Under review as a conference paper at ICLR 2022

PIPEGCN: EFFICIENT FULL-GRAPH TRAINING
OF GRAPH CONVOLUTIONAL NETWORKS WITH
PIPELINED FEATURE COMMUNICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) is the state-of-the-art method for learning
graph-structured data, and training large-scale GCNs requires distributed training
across multiple accelerators such that each accelerator is able to hold a partitioned
subgraph. However, distributed GCN training incurs prohibitive overhead of
communicating node features and feature gradients among partitions for every
GCN layer in each training iteration, limiting the achievable training efficiency and
model scalability. To this end, we propose PipeGCN, a simple-yet-effective scheme
that hides the communication overhead by pipelining inter-partition communication
with intra-partition computation. It is non-trivial to pipeline for efficient GCN
training, as communicated node features/gradients will become stale and thus
can harm the convergence, negating the pipeline benefit. Notably, little is known
regarding the convergence rate of GCN training with both stale features and stale
feature gradients. This work not only provides a theoretical convergence guarantee
but also finds the convergence rate of PipeGCN to be close to that of the vanilla
distributed GCN training without staleness. Furthermore, we develop a smoothing
method to further improve PipeGCN’s convergence. Extensive experiments show
that PipeGCN can largely boost training throughput (up to 2.2 x) while achieving
the same accuracy as its vanilla counterpart and outperforming existing full-graph
training methods. All code will be released publicly upon acceptance.

1 INTRODUCTION

Graph convolutional networks (GCNs) (Kipf & Welling, 2016) have gained great popularity recently
as they demonstrated the state-of-the-art (SOTA) performance in various graph-based learning tasks,
including node classification (Kipf & Welling, 2016), link prediction (Zhang & Chen, 2018), graph
classification (Xu et al., 2018), and recommendation systems (Ying et al., 2018). The promising
performance of GCNss is due to their diverse neighborhood connectivity, which provides a greater
applicability to graph-based data than convolutional neural networks (CNNs) that adopt a fixed
regular neighborhood structure. In particular, a GCN aggregates all features from the neighbor node
set for a given node, the feature of which is then updated via a multi-layer perceptron. Such a two-step
process (i.e., aggregate and update) empowers GCNs to better learn graph structures.

However, training GCNs at scale has been a challenging problem, as a prohibitive amount of compute
and memory resources are required to train a real-world large-scale graph, let alone exploring deeper
and more advanced models. To tackle this challenge, various sampling-based methods have been
proposed to reduce the resource requirement at a cost of incurring feature approximation errors. A
straightforward instance is to create mini-batches by sampling neighbors (e.g., GraphSAGE (Hamilton
et al,, 2017) and VR-GCN (Chen et al., 2018)) or to extract subgraphs as training samples (e.g.,
Cluster-GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al., 2020)).

In addition to sampling-based methods, distributed GCN training has emerged as a promising
alternative, as it enables large full graph training of GCNs across multiple accelerators such as GPUs.
The essence of this approach is to separate a giant graph into several small partitions, each of which is
able to fit into a single GPU, and then train these subgraphs locally on GPUs but with indispensable
communication. Following this direction, several recent works (Ma et al., 2019; Jia et al., 2020;
Tripathy et al., 2020; Thorpe et al., 2021) have been proposed and verified the great potential of

Under review as a conference paper at ICLR 2022

distributed GCN training. P3 (Gandhi & Iyer, 2021) follows another direction that splits the data
along the feature dimension and leverages intra-layer model parallelism for training, which shows
superior performance on small models.

In this work, we propose a new method of distributed GCN training, PipeGCN, which targets
achieving a full-graph accuracy with boosted training efficiency. Our main contributions are:

» We first analyze two efficiency bottlenecks in distributed GCN training: significant communication
overhead and frequent synchronization, and then propose a simple-yet-effective technique called
PipeGCN to address the above two bottlenecks by pipelining inter-partition communication with
intra-partition computation to hide the communication overhead.

* We address the challenge raised by PipeGCN, i.e., staleness in communicated features and feature
gradients, by providing a theoretical convergence guarantee of PipeGCN which finds the conver-
gence rate to be O(T*%), i.e., close to vanilla distributed GCN training without staleness. 7o the
best of our knowledge, this is the first work providing theoretical proof for the convergence of GCN
training with both stale feature and stale feature gradients.

* We further propose a low-overhead smoothing method to further improve PipeGCN’s convergence
by reducing the error incurred by the staleness.

» Extensive empirical and ablation studies consistently validate the advantages of PipeGCN over
both vanilla distributed GCN training (boosting training throughput by up to 2.2x while achieving
the same or a better accuracy) as well as SOTA full-graph training methods.

2 BACKGROUND AND RELATED WORKS

Graph Convolutional Networks. GCNs (Kipf & Welling, 2016) exhibit a powerful learning ability
for graph-structured data. They represent each node in a graph as a feature (embedding) vector and
learn the feature vector via a two-step process (neighbor aggregate and then update) for each layer,
which can be mathematically described as:

20 = ¢ (hff‘l) |ue N(v)) (1)
B = 0 (0, R0 @)

where N (v) is the neighbor set of node v in the graph, hq(f) represents the learned embedding vector
of node u at the ¢-th layer, zl(,é) is an intermediate aggregated feature calculated by an aggregation
function ¢(©), and finally ¢() is the function for updating the feature of node v. The original GCN

(Kipf & Welling, 2016) uses a mean aggregator for ¢() and the update function ¢(*) is a single-
layer perceptron J(W“)zy)) where o (-) is a non-linear activation function and W) is the weight
matrix. Another famous GCN instance is GraphSAGE (Hamilton et al., 2017) in which gb(l) is

o (WW . CONCAT (zﬁ‘), hff‘”)).

Distributed Training for GCNs. Real-world graphs may contain hundreds of millions of nodes and
billions of edges (Hu et al., 2020), for which a training feasible approach is to partition it into small
subgraphs (to fit each GPU’s resource), and train them in parallel, during which necessary commu-
nication is performed to exchange boundary node features and gradients to satisfy GCNs’neighbor
aggregation (Equ. 1). Such approach is called vanilla partition-parallel training and illustrated in
Fig. 1 (a). Following this approach, pioneer works have been proposed recently. ROC (Jia et al.,
2020), NeuGraph (Ma et al., 2019) and AliGraph (Zhu et al., 2019) perform the partition-parallel
training but rely on CPU storage for all partitions and repeated swapping of a partial partition to GPUs.
Inevitably, prohibitive CPU-GPU swaps are incurred, plaguing the achievable training efficiency.
CAGNET (Tripathy et al., 2020) is different in that it further splits node feature vectors into tiny
sub-vectors, which however demands broadcast of those sub-vectors per node and computing them
sequentially, thus requires redundant communication and frequent synchronization. More recently,
P3 (Gandhi & lIyer, 2021) proposes to split feature dimension and partition the first layer for parallel
training with mitigated communication overhead, but it is based on a strong assumption that the
hidden dimensions of a GCN should be considerably smaller than that of input features. A concurrent
work Dorylus (Thorpe et al., 2021) proposes to build a fine-grain pipeline along each compute
operation in GCN training and supports asynchronous usage of stale features. However, staleness of

Under review as a conference paper at ICLR 2022

Graph ‘9{‘ —— Timeline of (a) Timeline of PipeGCN—>
@Ae Iteration #1 lteration #2 Iteration #1 Iteration #2
Partition Part 1

@@fl@@ @@ﬂ@@ : :

Compute
CommunicalelComputel--- CommunicatelComputel--- |::> Communicate — Compute

Communicate —>

Pipeline
@ e Boundary Node e o ®®Il®© ©@]l@® 1 1
A) A 3 Part 3 alals ee o o
Communicate Boundary Feature & Grad
a) Vanilla partition-parallel trainin b) Timeline of vanilla partition-parallel trainin (c) PipeGCN
g g

Figure 1: An illustration comparison between vanilla partition-parallel training and Pipe GCN.

feature gradients is neither analyzed nor considered for convergence proof, let alone error reduction
methods for the incurred staleness.

