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Abstract
Given two sets of variables, derived from a com-
mon set of samples, sparse Canonical Correlation
Analysis (CCA) seeks linear combinations of a
small number of variables in each set, such that
the induced canonical variables are maximally
correlated. Sparse CCA is NP-hard.

We propose a novel combinatorial algorithm for
sparse diagonal CCA, i.e., sparse CCA under the
additional assumption that variables within each
set are standardized and uncorrelated. Our al-
gorithm operates on a low rank approximation
of the input data and its computational complex-
ity scales linearly with the number of input vari-
ables. It is simple to implement, and paralleliz-
able. In contrast to most existing approaches,
our algorithm administers precise control on the
sparsity of the extracted canonical vectors, and
comes with theoretical data-dependent global ap-
proximation guarantees, that hinge on the spec-
trum of the input data. Finally, it can be straight-
forwardly adapted to other constrained variants
of CCA enforcing structure beyond sparsity.

We empirically evaluate the proposed scheme
and apply it on a real neuroimaging dataset to in-
vestigate associations between brain activity and
behavior measurements.

1. Introduction
One of the key objectives in cognitive neuroscience is to
localize cognitive processes in the brain, and understand
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their role in human behavior, as measured by psychologi-
cal scores and physiological measurements (Posner et al.,
1988). This mapping may be investigated by using func-
tional neuroimaging techniques to measure brain activation
during carefully designed experimental tasks (Poldrack,
2006). Following the experimental manipulation, a joint
analysis of brain activation and behavioral measurements
across subjects can reveal associations that exist between
the two (Berman et al., 2006).

Similarly, in genetics and molecular biology, several stud-
ies involve the joint analysis of multiple assays performed
on a single group of patients (Pollack et al., 2002; Morley
et al., 2004; Stranger et al., 2007). If DNA variants and
gene expression measurements are simultaneously avail-
able for a set of tissue samples, a natural objective is to
identify correlations between the expression levels of gene
subsets and variation in the related genes.

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is
a classic method for discovering such linear relationships
across two sets of variables and has been extensively used
to investigate associations between multiple views of the
same set of observations; e.g., see (Deleus & Van Hulle,
2011; Li et al., 2012; Smith et al., 2015) in neuroscience.
Given two datasets X and Y of dimensions k×m and k×
n, respectively, on k common samples, CCA seeks linear
combinations of the original variables of each type that are
maximally correlated. More formally, the objective is to
compute a pair of canonical vectors (or weights) u and v
such that the canonical variables Xu and Yv achieve the
maximum possible correlation:1

max
u, v 6=0

u>ΣXYv

(u>ΣXXu)
1/2

(v>ΣYYv)
1/2
. (1)

1 We assume that the variables in X and Y are standardized,
i.e., each column has zero mean and has been scaled to have unit
standard deviation.
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The optimal canonical pair can be computed via a general-
ized eigenvalue decomposition involving the empirical es-
timates of the (cross-) covariance matrices in (1).

Imaging and behavioral measurements in cognitive neuro-
science, similar to genomic data in bioinformatics, typi-
cally involve hundreds of thousands of variables with only
a limited number of samples. In that case, the CCA ob-
jective in (1) is ill-posed; it is always possible to design
canonical variables for which the factors in the denomi-
nator vanish, irrespective of the data. Model regularization
via constraints such as sparsity, not only improves the inter-
pretability of the extracted canonical vectors, but is critical
for enabling the recovery of meaningful results.

Sparse CCA seeks to maximize the correlation between
subsets of variables of each type, while performing variable
selection. In this work, we consider the following sparse
diagonal CCA problem, similar to (Witten et al., 2009)2:

max
u∈U,v∈V

u>ΣXYv, (2)(Sparse CCA)

where
U = {u ∈ Rm : ‖u‖2 = 1, ‖u‖0 ≤ sx},
V = {v ∈ Rn : ‖v‖2 = 1, ‖v‖0 ≤ sy},

(3)

for given parameters sx and sy . The m × n argument
ΣXY = X>Y is the empirical estimation of the cross-
covariance matrix between the variables in the two views
X and Y, and it is the input to the optimization problem.
Note that besides the introduced sparsity requirement, (2)
is obtained from (1) treating the covariance matrices ΣXX

and ΣYY as identity matrices, which is common in high
dimensions (Dudoit et al., 2002; Tibshirani et al., 2003).
Equivalently, we implicitly assume that the original vari-
ables within each view are standardized and uncorrelated.

The maximization in (2) is a sparse Singular Value Decom-
position (SVD) problem. Disregarding the `0 cardinality
constraint, although the objective is non-convex, the opti-
mal solution of (2) can be easily computed, as it coincides
with the leading singular vectors of the input matrix ΣXY.
The constraint on the number of nonzero entries of u and v,
however, renders the problem NP-hard, as it can be shown
by a reduction to the closely related sparse PCA problem;
see Appendix A. Several heuristics have been developed to
obtain an approximate solution (see Section 1.2).

Finally, we note that sparsity alone may be insufficient to
obtain interpretable results; genes participate in groups in
biological pathways, and brain activity tends to be local-
ized forming connected components over an underlying
network. If higher order structural information is available
on a physical system, it is meaningful incorporate that in

2(Witten et al., 2009) consider a relaxation of (2) where the `0
cardinality constraint on u and v is replaced by a threshold on the
sparsity inducing `1-norm.

the optimization (2). We can then consider Structured vari-
ants of diagonal CCA (2), by appropriately modifying the
feasible regions U ,V in (3) to reflect the desired structure.

1.1. Our contributions

We present a novel and efficient combinatorial algorithm
for sparse diagonal CCA in (2). The main idea is to reduce
the exponentially large search space of candidate supports
of the canonical vectors, by exploring a low-dimensional
principal subspace of the input data. Our algorithm runs
in polynomial time –in fact linear– in the dimension of the
input. It administers precise control over the sparsity of the
extracted canonical vectors and can extract components for
multiple sparsity values on a single run. It is simple and
trivially parallelizable; we empirically demonstrate that it
achieves an almost linear speedup factor in the number of
available processing units.

The algorithm is accompanied with theoretical data-
dependent global approximation guarantees with respect to
the CCA objective (2); this is the first approach with this
kind of global guarantees. The latter depend on the rank r
of the low-dimensional space and the spectral decay of the
input matrix ΣXY. The main weakness is an exponential
dependence of the computational complexity on the accu-
racy parameter r. In practice, however, disregarding the
theoretical approximation guarantees, our algorithm can be
executed for any allowable time window.

