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ABSTRACT
Centroid based clustering methods such as k-means, k-
medoids and k-centers are heavily applied as a go-to tool
in exploratory data analysis. In many cases, those meth-
ods are used to obtain representative centroids of the data
manifold for visualization or summarization of a dataset.
Real world datasets often contain inherent abnormalities e.g.
repeated samples and sampling bias, that manifest imbal-
anced clustering. We propose to remedy such scenario by
introducing a maximal radius constraint r on the clusters
formed by the centroids i.e. samples from a same cluster
should not be more than 2r apart in term of `2 distance. We
achieve this constraint by solving a semi-definite program,
followed by a linear assignment problem with quadratic
constraints. Through qualitative results, we show that our
proposed method is robust towards dataset imbalances and
sampling artefacts. To the best of our knowledge, ours is the
first constrained k-means clustering method with hard radius
constraints.1

Index Terms— robust k-means, radius constraint, con-
strained optimization, data imbalance, clustering

1. INTRODUCTION

K-clustering methods offer the benefit of producing summa-
rized dataset representation through a set of learned centroids
or centers. Such representations find many applications from
denoising, anomaly detection, visual summarization, as initial
parameters for downstream algorithms e.g., Gaussian Mixture
Models, and as plastic features for life-long machine learn-
ing classifiers [1]. The fundamental assumptions governing
the success of K-means lies in having cluster with roughly
the same number of samples and intra-cluster data covariance
that is isotropic with the form σI , furthermore σ should be
roughly the same between clusters. Whenever the data does
not align with those assumptions, K-means will naturally be
skewed toward producing an incorrect representation. For ex-
ample, even in the simplest case of having a dataset made
of a mixture of Gaussian but with varied number of samples
per mixture, K-means centroids will naturally shift toward the
mode with greatest number of samples.

1Codes at https://bit.ly/kmeans-constrained

Fig. 1. Centroids generated by our proposed maximal radius con-
strained k-means method for K = 16 on imbalanced two-moons
data (85/15). Even though the concave moon is oversampled more
than 5 times, our method produces equal number of centroids for
both moons. See Fig 2 for comparisons.

The implication of those cases can be dramatic as any
downstream task relying on those representations, would be
negatively impacted causing e.g., bias in facial recognition
models [2], gender bias in word-level language models [3].
This has led to the birth of many K-means alternatives, each
aiming at fixing a particular limitation e.g. the presence of
outliers among others [4, 5]. There also exists k-clustering
methods focused on (fair) data summarization [6, 7, 8], im-
balanced data clustering [9] and robustness to specific trans-
formations of the data [10, 11, 12]. Some of these methods
require specifications on the cardinality of the demographics
[6, 13, 14], weak labels of imbalance [9], the data transfor-
mations to be robust against [12], or a priori knowledge of the
data/outlier distributions [15].

In this paper we propose a radius constrained clustering
as a method to introduce robustness into K-means cluster-
ing without requiring any domain specific knowledge. That
is, the algorithm will produce regions/clusters for which the
pairwise distance between samples within that region is upper
bounded by a chosen constant. Our proposed method (Fig. 1)
generates uniformly spaced centroids on the data manifold,
while being robust towards sampling inconsistencies. This
offers great advantages e.g. when using K-means to obtain
a manifold covering robust to the distribution of samples.

https://github.com/AhmedImtiazPrio/radius-constrained-kmeans


Fig. 2. From Left to Right, K-means, K-medoids, K-center and cardinality constrained K-means clustering [13] for the imbalanced two
moons summarization task as in Fig.1. All four of the k-clustering algorithms are biased towards the concave moon with only {6, 6, 6, 5}
centroids being selected from the convex moon by each method respectively.

We compare our proposed method with standard k-clustering
methods and robust methods such as cardinality constrained
clustering [13] and t-distribution K-means clustering [15].
Our contributions in this paper are summarized below:

• We present the first k-means algorithm with a hard
radius constraint that is tractable. We use a convex
relaxation of radius constrained k-means, and pose it
as a mixed integer (MI) semi-definite program (SDP).
We solve it via a linear SDP relaxation and subsequent
rounding.

• We present empirical evidence on the efficacy of radius
constrains on summarization of data, especially to be
robust towards sampling biases.

