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Abstract

Affine rank minimization algorithms typically rely on calculating the gradient of a data error followed by a
singular value decomposition at every iteration. Because these two steps are expensive, heuristic approximations
are often used to reduce computational burden. To this end, we propose a recovery scheme that merges the two
steps with randomized approximations, and as a result, operates on space proportional to the degrees of freedom
in the problem. We theoretically establish the estimation guarantees of the algorithm as a function of approxi-
mation tolerance. While the theoretical approximation requirements are overly pessimistic, we demonstrate that
in practice the algorithm performs well on the quantum tomography recovery problem.

1 Introduction

In many signal processing and machine learning applications, we are given a set of observations y ∈ Rp of a rank-r
matrix X? ∈ Rm×n as y = AX? + ε via the linear operator A : Rm×n → Rp, where r � min{m,n} and ε ∈ Rp is
additive noise. As a result, we are interested in the solution of

minimize
X∈Rm×n

f(X)

subject to rank(X) ≤ r,
(1)

where f(X) := ‖y−AX‖22 is the data error. While the optimization problem in (1) is non-convex, it is possible to
obtain robust recovery with provable guarantees via iterative greedy algorithms (SVP) [MJD10, KC12] or convex
relaxations [RFP10,CR09] from measurements as few as p = O(r(m+ n− r)).

Currently, there is a great interest in designing algorithms to handle large scale versions of (1) and its variants.
As a concrete example, consider quantum tomography (QT), where we need to recover low-rank density matrices
from dimensionality reducing Pauli measurements [FGLE12]. In this problem, the size of these density matrices
grows exponentially with the number of quantum bits. Other collaborative filtering problems, such as the Net-
flix challenge, also require huge dimensional optimization. Without careful implementations or non-conventional
algorithmic designs, existing algorithms quickly run into time and memory bottlenecks.

These computational difficulties typically revolve around two critical issues. First, virtually all recovery algo-
rithms require calculating the gradient ∇f(X) = 2A∗(A(X) − y) at an intermediate iterate X, where A∗ is the
adjoint of A. When the range of A∗ contains dense matrices, this forces algorithms to use memory proportional to
O(mn). Second, after the iterate is updated with the gradient, projecting onto the low-rank space requires a partial
singular value decomposition (SVD). This is usually problematic for the initial iterations of convex algorithms, where
they may have to perform full SVD’s. In contrast, greedy algorithms [KC12] fend off the complexity of full SVD’s,
since they need fixed rank projections, which can be approximated via Lanczos or randomized SVD’s [HMT11].

Algorithms that avoid these two issues do exist, such as [WYZ10, RR13, LRS+11, Lau12], and are typically
based on the Burer-Monteiro splitting [BM03]. The main idea in Burer-Monteiro splitting is to remove the non-
convex rank constraint by directly embedding it into the objective: as opposed to optimizing X, splitting algorithms
directly work with its fixed factors UVT = X in an alternating fashion, where U ∈ Rm×r̂ and V ∈ Rn×r̂ for some
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r̂ ≥ r. Unfortunately, rigorous guarantees are difficult.1 The work [JNS12] has shown approximation guarantees
if A satisfies a restricted isometry property with constant δ2r ≤ κ2/(100r) (in the noiseless case), where κ =
σ1(X?)/σr(X

?), or δ2r ≤ 1/(3200r2) for a bound independent of κ. The authors suggest that these bounds may be
tightened, and that practical performance is better than the bound suggests.

In this paper, we merge the gradient calculation and the singular value projection steps into one and show that
this not only removes a huge computational burden, but suffers only a minor convergence speed drawback in practice.
Our contribution is a natural but non-trivial fusion of the Singular Value Projection (SVP) algorithm in [MJD10]
and the approximate projection ideas in [KC12]. The SVP algorithm is an iterative hard-thresholding algorithm
that has been considered in [MJD10, GM11]. Inexact steps in SVP have been considered as a heuristic [GM11]
but have not been incorporated into an overall convergence result.2 A non-convex framework for affine rank
minimization (including variants of the SVP algorithm) that utilizes inexact projection operations with provable
signal approximation and convergence guarantees is proposed in [KC12]. Neither [MJD10,KC12] considers splitting
techniques in the proposed schemes.

This work, departing from [MJD10, KC12], engineers the SVP algorithm to operate like splitting algorithms
that directly work with the factors; this added twist decreases the per iteration requirements in terms of storage
and computational complexity. Using this new formulation, each iteration is nearly as fast as in the splitting
method, hence removing a drawback to SVP in relation to splitting methods. Furthermore, we prove that, under
some conditions, it is still possible to obtain perfect recovery even if the projections are inexact. In particular,
our assumption is that the linear map A satisfies the rank restricted isometry property, and in section 5.1 we give
an application that satisfies this assumption, allowing perfect recovery (in the noiseless case) or stable recovery
(in the presence of noise) from measurements p � mn. This approach has been used for convex [RFP10] and
non-convex [MJD10,KC12] algorithms to obtain approximation guarantees.