Finally, we note that our approach is similar to that of (As-
teris et al., 2014) for sparse PCA. The latter has a similar
formulation with (2) but is restricted to a positive semidef-
inite argument ΣXY. Our main technical contribution is
extending those algorithmic ideas and developing theoret-
ical approximation guarantees for the bilinear maximiza-
tion (2), where the input matrix can be arbitrary.

1.2. Related Work

Sparse CCA is closely related to sparse PCA; the latter can
be formulated as in (2) but the argument ΣXY is replaced
by a positive semidefinite matrix. There is a large volume
of work on sparse PCA –see (Zou et al., 2006; Amini &
Wainwright, 2008) and references therein– but these meth-
ods cannot be generalized to the CCA problem. One ex-
ception is the work of (d’Aspremont et al., 2007) where the
authors discuss extensions to the “non-square case”. Their
approach relies on a semidefinite relaxation.

References to sparsity in CCA date back to (Thorndike,
1976) and (Thompson, 1984) who identified the impor-
tance of sparsity regularization to obtain meaningful results
However, no specific algorithm was proposed. Several sub-
sequent works considered a penalized version of the CCA
problem in (1), typically under a Langrangian formulation
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involving a convex relaxation of the `0 cardinality con-
straint (Torres et al., 2007; Hardoon & Shawe-Taylor, 2007;
2011). (Chu et al., 2013) characterize the solutions of the
unconstrained problem and formulate convex `1 minimiza-
tion problems to seek sparse solutions in that set. (Sripe-
rumbudur et al., 2009) consider a constrained generalized
eigenvalue problem, which partially captures sparse CCA,
and frame it as a difference-of-convex functions program.
(Wiesel et al., 2008) proposed an efficient greedy proce-
dure that gradually expands the supports of the canonical
vectors. Unlike other methods, this greedy approach allows
precise control of the sparsity of the extracted components.

(Witten et al., 2009; Parkhomenko et al., 2009) formulate
sparse CCA as the optimization (2) and in particular con-
sidered an `1 relaxation of the `0 cardinality constraint.
They suggest an alternating minization approach exploit-
ing the bi-convex nature of the relaxed problem, solving a
lasso regression in each step. The same approach is fol-
lowed in (Waaijenborg et al., 2008) combining `2 and `1
regularizers similarly to the elastic net approach for sparse
PCA (Zou & Hastie, 2005). Similar approaches have ap-
peared in the literature for sparse SVD (Yang et al., 2011;
Lee et al., 2010). A common weakness in these approaches
is the lack of precise control over sparsity: the mapping
between the regularization parameters and the number of
nonzero entries in the extracted components is highly non-
linear. Further, such methods usually lack provable non-
asymptotic approximation guarantees. Beyond sparsity,
(Witten et al., 2009; Witten & Tibshirani, 2009) discuss al-
ternative penalizations such as fused lasso to impose ad-
ditional structure, while (Chen et al., 2012) introduce a
group-lasso to promote sparsity with structure.

Finally, although a review of CCA applications is beyond
the scope of this manuscript, we simply note that CCA is
considered a promising approach for scientific research as
evidenced by several recent works in the literature, e.g, in
neuroscience (Rustandi et al., 2009; Deleus & Van Hulle,
2011; Li et al., 2012; Lin et al., 2014; Smith et al., 2015).

2. SpanCCA: An Algorithm for Sparse
Diagonal CCA

We begin this section with a brief discussion of the problem
and the key ideas behind our approach. Next, we provide
an overview of SpanCCA and the accompanying approxi-
mation guarantees and conclude with a short analysis.

2.1. Intuition

The hardness of the sparse CCA problem (2) lies in the de-
tection of the optimal supports for the canonical vectors.
In the unconstrained problem, where only a unit `2-norm
constraint is imposed on u and v, the optimal CCA pair

coincides with the top singular vectors of the input argu-
ment ΣXY. In the sparse variant, if the optimal supports
for u and v were known, computing the optimal solution
would be straightforward: the nonzero subvectors of u and
v would coincide with the leading singular vectors of the
sx×sy submatrix of ΣXY, indexed by the two support sets.
Hence, the bottleneck lies in determining the optimal sup-
ports for u and v.

Exhaustive search A straightforward, brute-force ap-
proach is to exhaustively consider all possible supports for
u and v; for each candidate pair solve the unconstrained
CCA problem on the restricted input, and determine the
supports for which the objective (2) is maximized. Albeit
optimal, this procedure is intractable as the number of can-
didate supports

(
m
sx

)(
n
sy

)
is overwhelming even for small

values of sx and sy .

Thresholding On the other hand, a feasible pair of
sparse canonical vectors u, v can be extracted by hard-
thresholding the solution to the unconstrained problem, i.e.,
computing the leading singular vectors u, v of ΣXY, sup-
pressing to zero all but the sx and sy largest in magnitude
entries, respectively, and rescaling to obtain a unit `2-norm
solution. Essentially, this heuristic resorts to unconstrained
CCA for a guided selection of the sparse support.

Proposed method Our sparse CCA algorithm covers the
ground between these two approaches. Instead of relying
on the solution to the unconstrained problem for the choice
of the sparse supports, it explores a principal subspace of
the input matrix ΣXY, spanned by its leading r ≥ 1 singu-
lar vector pairs. For r = 1, its output coincides with that
of the thresholding approach, while for r = min{m,n} it
approximates that of exhaustive search.

Effectively, we solve (2) on a rank-r approximation of the
input ΣXY. The key observation is that the low inner di-
mension of the argument matrix can be exploited to sub-
stantially reduce the search space: our algorithm identi-
fies an (approximately) optimal pair of supports for the low
rank sparse CCA problem, without considering the entire
collection of possible supports of cardinalities sx and sy .

2.2. Overview and Guarantees

SpanCCA is outlined in Algorithm 1. The first step is
to compute a rank-r approximation B of the input ΣXY,
where r is an accuracy input parameter, via the truncated
singular value decomposition (SVD) of ΣXY.3 From that
point on, the algorithm operates exclusively on B effec-

3 The low-rank approximation can be computed using faster
randomized approaches; see (Halko et al., 2011). Here, for sim-
plicity, we consider the exact case.
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tively solving a low-rank sparse diagonal CCA problem:

max
u∈U,v∈V

u>Bv, (4)

where U ⊆ Sm−12 and V ⊆ Sn−12 are defined in (3). As
we discuss in the next section, we can consider other con-
strained variants of CCA on potentially arbitrary, non-
convex sets. We do require, however, that there exist proce-
dures to (at least approximately) solve the maximizations

PU (a), arg max
u∈U

a>u, (5)

PV(b), arg max
v∈V

b>v, (6)

for any given vectors a ∈ Rm×1 and b ∈ Rn×1. Fortu-
nately, this is the case for the sets of sparse unit `2-norm
vectors. Algorithm 2 outlines an efficient O(m) procedure
that given a ∈ Rm×1 computes an exact solution to (5)
with at most s ≤ m nonzero entries: first it determines
the s largest (in magnitude) entries of a (breaking ties ar-
bitrarily), it zeroes out the remaining entries and re-scales
the output to meet the `2-norm requirement.

