
REX: Revisiting Budgeted Training with an Improved Schedule
John Chen

johnchen@rice.edu
Rice University

Houston, Texas, USA

Cameron Wolfe
wolfe.cameron@rice.edu

Rice University
Houston, Texas, USA

Anastasios Kyrillidis
anastasios@rice.edu

Rice University
Houston, Texas, USA

Figure 1: We summarize all 82 experimental settings, including image classification, object detection, and natural language
processing. We plot the average ranked performance of the considered learning rate schedules, where 1 is the best and 6 is
the worst, against the training budget, for the momentum SGD (SGDM) and Adam optimizers. The maximum epochs (100%) is
determined from the literature and verified to achieve previously reported results. Each % of total epochs is an independent
run. The schedules are adjusted for each setting to maintain the same profile (e.g. the linear schedule decays the learning rate
linearly to 0 regardless of the % of total epochs). For smaller epochs, the linear schedule performs well while the performance
of the step schedule in higher epochs does not carry over. The proposed REX schedule outperforms all methods in comparison,
in both high and low epochs.

ABSTRACT
Deep learning practitioners often operate on a computational and
monetary budget. Thus, it is critical to design optimization algo-
rithms that perform well under any budget. The linear learning
rate schedule is considered the best budget-aware schedule [22],
as it outperforms most other schedules in the low budget regime.
On the other hand, learning rate schedules –such as the 30-60-90
step schedule– are known to achieve high performance when the
model can be trained for many epochs. Yet, it is often not known a
priori whether one’s budget will be large or small; thus, the optimal
choice of learning rate schedule is made on a case-by-case basis. In
this paper, we frame the learning rate schedule selection problem as
a combination of 𝑖) selecting a profile (i.e., the continuous function
that models the learning rate schedule), and 𝑖𝑖) choosing a sampling
rate (i.e., how frequently the learning rate is updated/sampled from
this profile). We propose a novel profile and sampling rate com-
bination called the Reflected Exponential (REX) schedule, which
we evaluate across seven different experimental settings with both
SGD and Adam optimizers. REX outperforms the linear schedule

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

in the low budget regime, while matching or exceeding the per-
formance of several state-of-the-art learning rate schedules (linear,
step, exponential, cosine, step decay on plateau, and OneCycle) in
both high and low budget regimes. Furthermore, REX requires no
added computation, storage, or hyperparameters.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning;Machine
learning algorithms.

KEYWORDS
budgeted training, deep learning optimization, learning rate sched-
ules

ACM Reference Format:
John Chen, Cameron Wolfe, and Anastasios Kyrillidis. 2018. REX: Revisiting
Budgeted Training with an Improved Schedule. In Woodstock ’18: ACM
Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
While hardware has consistently improved [33, 40], the cost of
training deep neural networks (DNNs) has continued to increase
due to growth in the size of models and datasets [4, 7, 9, 21]. One
key component of the cost is the need to tune the hyperparameters
of the model [44]. Outside of the largest companies in the field,
most practitioners have to trade-off the number of epochs with the
number of experimental trials. Whilst the community has generally
agreed that, for example, 90 epochs is a reasonable training length

ar
X

iv
:2

10
7.

04
19

7v
1

 [
cs

.L
G

]
 9

 J
ul

 2
02

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Chen et al.

Table 1: Performance of different schedules, ranked according to the % of Top-1 or Top-3 finishes, out of a total of 28 experiments. Top-1
(Top-3) refers to the best (best-3) performance for a particular model/dataset/base optimizer/epoch setting. Low (high) budget includes 1%, 5%,
and 10% (25%, 50%, and 100%) of the full epochs. The Decay on Plateau variant is aggregated into the Step Schedule method where we take the
max performance for each setting.

Low budget (<25%) High budget (≥25%) Overall

Method Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

None 0% 0% 2% 10% 1% 5%
Exp decay [1, 29] 5% 7% 5% 14% 5% 11%
OneCycle [35] 15% 49% 12% 40% 13% 45%

Linear Schedule [1, 29] 10% 78% 12% 62% 11% 70%
Step Schedule [14] 2% 12% 7% 38% 5% 25%

Cosine Schedule [26] 2% 66% 10% 62% 6% 64%

REX 73% 95% 67% 88% 70% 92%

for a ResNet-50 architecture on ImageNet [14, 18, 48], there simply
may not be sufficient monetary budget to perform such extensive
training for certain projects. Further, it is generally not easy to pre-
dict the number of epochs required to maximize the performance of
the model apriori, particularly if the input data may be continually
changing. Thus, it is important to consider the optimization of DNNs
for a diverse range of budgets.

Stochastic Gradient Descent (SGD) with momentum and Adam
are two of the most widely used optimizers for DNNs [4, 9, 14, 18,
31, 48]. Whether the task is image classification, object detection, or
fine-tuning in natural language processing, both optimizers must
be combined with some form of learning rate decay to achieve good
performance [4, 9, 14, 18, 31, 48] (see Tables 4-11). The aforemen-
tioned tasks are arguably the most widely used applications of deep
learning.1

The learning rate schedule is particularly important in the bud-
geted training setting. Moreover, of the widely used schedules, the
best learning rate schedule for a small number of epochs is gen-
erally not the best for a large number of epochs (see Tables 4-11).
This is a significant challenge, since it is difficult to know apriori
if the current budget lies in the high or low budget regime. This
raises two questions: Can we close the budget-induced gap in the
performance of existing learning rate schedules? And, if this is not
possible, is there a learning rate schedule that performs well in both
low and high budget regimes?

We answer both questions through a novel lens. We decompose
the problem of selecting a learning rate schedule as a two-part
process of 𝑖) selecting a profile and 𝑖𝑖) selecting a sampling rate.
The profile is the function that models the learning rate schedule,
and the sampling rate is how frequently the learning rate is updated,
based on this profile. In this view, we 𝑖) analyze existing schedules,
𝑖𝑖) propose a novel profile and sampling rate combination, and
𝑖𝑖𝑖) benchmark the performance of numerous schedules. We also
demonstrate it is possible to boost the performance of existing
learning rate schedules by introducing a hyperparameter that delays
the commencement of the decay schedule. However, because adding
an extra hyperparameter is prohibitive in the budgeted setting, we

1There are some cases in which learning rate decay is not always useful, such as for
Generative Adversarial Networks [2, 11], but this is generally a small proportion of all
deep learning activities.

also propose a new schedule, REX, which performs at a state-of-
the-art level for both low and high budgets across a large variety
of settings without the extra hyperparameter tuning.