2 Preliminary material

Notation: we write PΩ to be an orthogonal projection onto the closed set Ω when it exists. For shorthand we write
Pr to mean P{X:rank(X)≤r} (which does exist by the Eckart-Young theorem). Computer routine names are typeset
with a typewriter font.

2.1 R-RIP

The Rank Restricted Isometry Property (R-RIP) is a common tool used in matrix recovery [RFP10,MJD10,KC12]:

Definition 1 (R-RIP for linear operators on matrices [RFP10]). A linear operator A : Rm×n → Rp satisfies the
R-RIP with constant δr(A) ∈ (0, 1) if, ∀X ∈ Rm×n with rank(X) ≤ r,

(1− δr(A))
∥∥X∥∥2

F
≤
∥∥AX

∥∥2

2
≤ (1 + δr(A))

∥∥X∥∥2

F
, (2)

We write δr to mean δr(A).

2.2 Additional convex constraints

Consider the variant
minimize
X∈Rm×n

f(X)

subject to rank(X) ≤ r, X ∈ C,
(3)

for a convex set C. Our main interests are C+ = {X : X � 0} and the matrix simplex C∆ = {X : X � 0, trace(X) =
1}. In both cases the constraints are unitarily invariant and the projection onto these sets can be done by taking

1If r̂ &
√
p, then [BM03] shows their method obtains a global solution, but this is impractical for large p. Moreover, it is shown

that the explicit rank r̂ splitting method solves a non-convex problem that has the same local minima as (1) (if r̂ = r). However, the
non-convex problems are not equivalent (e.g. U = 0, V = 0 is a stationary point for the splitting problem whereas X = 0 is generally
not a stationary point for (1)). Furthermore, recovery bounds for non-convex algorithms, as in [GK09] and the present paper, are
statements about a sequence of iterates of the algorithm, and say nothing about the local minima.

2 Inexact steps are often incorporated into analysis of algorithms for convex problems. Of particular note, [Lau12] allows inexact
eigenvalue computations in a modified Frank-Wolfe algorithm that has applications to (1).
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Algorithm 1 RandomizedSVD

Finds Q such that X ≈ PQX where PQ = QQ∗.

Require: Function h : Z̃ 7→ XZ̃
Require: Function h∗ : Q̃ 7→ X∗Q̃
Require: r ∈ N // Rank of output
Require: q ∈ N // Number of power iterations to perform

1: ` = r + ρ // Typical value of ρ is 5
2: Ω a n× ` standard Gaussian matrix
3: W ← h(Ω)
4: Q← QR(W ) // The QR algorithm to orthogonalize W
5: for j = 1, 2, . . . , q do
6: Z ← QR(h∗(Q))
7: Q← QR(h(Z))
8: end for
9: Z ← h∗(Q)

10: (U,Σ, V )← FactoredSVD(Q, I`, Z) // X̃i+1 = UΣV ∗ in the appendix
11: Let Σr be the best rank r approximation of Σ
12: return (U,Σr, V ) // Xi+1 = UΣrV

∗ in the appendix

Algorithm 2 FactoredSVD(Ũ , D̃, Ṽ )

Computes the SVD UΣV ∗ of the matrix X implicitly given by X = ŨD̃Ṽ ∗

1: (U,RU )← QR(Ũ)

2: (V,RV )← QR(Ṽ )

3: (u,Σ, v)← DenseSVD(RU D̃R
∗
V )

4: return (U,Σ, V )← (Uu,Σ, V v)

the eigenvalue decomposition and projecting the eigenvalues. Furthermore, for these specific C, P{X:rank(X)≤r}∩C =
PC ◦ Pr (this is not obvious; see [BCKK13]).3

In general, any convex set C satisfying the above property is compatible with our algorithm, as long as X? ∈ C.
We overload notation to use PC to denote both the projection of X onto the set as well as the projection of its
eigenvalues onto the analogous set.

2.3 Approximate singular value computations

The standard method to compute a partial SVD is the Lanczos method. By itself it is not numerically stable and
requires re-orthogonalization and implicit restarts. Excellent implementations are available, but it is a sequential
algorithm that calls matrix-vector products. This makes it more difficult to parallelize, which is an issue on
modern multi-processor computers. The matrix-vector multiplies are also slower than grouping into matrix-matrix
multiplies since it is harder to predict memory usage and this will lead to cache misses; it also precludes the use of
theoretically faster algorithms such as Strassen’s. Theoretically, there are no known relative error bounds in norm
(à la Theorem 1).