The main body of Algorithm 1 consists of a single itera-
tion. In the ith round, it independently samples a point, or
equivalently direction, ci from the r-dimensional unit `2
sphere and uses it to appropriately sample a point ai in the
range of B. The latter is then used to compute a feasible
solution pair ui, vi via a two-step procedure: first the al-
gorithm computes ui by “projecting” ai onto U invoking
Alg. 2 as a subroutine to solve maximization (5), and then
computes vi by projecting bi = B>ui onto V in a similar
fashion. The algorithm repeats this procedure for T rounds
and outputs the pair that achieves the maximum objective
value in (4). We emphasize that consecutive rounds are
completely independent and can be executed in parallel.

For a sufficiently large number T of rounds (or samples)
the procedure guarantees that the output pair will be ap-
proximately optimal in terms of the objective for the low-
rank problem (4). That, it turn, translates to approximation
guarantees for the full-rank sparse CCA problem (2):

Theorem 1. For any real m× n matrix ΣXY, ε ∈ (0, 1),
and r ≤ max{m,n}, Algorithm 1 with input ΣXY, r, and
T = Õ

(
2r·log2(2/ε)

)
outputs u] ∈ U and v] ∈ V such that

u>] ΣXYv] ≥ u>? ΣXYv? − ε · σ1(ΣXY)− 2σr+1(ΣXY),

in time TSVD(r) +O
(
T ·
(
TU + TV + r ·max{m,n}

))
.

Here, u? and v? denote the unknown optimal pair of canon-
ical vectors satisfying the desired constraints. TSVD(r) de-
notes the time to compute the rank-r truncated SVD of the
input ΣXY, while TU and TV denote the time required to
compute the maximizations (5) and (6), respectively, which
in the case of Alg. 2 are linear in the dimensions m and n.

Algorithm 1 SpanCCA
input : ΣXY, a real m× n matrix.

r ∈ N+, the rank of the approximation to be used.
T ∈ N+, the number of samples/iterations.

output u] ∈ U , v] ∈ V
1: U,Σ,V← SVD(ΣXY, r) { B← UΣV> }
2: for i = 1, . . . , T do
3: ci ← randn(r) {∼ N (0, Ir×r)}
4: ci ← ci/‖ci‖2
5: ai ← UΣci {ai ∈ Rm}
6: ui ← arg maxu∈U a>i u {PU (·)}
7: bi ← VΣU>ui {bi ∈ Rn}
8: vi ← arg maxv∈V b>i v {PV(·)}
9: obji ← b>i vi

10: end for
11: i0 ← arg maxi∈[T ] obji
12: (u],v])← (ui0 ,vi0)

Algorithm 2 PU (·) for U,
{
u ∈ Sm−1

2 : ‖u‖0 ≤ s
}

input : a ∈ Rd×1.
output u0 = arg maxu∈U a>u

1: u0 ← 0d×1
2: t← index of sth order element of abs(a)
3: I ← {i : |ai| ≥ |at|}
4: u0[i]← a[i],∀i ∈ I
5: u0 ← u0/‖u0‖2

The first term in the additive error is due to the sampling ap-
proach of Alg. 1. The second term is due to the fact that the
algorithm operates on the rank-r surrogate matrix B. The-
orem 1 establishes a trade-off between the computational
complexity of Alg. 1 and the quality of the approximation
guarantees: the latter improves as r increases, but the for-
mer depends exponentially in r.

Finally, in the special case where we impose sparsity con-
straints on only one of the two variables, say u, while al-
lowing the second variable, here v, to be any vector with
unit `2 norm, we obtain stronger guarantees.

Theorem 2. If V = {v : ‖v‖2 = 1}, i.e., if no constraint
is imposed on variable v besides unit length, then Algo-
rithm 1 under the same configuration as that in Theorem 1
outputs u] ∈ U and v] ∈ V such that

u>] ΣXYv] ≥ (1− ε) · u>? ΣXYv? − 2 · σr+1(ΣXY).

Theorem 2 implies that due to the flexibility in the choice
of the canonical vector v, Alg. 1 solves the low-rank prob-
lem (4) within a multiplicative (1 − ε)-factor from the op-
timal; the extra additive error term is once again due to the
fact that the algorithm operates on the rank-r approxima-
tion B instead of the original input ΣXY. In this case, the
optimal choice of v in (6) is just a scaled version of the
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argument b. Finally, we note that if constraints need to be
applied on v instead of u, then the same guarantees can
be obtained by applying Algorithm 1 on ΣXY

>. A formal
proof for Theorem 2 is provided in the Appendix, Sec. B.

Overall, SpanCCA is simple to implement and is trivially
parallelizable: the main iteration can be split across and ar-
bitrary number of processing units achieving a potentially
linear speedup. It is the first algorithm for sparse diago-
nal CCA with data-dependent global approximation guar-
antees. As discussed in Theorem 1, the input accuracy pa-
rameter r establishes a trade-off between the running time
and the tightness of the theoretical guarantees. Its com-
plexity scales linearly in the dimensions of the input for
any constant r, but admittedly becomes prohibitive even
for moderate values of r. In practice, if the spectrum of the
data exhibits sharp decay, we may be able to obtain useful
approximation guarantees even for small values of r such
as 2 or 3. Moreover, disregarding the theoretical guaran-
tees, the algorithm can always be executed for any rank r
and an arbitrary number of iterations T. In Section 4, we
empirically show that moderate values for r and T can po-
tentially achieve better solutions compared to state of the
art. We note, however, that the tuning of those parameters
needs to be investigated.

2.3. Analysis

Let B = UΣV>, and u(B),v(B) be a pair that maximizes
–not necessarily uniquely– the objective u>Bv in (4) over
all feasible solutions. We assume that u>(B)Bv(B) > 0.4

Define the r × 1 vector c(B),V>v(B) and let ρ denote its
`2 norm. Then, 0 < ρ ≤ 1; the upper bound follows
from the fact that the r columns of V are orthonormal
and ‖v(B)‖2 = 1, while the lower follows by the aforemen-
tioned assumption. Finally, define c(B) = c(B)/ρ, the pro-
jection of c(B) on the unit `2-sphere Sr−12 .