Asynchronous Distributed Training. Many Table 1: Comparison with Pipe-SGD.
prior works have been proposed for asyn- Method Pipe-SGD PipeGCN
chronous distributed training of DNNSs, such as T Large Model, L E
Hogwild! (Niu et al., 2011), SSP (Ho et al., arget Small Feature arge Feature
2C i et al., 2014). . .
2013), and MXNet (L1 et al.,, ()14)' Most Staleness Weight Gradients Features ar}d
are based on the parameter server architecture Feature Gradients
with multiple workers running asynchronously Reduce AllReduce of Aggregation of
to hide communication overhead of each other, Overhead Weight Gradient Feature/Feature Grad.
at a cost of using stale weight gradients from Con\l/{erégence O(T2) O(T—3)

ate

previous iterations. Similarly, other works like
Pipe-SGD (L et al., 2018) pipeline communication with local computation of each worker, trad-
ing staleness of weight gradients for a better training efficiency (see details in Tab. 1). Nonethe-
less, these works are for large models with small data, where communication overhead of model
weights/gradients are substantial but data feature communications are marginal, if not none. Besides,
most asynchronous DNN training focus on convergence with stale weight gradients of models, rather
than stale features/feature gradients. Another direction is to partition a large model along its layers
across multiple GPUs and then stream in the data batch through the layer pipeline, e.g., PipeDream
(Harlap et al., 2018) and PipeMare (Yang et al., 2021). However, it is also designed for large models
with small data and thus not well suited for GCNSs. In a nutshell, little effort has been made to study
pipelined training or asynchronous distributed training of GCNs, where feature communication is the
major overhead , let alone corresponding theoretical convergence proofs.

GCNs with Stale Features/Feature Gradients. Several recent works have been proposed to adopt
either stale features (Chen et al., 2018; Cong et al., 2020) or feature gradients (Cong et al., 2021) in
GCN training. Nevertheless, their convergence analysis considers only one of two kinds of staleness
and derives a convergence rate of (’)(T‘é) for pure sampling-based methods. This is, however,
limited in distributed GCN training as its convergence is simultaneously affected by both kinds of
staleness. PipeGCN proves such convergence with both stale features and feature gradients and offers
a better rate of O(T_%). Furthermore, none of previous works has studied the errors incurred by
staleness which harms the convergence speed, while PipeGCN develops a low-overhead smoothing
method to reduce such errors.

3 THE PROPOSED PIPEGCN FRAMEWORK

Overview. To enable efficient distributed GCN training, we first identify the two bottlenecks
associated with vanilla partition-parallel training: substantial communication overhead and frequently
synchronized communication with computation, and then address them directly by proposing a novel
strategy, PipeGCN, to pipeline the communication and computation stages across two adjacent
iterations in each partition of distributed GCN training, thus breaking the synchrony and hiding the
communication overhead, as shown in Fig. 1 (c). It is non-trivial to achieve efficient GCN training
with such a pipeline method, as staleness is incurred in communicated features/feature gradients and
more importantly little effort has been made to study the convergence guarantee of GCN training
using stale feature gradients. This work takes an initial effort to prove both the theoretical and

Under review as a conference paper at ICLR 2022

Time —>

Current Iteration

—1 I 2777774 it
. i 1 Kee| g - Received from
g} Inner Feature m— -} L1 Feat Feature Gradient — P * other subgraphs

Boundary Feat.{ |z L7774+ Send

| | | | | |
| Communicate | L1 Forward | Communicate | L2 Forward| | L2 Backward | Communicate | L1 Back. | Update|

(a) Vanilla partition-parallel training of GCNs (per-partition view).

e Previous Iteration i Current Iteration

From Current lteration £ . §+
I V2777774

; KZZZZZ7Za
From Previous lteration { 555554

L1 For. | L2 For.| IL2 Back. | L1 Back. |Up. L1 Forward i L2 Forwardl | L2 Backward i L1 Backward | Updatel

Communicate for Next L1 Forward \ Communicate
| Communicate for Next L2 Forward l | Communicate |
[Communicate for Next L1 Backward] | Communicate |

(b) PipeGCN (per-partition view).
Figure 2: A detailed comparison between vanilla partition-parallel training of GCNs and PipeGCN.

empirical convergence of such a pipeline GCN training method, and for the first time finds its
convergence rate to be close to that of vanilla training without staleness. Furthermore, we propose a
low-overhead smoothing method to reduce the errors due to stale features/feature gradients for further
improving the convergence.

3.1 BOTTLENECKS IN VANILLA PARTITION-PARALLEL TRAINING

Significant communication overhead. Fig. 1 (a) illustrates vanilla partition-parallel training,
where each partition holds inner nodes that come from the original graph and boundary nodes
that come from other subgraphs. These boundary nodes are demanded by the neighbor aggregate
of GCNs across neighbor partitions. E.g., in Fig. 1 (a), node-5 needs nodes-[3,4,6] residing on
other partitions for calculating Equ. 1. Therefore, it is the features/gradients of boundary nodes
that dominate the communication overhead in distributed GCN training. Note that the amount of
boundary nodes can be excessive and far exceeds the inner nodes (up to 5.5 X in our evaluations), as
the boundary nodes are replicated across partitions and scale with more partitions. Besides the sheer
size, communication of boundary nodes occurs for each layer and for both forward and backward
passes, making communication overhead substantial. We evaluate such overhead in Tab. 5 and find
communication to be dominant, which is consistent with CAGNET (Tripathy et al., 2020).

Frequently synchronized communication. Note Table 2: The substantial communication over-
that this communication of boundary nodes must be head in vanilla partition-parallel training of
finished before calculating Equ. 1 and Equ. 2, which GCNs. The Comm. Ratio is calculated by
Jforces a synchronization between communication and communication time divided by total training
computation and results in a full sequential execution, time. Detailed setting is in Sec. 4.

as shown in Fig. 1 (b). Thus, for most of training time,

each partition is waiting for tedious communication Dataset # Partition Comm. Ratio
to finish before doing the actual compute work, and Reddit 2 65.83%
this repeats frequently for each GCN layer and for ‘5‘ gé?ggo
both f d and backward . . P
[0) orward an ackward passes ngn pr()duc[s 10 85.79%
3 61.16%
Yelp 6 76.84%

3.2 THE PROPOSED PIPEGCN METHOD

Fig. 1 (c¢) illustrates the high-level overview of PipeGCN, which pipelines the communicate and
compute stages spanning two iterations for each GCN layer. Fig. 2 further provides the detailed
end-to-end flow, where PipeGCN removes the heavy communication overhead in the vanilla approach
by breaking the synchronization between communicate and compute and hiding it with compute of
each GCN layer. This is achieved by deferring the communicate to next iteration’s compute (instead
of serving the current iteration) such that compute and communicate can run in parallel. Inevitably,
staleness is introduced in the deferred communication and results in a mixture usage of fresh inner
features/gradients and staled boundary features/gradients.

Analytically, PipeGCN is achieved by modifying Equ. 1. For instance, when using a mean aggregator,
Equ. 1 and its corresponding backward formulation become:

1
2
3
4
5

6

7
8
9

10

11

12

13

14

15
16

17

18

19

20

21

22
23
24
25
26
27
28
29
30
31
32
33

34
35

Under review as a conference paper at ICLR 2022

Algorithm 1: Training a GCN with PipeGCN (per-partition view).