The rest of the paper is organized as follows: in Section 2, we
present the radius constraint K-means that we propose, start-
ing from the definition of K-means and moving towards an
Mixed Integer Semi-Definite Program (MISDP) formulation
of our method. Section 4 we discuss qualitative results com-
paring with different methods, and, in Section 5, we discuss
future directions.

2. BACKGROUND: K-MEANS

We denote by Γ = {xl}Nl=1 the set of N data points in Rm.
K-means proposes a centroid based clustering i.e. partition of
Γ into k disjoint groups found by minimizing

min
{Γk}Kk=1

K∑
k=1

∑
l∈Γk

‖xl − γk‖2, (1)

where Γk ∩ Γk′ = {},∀k 6= k′,∪Kk=1Γk = Γ and γk is the
centroid of cluster k. By letting 1Γk
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of the k-th cluster Eq. 1 becomes
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where, 〈·, ·〉 is the matrix inner product, and D ∈ RN×N is
the squared pairwise distance matrix with each element dij =
‖xi−xj‖2. The first equality in Eq. 2 comes from the equality
relationship introduced in [16], relating the sum of pairwise
distances with the sum of radial distance for any partition.
The second equality is a simple matrix reformulation of the
inner sum operation. Therefore, we can rewrite the k-means
problem as,

min
{Γk}Kk=1

1

2

K∑
k=1

1

|Γk|
〈1Γk

1TΓk
,D〉, (3)

with ∪Kk=1Γk = Γ and Γk ∩ Γk′ = ∅ for k 6= k′, which is an
NP hard problem [17]. Notice that in the above formulation,
there are no explicit constraints on the number of samplers per
cluster, the intra-cluster radius or the weighting of different
samples e.g. to account for outliers. We propose to take on
step into that direction by providing a hard constraint on the
intra-cluster radius.

3. RADIUS CONSTRAINED K-MEANS: NO MORE
THAN 6FT APART

Previously [18] have provided formulations for soft radius
constraints in online k-means clustering, where the constraint
is introduced as an additional term in the optimization objec-
tive. We provide a formulation for hard radius constraints r,
where r fixed for every cluster. Since for any partition with a
fixed radius, the maximal distance between two samples can
be at most the diameter, we can write the maximal radius con-
straint as

max{‖xl − xs‖2|l, s ∈ Γk} ≤ 4r2 for k = 1, 2, 3...,K.
(4)

The k-means objective in Eq. 3 can therefore be rewritten
with the maximal radius constraint as,

min
{Γk}Kk=1

1

2

K∑
k=1

1

|Γk|
〈1Γk

1TΓk
,D〉 (5)

s.t ∪Kk=1 Γk = Γ, Γk ∩ Γk′ = ∅ for k 6= k′ (6)

dij ≤ 4r2 ∀i, j ∈ Γk for k = 1, 2, 3...,K (7)



Table 1. Comparison of partition radius, k-radius and number
of k in the convex moon (Ω) for 100 random seeds. Note
that our proposed constrained optimization model (r = .189)
finds the optimal solution for given constraints.

Method Max Partition Radius Max k-Radius k ∈ Ω

K-means .228(±.03) .258(±.04) 5.77(±.42)
K-medoids .268(±.05) .379(±.07) 5.56(±.68)
K-center .224(±.02) .289(±.01) 7.52(±.57)
card. K-means [13] .222(±.03) .25(±.03) 5.83(±0.43)
tk-means [15] .28(±.06) .309(±.07) 4.92(±0.63)
Ours 0.181 .207 8

Note that by setting r2 = ∞ one recovers the standard K-
means form. Before going into the optimization method and
empirical validations, we recall that our goal is to leverage the
explicit constraint on di,j to ensure that some regions can not
cover samples that are too far apart in the space.