Def. 1. For any ε ∈ (0, 1), an ε-net of Sr−12 is a finite
collection N of points in R such that for any c ∈ Sr−12 , N
contains a point c′ such that ‖c′ − c‖ ≤ ε.
Lemma 2.1 ((Vershynin, 2010), Lemma 5.2). For any
ε ∈ (0, 1), there exists an ε-net of Sr−12 equipped with the
Euclidean metric, with at most (1 + 2/ε)

r points.

Algorithm 1 runs in an iteration with T rounds. In each
round, it independently samples a point ci from Sr−12 ,
by randomly generating a vector according to a spherical
Gaussian distribution and appropriately scaling its length.
Based on Lemma 2.1 and elementary counting arguments,
for sufficiently large T the collection of sampled points
forms a ε-net of Sr−12 with high probability:

4Observe that this is always true for any nonzero argument
B as long as at least one of the two variables u and v can take
arbitrary signs. It is hence true under vanilla sparsity constraints.

Lemma 2.2. For any ε, δ ∈ (0, 1), a set of T =
O
(
r(ε/4)−r · ln 4/ε · δ

)
randomly and independently drawn

points uniformly distributed on Sr−12 suffices to construct
an ε/2-net of Sr−12 with probability at least 1− δ.

It follows that there exists i? ∈ [T] such that

‖ci? − c(B)‖2 ≤ ε/2. (7)

In the i?th round, the algorithm samples the point ci? and
computes a feasible pair (ui? ,vi?) via the two step maxi-
mization procedure, that is,

ui? , arg max
u∈U

u>UΣci? and vi? , arg max
v∈V

u>i?ΣXYv.

We have:

u>(B)Bv(B) = ρ · u>(B)UΣc(B)

= ρ · u>(B)UΣci? + ρ · u>(B)UΣ
(
c(B) − ci?

)
≤ ρ · u>i?UΣci? + ρ · u>(B)UΣ

(
c(B) − ci?

)
≤ ρ · u>i?UΣci? + ε

2 · σ1(ΣXY). (8)

The first step follows by the definition of c(B) and the sec-
ond by linearity. The first inequality follows from the fact
that ui? maximizes the first term over all u ∈ U . The
last inequality follows straightforwardly from the fact that
‖u(B)‖2 = 1 and ρ ≤ 1 (see Lemma C.8). Using similar
arguments,

ρ · u>i?UΣci? = u>i?UΣV>v(B) + ρ · u>i?UΣ(ci? − c(B))

≤ u>i?Bvi? + ε
2 · σ1(ΣXY). (9)

The inequality follows by the fact that vi? maximizes the
inner product with B>ui? over all v ∈ V , as well as that
‖u(B)‖2 = 1 and ρ ≤ 1. Combining (8) and (9), we obtain

u>i?Bvi? ≥ u>(B)Bv(B) − ε · σ1(ΣXY). (10)

Algorithm 1 computes multiple candidate solution pairs
and outputs the pair (u],v]) that achieves the maximum
objective value. The latter is at least as high as that
achieved by (ui? ,vi?).

Inequality (10) establishes an approximation guarantee for
the low-rank problem (4). Those can be translated to guar-
antees on the original problem with input argument ΣXY.
Let u? and v? denote the (unknown) optimal solution of
the sparse CCA problem (2). By the definition of u(B) and
v(B), it follows that

u>(B)Bv(B) ≥ u>? Bv? = u>? ΣXYv? − u>? (ΣXY −B)v?

≥ u>? ΣXYv? − σr+1(ΣXY). (11)

Similarly,

u>] ΣXYv] = u>] Bv] − u>] (B−ΣXY)v]

≥ u>] Bv] − σr+1(ΣXY). (12)
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Combining (11) and (12) with (10), we obtain the approxi-
mation guarantees of Theorem 1.

The running time of Algorithm 1 follows straightforwardly
by inspection. The algorithm first computes the truncated
singular value decomposition of inner dimension r in time
denoted by TSVD(r). Subsequently, it performs T itera-
tions. The cost of each iteration is determined by the cost of
the matrix-vector multiplications and the running times TU
and TV of the operators PU (·) and PV(·). Note that matrix
multiplications can exploit the available matrix decomposi-
tion and are performed in time r ·max{m,n}. Substituting
the value of T with that specified in Lemma 2.2 completes
the proof of Thm. 1. The proof of Theorem 2 follows a
similar path; see Appendix Sec. B.

3. Beyond Sparsity: Structured CCA
While enforcing sparsity results in succinct models, the
latter may fall short in capturing the true interactions in
a physical system, especially when the number of sam-
ples is limited. Incorporating additional prior structural
information can improve interpretability5; e.g., (Du et al.,
2014) argue that a structure-aware sparse CCA incorporat-
ing group-like structure obtains biologically more mean-
ingful results, while (Lin et al., 2014) demonstrated that
group prior knowledge improved performance compared to
standard sparse CCA in a task of identifying brain regions
susceptible to schizophrenia. Several works suggest us-
ing structure-inducing regularizers to promote smoothness
(Witten et al., 2009; Chen et al., 2013; Kobayashi, 2014) or
group sparse structure (Chu et al., 2013) in CCA.

Our sparse CCA algorithm and its theoretical approxima-
tion guarantees in Theorems 1 and 2 extend straightfor-
wardly to constraints beyond sparsity. The only assumption
on the feasible sets U and V is that there exist tractable pro-
cedures PU and PV that solve the constrained maximiza-
tions (5) and (6), respectively. The specific structure of
the feasible sets only manifests itself through these sub-
routines, e.g., Alg. 2 for the case of sparsity constraints.
Therefore, Alg. 1 can be straightforwardly adapted to any
structural constraint for which the aforementioned condi-
tions are satisfied.

In fact, observe that under the unit `2 restriction on the fea-
sible vectors, the maximizations in (5) and (6) are equiv-
alent to computing the Euclidean projection of a given
real vector on the (nonconvex) sets U and V . Such ex-
act or approximate projection procedures exist for several
interesting constraints beyond sparsity such as smooth or
group sparsity (Huang et al., 2011; Baldassarre et al., 2013;

5This is a shared insight in the broader area of sparse approx-
imations (Baraniuk et al., 2010; Huang et al., 2011; Bach et al.,
2012; Kyrillidis & Cevher, 2012).