As an alternative, we turn to randomized linear algebra. On this front, we restrict ourselves to algorithms that
require only multiplications, as opposed to sub-sampling entries/rows/columns, as sub-sampling is not efficient for
the application we present. The randomized approach presented in Algorithm 1 has been rediscovered many times,
but has seen a recent resurgence of interest due to theoretical analysis [HMT11]:

Theorem 1 (Average Frobenius error). Suppose X ∈ Rm×n, and choose a target rank r and oversampling parameter

ρ ≥ 2 where ` := r + ρ ≤ min{m,n}. Calculate Q and PQ via RandomizedSVD using q = 0 and set X̃ = PQX
(which is rank `). Then

E‖X− X̃‖2F ≤ (1 + ε) ‖X−Xr‖2F
3This formula is literally true for C+ and {X : X � 0, trace(X) ≤ 1}. For C = {X : X � 0, trace(X) = 1} constraints, PC

can increase the rank, so formally we must work on a restricted subspace and then embed back in the larger space, but this poses no
theoretical issues.
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Algorithm 3 Efficient implementation of SVP, K = {R,C}
Require: step-size µ > 0, measurements y, initial points u0 ∈ Km×r, v0 ∈ Kn×r, d0 ∈ Kr
Require: (optional) unitarily invariant convex set C
Require: Function A : (u, d, v) 7→ A(udiag(d)v∗)
Require: Function At : (z, w) 7→ A∗(z)w
Require: Function At∗ : (z, w) 7→ (A∗(z))∗w

1: v−1 ← 0, u−1 ← 0, d−1 ← 0
2: for i = 0, 1, . . . do
3: Compute βi // See text
4: uy ← [ui, ui−1], vy ← [vi, vi−1]
5: dy ← [(1 + βi)di,−βidi−1]
6: z← A(uy, dy, vy)− y // Compute the residual
7: Define the functions

h : w 7→ uy diag(dy)v∗yw − µAt(z, w)
h∗ : w 7→ vy diag(dy)u∗yw − µAt∗(z, w)

8: (ui+1, di+1, vi+1)← RandomizedSVD(h, h∗, r) or (ui+1, di+1, ui+1)← RandomizedEIG(h, h∗, r)
9: di+1 ← PC(di+1) // Optional

10: end for
11: return X ← uidiv

∗
i // If desired

where Xr is the best rank r approximation in the Frobenius norm of X and ε = r
ρ−1 .

The theorem follows from the proof of Thm. 10.5 in [HMT11] (note that Thm. 10.5 is stated in terms of

E‖X − X̃‖F which is not the same as
√
E‖X− X̃‖2F ). The expectation is with respect to the Gaussian r.v. in

RandomizedSVD. For the sake of our analysis, we cannot immediately truncate X̃ to rank r since then the error bound
in [HMT11] is not tight enough. Thus, since X̃ is rank `, in practice we even observe that ‖X− X̃‖2F < ‖X−Xr‖2F ,
especially for small r, as shown in Figure 3. The figure also shows that using q > 0 power iterations is extremely
helpful, though this is not taken into account in our analysis since there are no useful theoretical bounds (in the
Frobenius norm). Note that variants for eigenvalues also exist; we refer to the equivalent of RandomizedSVD as
RandomizedEIG, which has the property that U = V and Σ need not be positive (cf., [HMT11,?])

3 Algorithm

3.1 Projected gradient descent

Our approach is based on the projected gradient descent algorithm:

Xi+1 = Pεr(Xi+1 − µi∇f(Xi)), (4)

where Xi is the i-th iterate, ∇f(·) is the gradient of the loss function, µi is a step-size, and Pεr(·) is the approximate
projector onto rank r matrices given by RandomizedSVD. If we include a convex constraint C, then the iteration is

Xi+1 = PC(Pεr(Xi+1 − µi∇f(Xi))). (5)

In practice, Nesterov acceleration improves performance:

Yi+1 = (1 + βi)Xi − βiXi−1 (6)

Xi+1 = P(Yi − µi∇f(Yi)), (7)

where βi is chosen βi = (αi−1 − 1)/αi and α0 = 1, 2αi+1 = 1 +
√

4α2
i + 1 [Nes83] (see [KC12]). Theorem 2 holds

for a stepsize µi based on the RIP constant, which is unknown. In practice, the algorithm consistently converges
as long as µi . 2

‖A‖2 .

Algorithm 3 shows implementation details that are important for keeping low-memory requirements. The
implementation of maps like A and At depends on the structure of A; see section 5.1 for explicit examples.
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4 Convergence

We assume the observations are generated by y = AX? + ε where ε is a noise term, not to be confused with the
approximation error ε. In the following theorem, we will assume that ‖A‖2 ≤ mn/p, which is true for the quantum
tomography example [Liu11]; if A is a normalized Gaussian, then this assumption holds in expectation.

