0 < 2− ρ(1 + τ)

⇐⇒

{
ρ(1 + 2τ) < 1

ρ(1 + τ) < 2

⇐⇒ ρ < 1/(1 + 2τ)

In our case, this also indicates the linear convergence of function values. Noting that (wt+1 − w?) and (w1 − w?)
are at most 2k-sparse, and (w0 − w?) = −w? is k-sparse, we have the following statements according to RIP
property:

‖Φ(wt+1 − w?)‖22 ≤ β2k‖wt+1 − w?‖22
‖Φ(w1 − w?)‖22 ≥ α2k‖w1 − w?‖22
‖Φ(w0 − w?)‖22 ≥ αk‖w0 − w?‖22

As we assume ‖ε‖2 = ‖y − Φw?‖2 = 0, i.e., y = Φw? and f(w?), we can see that

f(wt+1) = ‖Φwt+1 − y‖22 ≤ β2k‖wt+1 − w?‖22
f(w1) = ‖Φw1 − y‖22 ≥ α2k‖w1 − w?‖22
f(w0) = ‖Φw0 − y‖22 ≥ αk‖w0 − w?‖22

Plugging these into (12) completes the proof.

D Additional Related Work

Thresholding based optimization algorithms have been attractive alternatives to relaxing the constraint to a
convex one or to greedy selection. Bahmani et al. (2013) provide a gradient thresholding algorithm that generalizes
pursuit approaches for compressed sensing to more general losses. Yuan et al. (2018) study convergence of gradient
thresholding algorithms for general losses. Jain et al. (2014) consider several variants of thresholding based
algorithms for high dimensional sparse estimation. Nguyen et al. (2014); Li et al. (2016) discuss convergence
properties of thresholding algorithms for stochastic settings, while in (Jain et al., 2016) the algorithm is extended
to structured sparsity. Greedy algorithms (Shalev-Shwartz et al., 2010) for cardinality constrained problems
have similar convergence guarantees and smaller per iteration cost but tend to underperform when compared to
threshold based algorithms (Khanna & Kyrillidis, 2018).

Acceleration using momentum term (Beck & Teboulle, 2009; Ghadimi et al., 2015) allows for faster convergence of
first order methods without increasing the per iteration cost. In the context of accelerating sparsity constrained
first order optimization, Khanna & Kyrillidis (2018); Blumensath (2012) use momentum terms in conjunction
with thresholding and prove linear convergence of their method. We extend their work by also including additional
constraints of non-negativity. More recently, there have also been works (Ma et al., 2019) that study acceleration
in sampling methods such as MCMC that are relevant to Bayesian coresets.

E Additional Results for Synthetic Gaussian Posterior Inference

Additional results for experiments in section 5.1 are provided in this section.

From an optimization perspective, one may be curious about the convergence speed of the two proposed algorithms,
i.e., A-IHT and Accelerated A-IHT II (Algorithm 2 & 3). The convergence for the two algorithms compared to
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Figure 4: Convergence results for synthetic Gaussian posterior inference (subsection 5.1) when sparsity setting
k = 200 in the first trial. For GIGA, SparseVI and Uniform, each of the objective function values f is calculated
by the final output of each algorithms.

Figure 5: Illustration of true posterior and posterior constructed by A-IHT II after projecting to 2-dimensional
plane for synthetic Gaussian posterior inference (Section 5.1). Results at different sparsity level are shown. The
ellipses indicate 2σ-prediction of the posterior distribution, and the black dots represent coreset points selected
with their radius denoting the respective weights.

the solutions by baselines are presented in Figure 4. The x-axis is iteration number for A-IHT and A-IHT II, and
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the y-axis is the objective function to be minimized, i.e.,

f(w) = ‖y − Φw‖22,

where y =
∑n
i=1 ĝi and Φ = [ĝ1, . . . , ĝn].

The two IHT algorithms’ fast convergence speed reflects what our theory suggests. They surpass GIGA within
about 30 iterations, and surpass SparseVI within 50 iterations (A-IHT II) and within 100 iterations (A-IHT),
respectively. Although we should note that the objective function which SparseVI minimizes is reverse KL
divergence instead of l2 distance, the two IHT algorithms can achieve much better solutions when considering KL
divergence as well, as shown in Figure 1. Moreover, the tendency of further decrease in objective value is still
observed for the two IHT algorithms at 300th iteration.

Illustration of the coresets constructed by A-IHT II in the first trial after projecting to 2D is presented in Figure 5.

F Additional Results for Radial Basis Regression

In this section, we provide additional experimental results of posterior contours for the radial basis regression
experiment (section 5.2).

We plot the posterior contours for both the true posterior and coreset posterior when sparsity level k = 300 in
the first four random trials out of ten trials. The coreset posterior constructed by our Algorithm 3 recovers the
true posterior almost exactly, unlike SparseVI. Results are shown in Figure 6.