Kyrillidis et al., 2015), sparsity constraints onto norm balls
(Kyrillidis et al., 2012), or even sparsity patterns guided by
underlying graphs (Hegde et al., 2015; Asteris et al., 2015).

4. Experiments
We empirically evaluate our algorithm on two real datasets:
i) a publicly available breast cancer dataset (Chin et al.,
2006), also used in the evaluation of (Witten et al., 2009),
and ii) a neuroimaging dataset obtained from the Human
Connectome Project (Van Essen et al., 2013) on which we
investigate associations between brain activation and be-
havior measurements.

4.1. Breast Cancer Dataset

The breast cancer dataset (Chin et al., 2006) consists of
gene expression and DNA copy number measurements on
a set of 89 tissue samples. Among others, it contains a 89×
2149 matrix (DNA) with CGH spots for each sample and a
89×19672 matrix (RNA) of genes, along with information
for the chromosomal locations of each CGH spot and each
gene. As described in (Witten et al., 2009), this dataset can
be used to perform integrative analysis of gene expression
and DNA copy number data, and in particular to identify
sets of genes that have expression that is correlated with a
set of chromosomal gains or losses.

We run our algorithm on the breast cancer dataset and com-
pare the output with the PMD algorithm of (Witten et al.,
2009); PMD is regarded as state of the art by practition-
ers and has been used –in its original form or slightly
modified– in several neuroscience and biomedical appli-
cations; see also Section 1.2. The input to both algo-
rithms is the m × n matrix ΣXY = X>Y (m = 2149,
n = 19672), where X and Y are obtained from the afore-
mentioned DNA and RNA matrices upon feature standard-
ization. Recall that PMD is an iterative, alternating opti-
mization scheme, where the sparsity of the extracted com-
ponents x and y is implicitly controlled by enforcing up-
per bounds c1 and c2 on their `1 norm, respectively, with
1 ≤ c1 ≤

√
m and 1 ≤ c2 ≤

√
n. Here, for simplic-

ity, we set c1 = c
√
m and c2 = c

√
n and consider multiple

values of the constant c in (0, 1). Note that under this con-
figuration, for any given value of c, we expect that the ex-
tracted components will be approximately equally sparse,
relatively to their dimension.

For each c, we first run the PMD algorithm 10 times with
random initializations, determine the pair of components x
and y that achieves the highest objective value, and count
the number of nonzero entries of both components as a per-
centage of their corresponding dimension. Subsequently,
we run SpanCCA (Alg. 1) with parameters T = 104, r = 3,
and target sparsity equal to that of the former PMD output.
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Breast Dataset: Comparison with PMD

PMD (10 random restarts)
SpanCCA (T = 1 · 104, r = 3)

Avg Exec. Time Configuration

PMD ∼ 44 seconds 10 rand. restarts
SpanCCA ∼ 24 seconds T = 104, r = 3.

Figure 1. Comparison of SpanCCA and the PMD algorithm (Wit-
ten et al., 2009). We configure PMD with `1-norm thresholds
c1 = c · √m and c2 = c · √n, and consider various values of
the constant c ∈ (0, 1). For each c, we run PMD 10 times, select
the canonical vectors x, y that achieve the highest objective value
and count their nonzero entries (depicted as percentage of the cor-
responding dimension). Finally, we run our SpanCCA algorithm
with T = 104 and r = 3, using the latter as target sparsities, and
compare the objective values achieved by the two methods. Exe-
cution times remain approximately the same for all target sparsity
values (equiv. all c).

Recall that our algorithm administers precise control on the
number of nonzero entries of the extracted components.

Figure 1 depicts the objective value achieved by the two al-
gorithms, as well as the corresponding sparsity level of the
extracted components. SpanCCA achieves a higher objec-
tive value in all cases. Finally, note that under the above
configuration, both algorithms run for a few seconds per
target sparsity, with SpanCCA running approximately half
the time of PMD.

4.2. Brain Imaging Dataset

We analyzed functional statistical maps and behavioral
variables from 497 subjects available from the Human Con-
nectome Project (HCP) (Van Essen et al., 2013). The HCP
consists of high-quality imaging and behavioral data, col-
lected from a large sample of healthy adult subjects, mo-
tivated by the goal of advancing knowledge between hu-
man brain function and its association to behavior. We
apply our algorithm to investigate the shared co-variation
between patterns of brain activity as measured by the ex-

perimental tasks, and behavioral variables. We selected the
same subset of behavioral variables examined by (Smith
et al., 2015), which include scores from psychological tests,
physiological measurements, and self reported behavior
questionnaires (Y dataset with dimensions 497× 38).

For each subject, we collected statistical maps correspond-
ing to “n-back” task. These statistical maps summarize
the activation of each voxel in response to the experimen-
tal manipulation. In the “n-back” task, designed to mea-
sure working memory, items are presented one at a time
and subjects identify each item that repeats relative to the
item that occurred n items before. Further details on all
tasks and variables are available in the HCP documenta-
tion (Van Essen et al., 2013).

We used the pre-computed 2back - 0back statistical con-
trast maps provided by the HCP. Standard preprocessing
included motion correction, image registration to the MNI
template (for comparison across subjects), and general lin-
ear model analysis, resulting in 91×109×91 voxels. Vox-
els are then resampled to 61×73×61 using the nilearn
python package6 and applying standard brain masks, result-
ing in 65598 voxels after masking non-grey matter regions.
(X dataset with dimensions 497× 65598).

We apply our SpanCCA algorithm on the HCP data with
arbitrarily selected parameters T = 106 and r = 5. We
set the target sparsity at 15% for each canonical vector.
Figure 2 depicts the brain regions and the behavioral fac-
tors corresponding to the nonzero weights of the extracted
canonical pair. The map identifies a set of fronto-parietal
regions known to be involved in executive function and
working memory, which are the major functions isolated
by the 2 back - 0-back contrast. In addition, it identifies
deactivation in the default mode areas (medial prefrontal
and parietal), which is also associated with engagement of
difficult cognitive functions. The behavioral variables as-
sociated with activation of this network are all related to
various aspects of intelligence; the Penn Matrix Reason-
ing Test (PMAT24, a measure of fluid intelligence), picture
vocabulary (PicVocab, a measure of language compre-
hension), and reading ability (ReadEng).

Parallelization To speed up execution, our prototypi-
cal Python implementation of SpanCCA exploits the
multiprocessingmodule: N independent worker pro-
cesses are spawned, and each one independently performs
T/N rounds of the main iteration of Alg. 1 returning a sin-
gle canonical vector pair. The main process collects and
compares the candidate pairs to determine the final output.