Input: partition number n, partition id 4, graph partition G;, propagation matrix P;, node feature X, label
Y, boundary node set B3;, learning rate 7, initial model Wy

Output: trained model Wr

Vi < {nodev € G; : v ¢ B;} > create inner node set
Broadcast B; and Receive [B1, - - - , By]
[Si’l, s ,Siﬂn] — [B1 NV, -, BNV
Broadcast V; and Receive [V1, -+, Vy]
[S1yiy 3, Snyi] < [BiN Vi, -+, BiNVy,]
HO®)él } > initialize node feature, set boundary feature as 0
fort:=1—Tdo
for/{:=1— Ldo > forward pass
if t > 1 then
wait until threadip completes
[Hgl:l), RN Hg;il)] «~[BY,... BY] > update boundary feature
end
with threadif) > communicate boundary features in parallel
‘ Send [Héi:l), e ,H‘(Si_nl)} to partition [1, - - - , n] and Receive [B\”), .-, B{Y]
H ‘(fl) — o(P,H*Y Wt(?l) > update inner nodes feature
end
(L)
(L) dLoss(HVi ,Y3)
ol
for/{ =1L — 1do > backward pass
T
ng> — [PZ'H“*U] (J\(,? o a’(P,'H(“l)Wt(f)l)) > calculate weight gradient
if / > 1 then
JEY — pT (J\(/? oo’ (P,H “’UWX)I)) [Wt(f)l]-r > calculate feature gradient
if £ > 1 then
wait until threadl(f) completes
forj:=1—ndo
‘ J‘(Sf_;_l) — J éf;l) + CJ(-[) > accumulate feature gradient
end '
end
with threadgg) > communicate boundary feature gradient in parallel
‘ Send [Jf;:”, RN J&(gi_’il)] to partition [1, - - - ,n] and Receive [C\?,--- , C{"]
end
end
G < AllReduce(G;) > synchronize model gradient
Wi ¢~ Wi1 — G > update model
end
return Wp
2(t0) = MEAN ({hﬁf’“l) | ue N(w)—Bw)}U{hi1Y | ue B(v)}) (3)
t0) _ i s (t41) 1 Cs(t—1,041)
6hu - Z d 6% + Z d, 5er “)

v

viu€N (v)—B(v) viu€B(v)

where B is the set of boundary neighbors of v, d,, is the degree of node v, and (53’2) is the gradient
approximation of variable x at layer ¢ and iteration ¢. Lastly, PipeGCN’s details are shown in Alg. 1.

3.3 PIPEGCN’S CONVERGENCE GUARANTEE

Staleness of communicated boundary features/gradients is the major challenge of PipeGCN, due to its
unknown impact to the convergence. Here we provide convergence analysis under three assumptions:

Assumption 3.1. The loss function Loss(-, -) is Cjss-Lipschitz continuous and Ljygs-smooth w.rt. to
the input node embedding vector; i.e., |Loss(h'™) y) — Loss(h'"),4)| < Clos || — W) ||5 and

Under review as a conference paper at ICLR 2022

HVLoss(h(L y) — VLoss(h') y)|la < Ligss||WE) — W E)|| where h is the predicted label and y
is the correct label vector.

Assumption 3.2. The activation function o(-) is C’ Lipschitz continuous and Ls-smooth, i.e.,
lo (=) = o(z"O)ll2 < Co |2 = 2" O3 and [|o" (21) = o' (2" D) ||z < Lo |21 — 2"O|2.
Assumption 3.3. For any { € [L], the norm of weight matrices, the propagation matrix, and the

input feature matrix are bounded: |W < < Bp, || X||r < Bx. (This generic
assumption is also used in (Chen et al., 2018; Liao et al., 2020; Garg et al., 2020; Cong et al., 2021).)

Then we provide the convergence rate of PipeGCN in the following theorem:

Theorem 3.1. Under Assumptions 3.1, 3.2, and 3.3, we can derive the following by choosing a

learning rate n = \f and number of training iterations T' = (E(Q(l)) — ﬁ(&*))Eg*% :

T
1
T Z IVLEOED)2 < O(e)
=1

where € > 0 is an arbitrarily small constant, L(-) is the loss function, 0®) is the parameter vector at
iteration t, and

U = BpBwCy, Upax = max{1,U"}, S = US [?>B% B%C,ClpssU

max

R= Closs (2L S + U3 O OlossBXL)

max o

E = LBP(UmaxBX(CgS(Closs + Lloss) + R(LUmax + UL)) + C?;Closss)

Therefore the convergence rate of PipeGCN is O(ng), which is better than sampling-based
method (O(T*%)) (Chen et al., 2018; Cong et al., 2021) and close to full-graph training (O(T~1)).
The detailed proof can be found in Appendix A.

3.4 THE PROPOSED SMOOTHING METHOD

The proposed smoothing method aims at reducing errors incurred by stale features/(feature gradients)
at a minimal overhead. Here we take the smoothing of feature gradient as an example, but the same
formulation also applies to stale features. To improve the approximate gradients for each feature,
fluctuations in feature gradients between adjacent iterations should be reduced. Therefore, we apply
a light-weight moving average for the feature gradients of each boundary node v as follow:

010 = 48+ (1 — sl

where & ,(zf,’z) is the smoothed feature gradient at layer ¢ and iteration ¢, and -y is the decay rate. To
integrate the smoothed feature gradient into the backward pass, we rewrite Equ. 4 as:

R 1 1 4
5&@) _ Z CT . 5£i,£+1) + Z di . 5271,%1)
viueN (v)—B(v) ° viueBw) ¥
Such smoothing of stale features and gradients can thus be independently applied to PipeGCN.

4 EXPERIMENT RESULTS

We evaluate PipeGCN on four large-scale datasets, Reddit (Hamilton et al., 2017), ogbn-products (Hu
et al., 2020), Yelp (Zeng et al., 2020), and ogbn-papers100M (Hu et al., 2020). More details are
provided in Tab. 3. To ensure robustness and reproducibility, we fix (i.e., do not tune) the hyper-
parameters and settings for PipeGCN and its variants throughout all experiments. To implement
partition parallelism (for both vanilla distributed GCN training and PipeGCN), the widely used
METIS (Karypis & Kumar, 1998) partition algorithm is adopted for graph partition with its objective
set to minimize the communication volume. We implement PipeGCN in PyTorch (Paszke et al., 2019)
and DGL (Wang et al., 2019). Experiments are conducted on a machine with 10 RTX-2080Ti (1 1GB),
Xeon 6230R@2. IOGHZ (187GB), and PCle3x16 connecting CPU-GPU and GPU-GPU. Only for
ogbn-papers 100M, we use 4 computational nodes (each contains 8 MI60 GPUs, an AMD EPYC 7642
CPU, and 48 lane PCI 3.0 connecting CPU-GPU and GPU-GPU) networked with 10Gbps Ethernet.
To support full-graph GCN training with the model sizes in Tab. 3, the minimum required partition
numbers are 2, 3, 5, 4 for Reddit, ogbn-products, Yelp, and ogbn-papers100M, respectively.

Under review as a conference paper at ICLR 2022

Table 3: Detailed experiment setups: graph datasets, GCN models, and training hyper-parameters.

Dataset #Nodes #Edges Feat.size GraphSAGE model size Optimizer LearnRate Dropout # Epoch
Reddit 233K 114M 602 4 layer, 256 hidden units Adam 0.01 0.5 3000
ogbn-products 2.4M 62M 100 3 layer, 128 hidden units Adam 0.003 0.3 500
Yelp 716K 7.0M 300 4 layer, 512 hidden units Adam 0.001 0.1 3000
ogbn-papers 1 00M 111M 1.6B 128 3 layer, 48 hidden units Adam 0.01 0.5 1000

For convenience, we here name all methods: vanilla partition-parallel training of GCNs (GCN),
PipeGCN with feature gradient smoothing (PipeGCN-G), PipeGCN with feature smoothing
(PipeGCN-F), and PipeGCN with both smoothing (PipeGCN-GF). The default decay rate -y for all

smoothing methods is set to 0.95.

4.1 IMPROVING TRAINING THROUGHPUT OVER FULL-GRAPH TRAINING METHODS

Fig. 3 compares the training throughput between PipeGCN
and SOTA full-graph training methods (ROC (Jia et al.,

2020) and CAGNET (Tripathy et al., 2020)). We ob-
serve that both vanilla partition-parallel tralnmg (GCN) and
PipeGCN greatly outperform ROC and CATNET across
different number of partitions, because they avoid both the

.' .. . 2
i 2 1
broadcast (CAGNET). Specifically, GCN is 3.1~6.2x 0

expensive CPU-GPU swaps (ROC) and the redundant node

faster than ROC and 2.1~7.9 x faster than CAGNET (c=2). Number of GPUS

PipeGCN further improves upon GCN, achieving a through- - Fjgyre 3: Throughput comparison on
put improvement of 5.6~9.9x over ROC and 3.9~14.7x Reddit. Each partition uses one GPU
over CAGNET (c=2). The comparison on more datasets (except CAGNET (¢=2) uses two).

can be found in the Appendix B, which consistently show

the advantages of PipeGCN. Furthermore, we further provide the epoch time breakdown of ROC and
CAGNET on Reddit in the Appendix F for understanding where PipeGCN gains significant savings
over the baseline algorithms. Considering the substantial performance gap between ROC/CAGNET
and GCN, we focus on comparing GCN with PipeGCN for the reminder of the section. Note that
we are not able to compare with NeuGraph (Ma et al., 2019), AliGraph (Zhu et al., 2019), and
P3 (Gandhi & Iyer, 2021) as their codes are not open source.

