
Simple and practical algorithms for `p-norm low-rank approximation

Anastasios Kyrillidis
IBM T.J. Watson Research Center

Rice University
anastasios@rice.edu

Abstract

We propose practical algorithms for entrywise
`p-norm low-rank approximation, for p = 1
or p = ∞. The proposed framework, which
is non-convex and gradient-based, is easy to
implement and typically attains better approx-
imations, faster, than state of the art.

From a theoretical standpoint, we show that
the proposed scheme can attain (1 + ε)-
OPT approximations. Our algorithms are not
hyperparameter-free: they achieve the desider-
ata only assuming algorithm’s hyperparame-
ters are known apriori—or are at least approx-
imable. I.e., our theory indicates what problem
quantities need to be known, in order to get
a good solution within polynomial time, and
does not contradict to recent inapproximabilty
results, as in [46].

1 Introduction

We focus on the following optimization problem:

min
U∈Rm×r,V ∈Rn×r

|M − UV >|p, p ∈ {1,∞}. (1)

Here, M ∈ Rm×n is a given input matrix of arbitrary
rank, r ≤ {m,n} is the target rank, (U, V) represent
the variables such that rank(UV >) ≤ r, and | · |p de-
notes the p-th, entrywise, matrix norm. In words, (1) is
described as “finding the factors of the best rank-r ap-
proximation of M , with respect to the `p-norm”. We de-
note such optimal factors U? and V ?, and their product
X? = U?V ?>. We focus on p ∈ {1,∞}, since these in-
stances are the most common found in practice, beyond
the classic p = 2 (Frobenius) norm; we will use the terms
“Frobenius” and “`2” norm, interchangeably.

There are numerous applications where `1- / `∞-norm
low rank approximations are useful in practice. First, the
`1-norm is more robust than the `2-norm, and is suited in
problem settings where Gaussian assumptions for noise
models may not apply. `1-norm low rank applications
include robust PCA applications [56, 6, 31, 32, 24, 57],
computer vision tasks such as background subtraction
and motion detection [52, 1, 38], detection of brain acti-
vation patterns [44], and detection of anomalous behav-
ior in dynamic networks [44]. 1

For the `∞-norm version of (1), the problem cases are
only a few. [43] considers the special case of m = n and
r = min{m,n} − 1 as the problem of distance to robust
non-singularity. [22, 23] use the notion of `∞-norm low
rank approximation for the maximal-volume concept in
approximation, as well as for the skeleton approximation
of a matrix. Finally, [17] identifies that (1) with p = ∞
can be used for the recovery of a low-rank matrix from a
quantized M .

Despite the utility of (1), its solution is not straight-
forward. While (1) with `2-norm has a closed-form
solution via the Singular Value Decomposition (SVD),
the same does not hold for p ∈ {1,∞}. Addi-
tionally, it has been proved that actually finding the
exact solution to (1) can be exponentially complex:

1 Closely related to the `1-norm low-rank approximation
is the problem of `1-norm subspace recovery [30]. Briefly,
it is well-known that, for p = 2 in (1), the SVD so-
lution is also the solution to the dual problem: U? =
argmaxU∈Rm×r |U>M |2, subject to U>U = I . V ? is then
set as V ? = U?>M ; this can be easily proved due to the or-
thogonality of U? [20]. Motivated by this dual formulation,
`1-norm subspace recovery is defined as

U? = argmax
U∈Rm×r

|U>M |1, subject to U>U = I.

Algorithmic solutions to this criterion are usually greedy [30],
even combinatorial [36, 37]. However, in this case, U? does
not necessarily resemble with that of (1) with p = 1 (up to
orthogonal rotations).

ar
X

iv
:1

80
5.

09
46

4v
1

 [
cs

.L
G

]
 2

4
M

ay
 2

01
8

[19] show that `1-norm low rank matrix approxima-
tion is NP-hard, even for r = 1; further, under the
exponential time hypothesis for 3SAT problems, [46]
provide a

(
1 + 1

log1+γ(max{m,n})

)
-inapproximability re-

sult for some hard instances M , where γ > 0 is
an arbitrary small constant. [17] proves the NP-
completeness of (1) for p = ∞, using a reduction from
not-all-equal-3SAT.

The above restrict research to only approximations
of (1). To the best of our knowledge only the
works in [9, 46] present polynomial and provably
good approximation schemes: [46] focuses mostly
on the case of `1-norm, and proves the existence
of a O(log(min{m,n}) · poly(r))-approximation
scheme with O(nnz(M) + (m + n)poly(r))
computational complexity. [9] extends the ideas in
[46] for `p-norms, where p ∈ [1,∞]: there, the
authors describe a poly(r)-approximation with
O (poly(m,n)(r logmax{m,n})r) computational
complexity. Both approaches are based on numerical
linear algebra and sketching techniques.

Apart from the above provable schemes, there are nu-
merous heuristics proposed for (1), with no rigorous ap-
proximation guarantees. Starting with `1-norm, [38] pro-
pose a coordinate descent algorithm for (1), where a se-
quence of alternating scalar minimization sub-problems
are solved using a (weighted) median filter; see also [29].
Previously to that work, [26, 27] follow a similar ap-
proach, where each sub-problem is solved using linear
or quadratic programming2. Inspired by [55], [13] pro-
pose a `1-norm version of the Wiberg method; the re-
sulting algorithm involves several matrix-matrix multi-
plications (even of size greater than the input matrix),
and the solution of linear programming criteria, per iter-
ation. Cabral et al. use Augmented Lagrange Multipli-
ers (ALM) method and handle the weighted `1-norm low
rank approximation problem in [5]; however, no non-
asymptotic convergence guarantees are provided. We
note that most of the above heuristics are designed to
handle missing data in M or the case of weighted fac-
torization; we plan to consider such cases for our future
research directions. For the `∞-norm case, we mention
the recent work of Gillis et al. [17] that proposes a block
coordinate descent method that operates in an alternating
minimization fashion over subsets of variables in (1).

Our approach and main contributions: Inspired by the
recent advances on smooth non-convex optimization for
matrix factorization [47, 58, 51, 4, 42, 16, 40, 41, 35, 34,

2In [26, 27], there are some convergence guarantees for the
alternating optimization scheme; however, there are no results
w.r.t. whether we converge to a saddle point or local minimum,
nor results on the convergence rate.

50, 54, 15, 33], we study the application of alternating
gradient descent in (1). Despite its NP-hardness, this pa-
per follows a more optimistic course and works towards
deciphering the components/quantities that, if known a
priori, could lead to a (1 + ε)-approximation for (1).

Our approach is based on two techniques from opti-
mization theory: (i) the smoothing technique for non-
smooth convex optimization by Nesterov [39, 12] (Sec-
tion 4), and (ii) the recent theoretical results on finding
the global minimum of matrix factorization problems us-
ing non-convex smooth methods (Section 3); see also ref-
erences above. Our theory relies on provably bounding
the objective function in `1- or `∞-norm by its smoothing
counterpart (Sections 4), using the provable performance
of the non-convex algorithm (Section 3), and properly
setting up the input parameters (Section 5). Our guaran-
tees assume that we can at least approximate the optimal
function value of (1), and that the optimal low-rank so-
lution of the smoothed problem is well-conditioned; the
latter assumption is required for a good initialization to
be easily found. The above are summarized as:

• Under assumptions, we provide a polynomial ap-
proximation algorithm for p = {1,∞} in (1) that
achieves a (1 + ε)-approximation guarantee.

• We experimentally show that our scheme outper-
forms in practice state-of-the-art approaches.

There are several questions that remain open and need
further investigation. In Section 7, we discuss what are
the advantages and disadvantages of our approach and
point to possible future research directions.

2 Notation and assumptions

Notation. For matrices X,Y ∈ Rm×n, 〈X,Y 〉 =
TR
(
X>Y

)
represents their inner product and X � Y

their Hadamard product. We represent matrix norms
as follows: |X|2 =

√∑m
i=1

∑n
j=1 |Xij |2 denotes the

Frobenius (or `2-) norm, |X|1 =
∑m
i=1

∑n
j=1 |Xij | de-

notes the entrywise `1-norm, and |X|∞ = maxi,j |Xij |
denotes the entrywise `∞-norm. For the spectral norm,
we use σ1(X); this also denotes the largest singular
value of X . For vectors, we use ‖x‖2 to denote its Eu-
clidean `2-norm. For a differentiable function f(X) with
X = UV >, the gradient of f w.r.t. U and V is∇f(X)V
and ∇f(X)>U , respectively.