To demonstrate the parallelizability of our algorith, we run
SpanCCA for the aforementioned task on the brain imaging

6http://nilearn.github.io/

http://nilearn.github.io/
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Figure 2. Brain regions and behavioral factors selected by the sparse left and right canonical vectors extracted by our SpanCCA algo-
rithm. Target sparsity is set at 15% for each canonical vector and SpanCCA is configured to run for T = 106 samples operating on
a rank r = 5 approximation of the input data. The map identifies a set of fronto-parietal regions known to be involved in executive
function and working memory and deactivation in the default mode areas (medial prefrontal and parietal), which is also associated with
engagement of difficult cognitive functions. The behavioral variables identified to be positively correlated with the activation of this
network are all related to various aspects of intelligence.

data for various values of the number N of workers on a sin-
gle server with 36 physical processing cores7 and approx-
imately 250Gb of main memory. In Figure 3 (top panel),
we plot the run time with respect to the number of work-
ers used. The bottom panel depicts the achieved speedup
factor: using the execution time on 5 worker processes as
a reference value, the speedup factor is the ratio of the ex-
ecution time on 5 processes over that on N. As expected,
the algorithm achieved a speedup factor that grows almost
linearly in the number of available processors.

5. Discussion
We presented a novel combinatorial algorithm for the
sparse diagonal CCA problem and other constrained vari-
ants, with provable data-dependent global approximation
guarantees and several attractive properties: the algorithm
is simple, embarrassingly parallelizable, with complexity
that scales linearly in the dimension of the input data,
while it administers precise control on the sparsity of the
extracted canonical vectors. Further it can accommodate
additional structural constraints by plugging in a suitable
“projection” subroutine.

Several directions remain open. We addressed the question
of computing a single pair of sparse canonical vectors. Nu-
merically, multiple pairs can be computed successively em-
ploying an appropriate deflation step. However, determin-
ing the kind of deflation most suitable for the application at
hand, as well as the sparsity level of each component can
be a challenging task, leaving a lot of room for research.

References
Amini, Arash A and Wainwright, Martin J. High-dimensional

analysis of semidefinite relaxations for sparse principal com-
ponents. In Information Theory, 2008. ISIT 2008. IEEE Inter-

7Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

national Symposium on, pp. 2454–2458. IEEE, 2008.

Asteris, Megasthenis, Papailiopoulos, Dimitris, and Dimakis,
Alexandros. Nonnegative sparse PCA with provable guaran-
tees. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pp. 1728–1736, 2014.

5
×1.0

10
×2.0

15
×3.0

20
×4.0

25
×5.0

30
×6.0

Num of Processors (Worker Proceesses) (N)

20

40

60

80

100

120

140

R
un

ti
m

e
T

N
(s

ec
on

ds
)

Total Run time vs Number of Worker Processes

5
×1.0

10
×2.0

15
×3.0

20
×4.0

25
×5.0

30
×6.0

Num Processors (Worker Proceesses) (N)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
p

fa
ct

or
:T

N
/T

5

Ideal (Linear) Speed
up

Speedup vs Number of Workder Processeses

Figure 3. Speedup factors and corresponding total execution time,
achieved by the prototypical parallel implementation of Span-
nCCA (Alg. 1) as a function of the number of worker processes or
equivalently the number of processors used. Depicted values are
medians over 20 executions, each with T = 105 and r = 5, on the
65598× 38 example discussed in section 4.2. A speedup factory
approximately linear in the number of workers is achieved.



Sparse CCA and Beyond

Asteris, Megasthenis, Kyrillidis, Anastasios, Dimakis, Alex, Yi,
Han-Gyol, and Chandrasekaran, Bharath. Stay on path: Pca
along graph paths. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), volume 37.
JMLR Workshop and Conference Proceedings, 2015.

Bach, Francis, Jenatton, Rodolphe, Mairal, Julien, Obozinski,
Guillaume, et al. Structured sparsity through convex optimiza-
tion. Statistical Science, 27(4):450–468, 2012.

Baldassarre, Luca, Bhan, Nirav, Cevher, Volkan, Kyril-
lidis, Anastasios, and Satpathi, Siddhartha. Group-sparse
model selection: Hardness and relaxations. arXiv preprint
arXiv:1303.3207, 2013.

Baraniuk, Richard G, Cevher, Volkan, Duarte, Marco F, and
Hegde, Chinmay. Model-based compressive sensing. Informa-
tion Theory, IEEE Transactions on, 56(4):1982–2001, 2010.

Berman, Marc G, Jonides, John, and Nee, Derek Evan. Study-
ing mind and brain with fmri. Social cognitive and affective
neuroscience, 1(2):158–161, 2006.

Chen, Jun, Bushman, Frederic D, Lewis, James D, Wu, Gary D,
and Li, Hongzhe. Structure-constrained sparse canonical corre-
lation analysis with an application to microbiome data analysis.
Biostatistics, 14(2):244–258, 2013.

Chen, Xi, Liu, Han, and Carbonell, Jaime G. Structured sparse
canonical correlation analysis. In International Conference on
Artificial Intelligence and Statistics, pp. 199–207, 2012.

Chin, Koei, DeVries, Sandy, Fridlyand, Jane, Spellman, Paul T,
Roydasgupta, Ritu, Kuo, Wen-Lin, Lapuk, Anna, Neve,
Richard M, Qian, Zuwei, Ryder, Tom, et al. Genomic and
transcriptional aberrations linked to breast cancer pathophysi-
ologies. Cancer cell, 10(6):529–541, 2006.

Chu, Delin, Liao, Li-Zhi, Ng, Michael K, and Zhang, Xiaowei.
Sparse canonical correlation analysis: new formulation and
algorithm. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(12):3050–3065, 2013.

d’Aspremont, Alexandre, El Ghaoui, Laurent, Jordan, Michael I,
and Lanckriet, Gert RG. A direct formulation for sparse pca us-
ing semidefinite programming. SIAM review, 49(3):434–448,
2007.

Deleus, Filip and Van Hulle, Marc M. Functional connectivity
analysis of fmri data based on regularized multiset canonical
correlation analysis. Journal of Neuroscience methods, 197
(1):143–157, 2011.

Du, Lei, Yan, Jingwen, Kim, Sungeun, Risacher, Shannon L,
Huang, Heng, Inlow, Mark, Moore, Jason H, Saykin, An-
drew J, and Shen, Li. A novel structure-aware sparse learn-
ing algorithm for brain imaging genetics. In Medical Image
Computing and Computer-Assisted Intervention, pp. 329–336.
Springer, 2014.