Specifically, our contributions are as follows:

• We pose learning rate schedules as the combination of a profile
and a sampling rate and identify that there is no optimal profile
for all sampling rates. Namely, we show that no existing, popular
learning rate schedule achieves state-of-the-art performance in
both high and low budget regimes.

• We propose a new profile and sampling rate combination. We
find that carefully tuning the start of the learning rate decay
for existing schedules can result in significant performance im-
provements in both high and low budget regimes. However, this
introduces an extra hyperparameter, which is prohibitive for
budget-limited practitioners. Our proposed schedule can be un-
derstood as an interpolation between the linear schedule and the
delayed variants.

• Our proposed schedule, REX, is based on observations of the
above, and we validate its state-of-the-art performance across
seven settings, including image classification, object detection,
and natural language processing.

Our goal is to introduce an easy-to-use, state-of-the-art learning rate
schedule with no extra hyperparameters that performs well in all
budget regimes and can be easily implemented and adopted.

2 RELATEDWORKS
There have been many works related to tuning the learning rate.
There is a connection between learning rate and momentum [47],
and there are methods which alter the momentum [6, 27, 28, 39, 50].
There is also a connection between learning rate and batch sizes
[12, 37, 46]. The most popular learning rate tuning mechanisms fall
into two categories: Automatically tuning the learning rate on a
per-weight basis and decaying the learning rate globally.

Many adaptive learning rate optimizers have been proposed.
Modern learning rate adaptive methods began with AdaGrad [10],
which was shown to have good convergence properties, especially
in the sparse gradient setting. AdaDelta [49] was proposed to fix
a units issue with AdaGrad. RMSprop [15] employed a running
estimate of the second moment to resolve the strictly decreasing

REX: Revisiting Budgeted Training with an Improved Schedule Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 2: Popular schedules with various sampling rates. 50-75 refers to sampling once at 50% and 75% of total epochs. Similarly for 33-66
and 25-50-75. 10-10 refers to sampling once every 10% of total epochs. Similarly for 5-25 and 1-100. Every iteration is the maximum sampling
rate. Left: Step schedule. Left Middle: Linear Schedule. Right Middle: REX Schedule. Right: Schedules with their usual sampling rate.

learning rate of AdaGrad. The most popular adaptive learning rate
optimizer is Adam [19] and its variants [24, 25]. Yet, in practice,
adaptive learning rate algorithms perform the best when coupled with
a learning rate schedule [9, 24].

In deep learning, the step schedule was widely used in early com-
puter vision work [14, 18, 21]. This was often combined with SGD
with Momentum to achieve state-of-the-art results [14, 18, 30, 48].
In Natural Language Processing, AdamW [25] is often paired with
a cosine or linear learning rate decay for training and fine-tuning
transformers [43]. The aforementioned schedules are widely avail-
able and implemented in the most popular software [1, 29, 43], in
addition to the exponential decay schedule, OneCycle [35], cosine
decay with restarts [26] and others [36]. While some schedules may
be preferred for achieving state-of-the-art results, it has been sug-
gested that the linear schedule is most suitable for the low budget
scenario [22], which may be of more relevance to practitioners.

3 BUDGETED TRAINING: PROFILES AND
SAMPLING RATES

Challenges in adapting learning rate schedules to the bud-
geted setting. The primary hyperparameter in DNN optimization
is the initial learning rate. While good heuristics often exist for tun-
ing common hyperparameters, such as setting momentum 𝛽 = 0.9
or setting a 30-60-90 learning rate schedule [17, 18, 48], the initial
learning rate remains to be tuned. However, in the budgeted train-
ing setting, the learning rate schedule turns into a hyperparameter.
Adapting, for example, the 30-60-90 rule for Image Classification
or Object Detection is not straightforward, and naively following
the same rules for a smaller number of epochs results in sub-optimal
results (see Step Schedule in low epoch settings in Tables 4-11). Ad-
ditionally, following the 50-75 rule [14] on RN20-CIFAR10 for a
training budget that is 1% of the usual total epochs can result a 5%
absolute error gap with the best-performing schedule. We assume
that, in the budgeted training setting, the number of epochs is still
pre-defined, but can be significantly less than the usual total epochs.

Profiles and sampling rates. To formalize the process of iden-
tifying a good learning rate schedule, we decompose the learning
rate schedule as a combination of a profile curve and a sampling
rate on that curve. The profile is the function that models the learn-
ing rate schedule and dictates the general curve of the learning rate
schedule. In most –but not all [23]– applications, this function starts
at a high initial value and ends near zero. The sampling rate is how

frequently the learning rate is updated and dictates the smoothness
of the curve. At one extreme, the linear learning rate schedule, and
many others, samples from the profile at each iteration, and at the
other extreme the step learning rate schedules samples only twice
or thrice across the entire training procedure. For example, the
50-75 step schedule can be approximated as sampling twice from
a particular, exponentially-decaying profile. See Figure 2 for some
examples of schedules with their associated profile and sampling
rates.

Lack of an optimal profile.While theremay be limitedmotiva-
tion to pick a particular sampling rate, this introduces an interesting
question: Does there exist an optimal profile for all reasonable sam-
pling rates? In Table 2, we benchmark three profiles: 𝑖) the 50-75
step schedule [14] approximated as a tuned exponentially decay-
ing profile ; 𝑖𝑖) the linear profile [1, 29]; and, 𝑖𝑖𝑖) the REX profile
proposed in this paper (to be defined in the next subsection). These
three profiles represent smoothly-decaying learning rate schedules
with varying curvatures. We find that different profiles perform
best for different sampling rates. The approximated Step schedule
profile performs best with low sampling rates, while the linear and
REX profiles perform best with high sampling rates. Furthermore, the
approximated Step schedule profile performs worst for a small and
medium number of epochs and best for a high number of epochs. The
REX profile performs best for a small and medium number
of epochs.While the Step schedule is consistently used to achieve
state-of-the-art results in Computer Vision [13, 14, 17, 18, 30, 48],
it does not translate directly to lower epoch settings.