Assumptions. For our discussion, we will need two well-
known notions of convex analysis: (restricted) strong
convexity and (restricted) Lipschitz gradient continuity.

Definition 2.1. Let f : Rm×n → R be a convex differen-
tiable function. Then, f is (resp. restricted) gradient Lip-

schitz continuous with parameter L if ∀X,Y ∈ Rm×n

(resp. ∀X,Y ∈ Rm×n that are at most rank-r):

f(Y) ≤ f(X)+〈∇f (X) , Y −X〉+L
2 |Y −X|

2
2 . (2)

Definition 2.2. Let f : Rm×n → R be convex and differ-
entiable. Then, f is (resp. restricted) µ-strongly convex
if ∀X,Y ∈ Rm×n (resp. ∀X,Y ∈ Rm×n that are at
most rank-r):

f(Y) ≥ f(X)+〈∇f (X) , Y −X〉+ µ
2 |Y −X|

2
2 . (3)

3 BFGD for smooth objectives

Let us first succinctly describe the Bi-Factored Gradient
Descent (BFGD) algorithm [41], upon which our pro-
posal is based. BFGD is a non-convex gradient descent
scheme for smooth problems such as:

min
U∈Rm×r,V ∈Rn×r

f(UV >), (4)

where f is assumed to be convex, differentiable, and at
least have Lipschitz continuous gradients. Observe that
while f is convex w.r.t. to any input ∈ Rm×n, motions
over U and V jointly lead to non-convex optimization.
Such approaches have a long history and different vari-
ants have been proposed for (4).

For the rest of this section, we denote X = UV > as the
result of the factorization. Also, let X̂? be the optimal
point of (4): if rank(X̂?) = r, then X̂? = X̂?

r ; oth-
erwise, denote its best rank-r approximation (w.r.t. the
`2-norm) as X̂?

r .

Algorithm 1 Bi-factored gradient descent (BFGD)

1: Input: r, T , γ (e.g., 1
4
), C > 0 (e.g., C = 1), L̂.

2: Compute X0 := 1/L̂ · (−∇f(0m×n)).
3: Set U0 ∈ Rm×r, V0 ∈ Rn×r s.t. X0 = U0V

>
0 , via SVD.

4: for i = 0 to T − 1 do
5: Set η such that: η ≤ C

15L̂

∣∣∣∣[Ui Vi]>∣∣∣∣2
2
+3|∇f(UiV>i)|

2

.

6: • If f satisfies Definition 2.1: Rule 1[
Ui+1

Vi+1

]
=

[
Ui
Vi

]
− η

[
∇f(UiV >i) · Vi
∇f(UiV >i)> · Ui

]
• If f satisfies Definitions 2.1-2.2: Rule 2[

Ui+1

Vi+1

]
=
[
Ui
Vi

]
− η

[
∇f(UiV >i)Vi + γUi(U

>
i Ui − V

>
i Vi)

∇f(UiV >i)>Ui − γVi(U>i Ui − V
>
i Vi)

]
7: end for
8: Output: X̂ = UTV

>
T .

The pseudocode for BFGD is provided in Algorithm 1
and obeys the following motions: (i) given a proper ini-

tialization X0 = U0V
>
0 , and (ii) a proper step size η,3

BFGD applies iteratively Rule 1 if f satisfies only Defini-
tion 2.1, or Rule 2 if f also satisfies Definition 2.2. The
algorithm assumes an approximation of L—say L̂ and
see [4]—and a good initialization point (U0, V0). For a
more complete discussion of initialization (U0, V0), we
refer the reader to [4, 41]; we briefly discuss this issue in
Section 5.

An important issue in optimizing f over (U, V) is the ex-
istence of non-unique possible factorizations for a given
X . We need a notion of distance to the low-rank solution
X̂?
r over the factors. Similar to [51, 41], we focus on the

set of “equally-footed” factorizations:

X̂ ?r =
{(

Û?, V̂ ?
)
: Û? ∈ Rm×r, V̂ ? ∈ Rn×r, Û?V̂ ?

>
= X̂?

r ,

σi(Û
?) = σi(V̂

?) = σi(X̂
?
r)

1/2, ∀i ∈ [r]
}
. (5)

Given a pair (U, V), we define the distance to X̂?
r as:

DIST
(
U, V ; X̂?

r

)
= min

(Û?,V̂ ?)∈X̂?r

∣∣∣∣∣
[
U
V

]
−

[
Û?

V̂ ?

]∣∣∣∣∣
2

.

Algorithm 1 has local convergence guarantees, when f is
µ-strongly convex and has L-Lipschitz continuous gradi-
ents, according to the following theorem:4

Theorem 3.1 (Theorem 4.4 in [41]). Let κ = L/µ. If the
initial point X0 = U0V

>
0 , satisfies DIST(U0, V0;X

?
r) ≤√

2·σr(X?r)
1/2

10 , then BFGD converges with rate O(1/T):

f(UTV
>
T)− f(Û?V̂ ?>) ≤ 10·DIST(U0,V0;X̂

?
r)

2

ηT

4 Charbonnier approximation and the
logsumexp function

A key assumption in BFGD is that f is at least
once differentiable and has Lipschitz continuous gradi-
ents.Therefore, to connect BFGD with our original ob-
jective in (1), we will first approximate both the `1 and
`∞ entrywise matrix norms by smooth functions that
have derivatives at least in two degrees. For similar
approaches in optimization where non-smooth functions
are substituted by smooth ones, we refer to the seminal
paper of Nesterov [39] and follow-up works [12, 28].

3In this work, we do not focus on the most efficient step
size selections: e.g., the step size considered in this work varies
per iteration, and it is less efficient than a constant step size
selection as in [4, 41]. However, in all cases, we could bound
the varying step size with one that is constant.

4In this work, we will borrow only the sublinear rate results
in [41], since that result alone is sufficient to lead to polynomial
algorithms for (1). Using the linear convergence rate result in
[41] is left for the extension of this work.

x
-0.5 0 0.5

F
u
n
ct

io
n

va
lu

es

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
`1-norm
h(x; 10!4)
h(x; 10!3)
h(x; 10!2)
h(x; 10!1)

x #10-3
-5 0 5

F
u
n
ct

io
n

va
lu

es

#10-3

0

1

2

3

4

5
`1-norm
h(x; 10!4)
h(x; 10!3)
h(x; 10!2)
h(x; 10!1)

x #10-3
-5 0 5

F
u
n
ct

io
n

va
lu

es

-1.5

-1

-0.5

0

0.5

1

1.5
@jxj
@x
@h(x;10!4)

@x
@h(x;10!3)

@x
@h(x;10!2)

@x
@h(x;10!1)

@x

Figure 1: `1-norm and its Charbonnier smooth approximations. Left and middle: Function values vs. input variable.
Right: Gradient approximation.

Approximating the entrywise `1-norm. For the ap-
proximation of the `1-norm, we will use the Charbonnier
loss function [7, 3], parameterized as follows:

h(x, τ) = τ ·

(√(x
τ

)2
+ 1− 1

)
. (6)

To illustrate how a good approximation is (6) to the `1-
norm, see Figure 1.

We now discuss about the matrix form of (6) and its prop-
erties. With a slight overload of notation, we define the
matrix version of (6) as follows:

h(X, τ) =

m∑
i=1

n∑
j=1

h(Xij , τ)

:= τ ·
m∑
i=1

n∑
j=1

√(Xij
τ

)2

+ 1− 1

 . (7)

The distinction between scalar and matrix h will be ap-
parent from the text. Gradient and Hessian information
of h satisfy the following lemma; the proof is deferred to
the supp. material:

Lemma 4.1. For any X ∈ Rm×n:

• ∇h(X, τ) = 1
τX � S ∈ Rm×n, where S ∈ Rm×n

and Sij := 2√
(Xij/τ)2+1

,

• ∇2h(X, τ) = 1
τ I � Q ∈ Rmn×mn, where Q ∈

Rmn×mn and Qij := 2

((Xij/τ)2+1)
3/2 .