Theorem 2. (Iteration invariant) Pick an accuracy ε = r
ρ−1 , where ρ is defined as in Theorem 1. Define ` = r+ ρ

and let c be an integer such that ` = (c − 1)r. Let µi = 1
2(1+δcr) in (4) and assume ‖A‖2 ≤ mn/p and f(Xi) >

C2‖ε‖2, where C ≥ 4 is a constant. Then the descent scheme (4) or (5) has the following iteration invariant

Ef(Xi+1) ≤ θf(Xi) + τ‖ε‖2, (8)

in expectation, where

θ ≤ 12 · 1 + δ2r
1− δcr

·
(

ε

1 + δcr
· mn
p

+ (1 + ε)
3δcr

1− δ2r

)
,

and

τ ≤ 1 + δ2r
1− δcr

·
(

12 · (1 + ε)

(
1 +

2δcr
1− δ2r

)
+ 8

)
.

The expectation is taken with respect to Gaussian random designs in RandomizedSVD. If θ ≤ θ∞ < 1 for all
iterations, then limi→∞ Ef(Xi) ≤ max{C2, τ

1−θ∞ }‖ε‖
2.

Each call to RandomizedSVD draws a new Gaussian r.v., so the expected value does not depend on previous
iterations. By Corollary 3.4 in [NT09], δcr ≤ c · δ2r, which allows us to put θ and τ in terms of δ2r if desired, at a
slight expense in sharpness.

The expected value of the function converges linearly at rate θ to within a constant of the noise level, and in
particular, it converges to zero when there is no noise since C and τ are finite. Note that convergence of the iterates
follows from convergence of the function f :

Corollary 1. If f(Xi) ≤ γ, then ‖Xi −X?‖2F ≤
(
√
γ+‖ε‖2)2

1−δ2r .

Proof. By the R-RIP and the triangle inequality,√
1 + δ2r(A)‖Xi −X?‖F ≤ ‖A(Xi)−A(X?)‖2

= ‖(A(Xi)− y)− (A(X?)− y)‖2
≤ ‖(A(Xi)− y)‖2 + ‖ε‖2
≤ √γ + ‖ε‖2

Corollary 2 (Exact computation). If ε = 0 and there is no additional convex constraint C, then θ = 2δ2r
1−δ2r (1 + 2

C )

and τ = 1 + 2δ2r
1−δ2r , hence θ < 1 if δ2r <

1
3+4/C .

Corollary 2 shows that without the approximate SVD, the R-RIP constants are quite reasonable. For example,
with exact computation and no noise, any value of δ2r < 1/3 implies that limi→∞Xi = X?. With noise, choosing
C = 4 gives δ2r = 1/5 and θ = 3/4, τ = 3/2 and thus limi→∞ f(Xi) ≤ max{16, 6}‖ε‖2.

Note that the theorem gives pessimistic values for ε. We want the bound on θ to be less than 1 in order to have
a contraction, so we need

12 · 1 + δ2r
1− δcr

· ε

1 + δcr
· mn
p︸ ︷︷ ︸

I

+ 12(1 + ε) · 1 + δ2r
1− δcr

· 3δcr
1− δ2r︸ ︷︷ ︸

II

< 1

For a rough analysis, we will give approximate conditions so that each of the I and II terms is less than 0.5. It is
clear that the terms blow up if δcr → 1, so we will assume δcr � 1 (and hence δ2r � 1). Then setting 1 + δ2r ≈ 1
in the numerator of I, we require that

12

1− δ2
cr

· εmn
p

<
1

2
(9)
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which means that we need ε . p
24mn . For quantum tomography, m = n and p = O(rn), so we require ε . O(r/n).

From Theorem 1, our bound on ε is r/(ρ − 1), so we require ρ ' n, which defeats the purpose of the randomized
algorithm (in this case, one would just do a dense SVD). Numerical examples in the next section will show that ρ
can be nearly a small constant, so the theory is not sharp.

For the II term, again approximate 1 + δ2r ≈ 1 and then multiply the denominators and ignore the δcrδ2r term
to get

72δcr(1 + ε) . 1− δ2r − δcr. (10)

Since certainly ε ≤ 0.5 and δ2r + δcr ≤ 0.5, a sufficient condition is δcr < 1/216, which is reasonable (cf. [JNS12]).

5 Numerical experiments

5.1 Application: quantum tomography

As a concrete example, we apply the algorithm to the quantum tomography problem, which is a particular instance of
(1). For details, we refer to [GLF+10,FGLE12]. The salient features are that the variable X ∈ Cn×n is constrained to
be Hermitian positive-definite, and that, unlike many low-rank recovery problems, the linear operator A satisfies the
R-RIP: [Liu11] establishes that Pauli measurements (which comprise A) have R-RIP with overwhelming probability
when p = O(rn log6 n). In the ideal case, X? is exactly rank 1, but it may have larger rank due to some (non-
Gaussian) noise processes, in addition to AWGN ε. Furthermore, it is known that the true solution X? has trace
1, which is also possible to exploit in our algorithmic framework.

Since X is Hermitian, the u and v terms in the algorithm are identical. Several computations can be simplified
and there is a version of Algorithm 1 which exploits the positive-definiteness to incorporate a Nyström approximation
(and also forces the approximation to be positive-definite); see [HMT11, ?]. Here, we focus on showing how the
functions A and At can be computed (due to the complex symmetry, At∗ = At).