A new profile. Since there is no profile which performs opti-
mally across sampling rates, it remains to ask if there is a profile
and sampling rate combination that results in strong performance
in both low and high epoch settings. Therefore, we propose the
Reflected Exponential (REX) profile; see Figure 2. REX is an alter-
native to the linear and exponential profile, and we find that REX
has stronger empirical performance in the budgeted setting. REX
performs best with a per-iteration sampling rate, similar to the
linear schedule. We evaluate the performance of REX extensively
in following sections.

We also motivate REX with the empirical observation that the
linear schedule can be improved in some cases by delaying the
onset of the decay, i.e., holding the initial learning rate constant
until XX% of the budget, and then linearly decaying the learning
rate to 0; see Figure 3. In particular, it appears that performance

Woodstock ’18, June 03–05, 2018, Woodstock, NY Chen et al.

Table 2: We demonstrate learning rate schedules and sampling rates on RN20-CIFAR10-SGDM (Top) and RN38-CIFAR10-SGDM (Bot-
tom) [14], holding the learning rate constant. There is no best profile for all sampling rates. Each profile excels at one end of
the spectrum. 50-75 [14] refers to sampling once at 50% and 75% of total epochs. Similarly for 33-66 and 25-50-75. 10-10 refers
to sampling once every 10% of total epochs. Similarly for 5-25 and 1-100. Every iteration is the maximum sampling rate.

RN20-CIFAR10-SGDM 15 Epochs 75 Epochs 300 Epochs

Sampling Rate Step Linear REX Step Linear REX Step Linear REX

50-75 14.48 16.96 20.79 9.44 12.42 18.05 7.32 10.15 12.41
33-66 17.89 25.80 24.45 9.72 13.38 15.98 7.93 11.90 11.43

25-50-75 16.52 18.77 26.13 9.73 12.31 12.59 8.46 8.26 12.31
10-10 17.98 16.35 16.48 10.41 9.40 11.17 8.67 8.26 8.24
5-25 18.87 13.83 15.17 9.79 8.94 9.22 8.85 8.24 8.50
1-100 18.53 13.91 13.34 10.61 8.72 8.60 9.20 7.97 7.74

Every Iteration 19.19 13.09 12.86 9.97 8.89 8.37 9.24 7.62 7.52

RN38-CIFAR10-SGDM 15 Epochs 75 Epochs 300 Epochs

Sampling Rate Step Linear REX Step Linear REX Step Linear REX

50-75 13.57 17.31 18.47 7.59 12.89 14.38 6.66 10.07 9.37
33-66 14.96 19.16 18.71 7.74 13.64 17.57 6.70 11.53 11.30

25-50-75 15.69 14.18 19.77 7.99 9.10 15.07 6.73 7.59 8.44
10-10 16.58 13.34 14.46 7.87 8.33 9.75 7.60 6.48 6.50
5-25 17.16 12.63 11.71 8.40 7.42 7.13 8.79 6.18 6.41
1-100 17.20 11.93 11.13 8.54 7.06 7.17 9.11 6.12 6.17

Every Iteration 17.97 12.11 10.95 8.72 7.10 6.86 9.31 5.89 6.09

Figure 3: REX, linear, and delayed linear schedules. Left: VGG16-CIFAR100-SGDM. Left Middle: VGG16-CIFAR100-ADAM. Right Middle:
RN38-CIFAR100-SGDM. Right: RN38-CIFAR100-ADAM. The red dashed line represents the error of the step schedule for that setting trained with
100% of the epochs. Linear Delayed X% refers to delaying the linear decay till X% of the total epochs have passed, before decaying linearly to
0. For example, in the left-middle plot, for small % of epochs, REX outperforms the linear schedule, which outperforms the delayed variants.
However, for large epochs, the linear schedule is unable to achieve the state-of-the-art performance of the step schedule, while REX and the
delayed linear schedules are able to surpass the step schedule.

can be improved with such delay in the high epoch regime, but
this strategy is less effective with fewer epochs. However, the exact
onset of the delay introduces an additional hyperparameter. REX
can be understood as an interpolation between a linear schedule
and a delayed linear schedule without additional hyperparameters.
Furthermore, REX generally outperforms the linear schedule, which
has been previously suggested as the best budgeted schedule [22],
for small and large epochs.

It appears that certain schedules have reasonable performance
across sampling rates, while others have poor or state-of-the-art
performance depending on the sampling rate. If the sampling rate
is unknown or there is a particular reason to select a low sampling

rate, the approximated step profile appears to be the best choice.
However, in most applications, the sampling rate is a choice by the
practitioner. Since the REX profile with a per-iteration sampling
rate generally performs the best, there may be limited motivation
to use alternative schedules.

4 RESULTS
In this section we present results in all seven experimental settings
given in Table 3, including image classification, image generation,
object detection and natural language processing. For fair evalu-
ation in the budgeted training scenario, only the learning rate is
tuned in multiples of 3 for each schedule, setting, and number of

REX: Revisiting Budgeted Training with an Improved Schedule Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 3: Summary of experimental settings.

Experiment short name Model Dataset Maximum Epochs

RN20-CIFAR10 ResNet20 CIFAR10 300 [14]
RN50-IMAGENET ResNet50 ImageNet 90 [18]
VGG16-CIFAR100 VGG-16 CIFAR100 300 [14]
WRN-STL10 Wide ResNet 16-8 STL10 200 [5]
VAE-MNIST VAE MNIST 200 [45]
YOLO-VOC YOLOv3 Pascal VOC 50 [41]
BERT𝐵𝐴𝑆𝐸-GLUE BERT (Pre-trained) GLUE (9 tasks) 3 [9]

Table 4: RN20-CIFAR10. The number of epochs was predefined before the execution of the algorithms. Bold red indicates Top-1
performance, black bold is Top-3.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 32.14 ± .34 14.94 ± .27 11.80 ± .11 8.82 ± .25 8.43 ± .07 7.32 ± .14
+ Cosine Schedule 28.49 ± .25 13.05 ± .17 10.62 ± .29 8.80 ± .08 8.10 ± .13 7.78 ± .14