G Details and Extensive Results of the Bayesian logistic and Poisson regression
Experiments

We consider how IHT performs when used in real applications where the closed-form expressions are unattainable.
As the true posterior is unknown, a Laplace approximation is used for GIGA and IHT to derive the finite
projection of the distribution, i.e., ĝi. Further, Monte Carlo sampling is needed to derive gradients of DKL for
SparseVI. We compare different algorithms estimating the posterior distribution for logistic regression and Poisson
regression. The reverse KL and forward KL between the coreset posterior and true posterior are estimated using
another Laplace approximation. The experiment was proposed by Campbell & Broderick (2019), and is used in
(Campbell & Broderick, 2018) (GIGA) and (Campbell & Beronov, 2019) (SparseVI). The experimental settings
for each baseline algorithms are set following their original settings for this experiment.

For logistic regression, given a dataset {(xn, yn) ∈ RD × {1,−1} | i ∈ [N ]}, we aim to infer θ ∈ RD+1 based on
the model:

yn | xn, θ ∼ Bern
(

1

1 + e−z
>
n θ

)
,

where zn = [x>n , 1]>. Three datasets are used for logistic regression. The synthetic dataset for logistic regression
consists of data xn sampled i.i.d. from standard normal distribution N (0, I), and label yn sampled from Bernoulli
distribution conditioned on xn and θ = [3, 3, 0]>. The original phishing dataset4 consists of N = 11055 data points
with dimension D = 68. The phishing dataset used in this experiment is preprocessed (Campbell & Beronov,
2019) via principle component analysis to project each data points to dimension of D = 10 to mitigate high
computation by SparseVI. The original chemical reactivities dataset5 has N = 26733 data points with dimension
D = 10. We uniformly sub-sample N = 500 data points from each datasets for this experiment, due to the high
computation cost of SparseVI.

For Poisson regression, given {(xn, yn) ∈ RD × N | i ∈ [N ]}, we aim to infer θ ∈ RD+1 from model

yn | xn, θ ∼ Poiss
(

log
(

1 + e−z
>
n θ
))

,

where zn = [x>n , 1]>. Three other datasets are used for Poisson regression: the synthetic dataset for Poisson
regression consists of data xn sampled i.i.d. from a standard normal distribution N (0, 1), and target yn sampled

4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
5http://komarix.org/ac/ds

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds
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from Poisson distribution conditioned on xn and θ = [1, 0]>. The biketrips dataset6 consists of N = 17386 data
points with dimension D = 8. The airportdelays dataset7 has N = 7580 data points with dimension D = 15.
Same as logistic regression, we uniformly sub-sample N = 500 data points from each datasets for this experiment.

The comparison of the algorithms for Bayesian coreset construction for logistic regression are shown in Figure 7,
and Bayesian coreset construction for Poisson regression are shown in Figure 8. The left column shows forward
KL divergence given sparsity setting k, the middle column shows reverse KL divergence, and the right column
presents the running time for corset construction for each algorithm.

It is observed that A-IHT and A-IHT II achieve state-of-the-art performance. The IHT algorithms often obtain
coresets with smaller KL than GIGA and SparseVI, with computing time comparable to GIGA, significantly less
than SparseVI. The experiments indicate that IHT outperforms the previous methods, improving the trade-off
between accuracy and performance.

6http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
7The airportdelays dataset was constructed (Campbell & Broderick, 2019) by combining flight delay data (http://

stat-computing.org/dataexpo/2009/the-data.html) and weather data (https://www.wunderground.com/history/.).

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
https://www.wunderground.com/history/.
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Figure 6: Experiments on Bayesian radial basis function regression in the first four random trials out of ten trails,
where coreset sparsity setting k = 300. Coreset points are presented as black dots, with their radius indicating
assigned weights. Posterior constructed by Accelerated IHT II (left) shows almost exact contours as the true
posterior distribution (middle), while posterior constructed by SparseVI (right) shows deviated contours from the
true posterior distribution.
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(a) synthetic dataset for logistic regression

(b) phishing dataset for logistic regression

(c) chemical reactivities dataset for logistic regression

Figure 7: Bayesian coreset construction for logistic regression (LR) using the three different datasets. All the
algorithms are run 20 times, and the median as well as the interval of 35th and 65th percentile, indicated as
the shaded area, are reported. Different maximal coreset size k is tested from 1 to 100. Forward KL (left) and
reverse KL (middle) divergence between estimated true posterior and coreset posterior indicate the quality of
the constructed coreset. The smaller the KL divergence, the better the coreset is. The running time for each
algorithms is also recorded (right).
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(a) synthetic dataset for Poisson regression

(b) biketrips dataset for Poisson regression

(c) airportdelays dataset for Poisson regression

Figure 8: Bayesian coreset construction for Poisson regression (PR) using the three different datasets. All the
algorithms are run 20 times, and the median as well as the interval of 35th and 65th percentile, indicated as
the shaded area, are reported. Different maximal coreset size k is tested from 1 to 100. Forward KL (left) and
reverse KL (middle) divergence between estimated true posterior and coreset posterior indicate the quality of
the constructed coreset. The smaller the KL divergence, the better the coreset is. The running time for each
algorithms is also recorded (right).
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