In quantum tomography, the linear operator has the form (A(X))j = 〈Ej ,X〉 where Ej = E∗j is the Kronecker
product of 2×2 Pauli matrices. There are four possible Pauli matrices σx,y,z if we define σI to be the 2×2 identity
matrix. For a qb-qubit system, Ej = σj1⊗σj2⊗ . . .⊗σjqb . For roughly 12 qubits and fewer, it is simple to calculate
A(X) by explicitly forming Ej and then creating a sparse matrix A with the jth row of A equal to vec(Ej) so that
A(X) = A vec(X). For larger systems, storing this sparse matrix is impractical since there are p ≥ n rows and
each row has exactly n non-zero entries, so there are over n2 entries in A.

To keep memory low, we exploit the Kronecker-product nature of Ej and store it with only qb numbers. When
X = xx∗, we compute 〈Ej ,X〉 = trace(Ejxx∗) = trace(x∗Ejx), and Ejx can be computed in O(qbn) time. This
gives us A. The output of A is real even when X is complex.

To compute At(z,w) when the dimensions are small, we just explicitly form the matrix M = A(z) and then
multiply Mw. To form M, we use the same sparse matrix A as above and reshape the n2 vector A∗z into a n× n
matrix. For larger dimensions, when it is impractical to store A, we implicitly represent M =

∑p
j=1 zjEj and thus

Mw =
∑p
j=1 zjEjw. In general, the output is complex. However, if it is known a priori that X is real-valued,

this can be exploited by taking the real part of M. This leads to a considerable time savings (2× to 4×), and all
experiments shown below make this assumption.

In our numerical implementation, we code both A and At in C and parallelize the code since this is the most
computationally expensive calculation. Our parallelization implementation uses both pthreads on local cores as
well as message passing among different computers. There are two approaches to parallelization: divide the indices
j = 1, . . . , p among different cores, or, when x or w has several columns, send different columns to the different
cores. Both approaches are efficient in terms of message passing since A is parameterized and static. The latter
approach only works when x or w has a significant number of columns, and so it does not apply to Lanczos methods
that perform only matrix-vector multiplies.

Recording error metrics can be costly if not done correctly. Let X = xx∗ and Y = yy∗ be rank-r factorizations.
For the Frobenius norm error ‖X − Y‖F which requires n2 operations naively, we expand the term and use the
cyclic invariance of trace to get ‖X − Y‖2F = trace(x∗xx∗x) + trace(y∗yy∗y) − 2 trace(x∗yy∗x), which requires
only O(nr2) flops. In quantum information, another common metric is the trace distance [NC10] ‖X−Y‖∗, where
‖ · ‖∗ is the nuclear norm. This calculation requires O(n3) flops if calculated directly but can also be calculated
cheaply via FactoredSVD on U = V = [x,y] and D = [I,0; 0,−I]. The third common metric is the fidelity [NC10]
given by ‖X1/2Y1/2‖∗. If either X or Y is rank-1, this can be calculated cheaply as well.
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5.2 Results
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Figure 1: (Left) Convergence rate as a function of parameters to RandomizedSVD/RandomizedEIG. (Right) Com-
parison of just eigenvalue computation times via three methods.
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Figure 2: Mean time of 10 iterations: this includes the matrix multiplications as well as eigenvalue computations.
(Left) shows times for a complete iteration of our method on a single computer using sparse matrix multiplies (“full
memory”) and, above 11 qubits, the custom low-memory implementation as well (not multi-threaded) on the same
computer. (Right) shows times for just the RandomizedSVD/RandomizedEIG.

Figure 1 (left) plots convergence and accuracy results for a quantum tomography problem with 8 qubits and
p = 4rn with r = 1. The SVP algorithm works well on noisy problems but we focus here on a noiseless (and truly
low-rank) problem in order to examine the effects of approximate SVD/eigenvalue computations. The figure shows
that the power method with q ≥ 1 is extremely effective even though it lacks theoretical guarantees; without the
power method, take ρ ' 20 and we see convergence, albeit slower. When p is smaller and the R-RIP is not satisfied,
taking ρ or q too small can lead to non-convergence.

Figure 1 (right) is a direct comparison of RandomizedEIG (with ρ = 5 and q = 3) and the Lanczos method for
multiplies of the type encountered in the algorithm. The RandomizedEIG has the same asymptotic complexity but
much better constants.

Figure 2 shows that because the eigenvalue decomposition is a significant portion of the computational cost,
using RandomizedEIG instead of Lanczos makes a difference. The difference is not pronounced in the small-scale
full-memory implementation because the variable X is explicitly formed and matrix multiplies are relatively cheap
compared to other operations in the code. For larger dimensions with the low-memory code, X is never explicitly
formed and multiplying with the gradient is quite costly. The randomized method requires fewer multiplies, ex-
plaining its benefit. For 12 qubits, the Lanczos method averages 98.4 seconds/iteration, whereas the randomized
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Figure 4: The table (left) shows error metrics for the noisy rank-1 16-qubit recovery. The figure (right) shows the
convergence rate for the same simulation.

method averages just 59.2 seconds. The right subfigure shows that the low-memory implementation (which has
memory requirement O(rn)) still has only O(n2) time complexity per iteration.