Dudoit, Sandrine, Fridlyand, Jane, and Speed, Terence P. Com-
parison of discrimination methods for the classification of tu-
mors using gene expression data. Journal of the American sta-
tistical association, 97(457):77–87, 2002.

Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A. Find-
ing structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM re-
view, 53(2):217–288, 2011.

Hardoon, David R and Shawe-Taylor, John. Technical report, uni-
versity college london (ucl). 2007.

Hardoon, David R and Shawe-Taylor, John. Sparse canonical cor-
relation analysis. Machine Learning, 83(3):331–353, 2011.

Hegde, Chinmay, Indyk, Piotr, and Schmidt, Ludwig. A nearly-
linear time framework for graph-structured sparsity. In Pro-
ceedings of The 32nd International Conference on Machine
Learning, pp. 928–937, 2015.

Hotelling, Harold. Relations between two sets of variates.
Biometrika, pp. 321–377, 1936.

Huang, Junzhou, Zhang, Tong, and Metaxas, Dimitris. Learn-
ing with structured sparsity. The Journal of Machine Learning
Research, 12:3371–3412, 2011.

Kobayashi, Takumi. S3cca: Smoothly structured sparse cca for
partial pattern matching. In Pattern Recognition (ICPR), 22nd
International Conference on, pp. 1981–1986. IEEE, 2014.

Kyrillidis, Anastasios and Cevher, Volkan. Combinatorial selec-
tion and least absolute shrinkage via the clash algorithm. In
Information Theory Proceedings (ISIT), 2012 IEEE Interna-
tional Symposium on, pp. 2216–2220. IEEE, 2012.

Kyrillidis, Anastasios, Puy, Gilles, and Cevher, Volkan. Hard
thresholding with norm constraints. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), number EPFL-CONF-183061, pp. 3645–3648.
Ieee, 2012.

Kyrillidis, Anastasios, Baldassarre, Luca, El Halabi, Marwa,
Tran-Dinh, Quoc, and Cevher, Volkan. Structured sparsity:
Discrete and convex approaches. In Compressed Sensing and
its Applications, pp. 341–387. Springer, 2015.

Lee, Mihee, Shen, Haipeng, Huang, Jianhua Z, and Marron, JS.
Biclustering via sparse singular value decomposition. Biomet-
rics, 66(4):1087–1095, 2010.

Li, Yi-Ou, Eichele, Tom, Calhoun, Vince D, and Adali, Tulay.
Group study of simulated driving fmri data by multiset canon-
ical correlation analysis. Journal of signal processing systems,
68(1):31–48, 2012.

Lin, Dongdong, Calhoun, Vince D, and Wang, Yu-Ping. Corre-
spondence between fmri and snp data by group sparse canon-
ical correlation analysis. Medical image analysis, 18(6):891–
902, 2014.

Morley, Michael, Molony, Cliona M, Weber, Teresa M, Devlin,
James L, Ewens, Kathryn G, Spielman, Richard S, and Che-
ung, Vivian G. Genetic analysis of genome-wide variation in
human gene expression. Nature, 430(7001):743–747, 2004.

Parkhomenko, Elena, Tritchler, David, and Beyene, Joseph.
Sparse canonical correlation analysis with application to ge-
nomic data integration. Statistical Applications in Genetics and
Molecular Biology, 8(1):1–34, 2009.

Poldrack, Russell A. Can cognitive processes be inferred from
neuroimaging data? Trends in cognitive sciences, 10(2):59–
63, 2006.



Sparse CCA and Beyond

Pollack, Jonathan R, Sørlie, Therese, Perou, Charles M, Rees,
Christian A, Jeffrey, Stefanie S, Lonning, Per E, Tibshi-
rani, Robert, Botstein, David, Børresen-Dale, Anne-Lise, and
Brown, Patrick O. Microarray analysis reveals a major direct
role of dna copy number alteration in the transcriptional pro-
gram of human breast tumors. Proceedings of the National
Academy of Sciences, 99(20):12963–12968, 2002.

Posner, Michael I, Petersen, Steven E, Fox, Peter T, and Raichle,
Marcus E. Localization of cognitive operations in the human
brain. Science, 240(4859):1627–1631, 1988.

Rustandi, Indrayana, Just, Marcel Adam, and Mitchell, Tom. In-
tegrating multiple-study multiple-subject fmri datasets using
canonical correlation analysis. In Proceedings of the MICCAI
2009 Workshop: Statistical modeling and detection issues in
intra-and inter-subject functional MRI data analysis, 2009.

Smith, Stephen M, Nichols, Thomas E, Vidaurre, Diego, Winkler,
Anderson M, Behrens, Timothy EJ, Glasser, Matthew F, Ugur-
bil, Kamil, Barch, Deanna M, Van Essen, David C, and Miller,
Karla L. A positive-negative mode of population covariation
links brain connectivity, demographics and behavior. Nature
neuroscience, 18(11):1565–1567, 2015.

Sriperumbudur, Bharath, Torres, David, and Lanckriet, Gert. A
DC programming approach to the sparse generalized eigen-
value problem. arXiv preprint arXiv:0901.1504, 2009.

Stranger, Barbara E, Forrest, Matthew S, Dunning, Mark, In-
gle, Catherine E, Beazley, Claude, Thorne, Natalie, Redon,
Richard, Bird, Christine P, de Grassi, Anna, Lee, Charles,
et al. Relative impact of nucleotide and copy number variation
on gene expression phenotypes. Science, 315(5813):848–853,
2007.

Thompson, Bruce. Canonical correlation analysis: Uses and in-
terpretation. Number 47. Sage, 1984.

Thorndike, Robert M. Correlational procedures for research. Wi-
ley, 1976.

Tibshirani, Robert, Hastie, Trevor, Narasimhan, Balasubrama-
nian, and Chu, Gilbert. Class prediction by nearest shrunken
centroids, with applications to dna microarrays. Statistical Sci-
ence, pp. 104–117, 2003.

Torres, David A, Turnbull, Douglas, Barrington, Luke, and
Lanckriet, Gert RG. Identifying words that are musically
meaningful. In ISMIR, volume 7, pp. 405–410, 2007.

Van Essen, David C, Smith, Stephen M, Barch, Deanna M,
Behrens, Timothy EJ, Yacoub, Essa, Ugurbil, Kamil, Consor-
tium, WU-Minn HCP, et al. The wu-minn human connectome
project: an overview. Neuroimage, 80:62–79, 2013.