3.1. MILP formulation of Radius Constrained K-means

We start the Mixed Integer Linear Program (MILP) formu-
lation of Eq. 5 by introducing NK binary variables πki ∈
{0, 1}, where πki = 0 if xi /∈ Γk and πKi = 1 if xi ∈ Γk.
Therefore the objective becomes

min
∀πk

i

1

2
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dijπ
k
i π

k
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s.t πki ∈ {0, 1}, nk ∈ Z, 1 ≤ nk ≤ N, (9)
N∑
i=1

πki = nk,

K∑
k=1

nk = N,

K∑
k=1

πki = 1, (10)

dijπ
k
i π

k
j ≤ 4r2,∀i, j, ∀k, (11)

where, nk are integer variables between [1, N ] and nk = |Γk|
at optimality. It can be easily verified that the constraints 10
and 11 are equivalent to constraints 6 and 7. The feasible set
of the original k-means formulation in Eq. 1 is also a feasi-
ble set of the MILP formulation. Our formulation is closely
related to the cardinality constrained k-means formulation in
[14]. In our optimization model, we introduce a constraint
on the squared pairwise distance inside each partition, while
keeping its cardinality as an integer variable; whereas [14]
allows specifying cardinality constraints for each partition.
Note that our proposed model can also allow using different
radius constraints rk in Eq. 11 for different partitions with-
out changing the model class. We avoid that for the sake of
simplicity of our formulation and defer that for future work.
Another thing to note is that the partition radius upper bound
r also upper bounds the k-radius, i.e. the maximal distance
between any sample and its centroid, by 2r.

3.2. Convex relaxation of the MILP formulation

We start the convex formulation by replacing the binary vari-
ables πki with binary vector bk = {bki }Ni=1, bki ∈ {−1, 1}
where bki is 1 if xi ∈ Γk and -1 otherwise. This implies
bki = 2πki − 1. The MILP objective function can be written in
terms of bk as:
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where Mk ∈ RN×N . For equality in the feasible set, we need
Mk = bk(bk)T which yields each element in the right term
of the inner product as 1

4nk

∑K
k=1 b

k
i b
k
j + 1 + bki + bkj . The

SDP relaxation of the problem is therefore,

min
∀bk,Mk

1

8
〈D,
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s.t − 1 ≤ bki ≤ 1, 1 ≤ nk ≤ N,Mk � bk(bk)T ,

diag(Mk) = 1,1Tbk = 2nk −N,
K∑
k=1

nk = N,

K∑
k=1

bk = (2− k)1, dij(m
k
ij+1+bki +bkj )≤ 16r2,

for i, j = 1, 2, ..., N and k = 1, 2, ...,K

where, the semi-definite constraint M � b(b)T can be con-
verted into a linear matrix inequality using Schur’s comple-
ment [19].

The objective in the current formulation is a linear frac-
tional function which can be turned into a linear objective us-
ing Charnes-Cooper transformation [20]. Specifically, since
the denominator in Eq. 12 is strictly positive as nk ≥ 1,
the objective can be expressed as a perspective function [21].
Without the continuous relaxation of bk, the problem can
be formally stated as a Mixed Integer Semi-definite program
(MISDP) [22].

3.3. Rounding Algorithm

We define our rounding algorithm as a two step linear assign-
ment problem with quadratic constraints (Alg. 1). The first
step in the algorithm is to find binary partition variables for
each samples, we define it as Π ∈ {0, 1}N×K where each
element πki is 1 if xi is assigned to cluster k. We solve two
linear assignment objectives, one in which we maximize the
inner product sum of the SDP solution and πki with quadratic
constraints adhering to the maximal radius constraint (Eq.
15). In the second step, we minimize the intra-cluster dis-
tance for the assignment variables (Eq. 16).
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Fig. 3. From Left to Right, K-means, K-means with radius constraint= 1 and K-means with maximal cardinality constraint= 55.

Algorithm 1: Maximal radius constrained k-means

Input: N ; x = {xi}Ni=1; k; r; D ∈ RN×N
Output: binary assignments Π ∈ {0, 1}N×K
Step 1: Solve continuous relaxation of MISDP using

interior point method→ bk ∀k ;
Step 2: Let, Π ∈ {0, 1}N×K binary partition

assignment variables. Solve,

max
Π

K∑
k=1

N∑
i=1

πki b
k
i s.t 1 ≤

N∑
i=1

πki ≤ N, (15)

and
K∑
k=1

πki = 1, dijπ
k
i π

k
j ≤ 4r2 ∀i, j, k

Step 3: Get partitions Γk and centroids γk ∀k
Step 4: Solve for Π ∈ {0, 1}N×K

min
Π

K∑
k=1

N∑
i=1

πki ‖xi−γk‖2 s.t 1≤
N∑
i=1

πki ≤N, (16)