+ OneCycle 40.14 ± 2.62 18.93 ± 1.85 12.74 ± .36 10.83 ± .25 9.23 ± .19 8.42 ± .12
+ Linear Schedule 28.70 ± 1.13 13.09 ± .13 10.85 ± .15 9.03 ± .24 8.15 ± .12 7.62 ± .12
+ Decay on Plateau 41.98 ± 3.20 25.93 ± .45 11.29 ± .35 9.05 ± .07 8.26 ± .07 7.97 ± .14

+ Exp decay 31.31 ± 1.34 14.85 ± .38 11.56 ± .22 9.55 ± .09 9.20 ± .13 7.82 ± .05

+ REX 27.94 ± .46 12.86 ± .27 10.23 ± .13 8.37 ± .09 7.52 ± .24 7.52 ± .05

Adam 42.10 ± 2.71 23.01 ± 1.10 16.58 ± .18 13.63 ± .22 11.90 ± .06 11.94 ± .06
+ Step Schedule 30.72 ± .16 15.41 ± .26 12.20 ± .11 10.47 ± .10 8.75 ± .17 8.55 ± .05

+ Cosine Schedule 29.20 ± .24 14.31 ± .28 11.45 ± .27 9.56 ± .12 9.15 ± .12 8.93 ± .07
+ OneCycle 37.17 ± 2.49 16.16 ± .19 14.11 ± .57 10.33 ± .20 9.87 ± .12 9.03 ± .18

+ Linear Schedule 28.99 ± .37 14.08 ± .34 10.97 ± .19 9.25 ± .12 9.20 ± .22 8.89 ± .05
+ Decay on Plateau 43.40 ± 4.57 22.21 ± .96 13.46 ± .38 9.71 ± .39 8.92 ± .18 8.80 ± .11

+ Exp decay 31.87 ± .59 15.82 ± .06 12.91 ± .21 10.48 ± .15 9.24 ± .16 8.53 ± .07

+ REX 27.64 ± .02 13.96 ± .16 10.88 ± .05 9.44 ± .22 8.72 ± .24 8.18 ± .15

epochs. All reported metrics are averaged across three separate
trials. We run all settings at 1%, 5%, 10%, 25%, 50%, and 100% of
maximum epochs, representing both low and high budgets. In each
setting, the learning rate schedule is concerned only with the total
epochs for that run, e.g., the linear schedule will decay linearly to 0
regardless if the budget is 1% or 100% of the maximum epochs. For
BERT𝐵𝐴𝑆𝐸-GLUE, results are given for 1 run and at 1/3, 2/3, and 3/3 of
total epochs. The maximum total epochs is determined from com-
monly used epochs in the literature, and validated to achieve the
reported score in the literature. The maximum epochs is given in
Table 3. The goal is to demonstrate performance in both the low and
high budget regime across a range of common applications to instill
confidence that the proposed schedule will work “in the wild”. We
use a model-dataset-optimizer notation, e.g. RN20-CIFAR10-SGDM
means a ResNet20 model trained on CIFAR10 with momentum SGD.

4.1 Learning Rate Schedules
There are many popular learning rate schedules implemented in
widely-used frameworks and packages. In general, the schedules are
aware of the current time step 𝑡 and the maximum time step𝑇 . Let 𝜂
denote the learning rate and 𝛽 the momentum.We comprehensively

detail the schedules considered in this paper below, covering almost
all widely-implemented schedules; see Figure 2 for a visualization.
• Step schedule [14]:𝜂𝑡 = 𝛾𝑡 ·𝜂0 where𝛾𝑡 is piece-wise and depends
on 𝑡/𝑇 . A typical schedule [14] would be to decay the learning
rate by 0.1 at 1/2 epochs and again by 0.1 at 3/4 epochs. We employ
such a step schedule for all our experiments.

• Decay on Plateau [1, 29]: A practical version of the step schedule,
where the learning rate is decayed when the validation loss does
not improve for certain number of tuneable epochs, which we
tune in multiples of 5.

• Linear schedule [1, 29]: 𝜂𝑡 = (1 − 𝑡/𝑇) · 𝜂0.
• Cosine schedule [26]: 𝜂𝑡 =

𝜂0
2 ·

(
1 + cos(𝜋 ·𝑡

𝑇
)
)
.

• Exponential schedule [1, 29]: 𝜂𝑡 = 𝜂0 · 𝑒
𝛾𝑡/𝑇 . We find that setting

𝛾 = −3 yields the best performance.
• OneCycle schedule [35]:

𝜂𝑡 =

𝜂min + (𝜂max − 𝜂min) ·

(
𝑡

𝑇/2

)
· 𝜂0, if 𝑡/𝑇 < 1/2

𝜂min + (𝜂max − 𝜂min) ·
(
2 − 𝑡

𝑇/2

)
· 𝜂0, otherwise

𝛽𝑡 =

𝛽min + (𝛽max − 𝛽min) ·

(
1 − 𝑡

𝑇/2

)
· 𝛽0, if 𝑡/𝑇 < 1/2

𝛽min + (𝛽max − 𝛽min) ·
(
𝑡

𝑇/2 − 1
)
· 𝛽0, otherwise

Woodstock ’18, June 03–05, 2018, Woodstock, NY Chen et al.

Table 5: WRN-STL10. The number of epochs was predefined before the execution of the algorithms. Bold red indicates Top-1
performance, black bold is Top-3.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 60.09 ± 1.15 38.12 ± .32 33.86 ± .10 22.42 ± .56 17.20 ± .35 14.51 ± .26
+ Cosine Schedule 57.81 ± 1.05 37.42 ± .29 27.51 ± .25 20.03 ± .26 17.02 ± .24 14.66 ± .25

+ OneCycle 58.75 ± .76 36.90 ± .37 26.97 ± .27 21.67 ± .27 19.69 ± .21 19.00 ± .42
+ Linear Schedule 58.74 ± 1.26 34.81 ± .40 28.17 ± .64 19.54 ± .20 17.39 ± .24 14.58 ± .18
+ Decay on Plateau 59.64 ± .92 37.64 ± 1.44 36.94 ± 1.96 21.05 ± .27 17.83 ± .39 15.16 ± .36