The above lead to the following lemma; the proof is pro-
vided in the supp. material:

Lemma 4.2. Function h is a convex continuously differ-
entiable function and it has Lipschitz continuous gradi-
ents with constant 2

τ . Moreover:

|X|1 −mnτ ≤ h(X, τ) ≤ |X|1.

An alternative to the Charbonnier approximation is the
Huber loss function with parameter τ [25]:

h(x, τ) =

{
x2/2τ, if |x| ≤ τ
|x| − τ/2, otherwise.

(8)

Huber loss combines a `2-norm measure for small val-
ues of x and a `1-norm like measure for large x. Observe
in (8) that it is only first-order differentiable; thus any
computations involving second order derivatives cannot
be applied. On the other hand, the Charbonnier loss
function, which is also known as the “pseudo-Huber loss
function”, is a smooth approximation of the Huber loss
that ensures that derivatives are continuous for all de-
grees. W.l.o.g., we focus on the Charbonnier function.

Approximating the entrywise `∞-norm. Following
similar procedure for the entrywise matrix `∞-norm, we
will use the logsumexp function, defined as follows:

σ(X, τ) = τ · log

(∑m
i=1

∑n
j=1 e

Xij/τ + e
−Xij/τ

2mn

)
(9)

Define matrices P,N ∈ Rm×n such that: Pij = e
Xij/τ+

e−
Xij/τ and Nij = e

Xij/τ −e−Xij/τ . Then, the following
lemma defines the gradient and Hessian information of
the logsumexp function; see also the supp. material:

Lemma 4.3. For any X ∈ Rm×n:

• ∇σ(X, τ) = 1
Tr(1·P) ·N ∈ Rm×n,

• ∇2σ(X, τ) =

(
diag(vec(P))− vec(N)vec(N)>

Tr(1·P)

)
τ ·Tr(1·P)

∈ Rmn×mn

where diag(·) : Rmn → Rmn×mn turns the vector in-
put to a diagonal matrix output, vec(·) : Rm×n → Rmn

turns a matrix to a vector by “stacking” its columns, and
1 denotes the all-ones matrix.

Similar to the Charbonnier approximation, we get the
following lemma; the proof is in the supp. material:

Lemma 4.4. The logsumexp function σ is a convex
continuously differentiable function and it has Lipschitz
continuous gradients with constant 1

τ . Moreover:

|X|∞ − τ log(2mn) ≤ σ(X, τ) ≤ |X|∞.

5 An approximate solver for `p-norm low
rank approximation

The proposed schemes are provided in Algorithms 2-3,
and are based on Algorithm 1 as a sub-solver. In or-
der to hope for a good initialization, we consider the
smooth versions of (1), as described in Section 4, with
the added twist that we regularize further the objective
with a strongly convex component. I.e., we approximate
(1) for p = 1 with:

min
U∈Rm×r,V ∈Rn×r

h(M − UV >, τ) + λ

2
|UV >|22, (10)

and the case p =∞ with

min
U∈Rm×r,V ∈Rn×r

σ(M − UV >, τ) + λ

2
|UV >|22. (11)

This modification asserts that both (10)-(11) are strongly
convex w.r.t. X with parameter λ; see also the proof of
Lemma 4.2. Observe that the smaller the λ parameter is,
the less the “drift” from the original problem. We remind
that the optimal factors of (1) are U? and V ?, and their
product is denoted as X? = U?V ?>.

Algorithm 2 `1-norm low rank approximation solver

1: Parameters: r, OPT, values of |X?|22 and σr(X̂?),
ε > 0.

2: Set τ = ε·OPT
3mn .

3: Set function T = O
(
σr(X̂

?
r)

εOPT

)
.

4: Set λ = 2ε·OPT
3|X?|22

5: Compute L̂ = (1τ + λ).
6: Set f(UV >) := h(M − UV >, τ) + λ

2 |UV
>|22.

7: Run Algorithm 1 (UT , VT) = BFGD(r, T, 14 , 1, L̂).

Let us first focus on the case of `1-norm and Algorithm 2.
The following theorem states that, under proper config-
uration of algorithm’s hyperparameters, one can achieve
(1 + ε)-OPT approximation guarantee.

Theorem 5.1. Let X̂ = UTV
>
T ∈ Rm×n be the solution

of Algorithm 2. Let the optimal function value of (1) for
p = 1 be denoted as OPT := minU,V |M − UV >|1
and assumed known, or at least be approximable. Also,
assume we know σr(X̂

?) and |X?|22. For user defined
parameter ε > 0 and setting the Charbonnier parameter

τ = ε·OPT
3mn , and the strong convexity parameter as λ =

2ε·OPT
3|X?|22

, the pair (UT , VT) of Algorithm 2 satisfies:

|M − UTV >T |1 ≤ (1 + ε) ·OPT,

after T = O
(
σr(X̂

?
r)
(

mn
(εOPT)2

+ 1
‖X?‖22

))
iterations.

The proof is provided in the appendix. In the case where
OPT is only approximable, straightforward modifica-
tions lead to similar performance (where higher number
of iterations required).

Analytical complexity: Let us denote the time to com-
pute ∇f(·) as tgrad. The initialization complexity of
Algorithm 1, as well as its per iteration complexity, is
O(tgrad + mnr), where the last term is due to either
low-rank SVD calculation or matrix-matrix multiplica-

tion. Running Algorithm 1 for T = O
(
σr(X̂

?
r)

εOPT

)
iter-

ations leads to an overall O
(
σr(X̂

?
r)

εOPT · (tgrad +mnr)
)

time complexity.

Similarly for the case of p = ∞, we use the
logsumexp function in Algorithm 3 to smooth the ob-
jective, and we obtain the following guarantees:

Algorithm 3 `∞-norm low rank approximation solver

1: Parameters: r, OPT, values of |X?|22 and σr(X̂?),
ε > 0.

2: Set τ = ε·OPT
3 log(2mn) .

3: Set function T = O
(
σr(X̂

?
r)

εOPT

)
.

4: Set λ = 2ε·OPT
3|X?|22

5: Compute L̂ = (1τ + λ).
6: Set f(UV >) := σ(M − UV >, τ) + λ

2 |UV
>|22.

7: Run Algorithm 1 (UT , VT) = BFGD(r, T, 14 , 1, L̂).

Corollary 5.2. Let X̂ = UTV
>
T ∈ Rm×n be the solution

of Algorithm 2. Let the optimal function value of (1) for
p = ∞ be denoted as OPT := minU,V |M − UV >|∞,
and assumed known, or be at least approximable. Also,
assume we know σr(X̂

?) and |X?|22. For user de-
fined approximation parameter ε > 0 and setting the
logsumexp parameter τ = ε·OPT

3 log(2mn) , and the strong
convexity parameter as λ = 2ε·OPT

3|X?|22
, the pair (UT , VT)

of Algorithm 2 satisfies:

|M − UTV >T |∞ ≤ (1 + ε) ·OPT,

after T = O
(
σr(X̂

?
r)
(

log(mn)

(εOPT)2
+ 1
‖X?‖22

))
iterations.

Similar analytical complexity can be derived for Algo-
rithm 3 and is omitted due to lack of space.

Results of similar flavor (and under similar assumptions)
can be found in [28] for the problem of maximum flow.
There, the authors consider non-Euclidean gradient de-
scent algorithms for the minimization of `∞-norm over
vectors, where the gradient step takes into consideration
the geometry of the non-smooth objective with the use of
sharp operators. We applied a similar approach for both
p ∈ {1,∞} in our setting; however, the empirical per-
formance was prohibitive to consider a similar approach
here (despite the fact that one can still achieve (1 + ε)-
optimal approximation guarantees).

Some remarks regarding the above results.

Remark 1. Both algorithms require the knowledge of
three quantities: OPT, |X?|22 and σr(X̂?). While finding
these values could be as difficult as the original problem
(1), these values do not need to be known exactly: in par-
ticular, the algorithms imply that “for sufficiently small
τ and λ parameters, and for a sufficiently large number
of iterations T , we can find a good approximation”.