3 ROC =3 GCN
41 3 CAGNET (c=1) [E=9 PipeGCN
[CAGNET (c=2) BB PipeGCN-GF

w

Throughput (epochs/s)

4.2 IMPROVING TRAINING THROUGHPUT WITHOUT COMPROMISING ACCURACY

We compare the training performance of both test score and training throughput between GCN and
PipeGCN in Tab. 4. We can see that PipeGCN without smoothing already achieves a comparable test
score with the vanilla GCN training on both Reddit and Yelp, and incurrs only a negligible accuracy
drop (-0.08%~-0.23%) on ogbn-products, while boosting the training throughput by 1.72x ~ 2.16
across all datasets and different number of partitions, thus validating the effectiveness of PipeGCN.

With the proposed smoothing method plugged in, PipeGCN-G/F/GF is able to compensate the
dropped score of vanilla PipeGCN, achieving an equal or even better test score as/than the vanilla
GCN training (without staleness), e.g., 97.14% vs. 97.11% on Reddit, 79.36% vs. 79.14% on
ogbn-products and 65.28% vs. 65.26% on Yelp. Meanwhile, PipeGCN-G/F/GF enjoys a similar
throughput improvement as vanilla PipeGCN, thus validating the negligible overhead of the proposed
smoothing method. Therefore, pipelined transfer of features and gradients greatly improves the
training throughput while maintaining the full-graph accuracy.

Note that our distributed GCN training methods consistently achieve higher test scores than SOTA
sampling-based methods for GraphSAGE-based models reported in (Zeng et al., 2020) and (Hu et al.,
2020), confirming that the full-graph training technique is preferred to obtain better GCN models.
For example, the best sampling-based method achieves a 96.6% accuracy on Reddit (Zeng et al.,
2020) while full-graph GCN training achieves 97.1%, and PipeGCN improves the accuracy by 0.28%
over sampling-based GraphSAGE models on ogbn-products (Hu et al., 2020). Such an advantage of
full-graph training is also validated by recent works (Jia et al., 2020; Tripathy et al., 2020).

4.3 MAINTAINING CONVERGENCE SPEED

To understand PipeGCN’s influence on the convergence speed, we compare the training curve among
different methods in Fig. 4. We observe that the convergence of PipeGCN without smoothing is
still comparable with that of the vanilla GCN training, although PipeGCN converges slower at the

Under review as a conference paper at ICLR 2022

Table 4: Training performance comparison among vanilla partition-parallel training (GCN) and
PipeGCN variants (PipeGCN*), where we report the test accuracy for Reddit and ogbn-products,
and the F1-micro score for Yelp. Highest performance is in bold.

Dataset Method Test Score (%) Throughput
GCN 97.1140.02 1x (1.94 epochs/s)
Reddit P?peGCN 97.1240.02 1.91x
(2 partitions) PipeGCN-G 97.14+0.03 1.89x
PipeGCN-F 97.094+0.02 1.89x
PipeGCN-GF 97.124+0.02 1.87x
GCN 97.114+0.02 1x (2.07 epochs/s)
Reddit P@peGCN 97.04+0.03 2.12x
(4 partitions) PipeGCN-G 97.09+0.03 2.07x
PipeGCN-F 97.104+0.02 2.10x
PipeGCN-GF 97.104+0.02 2.06 %
GCN 79.14£0.35 1x (1.45 epochs/s)
ogbn-products PipeGCN 79.0640.42 1.94x
5 partitions) PipeGCN-G 79.20+0.38 1.90x
(5 parti PipeGCN-F 79.36-0.38 1.90%
PipeGCN-GF 78.86+0.34 1.91x
GCN 79.141+0.35 1x (1.28 epochs/s)
ogbn-products PipeGCN 78.911+0.65 1.87x
(10 partitions) PipeGCN-G 79.08+0.58 1.82x
p PipeGCN-F 79.2140.31 1.81x
PipeGCN-GF 78.77+£0.23 1.82x
GCN 65.2640.02 1x (2.00 epochs/s)
Yelp PipeGCN 65.27+0.01 2.16x
(3 partitions) PipeGCN-G 65.2640.02 2.15%
PipeGCN-F 65.261+0.03 2.15x%
PipeGCN-GF 65.2640.04 2.11x
GCN 65.2640.02 1x (2.25 epochs/s)
Yelp P%peGCN 65.244-0.02 1.72x
(6 partitions) PipeGCN-G 65.2840.02 1.69x
PipeGCN-F 65.25+0.04 1.68x
PipeGCN-GF 65.2640.04 1.67x

Reddit (2 partitions)

Reddit (4 partitions)

ogbn-products (10 partitions)

ogbn-products (5 partitions)
79 AR NN SGNORN, S

©
N
©
N

©
-
©
-

— GCN
PipeGCN
—— PipeGCN-G
—— PipeGCN-F
—— PipeGCN-GF

— GCN
PipeGCN
—— PipeGCN-G
—— PipeGCN-F
—— PipeGCN-GF

— GCN
PipeGCN
—— PipeGCN-G
—— PipeGCN-F
—— PipeGCN-GF

— GCN
PipeGCN
—— PipeGCN-G
—— PipeGCN-F
—— PipeGCN-GF

N

©
&
©
&
S NN
G o
NN N
G o

©
®
©
®

Test Accuracy (%)

Test Accuracy (%)

Test Accuracy (%)
Test Accuracy (%)

~
=
~
=

0 1000 2000
Epoch

3000 0 1000 2000

Epoch

3000 0 500

Epoch

1000 0 500

Epoch

1000

Figure 4: Epoch-to-accuracy comparison among vanilla partition-parallel training (GCN) and
PipeGCN variants (PipeGCN*), where PipeGCN and its variants achieve a similar convergence as
the vanilla training (without staleness) but are twice as fast in wall-clock time (see Tab. 4).

early phase of training and then catches up at the later phase, due to the staleness of boundary
features/gradients. With the proposed smoothing methods, PipeGCN-G/F boosts the convergence
substantially and matches or even outperforms (esp. at late training phase) the convergence speed of
vanilla GCN training. There is no clear difference between PipeGCN-G and PipeGCN-F. Lastly, with
combined smoothing of features and gradients, PipeGCN-GF can acheive the same convergence speed
as vanilla GCN training (e.g., on Reddit) but can overfit gradually similar to the vanilla GCN training,
which is further investigated in Sec. 4.4. Therefore, PipeGCN maintains the convergence speed
w.r.t the number of epochs while reduces the end-to-end training time by around 50% thanks to
its boosted training throughput (see Tab. 4).

4.4 BENEFIT OF PIPEGCN WITH STALENESS SMOOTHING

Error Reduction and Convergence Speedup. To understand why the proposed smoothing tech-
nique (see Sec. 3.4) speeds up convergence, we compare the error incurred by the stale communication
between PipeGCN and PipeGCN-G/F. The error is calculated as the Frobenius-norm of the gap
between the correct gradient/feature and the stale gradient/feature used in PipeGCN training. Fig. 5

Under review as a conference paper at ICLR 2022

Backward Gradient Error Forward Feature Error

s| ——PipeGCN (layer 1) ----PipeGCN-G (layer 1) ——PipeGCN (layer 1) ----PipeGCN-F (layer 1) 79
s PIPeGCN (layer 2) --~-PipeGCN-G (layer 2) | ~>}i ——PipeGCN (layer 2) --~ PipeGCN-F (layer 2) | —
S| —PiPeGCN (layer 3) ----PipeGCN-G (layer 3) | S | ——PipeGCN (layer 3) ----PipeGCN-F (layer 3) =78
X X 2.5} >

77
£ £ e
S 521 3 ’
= = g6 y=0 (PipeGCN)
ER 515 7 —v=os3
5 ac) Q75 — y=05
8. Sio o
=M = 74 y=0.95
0.5
500 1000 1500 ° 500 1000

Epoch Epoch

Figure 5: Comparison of the resulting feature gradient error Figure 6: Test-accuracy convergence
and feature error from PipeGCN and PipeGCN-G/F at each comparison among different smooth-
GCN layer on Reddit (2 partitions). PipeGCN-G/F here ing decay rates ~ in PipeGCN-GF on
uses a default smoothing decay rate of 0.95. ogbn-products (10 partitions).