+ Exp decay 60.21 ± .77 38.94 ± 1.08 34.11 ± .77 22.65 ± .49 20.60 ± .21 15.85 ± .28

+ REX 55.93 ± .46 34.50 ± .16 25.52 ± .17 20.54 ± .32 16.97 ± .46 14.60 ± .31

Adam 58.65 ± 1.79 42.66 ± .68 33.17 ± 1.94 23.35 ± .20 19.63 ± .26 18.65 ± .07
+ Step Schedule 59.35 ± .98 47.14 ± .42 35.10 ± 1.10 23.85 ± .07 19.63 ± .33 18.29 ± .10

+ Cosine Schedule 58.95 ± .95 40.69 ± 1.09 31.00 ± .74 22.85 ± .47 21.47 ± .31 19.08 ± .36
+ OneCycle 57.88 ± .88 36.41 ± .29 27.90 ± .63 20.02 ± .19 19.21 ± .28 19.03 ± .43

+ Linear Schedule 56.72 ± .22 40.25 ± 1.00 31.15 ± .29 21.70 ± .11 21.53 ± .44 17.85 ± .15
+ Decay on Plateau 58.72 ± .60 42.30 ± .68 33.00 ± .80 22.77 ± .33 19.91 ± .45 19.61 ± .56

+ Exp decay 58.92 ± .52 44.76 ± .90 33.52 ± 1.18 23.30 ± .39 20.70 ± .50 19.63 ± .24

+ REX 56.47 ± .31 35.52 ± .44 27.24 ± .20 21.65 ± .21 19.12 ± .31 17.75 ± .22

Table 6: VGG16-CIFAR100 generalization error. The number of epochs was predefined before the execution of the algorithms.
Bold red indicates Top-1 performance, black bold is Top-3.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 95.03 ± .42 69.87 ± .28 46.97 ± .13 35.04 ± .24 30.09 ± .32 27.83 ± .30
+ Cosine Schedule 95.03 ± .42 61.82 ± .13 41.26 ± .26 31.93 ± .09 28.63 ± .11 27.84 ± .12

+ OneCycle 91.96 ± 1.01 58.35 ± .40 45.39 ± .73 32.62 ± .21 30.10 ± .34 29.09 ± .12
+ Linear Schedule 96.11 ± 1.64 58.14 ± 1.19 39.66 ± .61 31.95 ± .29 29.10 ± .34 28.26 ± .08
+ Decay on Plateau 94.70 ± 1.20 65.25 ± 1.72 50.81 ± .58 35.29 ± .59 30.65 ± .31 29.74 ± .43

+ Exp decay 96.54 ± .39 65.65 ± 1.24 49.04 ± 1.98 33.15 ± .19 29.51 ± .22 28.47 ± .18

+ REX 94.92 ± .91 56.62 ± .65 40.72 ± .29 31.16 ± .11 28.54 ± .02 27.27 ± .30

Adam 92.70 ± .50 64.05 ± .41 57.56 ± 1.30 37.98 ± .20 33.62 ± .11 31.09 ± .09
+ Step Schedule 92.65 ± .38 62.90 ± .08 44.94 ± .49 34.16 ± .11 29.40 ± .22 27.75 ± .15

+ Cosine Schedule 91.48 ± .42 55.90 ± 2.46 40.31 ± .07 32.32 ± .14 29.68 ± .17 28.08 ± .10
+ OneCycle 92.18 ± .69 58.29 ± .53 43.47 ± .28 34.59 ± .31 29.83 ± .29 29.58 ± .18

+ Linear Schedule 92.94 ± .49 54.32 ± 1.17 39.49 ± .11 32.01 ± .49 29.30 ± .18 28.65 ± .10
+ Decay on Plateau 92.76 ± .48 64.10 ± .22 57.05 ± .84 32.60 ± .31 29.03 ± .10 28.67 ± .19

+ Exp decay 92.43 ± .67 55.26 ± 1.24 42.62 ± .12 32.37 ± .18 29.53 ± .12 28.83 ± .08

+ REX 91.93 ± .01 52.20 ± .47 39.51 ± .21 31.68 ± .57 28.58 ± .16 26.99 ± .09

𝜂min, 𝜂max, 𝛽min, and 𝛽max are hyperparameters. For fair compu-
tational comparison, we follow the recommended settings [35]
and set 𝜂min = 𝜂max · 0.1, 𝛽max = 0.95, 𝛽min = 0.85, so that 𝜂max
is the only hyperparameter.

• REX schedule:

𝜂𝑡 = 𝜂0 ·
(

1 − 𝑡/𝑇
1/2 + 1/2 · (1 − 𝑡/𝑇)

)
.

We re-emphasize the motivation for REX: it is a new profile and
sampling rate combination, which is motivated by the improved
performance of a delayed linear schedule in certain circumstances.
REX aggressively decreases the learning rate towards the end of

the training process, which is the “reflection” of the exponential
decay.

There are simply too many schedules to compare comprehen-
sively, so we select the widely-used schedules above for comparison.
We apply the schedules to the two most popular optimizers: SGD
with momentum and Adam.

4.2 Empirical Results
Image Classification. We choose four diverse settings for this
task. For datasets, we use the standard CIFAR10 and CIFAR100
datasets, in addition to the low count, high-res STL10 dataset, as

REX: Revisiting Budgeted Training with an Improved Schedule Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 7: VAE-MNIST generalization loss. The number of epochs was predefined before the execution of the algorithms. Bold red
indicates Top-1 performance, black bold is Top-3, ignoring non SGDM and Adam optimizers.