Remark 2. While finding the exact value of OPT is dif-
ficult, there are problem cases where this value could
be easily upper bounded. E.g., consider the problem
of low-rank matrix approximation from quantization,
as noted in [17]: there, we know from structure that
|M −X?|∞ = OPT ≤ 0.5.

Remark 3. Finding a good initialization is a key as-
sumption for Theorem 5.1 and its corollary. Such as-
sumptions are made also in other non-convex matrix fac-
torization results; see [47, 58, 51, 4, 42, 16, 40, 41, 35,
34, 54, 15]. From [41], it is known that we can easily
compute such an initialization as the best rank-r approx-
imation of M w.r.t. the `2-norm, via SVD. In particu-
lar, such an initialization satisfies DIST(U0, V0; X̂

?) ≤√
2·σr(X̂?)1/2

10
√
κ

, as long as f is strongly convex with condi-

tion number κ ≤ 1 + σr(X̂
?)2

4608·|X̂?r |22
. While this condition is

not easily met in theory (i.e., since κ =
1
τ+λ

λ , this means
that τ should be large enough compared to λ), our ex-
periments show that such an initialization performs well.

Remark 4. As a continuation of the above remark, the
reason we use the regularizer λ

2 |UV
>|22 is to turn the

smooth approximations into strongly convex functions
(and thus borrow results for initialization). In practice,
the proposed schemes work as well without the addition
of the regularizer; and thus, knowing a priori the quan-
tity |X?|22 is not necessary in practice.

Remark 5. The approach we follow somewhat resem-
bles with the approach proposed in [27]. There, the au-
thors consider (1) for p = 1 and propose an alternating
minimization scheme. Despite the similarities, there are
differences with our approach: among which, we per-
form a single gradient descent step onU and V per itera-

tion, for a smoothed version of (1), instead of minimizing
a quadratic programming formulation per each column
of U and V . On the contrary, [27] handles empirically
missing values and weighted low-rank matrix factoriza-
tion cases; we leave this direction for future research.

6 Experiments

Our experiments include synthesized applications, in or-
der to highlight the empirical performance of the pro-
posed framework. We compare the algorithms in Section
5 (i) with the algorithms for `p-low rank approximation
in [9], and (ii) with the recent heuristic in [17] for `∞-
low rank approximation.

Similarly to [9, 17] and in order to guarantee fair com-
parison, we follow in practice the “folklore” advice for
getting an initial estimate for the `p-norm problem in (1)
by beginning with the optimum `2-norm solution (i.e.,
with the low-rank SVD solution).

6.1 `1-norm approximation

We perform experiments on both real and synthetic
datasets. At first, we generate data according to the re-
cent ICML paper [9]: We use 20 × 30 random matri-
ces M , where each entry is a uniformly random value
in [0, 1]. Such constructions lead to full rank matrices
with high-probability. We also construct matrices M of
the same size with {±1} entries, each selected with 0.5
probability. For real datasets, similar to [9], we use the
FIDAP dataset5 and a word frequency dataset from UC
Irvine6. The FIDAP matrix M is 27 × 27 with 279 real
asymmetric non-zero entries. The word frequency ma-
trix M is 3430× 6906 with 353, 160 non-zero entries.

For the synthesized datasets, we perform 10 Monte Carlo
instantiations and take the median error reported. For all
datasets, we are interested in computing the best rank-r
approximation of each M above, w.r.t. the `1-norm and
for r ∈ {1, . . . , 10}. To compare with [9], we use their
suggestion and run a simplified version of Algorithm 2 in
[9], where we repeatedly sample r columns, uniformly at
random. We then run the `p-projection (see Lemma 1 in
[9]) on each sampled set and finally select the solution
with the smallest `p-error. For a fair contrast between
the algorithms, we first run our algorithm and measure
the required time; for approximately the same amount of
time, we run [9].7 To perform the `p-projection, we use

5http://math.nist.gov/MatrixMarket/
data/SPARSKIT/fidap/fidap005.html

6https://archive.ics.uci.edu/ml/
datasets/Bag+of+Words

7In all our experiments, we make sure the algorithm in [9]
runs at least the same time with our scheme.

http://math.nist.gov/MatrixMarket/data/SPARSKIT/fidap/fidap005.html
http://math.nist.gov/MatrixMarket/data/SPARSKIT/fidap/fidap005.html
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

0

20

40

60

80

100

120

140

160

r
=

1

r
=

2

r
=

3

r
=

4

r
=

5

r
=

6

r
=

7

r
=

8

r
=

9

r
=

10

jM
!

U
V

>
j 1

SVD
This work
[Chierichetti et al.]

0

100

200

300

400

500

600

r
=

1

r
=

2

r
=

3

r
=

4

r
=

5

r
=

6

r
=

7

r
=

8

r
=

9

r
=

10

jM
!

U
V

>
j 1

SVD
This work
[Chierichetti et al.]

#107

0

2

4

6

8

10

12

14

r
=

1

r
=

2

r
=

3

r
=

4

r
=

5

r
=

6

r
=

7

r
=

8

r
=

9

r
=

10

jM
!

U
V

>
j 1

SVD
This work
[Chierichetti et al.]

#105

0

1

2

3

4

5

6

7

8

r
=

1

r
=

2

r
=

3

r
=

4

r
=

5

r
=

6

r
=

7

r
=

8

r
=

9

r
=

10

jM
!

U
V

>
j 1

SVD
This work

0

0.5

1

1.5

2

2.5

3

r
=
1

r
=
2

r
=
3

r
=
4

r
=
5

r
=
6

r
=
7

r
=
8

r
=
9

r
=
10

T
im

e
(s
ec
.)

SVD
This work
[Chierichetti et al.]

0

0.5

1

1.5

2

2.5

3

r
=
1

r
=
2

r
=
3

r
=
4

r
=
5

r
=
6

r
=
7

r
=
8

r
=
9

r
=
10

T
im

e
(s
ec
.)

SVD
This work
[Chierichetti et al.]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r
=
1

r
=
2

r
=
3

r
=
4

r
=
5

r
=
6

r
=
7

r
=
8

r
=
9

r
=
10

T
im

e
(s
ec
.)

SVD
This work
[Chierichetti et al.]

0

0.5

1

1.5

2

2.5

3

r
=

1

r
=

2

r
=

3

r
=

4

r
=

5

r
=

6

r
=

7

r
=

8

r
=

9

r
=

10

T
im

e
(s

ec
.)

SVD
This work

Figure 2: Top row: function value performance |M − UV >|1; Bottom row: corresponding execution time. In all
settings, we set problem (1) for r = {1, . . . , 10}. First column: M ∈ [0, 1]20×30 where each entry is randomly
and independently generated. Second column: M ∈ {−1, 1}20×30 where each entry is randomly and independently
generated. Third column: M ∈ R27×27 is the FIDAP matrix. Fourth column: M ∈ R3430×6906 is the word-frequency
matrix. In the latter case, the sub-solver for `p-projection was not able to complete the task, and thus the algorithm in
[9] is omitted.

CVX package [14].8

In our algorithm, we set τ = λ = 10−3, and the maxi-
mum number of iterations as T = 4 · 104. As mentioned
above, we use the SVD initialization, and the step size is
set according to Algorithm 1.

The results are provided in Figure 2. Some remarks: (i)
for the synthetic cases (two leftmost columns), we ob-
serve that our approach attains a better objective func-
tion, faster, compared to [9]. Both our work and [9] is
much slower than plain SVD; however, the latter gives
a worse solution. (ii) for the real case (two rightmost
columns), our approach is overall better in terms of ob-
jective function values; however, this is not universal;
there are cases where [9] (or even SVD) gets to a better
result within the same time, especially when r increases.
For the large matrix case, [9] with CVX do not scale well;
thus omitted.

6.2 `∞-norm approximation

In this experiment, we follow the experimental setting
in [17]. We generate matrices M ∈ R100×75 as fol-
lows: We generate M̃ = UV > where U ∈ R100×r and
V ∈ R75×r. Each U and V is generated i.i.d. from
N(0, 1). Given M̃ , we compute the rounded version of

8We are not aware of another standardized package for `p-
regression. To accelerate the execution of SeDuMi, we use the
lowest precision set up in CVX.