Gradient Error (Layer 1) Gradient Error (Layer 2) Feature Error (Layer 1) Feature Error (Layer 2)

w W
2 @
A
I
°
°
©
S

Frobenius Norm (x102)
arenlusg
> o o
:
[}
o
&
Frobenius Norm (x10%)
ESY)

¢
iy
5
L
n
B
3
H

£y

v
?

Frobenius Norm (x102)
Frobenius Norm (x10%)

IS

[560 100 [560
Epoch Epoch

Figure 7: Comparison of the resulting feature gradient error and feature error when adopting
different decay rates v at each GCN layer on ogbn-products (10 partitions).

compares the error at each GCN layer. We can see that the proposed smoothing technique (PipeGCN-
G/F) reduces the error of staleness substantially (from the base version of PipeGCN) and this benefit
consistently holds across different layers in terms of both feature and gradients errors, validating the
effectiveness of our smoothing method and explains its improvement to the convergence speed.

Overfitting Reduction. To understand the effect of staleness smoothing on model overfitting, we also
evaluate the test-accuracy convergence under different decay rates y in Fig. 6. Here ogbn-products is
adopted as the study case because the distribution of its test set largely differs from that of its training
set. From Fig. 6, we observe that smoothing with a large v (0.7/0.95) offers a fast convergence, i.e.,
close to the vanilla GCN training, but overfits rapidly. To understand this issue, we further provide
detailed comparisons of the errors incurred under different v in Fig. 7. We can see that a larger v
enjoys lower approximation errors and makes the gradients/features more stable, thus improving the
convergence speed. The increased stability on the training set, however, constrains the model from
exploring a more general minimum point on the test set, thus leading to overfitting as the vanilla GCN
training. In contrast, a small v (0 ~ 0.5) mitigates this overfitting and achieves a better accuracy
(see Fig. 6). But a too-small vy (e.g., 0) gives a high error for both stale features and gradients (see
Fig. 7), thus suffering from a slower convergence. Therefore, a trade-off between convergence speed
and achievable optimality exists between different smoothing decay rates, and v = 0.5 combines the
best of both worlds in this study.

4.5 TRAINING TIME IMPROVEMENT BREAKDOWN Table 5: Training time breakdown
To further understand the training time improvement of on ogbn-papers [00M.

PipeGCN, we breakdown the epoch time into three parts (intra- Method | Total Comm. Reduce
partition computation, inter-partition communication, and re- 'GCN 10.5s 6.6s 1.2s
duce of model gradient) and provide an example in Tab. 5. _ PipcGCN [6.5s 2.6s 1.2s
More results can be found in Appendix D. PipecGCN-GF| 6.7s 2.8s 1.1s

5 CONCLUSION

In this work, we propose a new method, PipeGCN, for efficient full-graph GCN training. PipeGCN
pipelines communication with computation in distributed GCN training to hide the substantial
communication overhead. Furthermore, we take an initial effort to understand the convergence of
GCN training with both stale features and feature gradients, and further propose a smoothing method
to speedup the convergence of vanilla PipeGCN. Extensive experiments validate the advantages of
Pipe GCN over both vanilla training (without staleness) and SOTA full-graph training.

Under review as a conference paper at ICLR 2022

REFERENCES

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942-950. PMLR, 2018.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257-266, 2019.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sampling
with provable guarantees for fast training of graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1393-1403,
2020.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in learning
graph convolutional networks. arXiv preprint arXiv:2103.02696, 2021.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed deep graph learning at scale. In
15th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 21), pp.
551-568, 2021.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419-3430. PMLR,
2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024-1034, 2017.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg Ganger,
and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377, 2018.

Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee, Phillip B Gibbons, Garth A
Gibson, Gregory R Ganger, and Eric P Xing. More effective distributed ml via a stale synchronous
parallel parameter server. Advances in neural information processing systems, 2013:1223, 2013.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy,
scalability, and performance of graph neural networks with roc. Proceedings of Machine Learning
and Systems (MLSys), pp. 187-198, 2020.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on scientific Computing, 20(1):359-392, 1998.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. Advances in Neural Information Processing Systems,
27:19-27, 2014.

Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and Alexander Schwing.
Pipe-sgd: A decentralized pipelined sgd framework for distributed deep net training. arXiv preprint
arXiv:1811.03619, 2018.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and Yafei Dai. Neugraph:
parallel deep neural network computation on large graphs. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), pp. 443-458, 2019.

10

Under review as a conference paper at ICLR 2022

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. arXiv preprint arXiv:1106.5730, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in neural information processing systems, pp.
8026-8037, 2019.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei,
Keval Vora, Ravi Netravali, Miryung Kim, et al. Dorylus: affordable, scalable, and accurate gnn
training with distributed cpu servers and serverless threads. In 15th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 21), pp. 495-514, 2021.

Alok Tripathy, Katherine Yelick, and Aydin Buluc. Reducing communication in graph neural network
training. arXiv preprint arXiv:2005.03300, 2020.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and Christopher De Sa.
Pipemare: Asynchronous pipeline parallel dnn training. Proceedings of Machine Learning and
Systems, 3, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
974-983, 2018.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2020.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, pp. 5165-5175, 2018.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: A comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730,
2019.

11

Under review as a conference paper at ICLR 2022

A CONVERGENCE PROOF

In this section, we prove the convergence of PipeGCN. The essential step is to prove that the bound
of the gradient error is controlled by learning rate 7.

A.1 NOTATIONS

For a given graph G = (V, £) with an adjacency matrix A, feature matrix X, we define the propagation
matrix P as P = D~Y/2AD~Y/2 where A= A+1,D, ., =Y, Ay, One GCN layer performs
one step of feature propagation (Kipf & Welling, 2016) as formulated below

HO =X
7O — pgE-Dw®
HO — O'(Z(K))

where H©), W) and Z® denote the embedding matrix, the trainable weight matrix, and the
intermediate embedding matrix in the ¢-th layer, respectively, and o denotes the non-linear function.
For an L-layer GCN, the loss function is denoted by £(#) where § = vec[W) W) ... W],
We define the ¢-th layer as a function f(9)(-,).
O (H(ffl)7 W(f)) — U(pH(Zfl)W(f))

and its gradient w.r.t. the input embedding matrix can be represented as

JE — va(f)(J(f)’ H(f—l)7 W(L’)) — pPTpm® [W(f)]T
and its gradient w.r.t. the weight can be represented as

a0 — wa(z)(J(e), HD, W(f)) — [pH(ffl)]TM(Z)
where M) = J) 0 ¢'(Z®)) and o denotes Hadamard product.
For partition-parallel training, we can split P into two parts P = P;, + P54 where P;,, represents inter-

partition propagation and P4 denotes intra-partition propagation. For PipeGCN, we can represent
one GCN layer as below

ﬁ(t70) =X
ZWO — p gDt o p, LDy
TG0 — U(Z(tyf))
where ¢ is the epoch number and W is the weight at epoch ¢ layer £. We define the loss function
for this setting as £(0®)) where 0) = vec[W 1) W *2) ... W (L)) We can also summarize the
layer as a function f(4:9) (. .)
FEO G W0y = g(p, HGDW GO 4 p gL D 60
Note that H(*=1:¢=1 i not a part of the input of f(t"g) (-, -) because it is a constant for the ¢-th epoch.
The corresponding backward propagation follows the following computation
JEl=1) VHJT(M)(j(M)7 H®D W(M))
GO — VWJT(tl)(j(t,é),f](tl—l), W(tl))

where N _ _
MEO — 7.0 4 a’(z(t-ﬁ))

VHJ’F(t,Z)(j'(t,Z)’f[(t,zfl)’/V\V/(t,l)) — P;M(t,é) [’V\V/(tl)}T + Pbgj’\\j(tfl,f) [W(tfl,l)]"r
wa(t’e)(j(t’z),I;T(M_l),W(t7£)) — [Pm_ff(m—l) + Pbdﬁ(t—l,é—l)]TM(t,Z)
Again, J#~19 is not a part of the input of V57 f-0 (-, -,) or Vyy fE0 (-, -) because it is a constant
for epoch ¢. Finally, we define VL(A®)) = vec[G:1), G2 ... G(1)], 1t should be highlighted

that the ‘gradient’ V57 f(-0 (-, ., .), Vi fEO (-, -,) and VL(6®)) are not the correct gradient for the
corresponding forward process due to the stale communication. Properties of gradient cannot be
directly applied to these variables.