Figure 3 tests Theorem 1 by plotting the value of

ε̃ = ‖X− X̃‖2F /‖X−Xr‖2F − 1

(which is bounded by ε) for matrices X that are generated by the iterates of the algorithm. The algorithm is set
for r = 1 (so X is the sum of a rank 2 term, which includes the Nesterov term, and the full rank gradient), but
the plots consider a range of r and a range of oversampling parameters ρ. The plots use q = 0, 1 (top row, left to

right) and q = 2 (bottom row, left) power iterations. Because X̃ has rank ` = r + ρ, it is possible for ε̃ < 0, as we
observe in the plots when r is small and ρ is large. For two power iterations, the error is excellent. In all cases, the
observed error ε̃ is much better than the bound ε (shown bottom row, right) from Theorem 1, suggesting that it
may be possible to have a more refined analysis.

Finally, to test scaling to very large data, we compute a 16 qubit state (n = 65536), using a known quantum state
as input, with realistic quantum mechanical perturbations (global depolarizing noise of level γ = 0.01; see [FGLE12])
as well as AWGN to give a SNR of 30 dB, and p = 5n = 327680 measurements. The first iteration uses Lanczos
and all subsequent iterations use RandomizedEIG using ρ = 5 and q = 3 power iterations. On a cluster with 10
computers, the mean time per iteration is 401 seconds. The table in Fig. 4 (left) shows the error metrics of the
recovered matrix, and Fig. 4 (right) plots the convergence rate of the Frobenius-norm error and trace distance.

Figure 5 reports the median error on 20 test problems across a range of p. Here, X? is only approximately
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Figure 5: Accuracy comparison of several algorithms, as a function of number of samples p. Each point is the
median of the results of 20 simulations.

low rank and y is contaminated with noise. We compare the convex approach [FGLE12], the “AltMinSense”
approach [JNS12], and a standard splitting approach. AltMinSense and the convex approach have poor accuracy; the
accuracy of AltMinSense can be improved by incorporating symmetry, but this changes the algorithm fundamentally
and the theoretical guarantees are lost. The splitting approach, if initialized correctly, is accurate, but lacks
guarantees. Furthermore, it is slower in practice due to slower convergence, though for some simple problems (i.e.,
no convex constraints C) it is possible to accelerate using L-BFGS [Lau12].

6 Conclusion

Randomization is a powerful tool to accelerate and scale optimization algorithms, and it can be rigorously included
in algorithms that are robust to small errors. In this paper, we leverage randomized approximations to remove
memory bottlenecks by merging the two-key steps of most recovery algorithms in affine rank minimization problems:
gradient calculation and low-rank projection. Unfortunately, the current black-box approximation guarantees, such
as Theorem 1, are too pessimistic to be directly used in theoretical characterizations of our approach. For future
work, motivated by the overwhelming empirical evidence of the good performance of our approach, we plan to
directly analyze the impact of randomization in characterizing the algorithmic performance.
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A Proofs

Proof of Theorem 2. There are three aspects to the proof. Even without approximate SVD calculations, the problem
is non-convex, so we must leverage the R-RIP to prove that iterates converge. Mixed in with this calculation is the
approximate nature of our rank ` point X̃i+1, where we will apply the bounds from Theorem 1. Finally, we relate

X̃i+1 to its rank r version Xi+1.

An important definition for our subsequent developments is the following:
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Definition 2 (ε-approximate low-rank projection). Let X be an arbitrary matrix. For any ε > 0, Pεr′,`′(X) provides
a rank-`′ matrix approximation to X such that

E
∥∥Pεr′,`′(X)−X

∥∥2

F
≤ (1 + ε)

∥∥Pr′(X)−X
∥∥2

F
, (11)

where Pr′(X) ∈ argminY:rank(Y)≤r′ ‖X−Y‖F .

Let Xi be the putative rank r solution at the i-th iteration, X? be the rank r matrix we are looking for and X̃i+1

be the rank l matrix, obtained using approximate SVD calculations. Define L := 2(1 + δr+`) and M := 2(1− δ2r).
Then, we have:

f(X̃i+1) = f(Xi) + 〈∇f(Xi), X̃i+1 −Xi〉+ ‖A(X̃i+1 −Xi)‖2F

≤ f(Xi) + 〈∇f(Xi), X̃i+1 −Xi〉+
L

2
‖X̃i+1 −Xi‖2F

= f(Xi)−
1

2L
‖∇f(Xi)‖2F +

L

2

(
‖X̃i+1 −Xi‖2F + 2〈 1

L
∇f(Xi), X̃i+1 −Xi〉+

1

L2
‖∇f(Xi)‖2F

)
= f(Xi)−

1

2L
‖∇f(Xi)‖2F +

L

2
‖X̃i+1 −

(
Xi −

1

L
∇f(Xi)