M̃ such asM = round(M̃). This procedure guarantees
that, given M , there is a low-rank matrix M̃ that satisfies
|M − M̃ |∞ ≤ 0.5 (since this is an hard problem, this
construction gives an idea how far/close we are to a good
solution).

We repeat the above procedure for r = {1, . . . , 10} and
for 10 Monte Carlo instances. We report the minimum,
mean and median values of the objective function at-
tained and the time required. We compare our algorithms
with plain SVD and the heuristics in [17].

The results are reported in Table 1. Our findings show
that both our work and the algorithm in [17] perform
much better (in terms of quality of solution) than plain
SVD (the full set of results can be found in the appendix).
Further, the algorithm in [17] has time comparable to the
implementation of SVD in Matlab, while our proposed
algorithm is much slower; accelerating our proposed al-
gorithm is considered future research direction. How-
ever, while our algorithm does not succeed to find solu-
tions with small objective value (see minimum value in
table and compare our work with [17]), the median value
of objective function values over 10 problem instances is
lower than that of [17]. I.e., the “typical” achieved ob-
jective value is lower than that of [17].9

9We ran the algorithm in [17] for more time (repeatedly
within allowed time) and picked the best minimum result.
However, this did not improve the results of [17].

[17]
Time (sec.) Error

Rank r [min, mean, median]

1 [6.81e-02, 2.24e-01, 2.28e-01] [4.91e-01, 4.93e-01, 4.93e-01]
2 [1.55e-02, 2.75e-02, 2.31e-02] [5.33e-01, 6.00e-01, 5.96e-01]
3 [2.42e-02, 5.89e-02, 4.59e-02] [5.22e-01, 5.63e-01, 5.44e-01]
4 [2.69e-02, 4.61e-02, 4.04e-02] [5.24e-01, 5.66e-01, 5.42e-01]
5 [4.67e-02, 3.36e-01, 1.48e-01] [5.04e-01, 5.36e-01, 5.26e-01]
6 [6.72e-02, 6.24e-01, 1.34e-01] [4.98e-01, 5.20e-01, 5.22e-01]
7 [5.46e-02, 8.91e-01, 5.47e-01] [4.90e-01, 5.14e-01, 5.11e-01]
8 [1.36e-01, 1.66e+00, 5.39e-01] [4.81e-01, 5.15e-01, 5.02e-01]
9 [1.90e-01, 2.91e+00, 2.56e+00] [4.73e-01, 4.98e-01, 4.89e-01]
10 [2.30e-01, 9.60e+00, 4.25e+00] [4.59e-01, 4.97e-01, 4.79e-01]

This work
Time (sec.) Error

Rank r [min, mean, median]

1 [2.57e-02, 4.32e+01, 5.44e+01] [4.99e-01, 5.82e-01, 5.01e-01]
2 [2.60e-02, 4.95e+01, 5.44e+01] [5.04e-01, 5.49e-01, 5.07e-01]
3 [5.20e+01, 5.43e+01, 5.42e+01] [5.06e-01, 5.10e-01, 5.10e-01]
4 [1.55e-02, 3.67e+01, 5.15e+01] [5.05e-01, 5.90e-01, 5.10e-01]
5 [4.17e-02, 7.92e+01, 8.93e+01] [5.07e-01, 5.33e-01, 5.13e-01]
6 [7.27e+01, 8.03e+01, 7.76e+01] [5.02e-01, 5.08e-01, 5.09e-01]
7 [1.62e-02, 5.11e+01, 6.52e+01] [5.08e-01, 5.84e-01, 5.08e-01]
8 [5.51e+01, 6.55e+01, 6.73e+01] [4.95e-01, 5.09e-01, 5.02e-01]
9 [5.36e+01, 5.89e+01, 5.77e+01] [4.78e-01, 5.06e-01, 5.06e-01]

10 [1.69e-02, 3.86e+01, 5.23e+01] [4.69e-01, 5.94e-01, 4.75e-01]

Table 1: Attained objective function values and execution time. Table includes minimum, mean and median values for
10 Monte Carlo instances.

7 Conclusion and future work

We consider the problem of low-rank matrix approxima-
tion, w.r.t. (entrywise) `p-norms, and proposed two algo-
rithms that lead to (1 + ε)-OPT approximations. Our
schemes combine ideas from smoothing techniques in
convex optimization, as well as recent non-convex gradi-
ent descent algorithms. Key assumption is that problem-
related quantities are known or at least are approximable.
Our experiments show that our scheme performs (at
least) competitively with state of the art.

We have provided several possible extensions of this
work. A particularly interesting open problem is that of
weighted low-rank matrix approximation:

min
U∈Rm×r,V ∈Rn×r

|W �
(
M − UV >

)
|p, p ∈ {1,∞},

where different assumptions on W lead to different open
research questions.

References
[1] H. Aanas, R. Fisker, K. Astrom, and J. Carstensen.

Robust factorization. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(9):1215–
1225, 2002.

[2] M. Asteris, A. Kyrillidis, D. Papailiopoulos, and
A. Dimakis. Bipartite correlation clustering: Max-
imizing agreements. In Artificial Intelligence and
Statistics, pages 121–129, 2016.

[3] J. Barron. A more general robust loss function.
arXiv preprint arXiv:1701.03077, 2017.

[4] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi.
Dropping convexity for faster semi-definite opti-
mization. In 29th Annual Conference on Learning
Theory, pages 530–582, 2016.

[5] R. Cabral, F. De la Torre, J. Costeira, and
A. Bernardino. Unifying nuclear norm and bilin-
ear factorization approaches for low-rank matrix
decomposition. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2013.

[6] E. Candes, X. Li, Y. Ma, and J. Wright. Robust
principal component analysis? Journal of the ACM
(JACM), 58(3):11, 2011.

[7] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and
M. Barlaud. Two deterministic half-quadratic reg-
ularization algorithms for computed imaging. In

Image Processing, 1994. Proceedings. ICIP-94.,
IEEE International Conference, volume 2, pages
168–172. IEEE, 1994.

[8] K.-Y. Chiang, C.-J. Hsieh, and I. Dhillon. Ro-
bust principal component analysis with side infor-
mation. In International Conference on Machine
Learning, pages 2291–2299, 2016.

[9] F. Chierichetti, S. Gollapudi, R. Kumar, S. Lat-
tanzi, R. Panigrahy, and D. Woodruff. Algorithms
for `p low rank approximation. arXiv preprint
arXiv:1705.06730, 2017.

[10] M. Collins, S. Dasgupta, and R. Schapire. A gen-
eralization of principal components analysis to the
exponential family. In Advances in neural informa-
tion processing systems, pages 617–624, 2002.

[11] I. Csiszar and G. Tusnady. Information geometry
and alternating minimization procedures. Statistics
and decisions, 1984.

[12] A. d’Aspremont. Smooth optimization with ap-
proximate gradient. SIAM Journal on Optimization,
19(3):1171–1183, 2008.

[13] A. Eriksson and A. Van Den Hengel. Efficient
computation of robust low-rank matrix approxima-
tions in the presence of missing data using the `1-
norm. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010.

[14] Michael G. and Stephen B. CVX: Matlab software
for disciplined convex programming, version 2.1.
http://cvxr.com/cvx, March 2014.

[15] R. Ge, C. Jin, and Y. Zheng. No spurious local min-
ima in nonconvex low rank problems: A unified ge-
ometric analysis. arXiv preprint arXiv:1704.00708,
2017.

[16] R. Ge, J. Lee, and T. Ma. Matrix completion has
no spurious local minimum. To appear in NIPS-16,
arXiv preprint arXiv:1605.07272, 2016.

[17] N. Gillis and Y. Shitov. Low-rank matrix ap-
proximation in the infinity norm. arXiv preprint
arXiv:1706.00078, 2017.

[18] N. Gillis and S. Vavasis. Fast and robust recursive
algorithmsfor separable nonnegative matrix factor-
ization. IEEE transactions on pattern analysis and
machine intelligence, 36(4):698–714, 2014.

[19] N. Gillis and S. Vavasis. On the complexity of ro-
bust PCA and ell1-norm low-rank matrix approxi-
mation. arXiv preprint arXiv:1509.09236, 2015.