The definitions of other constants Clyss, Lioss, Co, Lo, Bw, Bp, Bx can be found in Assumption
3.1-3.3 of the main content.

12

Under review as a conference paper at ICLR 2022

A.2 BOUNDED MATRICES AND CHANGES

Lemma A.1. For any ¢ € [L], the Frobenius norm of node embedding matrices, gradient passing
from the (-th layer node embeddings to the (£ — 1)-th, gradient matrices are bounded, i.e.,

1O e, | H O P < B,

[T O g, |79 < By,
MO p, | MG < Bag,

IGONr, 1G9 < Be

where
BH = m?,X(CngBw)ZBX

Bj = m?X(OaBPBW)ZCloss

By = CyBy
Bg = BpBgBu
Proof. The proof of |[H® | < By and ||J© | < By can be found in Proposition 2 in (Cong
etal., 2021). By induction,

Hﬁ(t’OHF _ ”O_(Pmﬁ—(t,é—l)W(t,é) + Pbdﬁ(t—l,é—l)wu,f))”F
< CoBw || Pin + Poallr(CoBpBw)" ' Bx
< (C,BpBw)'Bx

[TG = HPJL (j(t,e) OU/(Z(t,Z))) WO 4 pT (j(t_u) OU/(Z(t—l,Z))) [W(t—u)]TH

< CyBw ||Pin, + Podllp(Co Bp By)X Closs
S (CUBPBW)L_e_‘—lCIoss

F

IMO g =79 0.0 (ZO)] 5 < C, B,
IMCO) p = T 0 0'(Z49) | < CoBy

G — [pH(f—l)]TM(f)
< BpBpBy

Gl — [me{'(tlfl) + Pbdﬁ(tfl,zfl)}TM(t,z)
< BpByBy

Because the gradient matrices are bounded, the weight change is bounded.

Corollary A.1. Foranyt, {, |[W&0 — W10 . < By = nBg where 1 is the learning rate.

Now we can analyze the changes of intermediate variables.
Lemma A.2. For any t,(, we have || Z(9) — Z(0=10||p < Bay, |H®) — HO-L0|| p < Bay,

L-1)
where Baz = Y. CLBS By, By Baw and Bay = CyBaz.

=0

13

Under review as a conference paper at ICLR 2022

Proof. When ¢ = 0, | H(:0) — H(#=1.0)||; = || X — X || = 0. Now we consider £ > 0 by induction.

||§(t,e) _ Z(t—uz)“F :H(Pmﬁ(t,é—l)/v‘[}(t,é) + Pbdﬁ(t_u_nw(t,g))
— (P HO LD =10 o p 2L =10y
=|| Py (HGEDW (00— g1 3p7(t=1,0)
4 Pbd(ﬁ(tfl,efl)W(t,Z) _ f{'(t72,£fl)W(t71,l))”F

Then we analyze the bound of s+ = ||[Ht=D (40 — Ft=Le=Dj(=10)

s < |[FEDWEO _ FE=DFe—10| . | FEEDe-10 _ gi-LeDppe-10)
< By |[W®) — W10 o + By | H®-D — FE-14-1)
According to A1, [W0 — W(=L0| ;< Bayw. By induction, ||H (=) — H=LED]| 0 <
=2 . _
> C(Z}+1B;:+1B§VB 1 Baw. Combining these inequalities,
=0

-1
s < ByBaw + Y _ CLB}pBly BuBaw
i=1

Plugging it back, we have
HZ(t,é) _ Z(tfl,é)”F SHBR(ﬁ'(t,Zfl)W(t,Z) o f_j(tfl,éfl)W(tfl,E))
+ Pbd(ﬁ(tfllfl)W(t,Z) _ ﬁ-(t72,€71)W(t71,8))”F

-1
<Bp (BHBAW + Z Cf,BfaBéVBHBAW>

=1

~
[

=Y C!BS'Bi,ByBaw

K2

Il
<

[F40 — 0 =o(Z00) — o209
SCUHZ(t,Z) i Z(tfl,E)HF
gCUBAZ

Lemma A.3. ||J®0 — JO=10|| o < BA; where

L—1
By =max(BpBwCo)' BariLioss + (BuBaw + LeBsBazBw) Y Bp' Biy C
=0

Proof. For the last layer (¢ = L), [|J®1) — JO-1D)|| o < Lig |[HGE) — HEL1) || p < Lo Ban.
For the case of ¢ < L, we prove the lemma by using induction.

”j(t,zq) _ j(tq,@q)”F | (Pil’M(t,e) [W(t,l)]T +szj\7(t7u) [W(tq,z)}T)
_ (P;M(t—u) [W(t—l,é)]T + PZLM@—Q,@) [W(t—Z,Z)}T) Ir
< HP_T (M(t,l) [WEOT _ =10 [VNV(t—u)]T) H
—_ m Ia

+ || P (Ao et oyt — ez ae-zo)|

14

Under review as a conference paper at ICLR 2022

We define s(+0) = Hﬁ(t’e) [WEO]T — p(E=10 [(t=1.0]T HF and analyze its bound.

sh0 < HM(t,Z) W®OT _ 70 [W(tq,e)]THF

n HM(M) [WE-LO)T _ ppt=1.0 [W(t—l,é)]TH
F

<By, H[W(t,z)]T B [’V‘[;(tq,e)]THF + By HM(M) B M(tq,e)HF

According to Corollary A.1,

WO — [W(tfu)]THF < Baw . For the second term,

HM(t,Z) - M(t—l.l) ||F
:Hj'(t,é) OO,/(Z(t,E)) B j'(tfl,é) OO,/(Z(tfl,E))”F
S‘lj(tl) ° OI(Z(t,Z)) . j(t,f) ° gl(é(tfll))”F + ”j(t,é) ° U/(Z(tfl,f)) . j(tfl,é) ° U/(Z(tfl,é))”F
SBJHU/(Z(t,Z)) _ U/(Z(t—l,é))HF + CU”j(t,Z) _ j(t—l,é) HF (5)
According to the smoothness of o and Lemma A 2, ||o’(Z®0) — ¢/(Z(¢~19)||p < L,Baz. By
induction,
”j(t,é) _ j(t—l,é) HF
L—e-1 o
< (BpBwC,) "9 BanLiss + (BuBaw + LeB;BazBw) Y Bi'BiyCl
i=0
As a result,
s®0 <ByBaw + BwBjLsBaz + BchHj(t’e) — j(t_l’é)HF

—=(BuBaw + BwBjLosBaz) + B OB c~t40) B,y L,

Lt

+ (BuBaw + LoBsBazBw) Y BbBiyCl
=1

L_é . . .

+ (BuBaw + LyBjBazBw) Z BpBy, CL
i=0

| T Je=te=n HPT (M(t,é) (WEOT _ p(t=1.0 [ﬁ;(tq,e)]T) H
m F
n HPzIz (M(t—l,é) [W(t—l,é)]T _ Mt=2.0 [W(t—z,e)]T) H

SBPS(t,f)
S(BPBch)(Liéle)BAHLloss

F

L—¢
+ (BuBaw + LoB;BazBw) Y By ' By, CL
=0

From Equation 5, we can also conclude that
Corollary A.2. [|[M®9 — Mt=19||n < Bay with Bays = ByLoBaz + CyBay.

A.3 BOUNDED FEATURE ERROR AND GRADIENT ERROR

In this subsection, we compare the difference between generic GCN and PipeGCN with the same
parameter set, i.e., § = 6(*).

15

Under review as a conference paper at ICLR 2022

LemmaAd. |2 — 70| p < Bz |H®) —HY||p < Ey where Ez = Bag Y. C:7' B, B,
L

and EH = BAH Z(CngBP)Z
=1

=1

Proof.