)
‖2F . (12)

By construction X̃i+1 ∈ Pεr,`
(
Xi − 1

L∇f(Xi)
)

(since the step-size is µ = 1/L), so, for Xi+1 ∈ Pr
(
Xi − 1

L∇f(Xi)
)
,

E‖X̃i+1 − (Xi −
1

L
∇f(Xi))‖2F ≤ (1 + ε)‖Xi+1 − (Xi −

1

L
∇f(Xi))‖2F

≤ (1 + ε)‖X? − (Xi −
1

L
∇f(Xi))‖2F (13)

by the definition of Pr(·) (since rank(X?) = r). Combining (13) with (12), we obtain:

Ef(X̃i+1) ≤ f(Xi)−
1

2L
‖∇f(Xi)‖2F +

L

2
(1 + ε)‖X? −Xi +

1

L
∇f(Xi)‖2F

= f(Xi)−
1

2L
‖∇f(Xi)‖2F + (1 + ε)

(
1

2L
‖∇f(Xi)‖2F + 〈∇f(Xi), X? −Xi〉+

L

2
‖X? −Xi‖2F

)
≤ (1 + ε)

[
f(Xi) + 〈∇f(Xi), X? −Xi〉+

L

2
‖X? −Xi‖2F

]
+

ε

2L
‖∇f(Xi)‖2F (14)

where we use the fact that f(Xi) ≥ 0 in the last inequality. Due to the restricted strong convexity of f that follows
from the restricted isometry property, we have:

f(X?) ≥ f(Xi) + 〈∇f(Xi),X
? −Xi〉+

M

2
‖X? −Xi‖2F

f(X?)− M

2
‖X? −Xi‖2F ≥ f(Xi) + 〈∇f(Xi),X

? −Xi〉

which, combined with (14), leads to:

Ef(X̃i+1) ≤ (1 + ε)

[
f(X?) +

L−M
2
‖X? −Xi‖2F

]
+

ε

2L
‖∇f(Xi)‖2F (15)

Due to the R-RIP,

‖X? −Xi‖2F ≤
‖A(X? −Xi)‖22

1− δ2r
(16)

Now define a constant C and assume f(Xi) = ‖y−AXi‖22 > C2‖ε‖22 (if the assumption fails, it means Xi is already
close to X?). In particular, in the noiseless case ‖ε‖ = 0, we may pick C arbitrarily large and set all 1/C terms to
zero.

‖A(X? −Xi)‖2F = ‖y −A(Xi)− ε‖22
= ‖y −A(Xi)‖22 + ‖ε‖22 − 2〈ε,y −A(Xi)〉
≤ f(Xi) + ‖ε‖22 + 2‖ε‖2‖y −A(Xi)‖2

≤ f(Xi) + ‖ε‖22 +
2

C
f(Xi) (17)

10



Substituting (17) and (16) into (15), expanding the values of L and M , and noting that f(X?) = ‖y−A(X?)‖22 =
‖ε‖22, gives

Ef(X̃i+1) ≤ (1 + ε)

[
‖ε‖22 +

δr+` + δ2r
1− δ2r

(
f(Xi) + ‖ε‖22 +

2

C
f(Xi)

)]
+

ε

2L
‖∇f(Xi)‖2F (18)

≤ (1 + ε)

[
δr+` + δ2r

1− δ2r

(
1 +

2

C

)
f(Xi) +

(
1 +

δr+` + δ2r
1− δ2r

)
‖ε‖22

]
+

ε

2L
‖∇f(Xi)‖2F (19)

We bound ‖∇f(Xi)‖ using our assumption on the magnitude of ‖A‖:

‖∇f(Xi)‖2F = 4‖A∗ (y −A(Xi)) ‖2F ≤ 4‖A∗‖2‖y −A(Xi)‖22 = 4‖A‖2f(Xi) ≤ 4
mn

p
f(Xi) (20)

For quantum tomography, we even have AA∗ = mn
p I, so the inequality holds with equality (and m = n).

Combining (19) with (20) and by the definition of L, we obtain:

Ef(X̃i+1) ≤ (1 + ε)

[
δr+` + δ2r

1− δ2r

(
1 +

2

C

)
f(Xi) +

(
1 +

δr+` + δ2r
1− δ2r

)
‖ε‖22

]
+

ε

1 + δr+`
· mn
p
f(Xi) (21)

=

(
ε

1 + δr+`
· mn
p

+ (1 + ε)
δr+` + δ2r

1− δ2r

(
1 +

2

C

))
︸ ︷︷ ︸

θ′

f(Xi) + (1 + ε)

(
1 +

δr+` + δ2r
1− δ2r

)
︸ ︷︷ ︸

τ ′

‖ε‖22 (22)