[20] G. Golub and C. Van Loan. Matrix computations,
volume 3. JHU Press, 2012.

[21] G. Gordon. Generalized2 linear2 models. In Ad-
vances in neural information processing systems,
pages 593–600, 2003.

[22] S. Goreinov and E. Tyrtyshnikov. The maximal-
volume concept in approximation by low-rank ma-
trices. Contemporary Mathematics, 280:47–52,
2001.

[23] S. Goreinov and E. Tyrtyshnikov. Quasioptimality
of skeleton approximation of a matrix in the Cheby-
shev norm. In Doklady Mathematics, volume 83,
pages 374–375. Springer, 2011.

[24] Q. Gu, Z. W. Wang, and H. Liu. Low-rank and
sparse structure pursuit via alternating minimiza-
tion. In Artificial Intelligence and Statistics, pages
600–609, 2016.

[25] P. Huber. Robust estimation of a location pa-
rameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.

[26] Q. Ke and T. Kanade. Robust subspace computa-
tion using `1-norm. 2003.

[27] Q. Ke and T. Kanade. Robust `1 factorization in
the presence of outliers and missing data by alter-
native convex programming. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
739–746. IEEE, 2005.

[28] J. Kelner, Y. T. Lee, L. Orecchia, and A. Sid-
ford. An almost-linear-time algorithm for approxi-
mate max flow in undirected graphs, and its multi-
commodity generalizations. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 217–226. SIAM, 2014.

[29] E. Kim, M. Lee, C.-H. Choi, N. Kwak, and S. Oh.
Efficient `1-norm-based low-rank matrix approxi-
mations for large-scale problems using alternating
rectified gradient method. IEEE transactions on
neural networks and learning systems, 26(2):237–
251, 2015.

[30] N. Kwak. Principal component analysis based
on `1-norm maximization. IEEE transactions
on pattern analysis and machine intelligence,
30(9):1672–1680, 2008.

[31] A. Kyrillidis and V. Cevher. Matrix ALPS: Acceler-
ated low rank and sparse matrix reconstruction. In
Statistical Signal Processing Workshop (SSP), 2012
IEEE, pages 185–188. IEEE, 2012.

[32] A. Kyrillidis and V. Cevher. Matrix recipes for
hard thresholding methods. Journal of mathemati-
cal imaging and vision, 48(2):235–265, 2014.

[33] A. Kyrillidis, A. Kalev, D. Park, S. Bhojanapalli,
C. Caramanis, and S. Sanghavi. Provable quantum

http://cvxr.com/cvx

state tomography via non-convex methods. arXiv
preprint arXiv:1711.02524, 2017.

[34] X. Li, Z. Wang, J. Lu, R. Arora, J. Haupt, H. Liu,
and T. Zhao. Symmetry, saddle points, and global
geometry of nonconvex matrix factorization. arXiv
preprint arXiv:1612.09296, 2016.

[35] Y. Li, Y. Liang, and A. Risteski. Recovery guar-
antee of non-negative matrix factorization via alter-
nating updates. In Advances in Neural Information
Processing Systems, pages 4987–4995, 2016.

[36] P. Markopoulos, G. Karystinos, and D. Pados.
Some options for `1-subspace signal processing. In
Wireless Communication Systems (ISWCS 2013),
Proceedings of the Tenth International Symposium
on, pages 1–5. VDE, 2013.

[37] P. Markopoulos, G. Karystinos, and D. Pados. Op-
timal algorithms for `1-subspace signal process-
ing. IEEE Transactions on Signal Processing,
62(19):5046–5058, 2014.

[38] D. Meng, Z. Xu, L. Zhang, and J. Zhao. A cyclic
weighted median method for `1 low-rank matrix
factorization with missing entries. In AAAI, vol-
ume 4, page 6, 2013.

[39] Y. Nesterov. Smoothing technique and its applica-
tions in semidefinite optimization. Mathematical
Programming, 110(2):245–259, 2007.

[40] D. Park, A. Kyrillidis, S. Bhojanapalli, C. Cara-
manis, and S. Sanghavi. Provable Burer-Monteiro
factorization for a class of norm-constrained matrix
problems. arXiv preprint arXiv:1606.01316, 2016.

[41] D. Park, A. Kyrillidis, C. Caramanis, and S. Sang-
havi. Finding low-rank solutions to matrix prob-
lems, efficiently and provably. arXiv preprint
arXiv:1606.03168, 2016.

[42] D. Park, A. Kyrillidis, C. Caramanis, and S. Sang-
havi. Non-square matrix sensing without spuri-
ous local minima via the Burer-Monteiro approach.
arXiv preprint arXiv:1609.03240, 2016.

[43] S. Poljak and J. Rohn. Checking robust nonsingu-
larity is NP-hard. Mathematics of Control, Signals,
and Systems (MCSS), 6(1):1–9, 1993.

[44] C. Qiu, N. Vaswani, B. Lois, and L. Hogben. Re-
cursive robust PCA or recursive sparse recovery in
large but structured noise. IEEE Transactions on
Information Theory, 60(8):5007–5039, 2014.

[45] A. Singh and G. Gordon. A unified view of matrix
factorization models. In Joint European Confer-
ence on Machine Learning and Knowledge Discov-
ery in Databases, pages 358–373. Springer, 2008.

[46] Z. Song, D. Woodruff, and P. Zhong. Low rank ap-
proximation with entrywise `1-norm error. In Pro-
ceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 688–701.
ACM, 2017.

[47] R. Sun and Z.-Q. Luo. Guaranteed matrix comple-
tion via nonconvex factorization. In IEEE 56th An-
nual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, pages 270–289, 2015.

[48] M. Tipping. Probabilistic visualisation of high-
dimensional binary data. In Advances in neural
information processing systems, pages 592–598,
1999.

[49] M. Tipping and C. Bishop. Probabilistic principal
component analysis. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology),
61(3):611–622, 1999.

[50] Q. Tran-Dinh and Z. Zhang. Extended Gauss-
Newton and Gauss-Newton-ADMM algorithms for
low-rank matrix optimization. arXiv preprint
arXiv:1606.03358, 2016.

[51] S. Tu, R. Boczar, M. Simchowitz,
M. Soltanolkotabi, and B. Recht. Low-rank
solutions of linear matrix equations via Procrustes
flow. arXiv preprint arXiv:1507.03566, 2015.

[52] M. Turk and A. Pentland. Eigenfaces for recogni-
tion. Journal of cognitive neuroscience, 3(1):71–
86, 1991.

[53] N. Veldt, A. Wirth, and D. Gleich. Correlation clus-
tering with low-rank matrices. In Proceedings of
the 26th International Conference on World Wide
Web, pages 1025–1034. International World Wide
Web Conferences Steering Committee, 2017.

[54] L. Wang, X. Zhang, and Q. Gu. A univer-
sal variance reduction-based catalyst for noncon-
vex low-rank matrix recovery. arXiv preprint
arXiv:1701.02301, 2017.

[55] T. Wiberg. Computation of principal components
when data are missing. In Proc. of Second Symp.
Computational Statistics, pages 229–236, 1976.

[56] H. Xu, C. Caramanis, and S. Sanghavi. Robust
PCA via outlier pursuit. In Advances in Neural In-
formation Processing Systems, pages 2496–2504,
2010.

[57] X. Yi, D. Park, Y. Chen, and C. Caramanis. Fast
algorithms for robust PCA via gradient descent.
In Advances in neural information processing sys-
tems, pages 4152–4160, 2016.

[58] T. Zhao, Z. Wang, and H. Liu. A nonconvex op-
timization framework for low rank matrix estima-

tion. In Advances in Neural Information Processing
Systems, pages 559–567, 2015.

[59] T. Zhou and D. Tao. GoDec: Randomized low-
rank & sparse matrix decomposition in noisy case.
In International conference on machine learning.
Omnipress, 2011.

8 Proofs of lemmata

8.1 Proof of Lemma 4.1

Due to the decomposability of (7), we observe ∀X:

∂h(X, τ)

∂Xij
=

2Xij

τ
·

((
Xij

τ

)2

+ 1

)−1/2
=
Xij

τ
· 2√(

Xij
τ

)2
+ 1

Thus, in compact form,∇h(X, τ) = 1
τX � S, where S is defined in the lemma.