1IZE9 — ZO||p = ||(Pr HEDWED 4 Py DWW E0) — (PHEDWO)| 5
< ||(Pinﬁ(t7e_l) + Pbdﬁ'(t—l,f—l) — PH(Z_l))W(f)HF
= BW||P(f[(t,€—1) _ H(Z—U) + Pbd(ﬁ(t—l,é—l) _ ﬁ(t7g_1))‘|F
< BuwBp (A — HE V|l + Bar)

~ =1 _
By induction, we assume that || ¢~ — H=D||n < Bay > (C, Bw Bp)*. Therefore,
i=1

-1
129 — 29| < BwBpBan Y (CoBw Bp)’
=0
4

= Ban Y _Ci'BiyBjp
i=1
|0 = HOYp = o(Z40) = o(2) |
< CU”Z(M) _ Z(E)HF

¢
< Ban Y _(C,BwBp)'
=1

O
Lemma A.5. ||J&0 — JO||n < E; and |M®9 — M© || < Eyp with
L-1 _
E;= m;lX(BpBch)szomEH + BP(BW(BJEZLO— + BAM) + BAwBM) (BPBWCU)l
’ i=0
Ey =CoEy+ LosBjEy
Proof. When ¢ = L, | J®L) — J()|| 5 < Lio Er. We assume that
N L—t—1 ‘
[T = TN p < (BpBwCo)* ‘LiosEr +U > (BpBwCy)' (6)
i=0

L—t—1
||M(t75) — M(Z)HF < (BPBWOU)LizoaLlossEH + UCO' Z (BPBWCU)i + LUBJEZ (7)
i=0
where U = Bp(BwBjEz L, + Baw By + Bw Banr). We prove them by induction as follows.
2249 — O

= [T 0o/ (Z20:0) ~ 1 0 6" (Z0)

< ||j(t,z) o 0/(2(75,@)) _ o o' (ZO)||p + ”j(t,fz) 00! (Z20) = JO o 6/ (20| 5
< By|lo'(Z240) = o' (Z29) | ¢+ Co | T = 10|

16

Under review as a conference paper at ICLR 2022

Here |0’ (Z(t9) — ¢/ (Z®)||p < L, Ey. With Equation 6,
L—t—1
1M D — MO p < (BpBwCy)**CoLiosEri + UCy Y (BpBwC,)' + LoByEz
i=0
On the other hand,
”j(t,eq) _ J(£71)HF
—|PI M s [W(t,é)]'l’ + P;(I;M(tfl,é) [W(tfl,f)]'l' _pTp® [W“)]THF
—|PT(M MO _ M(Z))[W(Z)]T JrPT(M(tfl,é)[W(tfl,E)]T _ e [(M] e
< PTAEO = MY WO | p 4 || Py (MO 0T — MO O T) | e
< BPBWHM(M) _ (z)”F + Bp||M (t—1,0) [W(t—l,e)]‘r _ M(t,é) [’W(M)}THF
The first part is bounded by Equation 7. For the second part,
Hﬂ(tfl,é) [W(tfl,é)]'r _ M(t,f) [W(t,e)]THF
< ”M(t—l,é) [’W(t—l,e)]‘r _ M(t—l,é) [W(t,é)]THF + ”M(t—l,é) [’W(M)F _ M(t,é) [W(t,é)]THF
< BawBwm + BwBaum
Therefore,
”j(t,é—l) _ J(z—1)HF

< BPBWHM(t,Z) . M(K)HF + BPHM(t—l,l) [W(t—l,é)]'l’ . M(t,é) [W(t’z)}THF
L—¢
< (BpBwCo)" " LissEx + U Y (BpBwC,)' +U
1=1
L—¢)
= (BpBwCy)* M Ly Eny +U Z(BPBWCO')Z
1=0

Lemma A.6. ||G"0) — G| < Eg where Eq = Bp(ByEy + By Er)

Proof.
IGEO — GO p
_ H[Pmﬁ(tlfl) 4 Py HO LD TR0 [PH(Z)]TM(E)’

F

< H[Pmﬁ(t,eq) 4 Py HE D] TR0 [PH(eq)]TM(t,z)H
o F
T H[PH(Z—n]TM(t,Z) _ [PH“_I)]TM(")H

I3

<Bu(|P(H®Y — D) 4 py(HEHY - FGED) | p) + Bp By Ea
<ByBp(Ey + Bag)+ BpBuEy

By summing up from ¢ = 1 to { = L to both sides, we have
Corollary A.3. ||[VL(0) — VL(0)|2 < Eg == LEg.

According to the derivation of Eju, we observe that . contains a factor . We can rewrite Ejqg.
Corollary Ad. ||[VL(0) — VL(0)||2 < nE where

2
U = BpBwCy, Up = max{1,U"}, S = U B B3C,CiossU (Z Ui>

17

Under review as a conference paper at ICLR 2022

L—-1
R = Closs <2LO-S + UrQn,CgClossBX Z Uz>
=0

L
E = LBp (UmBX (CﬁS(ClOSS + Lioss) + R Ui> + cgclosss>

1=0
A.4 PROOF OF THE MAIN THEOREM

We first introduce a lemma before the proof of our main theorem.

Lemma A.7 (Lemma 1 in (Cong et al., 2021)). An L-layer GCN is L ;-Lipschitz smoothness, i.e.,
VL) — VL(O2)|l2 < Lyl[6h — 622

Now we prove the main theorem.
Proof. With the smoothness of the model,
LOED) < £(e®) + <v.c(9<t>), P+ 9<t>> n %H@(”” _ g2
— £(0) =y (VL) VEO®)) + TEL [V 2003
Let () = VL(O®) — VL(O®) and n < 1/L;, we have
L0V < £00) = (VLEW), VLEOD) +50) + T[TLED) + 603
< £(6W) = JIVLE3 + 515113
From Corollary A.4 we know that ||§(!)|| < E. After rearranging the terms,
IVE@O) < Z(£0) = £(0D)) +
Summing up from ¢ = 1 to 7" and taking the average,

T

1

7 2 IVLEDE < = (£(0™) = LOTD)) +n* B
t=1

(L(OW) — £(6%)) +n*E?

IN

2
T
2
T
where 0* is the minimum point of £(-). By taking n = % and T = (L£L(0WM)) — £(6%))Ee~2 with

an arbitrarily small constant £ > 0, we have

T

1

7O IVLOD)2 < 32
t=1

B IMPROVING TRAINING THROUGHPUT OVER FULL-GRAPH TRAINING
METHODS (ADDITIONAL EXPERIMENTS)

Figure 8 compares the training throughput between PipeGCN and the SOTA full-graph training
methods (ROC (Jia et al., 2020) and CAGNET (Tripathy et al., 2020)) on more datasets under that
same setting of Figure 3 of the main content. As can be seen, the advantage of PipeGCN consistently
holds, which is similar to Figure 3 of the main content.

18

Under review as a conference paper at ICLR 2022

F 20 ogbn-products T Yelp

E 3.5, OROC @GN E TIROC @GN

G - | CICAGNET (c=1) mPipeGCN G 571 CICAGNET (c=1) EPipeGCN

Q 3-01 ICAGNET (c=2) BPipeGCN-GF 8_4 CICAGNET (c=2) EIPipeGCN-GF

@ 2.5)

:2_0 = I_. :3 [] —

215 N N 2 I I

i | -2

S0 S .

|| | IRAEE |

£ ol 0N 2, JFH _ JFN

== 8 10 = 6 10
Number of GPUs Number of GPUs

Figure 8: Throughput comparison on ogbn-products and Yelp. Each partition uses one GPU (except
CAGNET (¢=2) uses two).

C MAINTAINING CONVERGENCE SPEED (ADDITIONAL EXPERIMENTS)

We provide the additional convergence curves on Yelp in Figure 9. We can see that PipeGCN and its
variants maintain the convergence speed w.r.t the number of epochs while substantially reducing
the end-to-end training time.

Yelp (3 partitions) Yelp (6 partitions)

o 3
N >
o o
N IS

3
o
o
S

— GCN

— GCN

o
Y

Test F1 Score (%)
&

Test F1 Score (%)

PipeGCN PipeGCN
56 —— PipeGCN-G 56 —— PipeGCN-G
—— PipeGCN-F —— PipeGCN-F
54 —— PipeGCN-GF 54 —— PipeGCN-GF
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Epoch Epoch

Figure 9: The epoch-to-accuracy comparison on “Yelp” among the vanilla partition-parallel training
(GCN) and PipeGCN variants (PipeGCN*), where PipeGCN and its variants achieve a similar
convergence as the vanilla training (without staleness) but are twice as fast in terms of wall-clock
time (see the Throughput improvement in Table 3 of the main content).