SGDM 1% 5% 10% 25% 50% 100%

+ Step Schedule 180.30 ± 6.98 152.97 ± .55 146.24 ± 2.50 140.28 ± .51 137.70 ± .93 136.34 ± .31
+ Cosine Schedule 174.52 ± 1.09 145.99 ± .15 141.23 ± .36 139.15 ± .26 136.69 ± .27 135.05 ± .09

+ OneCycle 161.95 ± .67 146.25 ± .35 143.01 ± 1.08 139.79 ± .66 137.20 ± .06 135.65 ± .44
+ Linear Schedule 174.64 ± .15 146.15 ± .26 143.64 ± .80 148.00 ± .48 141.72 ± .48 137.84 ± .32
+ Decay on Plateau 167.16 ± .30 151.15 ± .11 146.82 ± .58 140.51 ± .73 139.54 ± .34 137.33 ± .49

+ Exp decay 179.60 ± 3.47 160.52 ± .64 146.24 ± .73 154.31 ± .43 145.83 ± .48 139.67 ± .57

+ REX 149.85 ± 1.62 139.56 ± .78 137.15 ± .05 134.41 ± .78 135.69 ± .24 135.03 ± .37

Adam 152.10 ± .55 142.54 ± .50 140.10 ± .82 136.28 ± .18 134.64 ± .14 134.66 ± .17
+ Step Schedule 153.45 ± 1.47 142.19 ± .98 138.32 ± .20 136.62 ± .30 134.14 ± .56 133.34 ± .41

+ Cosine Schedule 149.82 ± .32 140.78 ± .72 137.66 ± .79 134.73 ± .04 133.25 ± .26 133.23 ± .30
+ OneCycle 149.07 ± .99 139.75 ± .27 138.12 ± .99 134.67 ± .55 133.27 ± .07 132.83 ± .33

+ Linear Schedule 148.93 ± .20 139.82 ± .20 137.00 ± .70 134.71 ± .25 134.00 ± .49 132.95 ± .24
+ Decay on Plateau 152.08 ± .45 141.54 ± .31 139.76 ± .52 135.68 ± .59 134.10 ± .21 134.06 ± .45

+ Exp decay 149.28 ± .46 142.94 ± 1.28 138.82 ± .36 135.19 ± .43 134.05 ± .16 133.88 ± .85

+ REX 148.59 ± .33 139.05 ± .20 136.62 ± .21 134.24 ± .02 133.16 ± .05 132.52 ± .05

well as the standard ImageNet dataset. Since ResNets remain the
most commonly-deployed model in industry, we perform exper-
iments with three variations of the ResNet [14]. The ResNet20
comes from the line of lower cost, lower performance ResNets,
and is a close cousin of the more expensive and better performing
ResNet18. ResNet50 belongs to the latter series, and is a standard
model for ImageNet. We also include the Wide ResNet variation
which further increases the model width for better performance
[48]. The other model we employ is the VGG-16 model [34]. While
VGG models are far outdated in attaining state-of-the-art perfor-
mance, the architecture is still relevant for custom applications with
smaller CNNs, where residual connections have limited application.
We provide thorough evaluation in the RN20-CIFAR10, WRN-STL10,
VGG16-CIFAR100 settings, and, due to computational constraints,
provide lower epochs results for RN50-ImageNet, given in Tables
4, 5, 6, and 8.

As observed in [22], the linear schedule performs well for both
SGD and Adam, particularly for a low number of epochs. While the
Step schedule performs well for the maximum number of epochs, it
scales very poorly to lower epoch settings. On the other hand, REX
performs well in both high and low epoch regimes. Results also
follow general Computer Vision observations for these settings,
where SGD tends to outperform Adam.

Image Generation. The two most popular types of networks
for image generation are Variational Encoders (VAE) [20] and
Generative Adversarial Networks (GAN) [11]. However, out of
the two, only VAEs consistently benefit from learning rate decay
[2, 3, 8, 11, 16, 38, 42]. Therefore, we select VAEs as the network of
choice for image generation. We train VAEs on the MNIST dataset
for 200 epochs, after which performance no longer improves. Re-
sults are given in Table 7.

The linear schedule performs well for Adam, but not for SGDM.
Similarly, the cosine schedule performs well for SGDM, but not for
Adam. The OneCycle schedule performs well across all settings, but

Table 8: RN50-ImageNet generalization error. The number
of epochs was predefined before the execution of the algo-
rithms. Bold red indicates Top-1 performance, black bold is
Top-3.

SGDM 1% 5%

+ Step Schedule 87.28 46.58
+ Cosine Schedule 82.88 43.90

+ OneCycle 90.94 55.00
+ Linear Schedule 82.00 43.27

+ Exp decay 90.19 48.28

+ REX 80.98 40.78

Adam 1% 5%

+ Step Schedule 77.97 45.91
+ Cosine Schedule 73.51 43.66

+ OneCycle 82.58 62.57
+ Linear Schedule 71.42 42.01

+ Exp decay 75.54 45.43

+ REX 69.91 40.65

REX outperforms all other schedules in the low budget and high
budget setting.

Object Detection.We train a YOLOv3 [31] model on the Pascal
VOC dataset. The training set is the combined 2007 and 2012 train-
ing set, and the test set is the 2007 test set. We were able to achieve
the mAP score reported in the literature by training the network for
50 epochs. Thus, we set this as the maximum number of epochs. We
find that the network does not train well without a warm-up period,
so all networks are trained for 2 epochs from a learning rate of 1e-5
linearly increased to 1e-4. This warm-up phase is not counted as
part of the allocated training budget. We also round up the number

Woodstock ’18, June 03–05, 2018, Woodstock, NY Chen et al.

Table 9: YOLO-VOCmAP. The number of epochs was predefined before the execution of the algorithms. Bold red indicates Top-1
performance, black bold is Top-3.

1% 5% 10% 25% 50% 100%

Adam 45.0 ± 3.4 48.1 ± 7.6 61.9 ± 1.8 70.2 ± 3.5 72.1 ± 6.4 79.1 ± 1.6
+ Step Schedule 62.2 ± 1.7 67.0 ± 3.4 71.8 ± 1.0 78.5 ± 0.2 81.1 ± 1.0 83.2 ± 0.2
+ OneCycle 60.4 ± 7.2 63.8 ± 7.6 74.9 ± 1.0 79.9 ± 1.3 81.1 ± 2.8 83.3 ± 0.4

+ Cosine Schedule 63.6 ± 5.2 66.8 ± 6.1 75.9 ± 0.2 81.1 ± 0.7 82.5 ± 1.0 84.0 ± 0.2
+ Linear Schedule 63.7 ± 5.5 67.2 ± 5.9 76.2 ± 0.7 81.1 ± 0.9 82.4 ± 1.2 83.4 ± 0.2

+ Exp decay 49.6 ± 24 68.1 ± 4.6 75.6 ± 0.1 80.1 ± 0.7 81.2 ± 2.2 83.2 ± 0.2

+ REX 64.0 ± 5.0 67.0 ± 6.5 76.7 ± 0.3 81.2 ± 0.7 82.2 ± 1.8 83.4 ± 0.4

of epochs to the closest integer: for example, the 1% setting trains
for 2 warmup epochs and then ⌈50 · 0.01⌉ = 1 epoch, for a total of 3
epochs. The 100% setting trains for 2 warmup epochs and then 50
epochs for a total of 52 epochs. Results are given in Table 9. Similar
to other settings, the step schedule performs reasonably well for a
large number of epochs, but is outperformed by the cosine schedule.
REX performs well in the low epoch setting.