Note that if an exact SVD computation is used, then not only is ε = 0 but also X̃i+1 is rank r, so we are done

and can use θ = θ′ and τ = τ ′. To finish the proof, we now relate Ef(Xi+1) to Ef(X̃i+1). In the algorithm, Xi+1

is the output of RandomizedSVD, and X̃i+1 is the intermediate value UΣV ∗ on line 10 of Algo. 1. Given X̃i+1 with

rank(X̃i+1) = ` > r, Xi+1 is defined as the best rank-r approximation to X̃i+1.4 Thus, the following inequality
holds true:

‖Xi+1 −X?‖F = ‖Xi+1 − X̃i+1 + X̃i+1 −X?‖F
≤ ‖Xi+1 − X̃i+1‖F + ‖X̃i+1 −X?‖F
≤ 2‖X̃i+1 −X?‖F (23)

since ‖Xi+1− X̃i+1‖F ≤ ‖X?− X̃i+1‖F . In particular, since the above is valid for any value of the random variable

X̃i+1, E ‖Xi+1 −X?‖2F ≤ E 4‖X̃i+1 −X?‖2F . This bound is pessimistic and in practice the constant is close to 1
rather than 4.

We will again assume that f(X̃i+1), f(Xi+1) ≥ C2‖ε‖22, and C > 2, since otherwise the current point is a
good-enough solution. We have:

f(Xi+1) = ‖y −A(Xi+1)‖22 = ‖A(X? −Xi+1) + ε‖22
= ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2〈A(X? −Xi+1), ε〉
= ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2〈y −A(Xi+1)− ε, ε〉
= ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2〈y −A(Xi+1), ε〉+ 2〈−ε, ε〉
≤ ‖A(X? −Xi+1)‖22 + ‖ε‖22 + 2‖y −A(Xi+1)‖2‖ε‖2 − 2‖ε‖22

≤ ‖A(X? −Xi+1)‖22 − ‖ε‖22 +
2

C
f(Xi+1)

which, if 1− 2/C ≥ 0, implies

f(Xi+1) ≤ 1

1− 2/C
‖A(X? −Xi+1)‖22 −

1

1− 2/C
‖ε‖22 (24)

4If we include a convex constraint C then instead of defining Xi+1 = Pr(X̃i+1) we have Xi+1 = PC(Pr(X̃i+1)). In this case,

‖PC(Pr(X̃i+1))−X?‖F = ‖PC(Pr(X̃i+1)−X?)‖F ≤ ‖Pr(X̃i+1)−X?‖F .

The first equality follows from X? ∈ C and the second is true since the projection onto a non-empty closed convex set is non-expansive.
Hence the result in (23) still applies when we include the C constraints.
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By the R-RIP assumption, we have:

‖A(X? −Xi+1)‖22 ≤ (1 + δ2r)‖X? −Xi+1‖2F . (25)

Using (23) and (25) in (24), we obtain:

f(Xi+1) ≤ 4(1 + δ2r)

1− 2/C
‖X̃i+1 −X?‖2F −

1

1− 2/C
‖ε‖22 (26)

Using the R-RIP property again, the following sequence of inequalities holds:

‖X̃i+1 −X?‖2F ≤
‖A(X̃i+1 −X?)‖2F

1− δr+`

≤ 1 + 2/C

1− δr+`
f(X̃i+1) +

1

1− δr+`
‖ε‖22 (27)

where the second inequality is obtained following same motions as (17). Combining (26)-(27) with (22), we obtain:

Ef(Xi+1) ≤ 4(1 + δ2r)

1− 2/C
· 1 + 2/C

1− δr+`
· θ′︸ ︷︷ ︸

θ

·f(Xi) +

(
4(1 + δ2r)

1− 2/C
· 1 + 2/C

1− δr+`
· τ ′ + 4(1 + δ2r)

1− 2/C
· 1

1− δr+`
− 1

1− 2/C

)
︸ ︷︷ ︸

τ

‖ε‖22

Now we simplify the result to make it more interpretable. Define ρ = `− r. Let c be the smallest integer such
that ` ≥ (c− 1)r (and for simplicity, assume ` = (c− 1)r) so that δr+` = δcr and δr+` + δ2r ≤ 2δcr. By Theorem 1,
ε ≤ r

ρ−1 = r
(c−2)r−1 . For concreteness, take C ≥ 4 so that 1 + 2/C ≤ 3/2 and (1− 2/C)−1 ≤ 2. Then

θ ≤ 12 · 1 + δ2r
1− δcr

·
(

ε

1 + δcr
· mn
p

+ (1 + ε)
3δcr

1− δ2r

)
(28)

and

τ ≤
(

12 · 1 + δ2r
1− δcr

· (1 + ε)

(
1 +

δ2r + δcr
1− δ2r

)
+

8(1 + δ2r)

1− δcr

)
≤ 1 + δ2r

1− δcr
·
(

12 · (1 + ε)

(
1 +

2δcr
1− δ2r

)
+ 8

)
(29)
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