D TRAINING TIME IMPROVEMENT BREAKDOWN (ADDITIONAL
EXPERIMENTS)

To understand the training time improvement offered by PipeGCN, we further breakdown the epoch
time into three parts (intra-partition computation, inter-partition communication, and reduce for
aggregating model gradient) and provide the result in Figure 10. We can observe that: 1) inter-
partition communication dominates the training time in vanilla distributed training (see GCN); 2)
PipeGCN (with or without smoothing) greatly hides the communication overhead across different
number of partitions and all datasets, e.g., the communication time is hidden completely in 2-partition
Reddit and almost completely in 3-partition Yelp, thus the substantial reduction in training time; and
3) the proposed smoothing incurs only minimal overhead (i.e., minor difference between PipeGCN
and PipeGCN-GF). Lastly, we also notice that when communication ratio is extremely large (85%+),
PipeGCN hides communication significantly but not completely (e.g., 10-partition ogbn-products), in
which case we can employ those compression or quantization techniques from the area of general
distributed SGD for further reducing the communication, as the compression is orthogonal to the
pipeline method. Besides compression, we can also increase the pipeline depth of PipeGCN, e.g.,
using two iterations of compute to hide one iteration of communication, which is left to our future
work.

19

Under review as a conference paper at ICLR 2022

Reddit obgn-products Yelp
1.0
1.0 [computation 1.4 EE computation [computation
@08 [communication » 1.2 { & communication » 0.8 T3 communication
o | EE reduce ;107 B reduce o B reduce
£061 3 2 Eosl 2 g ., | EO061 s
= & 3 w + V.01 3 5 2 - I} g &
s Bt B 2| coemas l Mz i | Soall: s TR,
@ @ . [CR] Hd 9 4
8 : 28 88§ | [EE] S 7% .
o & = & & Q0.4 — = Q g < s o=
I = 9 S [s
- =
0.0 0.0 l LH 0.0
2 4 5 10 3 6

Number of partitions Number of partitions Number of partitions

Figure 10: Training time breakdown of vanilla partition-parallel training (GCN), PipeGCN, and
PipeGCN with smoothing (PipeGCN-GF).

E PIPEGCN WITH MULTIPLE COMPUTATIONAL NODES

We evaluate PipeGCN on Reddit over different number of partitions and multiple nodes (each contains
AMD Radeon Instinct MI60 GPUs, an AMD EPYC 7642 CPU, and 48 lane PCI 3.0 connecting
CPU-GPU and GPU-GPU) networked with 10Gbps Ethernet.

The corresponding accuracy results of PipeGCN and its variants are summarized below:

Table 6: The accuracy of PipeGCN and its variants on Reddit.

#partitions (#node*#gpus) | PipeGCN PipeGCN-F PipeGCN-G PipeGCN-GF
2 (1*2) 97.12% 97.09% 97.14% 97.12%
3 (1*3) 97.01% 97.15% 97.17% 97.14%
4 (1*4) 97.04% 97.10% 97.09% 97.10%
6 (2*3) 97.09% 97.12% 97.08% 97.10%
8 (2*4) 97.02% 97.06% 97.15% 97.03%
9 (3*3) 97.03% 97.08% 97.11% 97.08%
12 (3*4) 97.05% 97.05% 97.12% 97.10%
16 (4*4) 96.99% 97.02% 97.14% 97.12%

Furthermore, we provide the speedup against vanilla distributed GCN training below:

Table 7: The speedup of PipeGCN and its vatiants against vanilla distributed GCN training on
Reddit.

#nodes*#gpus | GCN PipeGCN PipeGCN-G PipeGCN-F PipeGCN-GF
1%2 1.00x 1.16x 1.16x 1.16x 1.16x
1*3 1.00x 1.22x 1.22x 1.22x 1.22x
1*4 1.00x 1.29x 1.28x 1.29x 1.28x
2% 1.00x 1.61x 1.60x 1.61x 1.60x
2%3 1.00x 1.64x 1.64x 1.64x 1.64x
2%4 1.00x 1.41x 1.42x 1.41x 1.37x
3%) 1.00x 1.65x 1.65x 1.65x 1.65x
3%3 1.00x 1.48x 1.49x 1.50x 1.48x
3%4 1.00x 1.35x 1.36x 1.35x 1.34x
4% 1.00x 1.64x 1.63x 1.63x 1.62x
4%3 1.00x 1.38x 1.38x 1.38x 1.38x
4%4 1.00x 1.30x 1.29x 1.29x 1.29x

From the two tables above, we can observe that our PipeGCN family consistently maintains the
accuracy of the full-graph training, while improving the throughput by 15% ~66 % regardless of
the machine settings and number of partitions.

20

Under review as a conference paper at ICLR 2022

F TRAINING TIME BREAKDOWN COMPARISON WITH BASELINES

To understand where PipeGCN gains significantly over baseline algorithms, we provide the detailed
time breakdown of ROC and CAGNET on Reddit with the same model in Table 3 (4-layer Graph-
SAGE, 256 hidden units) in Table 8, in which ‘Dist GCN’ is the vanilla distributed GCN training
illustrated in Figure 1 (a). We observe that PipeGCN greatly saves communication time.

Table 8: Epoch time breakdown of PipeGCN, ROC and CAGNET.

Total time (s) Compute (s) Communication (s) Reduce (s)

ROC (2 GPUs) 3.63 0.5 3.13 0.00
CAGNET (c=1, 2 GPUs) 2.74 1.91 0.65 0.18
CAGNET (c=2, 2 GPUs) 5.41 4.36 0.09 0.96
Dist GCN (2 GPUs) 0.52 0.17 0.34 0.01
PipeGCN (2 GPUs) 0.27 0.25 0.00 0.02
ROC (4 GPUs) 3.34 0.42 2.92 0.00
CAGNET (c=1, 4 GPUs) 2.31 0.97 1.23 0.11
CAGNET (c=2, 4 GPUs) 2.26 1.03 0.55 0.68
Dist GCN (4 GPUs) 0.48 0.07 0.40 0.01
PipeGCN (4 GPUs) 0.23 0.10 0.10 0.03

G IMPLEMENTATION DETAILS

We discuss the details of the effective and efficient implementation of PipeGCN in this section.

First, for parallel communication and computation, a second cudaStream is required for communica-
tion besides the default cudaStream for computation. To also save memory buffers for communication,
we batch all communication (e.g., from different layers) into this second cudaStream. When the
popular communication backend, Gloo, is used, we parallelize the CPU-GPU transfer with CPU-CPU
transfer.

Second, when Dropout layer is used in GCN model, it should be applied after communication. The
implementation of the dropout layer for PipeGCN should be considered carefully so that the dropout
mask remains consistent for the input tensor and corresponding gradient. If the input feature passes
through the dropout layer before being communicated, during the backward phase, the dropout mask
is changed and the gradient of masked values is involved in the computation, which introduces noise
to the calculation of followup gradients. As a result, the dropout layer can only be applied after
receiving boundary features.

21

	Introduction
	Background and Related Works
	The Proposed PipeGCN Framework
	Bottlenecks in Vanilla Partition-Parallel Training
	The Proposed PipeGCN Method
	PipeGCN's Convergence Guarantee
	The Proposed Smoothing Method

	Experiment Results
	Improving Training Throughput over Full-Graph Training Methods
	Improving Training Throughput without Compromising Accuracy
	Maintaining Convergence Speed
	Benefit of PipeGCN with Staleness Smoothing
	Training Time Improvement Breakdown

	Conclusion
	Convergence Proof
	Notations
	Bounded Matrices and Changes
	Bounded Feature Error and Gradient Error
	Proof of the Main Theorem

	Improving Training Throughput over Full-Graph Training Methods (Additional Experiments)
	Maintaining Convergence Speed (Additional Experiments)
	Training Time Improvement Breakdown (Additional Experiments)
	PipeGCN with Multiple Computational Nodes
	Training Time Breakdown Comparison with Baselines
	Implementation Details