Natural Language Processing. Fine-tuning pre-trained trans-
former models is one of the most common training procedures
in NLP [4, 9], thus making it a setting of interest. This is because
𝑖) it is often cost-prohibitive for practitioners to pre-train their
own models and 𝑖𝑖) fine-tuning pre-trained transformers often re-
sults in significantly better performance in comparison to training
a smaller model from scratch. The linear schedule is the default
schedule implemented in HuggingFace [43], the most popular pack-
age for transformer models, and is considered the gold standard in
this domain. We fine-tune BERT𝐵𝐴𝑆𝐸 on the GLUE benchmark, an
NLP benchmark with nine datasets. We leave out the problematic
WNLI dataset [9]. Since we are able to attain the scores reported
in the literature with 3 epochs of fine-tuning, we set that as the
maximum number of epochs. Due to computational constraints, we
can only perform one run per setting, which causes some variability
within the results. Although REX achieves the best mean score for
small and large budgets, we see that the best optimizer can vary
depending on the dataset. For example, OneCycle attains the best
scores on QNLI and MRPC, and the Cosine schedule performs the
best on SST-2.

Sensitivity to learning rate tuning. While it is reasonable
to suggest that the practitioner simply pick a per-iteration sam-
pling rate for the REX, linear, and other profiles, a relevant issue
in budgeted training is performance given a limited number of
experimental trials. Namely, in extreme cases, the practitioner may
not even have the budget to finely tune the learning rate. Therefore,
we plot the considered schedules in two settings against learning
rate, presented in Figure 4. Clearly, there is no schedule that can
recover from a poor initial learning rate. However, schedules tend
to retain their relative ordering across initial learning rates. This
means that even with poor hyperparameter settings, the choice
of learning rate schedule remains important. REX, represented by
the pink line below all other lines, outperforms other schedules for
most learning rates in the budgeted settings presented in the plots.

Table 10: Results of BERT𝐵𝐴𝑆𝐸-GLUE. AdamW + Linear Sched-
ule follows the huggingface [43] implementation, and
achieves the results in well-known studies [9, 32]. Results
given by 1 epoch/2 epochs/3 epochs. Excluding the problem-
atic WNLI dataset [9].

Score

AdamW 79.9/81.2/81.8
+ Step Schedule 80.2/81.9/82.3

+ Cosine Schedule 80.9/82.2/82.7
+ OneCycle 81.0/82.0/82.7

+ Linear Schedule 81.2/82.3/82.6
+ Exp decay 80.6/81.8/82.5

+ REX 81.7/82.6/82.8

5 CONCLUSION
In this paper, we identified issues with existing learning rate sched-
ules in the budgeted setting. We proposed a profile and sampling
rate framework for understanding existing schedules. While there
is no optimal profile, we found that the proposed REX schedule
performs well with a sampling rate of every iteration in both small
and large epoch regimes. With thorough empirical evaluation, we
confirm that the proposed REX learning rate schedule performs
favorably across a large number of settings including image clas-
sification, generation, object detection, and natural language pro-
cessing.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN.
arXiv:1701.07875 [stat.ML]

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN
Training for High Fidelity Natural Image Synthesis. arXiv:1809.11096 [cs.LG]

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

http://tensorflow.org/
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1809.11096

REX: Revisiting Budgeted Training with an Improved Schedule Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 11: Results of BERT𝐵𝐴𝑆𝐸-GLUE. AdamW + Linear Schedule follows the huggingface [43] implementation, and achieves the results in
well-known studies [9, 32]. Results given by 1 epoch/2 epochs/3 epochs. Excluding the problematic WNLI dataset [9].

CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

AdamW 54.8/54.7/55.2 82.9/83.3/83.7 84.8/87.2/87.6 88.7/90.4/90.7 89.4/90.2/90.5 59.2/64.6/66.8 91.2/91.3/91.2 87.8/87.8/88.3
+ Step Schedule 53.5/56.9/56.6 82.6/83.4/83.9 85.6/87.9/88.3 88.2/90.1/90.4 89.0/90.5/90.6 63.5/65.7/67.5 92.8/92.8/93.0 86.7/88.0/88.4

+ Cosine Schedule 55.7/58.6/58.2 83.5/84.0/84.2 84.5/87.6/87.9 89.4/89.8/90.4 89.8/90.6/91.0 64.2/65.3/67.5 92.7/93.1/93.7 87.4/88.4/88.7
+ OneCycle 57.7/58.1/56.5 83.6/83.8/84.2 87.3/87.5/89.9 89.5/91.0/90.7 89.8/90.6/90.8 60.3/63.9/67.5 92.1/92.2/93.0 88.1/88.5/89.0

+ Linear Schedule 58.0/57.6/58.8 83.5/84.1/84.3 85.4/88.1/88.0 88.8/90.4/89.6 89.7/90.6/91.0 63.5/65.7/67.1 92.8/93.0/92.9 87.9/88.5/88.8
+ Exp decay 57.5/57.3/59.1 83.6/83.9/84.1 86.2/88.7/89.1 88.2/89.2/89.6 88.8/90.3/90.6 61.0/63.9/66.0 92.1/93.1/93.0 87.2/88.2/88.5

+ REX 57.8/58.8/59.1 83.4/84.0/84.3 87.3/88.9/89.1 88.9/90.5/90.3 90.0/90.7/91.0 65.3/66.8/67.1 92.7/92.7/92.7 87.6/88.6/88.6

Figure 4: Error against initial learning for RN20-CIFAR10-SGD and RN38-CIFAR100-SGD for 5% and 25% of total epochs. As expected all, schedules
suffer as the learning rate grows too large or too small.