Regarding the Hessian information, first observe that ∂2h(X,τ)
∂Xij∂Xlq

=

∂

Xij
τ ·

2√(
Xij
τ

)2
+1

∂Xlq

= 0, for indices (i, j) 6= (l, q).
This means that the off-diagonals of∇2h(X, τ) are zero. For the case where (i, j) = (l, q), we have:

∂2h(X, τ)

∂X2
ij

=

∂

Xij
τ ·

2√(
Xij
τ

)2
+1

∂Xij

=
2

τ
·

√
(Xij/τ)2 + 1− X2

ij

τ2 ·
(
(Xij/τ)

2
+ 1
)−1/2

(
Xij
τ

)2
+ 1

=
2

τ
· (
Xij/τ)

2
+ 1− (Xij/τ)

2((
Xij
τ

)2
+ 1

)3/2
=

1

τ
· 2((

Xij
τ

)2
+ 1

)3/2

Then,∇2h(X, τ) = 1
τ I �Q, where Q is defined in the lemma.

8.2 Proof of Lemma 4.2

The first part of the lemma is easily deduced from Lemma 4.1. Observe that 0 � ∇2h(X, τ) � 2
τ I, ∀X; that is h

function is convex with Lipschitz constant 2
τ . Moreover, by combining h with any strongly convex function ψ(·), say

ψ(X) := λ
2 |X|

2
2, we easily observe that the composite form h(X, τ)+ψ(X) satisfies λI � ∇2h(X, τ)+∇2ψ(X) �(

2
τ + λ

)
I; i.e., the composite form is also strongly convex.

The last part of the lemma is true because

|X|1 ≥ h(X, τ) =
m∑
i=1

n∑
j=1

h(Xij , τ) = τ ·
m∑
i=1

n∑
j=1

√(Xij

τ

)2

+ 1− 1

 =

m∑
i=1

n∑
j=1

(√
X2
ij + τ2 − τ

)

≥
m∑
i=1

n∑
j=1

|Xij | −mnτ = |X|1 −mnτ.

8.3 Proof of Lemma 4.3

The proof is elementary as in Lemma 4.1 and we state it for completeness. First, observe that (9) can be re-written as
follows:

σ(X, τ) = τ · log
(
Tr(1 · P)
2mn

)
Observe that calculating gradients with respect toXij , the denominator 2mn plays no role. Following similar motions,
we compute partial derivatives as:

∂σ(X, τ)

∂Xij
= τ · 1

Tr(1 · P)
·
∂
(
e
Xij/τ + e−

Xij/τ
)

∂Xij
=

1

Tr(1 · P)
·
(
e
Xij/τ − e−Xij/τ

)

Gathering all the partial derivatives in a matrix, we get the reported result.

Computing second-order partial derivatives for σ(X, τ), we distinct the cases of diagonal and off-diagonal elements.
For the former, we have:

∂2σ(X, τ)

∂X2
ij

=
1

τ
·
Tr(1 · P)−N2

ij

Tr(1 · P)2

and for the latter:

∂2σ(X, τ)

∂Xij∂Xl,q
= −1

τ
· −NijNlq
Tr(1 · P)2

Combining the two, we get the required result.

8.4 Proof of Lemma 4.4

Let us first prove convexity. By the definition of the Hessian, we want to prove

Tr(1 · P) · y>
(
diag(vec(P))− vec(N)vec(N)>

Tr(1 · P)

)
y ≥ 0, ∀y ∈ Rmn.

First, observe that Tr(1 · P) ≥ 0 since each element of P is positive by definition. Second, for Pij ≥ 0, ∀i, j,
it is obvious that vec(P)vec(P)>

Tr(1·P) � diag(vec(P)). Thus, what is left is to prove y>
(
vec(N)vec(N)>

)
y ≤

y>
(
vec(P)vec(P)>

)
y, which is true since:

y>
(
vec(N)vec(N)>

)
y = ‖y>vec(N)‖22 =

mn∑
i=1

(yi · vec(N)i)
2 ≤

mn∑
i=1

y2i · vec(N)2i

≤
mn∑
i=1

y2i · vec(P)2i = ‖y>vec(P)‖22 = y>
(
vec(P)vec(P)>

)
y,

since Pij ≥ Nij . Upper bounding the Hessian,

y>∇2σ(X, τ)y = y>
(
1

τ
· 1

Tr(1 · P)
·
(
diag(vec(P))− vec(N)vec(N)>

Tr(1 · P)

))
y

≤ y>
(
1

τ
· 1

Tr(1 · P)
· (diag(vec(P)))

)
y

=

∑mn
i=1 y

2
i · vec(P)i

τ · Tr(1 · P)
≤
∑mn
i=1 |yi|2 · (

∑mn
i=1 vec(P)i)

τ · Tr(1 · P)
=
‖y‖22
τ

.

This means that σ function is Lipschitz gradient continuous with constant 1
τ . To prove the set of inequalities of the

lemma, we observe:

|X|∞ ≥ σ(X, τ) ≥ τ · log
(
e
|X|∞/τ

2mn

)
= |X|∞ − τ log(2mn).

8.5 Proof of Theorem 5.1

Using Lemma 4.2, we bound |M − UTV >T |1 as follows:

|M − UTV >T |1 ≤ h(M − UTV >T , τ) +mnτ

≤ h(M − UTV >T , τ) +
λ

2
|UTV >T |22 +mnτ

Define f : Rm×n → R such as f(UV >) := h(M − UV >, τ) + λ
2 |UV

>|22. Observe that f is λ-strongly convex with
Lipscihtz continuous gradients with parameter (2τ + λ). By Theorem 3.1, we know that:

f(UTV
>
T)− f(Û?V̂ ?>) ≤ 10 · DIST(U0, V0; X̂

?
r)

2

ηT
.

where DIST(U0, V0; X̂
?
r) ≤

√
2·σr(X̂?r)

1/2

10
√
κ

. Combining this bound with the above, we get:

|M − UTV >T |1 ≤ h(M − Û?V̂ ?>, τ) +
λ

2
|X̂?|22 +

10 · DIST(U0, V0; X̂
?
r)

2

ηT
+mnτ (12)

We know from Lemma 4.2 that:

h(M − UV >, τ) ≤ |M − UV >|1 =⇒ h(M − UV >, τ) + λ

2
|UV >|22 ≤ |M − UV >|1 +

λ

2
|UV >|22

for every U, V . This further implies that:

min
U,V

(
h(M − UV >, τ) + λ

2
|UV >|22

)
≤ min

U,V

(
|M − UV >|1 +

λ

2
|UV >|22

)
⇒

h(M − Û?V̂ ?>, τ) + λ

2
|Û?V̂ ?>|22

(i)

≤ min
U,V

(
|M − UV >|1 +

λ

2
|UV >|22

)
(ii)

≤ |M − U?V ?>|1 +
λ

2
|U?V ?>|22

(iii)
= OPT+

λ

2
|U?V ?>|22

where (i) is due to the optimality of Û?, V̂ ? as the minimizer of f(UV >) := h(M − UV >, τ) + λ
2 |UV

>|22, (ii)
is due to U?, V ? not being necessarily the minimizers of minU,V

(
|M − UV >|1 + λ

2 |UV
>|22
)
, and (iii) OPT :=

minU,V |M − UV >|1 = |M − U?V ?>|1. Thus, (12) becomes:

|M − UTV >T |1 ≤ OPT+
λ

2
|X?|22 +

10 · DIST(U0, V0;X
?
r)

2

ηT
+mnτ

For ε > 0, setting τ = ε·OPT
3mn we observe that mnτ = ε·OPT

3 . Executing Algorithm 1 for T ≥ 10·σr(X̂?r)
50 · 3

ηεOPT , we

can guarantee that 10·DIST(U0,V0;X̂
?
r)

2

ηT ≤ 10σr(X̂
?)

50η· 3·10·σr(X̂
?)