and
K∑
k=1

πki = 1, dijπ
k
i π

k
j ≤ 4r2,∀i, j, k

4. EXPERIMENTS

2D experiments. Experimental results presented in Fig. 1
and Fig. 2 portray the efficacy of radius constrained k-means
for imbalanced data summarization. We compare with cardi-
nality constrained k-means [13] as an alternative constrained
k-means method. We also compare with tk-means [15] which
uses long tail assumptions for robustness. For comparison,
we sweep the cardinality upper and lower bounds of [13] till
infeasible to find the best balance. We see that both increasing
the lower or decreasing the upper bounds from respectively 0
and N = 100 harms balanced centroid generation; increasing
the lower bound makes it easier to achieve the lower bound for
the convex moon, while decreasing the upper bound requires
more centroids to cover the concave moon. For all experi-
ments we choose N/K to be small since otherwise, k-means
based clustering might return centroids off the data manifold,

therefore yielding bad sketches/summaries. An added bene-
fit radius constraints provide is a feasibility certificate- tighter
radius bounds resulting in empty feasibility sets can be used
to infer how to increase K to be able to cover all the sam-
ples. For the imbalanced two moons experiments, for a radius
constraint of r = .189, we have seen that at least 16 centroids
were required to be able to cover the whole manifold. For dif-
ferent methods the partition radius and k-radius is presented
in Table 1.

1D experiments. Let, we have N = 102 samples from
three uniform distributions U(-3,-1), U(-1,1) and U(1,3) with
51, 26, 25 samples in each respectively. We draw compar-
isons between standard k-means, cardinality constrained k-
means and radius constrained k-means in a k = 3 summariza-
tion task. Fig. 3 shows clustering performance on such a case-
without any constraints, k-means will create an inconsistent
partition, e.g. resulting in the mixing of different attributes
represented by each random variable. This will yield cen-
troids which are not proper summaries of the dataset. Where
as with radius constraint of 1 and cardinality constraint of
55 adhere to the correct partitioning. Here, cardinality con-
strained k-means require re-tuning the constraint when the
dataset is resampled, whereas ours is robust.

Implementation. We use MOSEK to solve Step 1 in Alg. 1
and Gurobi to solve Steps 2 and 4. In our experiments, we
did not require tuning of solver parameters.

5. CONCLUSION

We propose the first maximal radius constrained K-means as
an MISDP optimization objective. Upon comparison with
multiple k-clustering methods, we see that our method is
more robust towards sampling bias/ data imbalance. The
main limitation of our radius constrained k-means formula-
tion is that both the order of variables and constraints are
O(k.N2) which is impractical for very large datasets. From
preliminary experiments we see that replacing the SDP prob-
lem with a k-center problem in Step 1 of Alg. 1 has minimal
effects on the centroid selection. This can be considered a
future direction to improve computational complexity.



6. REFERENCES

[1] Wangli Hao, Junsong Fan, Zhaoxiang Zhang, and Guibo
Zhu, “End-to-end lifelong learning: a framework to
achieve plasticities of both the feature and classifier con-
structions,” Cognitive Computation, vol. 10, no. 2, pp.
321–333, 2018.

[2] Joy Buolamwini and Timnit Gebru, “Gender shades: In-
tersectional accuracy disparities in commercial gender
classification,” in Conference on fairness, accountabil-
ity and transparency. PMLR, 2018, pp. 77–91.

[3] Shikha Bordia and Samuel R Bowman, “Identifying and
reducing gender bias in word-level language models,”
arXiv preprint arXiv:1904.03035, 2019.

[4] ZR Hesabi, Zahir Tari, A Goscinski, Adil Fahad,
Ibrahim Khalil, and Carlos Queiroz, “Data summariza-
tion techniques for big data—a survey,” in Handbook on
Data Centers, pp. 1109–1152. Springer, 2015.

[5] Ashish Chiplunkar, Sagar Kale, and Sivaramakrish-
nan Natarajan Ramamoorthy, “How to solve fair k-
center in massive data models,” in International Con-
ference on Machine Learning. PMLR, 2020, pp. 1877–
1886.
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