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[5] Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot
Holtham. 2017. Reversible Architectures for Arbitrarily Deep Residual Neu-
ral Networks. arXiv:1709.03698 [cs.CV]

[6] John Chen, CameronWolfe, Zhao Li, and Anastasios Kyrillidis. 2020. Demon: Mo-
mentum Decay for Improved Neural Network Training. arXiv:1910.04952 [cs.LG]

[7] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.
arXiv:2006.10029 [cs.LG]

[8] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. arXiv:1606.03657 [cs.LG]

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

[10] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research 12, Jul (2011), 2121–2159.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Networks. arXiv:1406.2661 [stat.ML]

[12] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2018. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv:1706.02677 [cs.CV]

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2018. Mask
R-CNN. arXiv:1703.06870 [cs.CV]

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent. Cited
on 14 (2012), 8.

[16] Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu. 2016. Deep Feature Consis-
tent Variational Autoencoder. arXiv:1610.00291 [cs.CV]

[17] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. 2017. Squeeze-and-
excitation networks. arxiv preprint arXiv:1709.01507 (2017).

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Diederik P Kingma and Max Welling. 2015. Auto-encoding variational Bayes.
arXiv preprint arXiv:1312.6114 (2015).

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[22] Mengtian Li, Ersin Yumer, and Deva Ramanan. 2020. Budgeted Train-
ing: Rethinking Deep Neural Network Training Under Resource Constraints.
arXiv:1905.04753 [cs.CV]

[23] Zhiyuan Li and Sanjeev Arora. 2020. An Exponential Learning Rate Schedule for
Deep Learning. In International Conference on Learning Representations. https:
//openreview.net/forum?id=rJg8TeSFDH

[24] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. 2020. On the Variance of the Adaptive Learning Rate and
Beyond. arXiv:1908.03265 [cs.LG]

[25] Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in
adam. arXiv preprint arXiv:1711.05101 (2017).

[26] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent with
Warm Restarts. arXiv:1608.03983 [cs.LG]

[27] James Lucas, Shengyang Sun, Richard Zemel, and Roger Grosse. 2018. Aggregated
momentum: Stability through passive damping. arXiv preprint arXiv:1804.00325
(2018).

[28] Brendan O’donoghue and Emmanuel Candes. 2015. Adaptive restart for acceler-
ated gradient schemes. Foundations of computational mathematics 15, 3 (2015),
715–732.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only
Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs.CV]

[31] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs.CV]

[32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 [cs.CL]

[33] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. 2019. FPGA-Based Accel-
erators of Deep Learning Networks for Learning and Classification: A Review.
IEEE Access 7 (2019), 7823–7859. https://doi.org/10.1109/access.2018.2890150

[34] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[35] Leslie Smith. 2018. A disciplined approach to neural network hyper-parameters:
Part 1 – learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820 (2018).

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1709.03698
https://arxiv.org/abs/1910.04952
https://arxiv.org/abs/2006.10029
https://arxiv.org/abs/1606.03657
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1610.00291
https://arxiv.org/abs/1905.04753
https://openreview.net/forum?id=rJg8TeSFDH
https://openreview.net/forum?id=rJg8TeSFDH
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1910.01108
https://doi.org/10.1109/access.2018.2890150

Woodstock ’18, June 03–05, 2018, Woodstock, NY Chen et al.

[36] Leslie N. Smith. 2017. Cyclical Learning Rates for Training Neural Networks.
arXiv:1506.01186 [cs.CV]

[37] Samuel Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc Le. 2017. Don’t
Decay the Learning Rate, Increase the Batch Size. arXiv preprint arXiv:1711.00489
(2017).

[38] Casper Kaae Sonderby, Tapani Raiko, Lars Maaloe, Soren Kaae Sonderby, and
Ole Winther. 2016. Ladder Variational Autoencoders. arXiv:1602.02282 [stat.ML]

[39] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning. 1139–1147.

[40] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, and Zhengdong Zhang.
2017. Hardware for machine learning: Challenges and opportunities. 2017 IEEE
Custom Integrated Circuits Conference (CICC) (Apr 2017). https://doi.org/10.1109/
cicc.2017.7993626

[41] Subarna Tripathi, Zachary C. Lipton, Serge Belongie, and Truong Nguyen. 2016.
Context Matters: Refining Object Detection in Video with Recurrent Neural
Networks. arXiv:1607.04648 [cs.CV]

[42] Arash Vahdat and Jan Kautz. 2021. NVAE: A Deep Hierarchical Variational
Autoencoder. arXiv:2007.03898 [stat.ML]

[43] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. arXiv:1910.03771 [cs.CL]

[44] Li Yang and Abdallah Shami. 2020. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (Nov 2020),
295–316. https://doi.org/10.1016/j.neucom.2020.07.061

[45] Serena Yeung, Anitha Kannan, Yann Dauphin, and Li Fei-Fei. 2017. Tackling
Over-pruning in Variational Autoencoders. arXiv:1706.03643 [cs.LG]

[46] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Large Batch Training of
Convolutional Networks. arXiv:1708.03888 [cs.CV]

[47] Kun Yuan, Bicheng Ying, and Ali Sayed. 2016. On the influence of momentum
acceleration on online learning. Journal of Machine Learning Research 17, 192
(2016), 1–66.

[48] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. arXiv
preprint arXiv:1605.07146 (2016).

[49] Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

[50] Jian Zhang and Ioannis Mitliagkas. 2017. Yellowfin and the art of momentum
tuning. arXiv preprint arXiv:1706.03471 (2017).

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1602.02282
https://doi.org/10.1109/cicc.2017.7993626
https://doi.org/10.1109/cicc.2017.7993626
https://arxiv.org/abs/1607.04648
https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/1910.03771
https://doi.org/10.1016/j.neucom.2020.07.061
https://arxiv.org/abs/1706.03643
https://arxiv.org/abs/1708.03888

	Abstract
	1 Introduction
	2 Related Works
	3 Budgeted Training: Profiles and Sampling Rates
	4 Results
	4.1 Learning Rate Schedules
	4.2 Empirical Results

	5 Conclusion
	References