50ηεOPT

= ε·OPT
3 . Finally, setting λ = 2ε·OPT

3|X?|22
, we obtain: 2ε·OPT

6|X?|22
·

|X?|22 = ε·OPT
3 . Substituting the above in the main recursion, we get:

|M − UTV >T |1 ≤ OPT+
λ

2
|X?|22 +

10 · DIST(U0, V0;X
?
r)

2

ηT
+mnτ

≤ OPT+
ε ·OPT

3
+
ε ·OPT

3
+
ε ·OPT

3
= (1 + ε) ·OPT.

The number of iterations T required can be further analyzed to:

T ≥ 10 · σr(X̂?
r)

50
· 3

ηεOPT

(i)
=

10 · σr(X̂?
r)

50
· 3 ·O(L)

εOPT

(ii)
=

10 · σr(X̂?
r)

50
·
3 ·O

(
1
τ + λ

)
εOPT

(iii)
=

10 · σr(X̂?
r)

50
·
3 ·O

(
3mn
εOPT + 2εOPT

3‖X?‖22

)
εOPT

=
10 · σr(X̂?

r)

50
·O
(

9mn
(εOPT)2

+ 2
‖X?‖22

)
= O

(
σr(X̂

?
r) ·

(
mn

(εOPT)2
+ 1
‖X?‖22

))

where (i) is due to the definition of the step size that η = O
(
1
L

)
, (ii) is due to the definition L = 1

τ + λ, (iii) is
obtained by substituting λ and τ .

8.6 Proof of Corollary 5.2

The proof is similar to that of Theorem 5.1. Using Lemma 4.4, we bound |M − UTV >T |∞ as follows:

|M − UTV >T |∞ ≤ σ(UTV >T , τ) + τ log(2mn)

≤ σ(UTV >T , τ) +
λ

2
|UTV >T |22 + τ log(2mn)

Following similar motions with Theorem 5.1, and setting τ = ε·OPT
3 log(2mn) , and T and λ similar to the p = 1 case, we

get:

|M − UTV >T |∞ ≤ (1 + ε) ·OPT.

The number of iterations T required follow the same motions as the proof of Theorem 5.1, with a slight difference in
the definition of τ .

9 Connections with other related work

[10] considers probabilistic extensions of the PCA problem: starting with various generative probabilistic models, one
obtains different matrix factorization objectives. The authors rely on the fundamental work of Csiszar and Tusnady
[11], and propose an alternating minimization procedure; see also [49, 48].

[21, 45] show that the differences between many algorithms for matrix factorization can be viewed in terms of a
small number of modeling choices. Their view unifies methods for Bregman co-clustering, LSI, non-negative matrix
factorization, relational learning, to name a few.

While the bilinear factorization UV > is common across different problems, there are cases where even a trilinear
representation is more preferable, from an interpretation perspective. Having constraints over the factors is a another
differentiation: An illustrative example of this case is that of matrix co-clustering where we are interested in M ≈
C1C

>
2 , with C1 and C2 being matrices that denote the participation/indicator matrices. Our work is quite different to

this type of factorizations (i.e., with additional constraints on the factors); we defer the reader to [35, 18, 2, 53] for
some recent developments on similar subjects.

Finally, there is a recent line of work on robust PCA that further focuses on identifying the (sparse) grossly corrupted
elements in M ; see [56, 6, 59, 31, 32, 8, 24, 57]. That line of work differs from our problem in that, our approach
“models” the corruption through the penalization of the residual M − UV > with an `1-norm, while in the aforemen-
tioned line of works, one optimizes over the residual S = M − UV > in order to minimize the number of “active”
corruptions. In that sense our model is “simpler” as we are only interested in identifying the low rank component.

10 Supportive experimental results

SVD
Time (sec.) Error

Rank r [min, mean, median]

1 [2.63e-03, 1.10e-02, 1.08e-02] [8.36e-01, 9.02e-01, 9.19e-01]
2 [3.44e-03, 5.58e-03, 4.25e-03] [7.37e-01, 8.60e-01, 8.74e-01]
3 [4.08e-03, 8.55e-03, 6.67e-03] [6.72e-01, 7.51e-01, 7.27e-01]
4 [2.59e-03, 7.73e-03, 4.47e-03] [6.60e-01, 7.31e-01, 7.29e-01]
5 [2.59e-03, 3.69e-03, 3.63e-03] [6.94e-01, 7.21e-01, 7.21e-01]
6 [2.52e-03, 3.40e-03, 3.11e-03] [6.82e-01, 7.22e-01, 7.29e-01]
7 [2.44e-03, 3.21e-03, 3.29e-03] [6.87e-01, 7.35e-01, 7.30e-01]
8 [2.43e-03, 3.58e-03, 3.32e-03] [6.92e-01, 7.36e-01, 7.32e-01]
9 [2.50e-03, 3.01e-03, 2.97e-03] [7.00e-01, 7.27e-01, 7.19e-01]

10 [1.96e-03, 2.70e-03, 2.84e-03] [6.97e-01, 7.61e-01, 7.51e-01]

[17]
Time (sec.) Error

Rank r [min, mean, median]

1 [6.81e-02, 2.24e-01, 2.28e-01] [4.91e-01, 4.93e-01, 4.93e-01]
2 [1.55e-02, 2.75e-02, 2.31e-02] [5.33e-01, 6.00e-01, 5.96e-01]
3 [2.42e-02, 5.89e-02, 4.59e-02] [5.22e-01, 5.63e-01, 5.44e-01]
4 [2.69e-02, 4.61e-02, 4.04e-02] [5.24e-01, 5.66e-01, 5.42e-01]
5 [4.67e-02, 3.36e-01, 1.48e-01] [5.04e-01, 5.36e-01, 5.26e-01]
6 [6.72e-02, 6.24e-01, 1.34e-01] [4.98e-01, 5.20e-01, 5.22e-01]
7 [5.46e-02, 8.91e-01, 5.47e-01] [4.90e-01, 5.14e-01, 5.11e-01]
8 [1.36e-01, 1.66e+00, 5.39e-01] [4.81e-01, 5.15e-01, 5.02e-01]
9 [1.90e-01, 2.91e+00, 2.56e+00] [4.73e-01, 4.98e-01, 4.89e-01]

10 [2.30e-01, 9.60e+00, 4.25e+00] [4.59e-01, 4.97e-01, 4.79e-01]

This work
Time (sec.) Error

Rank r [min, mean, median]

1 [2.57e-02, 4.32e+01, 5.44e+01] [4.99e-01, 5.82e-01, 5.01e-01]
2 [2.60e-02, 4.95e+01, 5.44e+01] [5.04e-01, 5.49e-01, 5.07e-01]
3 [5.20e+01, 5.43e+01, 5.42e+01] [5.06e-01, 5.10e-01, 5.10e-01]
4 [1.55e-02, 3.67e+01, 5.15e+01] [5.05e-01, 5.90e-01, 5.10e-01]
5 [4.17e-02, 7.92e+01, 8.93e+01] [5.07e-01, 5.33e-01, 5.13e-01]
6 [7.27e+01, 8.03e+01, 7.76e+01] [5.02e-01, 5.08e-01, 5.09e-01]
7 [1.62e-02, 5.11e+01, 6.52e+01] [5.08e-01, 5.84e-01, 5.08e-01]
8 [5.51e+01, 6.55e+01, 6.73e+01] [4.95e-01, 5.09e-01, 5.02e-01]
9 [5.36e+01, 5.89e+01, 5.77e+01] [4.78e-01, 5.06e-01, 5.06e-01]

10 [1.69e-02, 3.86e+01, 5.23e+01] [4.69e-01, 5.94e-01, 4.75e-01]

Table 2: Attained objective function values and execution time. Table includes minimum, mean and median values for
10 Monte Carlo instances.

	1 Introduction
	2 Notation and assumptions
	3 BFGD for smooth objectives
	4 Charbonnier approximation and the logsumexp function
	5 An approximate solver for p-norm low rank approximation
	6 Experiments
	6.1 1-norm approximation
	6.2 -norm approximation

	7 Conclusion and future work
	8 Proofs of lemmata
	8.1 Proof of Lemma ??
	8.2 Proof of Lemma ??
	8.3 Proof of Lemma ??
	8.4 Proof of Lemma ??
	8.5 Proof of Theorem ??
	8.6 Proof of Corollary ??

	9 Connections with other related work
	10 Supportive experimental results