Vershynin, Roman. Introduction to the non-asymptotic analysis
of random matrices. arXiv preprint arXiv:1011.3027, 2010.

Waaijenborg, Sandra, Verselewel de Witt Hamer, Philip C, and
Zwinderman, Aeilko H. Quantifying the association between
gene expressions and dna-markers by penalized canonical cor-
relation analysis. Statistical Applications in Genetics and
Molecular Biology, 7(1), 2008.

Wiesel, Ami, Kliger, Mark, and Hero III, Alfred O. A greedy ap-
proach to sparse canonical correlation analysis. arXiv preprint
arXiv:0801.2748, 2008.

Witten, Daniela M and Tibshirani, Robert J. Extensions of sparse
canonical correlation analysis with applications to genomic
data. Statistical applications in genetics and molecular biol-
ogy, 8(1):1–27, 2009.

Witten, Daniela M, Tibshirani, Robert, and Hastie, Trevor. A pe-
nalized matrix decomposition, with applications to sparse prin-
cipal components and canonical correlation analysis. Biostatis-
tics, pp. kxp008, 2009.

Yang, Dan, Ma, Zongming, and Buja, Andreas. A sparse
SVD method for high-dimensional data. arXiv preprint
arXiv:1112.2433, 2011.

Zou, Hui and Hastie, Trevor. Regularization and variable selec-
tion via the elastic net. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(2):301–320, 2005.

Zou, Hui, Hastie, Trevor, and Tibshirani, Robert. Sparse principal
component analysis. Journal of computational and graphical
statistics, 15(2):265–286, 2006.



Sparse CCA and Beyond

A. Hardness
We provide a proof for the NP-hardness of the constrained
(and specifically sparse) CCA problem via a reduction from
sparse PCA. Recall that sparse PCA is the following opti-
mization problem:

max
u:‖u‖0=k
‖u‖2=1

u>Au, (13)

where k is a given parameter and A a given n× n positive
semidefinite (PSD) matrix.

We show that the sparse PCA problem (13) reduces to the
sparse CCA problem (2) and in particular the maximization

max
u:‖u‖0=k,‖u‖2=1
v:‖v‖0=k,‖v‖2=1

u>Av. (14)

The only difference between (13) and (14) is that in the lat-
ter the optimal values for the two variables u and v may
be different. If we add the constraint u = v in (14), then
then two maximizations are identical. We show that this is
not necessary: since A is PSD, the optimal solution of (14)
will inherently satisfy u = v, and in turn the two maxi-
mizations are equivalent.

Let U,Λ be the eigenvalue decomposition of A: the n×n
matrix U contains the eigenvectors, while the n × n di-
agonal Λ contains the eigenvalues λ1, . . . , λn ≥ 0 in de-
creasing order. Let (u?, v?) be the optimal solution of (14).
Further, let u = U>u?, and v = U>v?. Then,

u>? Av? = u>? UΛU>v? = u>Λv =

n∑
i=1

xiyiλi. (15)

Theorem 3 (Weighted Cauchy-Schwarz inequality; (?),
Theorem 10.1). Let ai, bi ∈ R be real numbers and let
mi ∈ R+, i = 1, 2, . . . , n. Then,(

n∑
i=1

aibimi

)2

≤
(

n∑
i=1

a2imi

)(
n∑
i=1

b2imi

)
.

Equality occurs if and only if a1b2 = . . . = an
bn

.

By Theorem 3,

(
u>? Av?

)2 ≤ ( n∑
i=1

x2iλi

)(
n∑
i=1

y2iλi

)
,

with equality if and only if there exists a constant c ∈ R
such that u = c · v, and taking into account that both u
and v are unit norm vectors, it follows that u = v. Finally,
since U is a full rank matrix (in fact orthonormal basis of
Rn), it follows that u? = v? must hold.

B. Proofs
For the remainder of this section, we define

(u?,v?), arg max
u∈U,v∈V

u>Av,

i.e., u?,v? is a feasible pair that maximizes –not necessar-
ily uniquely– the objective. Further, we assume that there
exists procedures to compute the exact soluton to PU (·) and
PV(·) in (5) and (6), running in time TU and TV , respec-
tively. The following results can be easily adapted for the
case where these procedures yield approximate solutions.

Lemma B.3. For any real m× n matrix A with
rank(A) = r ≤ max{m,n} and ε ∈ (0, 1), Algorithm 1
with input A, r, and T = Õ

(
2r·log2(2/ε)

)
outputs u] ∈ U

and v] ∈ V such that

u>] Av] ≥ u>? Av? − ε · σ1(A),

in time TSVD(r) +O
(
T ·
(
TU + TV + r ·max{m,n}

))
.

Proof. In the sequel, U, Σ and V are used to denote the
r-truncated singular value decomposition of A. Note that
the lemma assumes that the accuracy parameter r is equal
to the rank of the input matrix A and hence A = UΣV>.

Recall that u?,v? is a pair —not necessarily unique— that
maximizes the objective u>Av over all feasible solutions.
Define c?,V>v?. Note that c? is a vector in Rr×1 with
‖c?‖2 ≤ 1 since the r columns of V are orthonormal and
‖v?‖2 = 1. Finally, let c?,c?/‖c?‖2. Note that ‖c?‖2 >
0 since by assumption u>? Av? > 0.

Algorithm 1 operates in an iterative fashion. In each itera-
tion, it independently considers a point c selected randomly
and uniformly from the r-dimensional `2-unit sphere Sr−12

and generates a candidate solution pair at each point. For
T = Õ

(
2r·log2(2/ε)

)
, the collection of randomly sampled

poins forms an ε/2-net for Sr−12 . By definition, the ε/2-net
contains a point c̃ ∈ Rr×1, such that

‖c̃− c?‖2 ≤ ε/2. (16)

Let (ũ, ṽ) be the candidate solution pair computed at c̃ by
the two step maximization procedure, i.e., let

ũ , arg max
u∈U

u>UΣc̃ (17)

and

ṽ , arg max
v∈V

ũ>Av. (18)
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By the definition of c?, and letting ρ,‖c?‖2
u>? Av? = u>? UΣc?

= ρ · u>? UΣc?

= ρ · u>? UΣc̃ + ρ · u>? UΣ
(
c? − c̃

)
≤ ρ · ũ>UΣc̃ + ρ · u>? UΣ

(
c? − c̃

)
≤ ρ · ũ>UΣc̃ + ε

2 · σ1(A). (19)

The first inequality follows from the fact that ũ by defini-
tion maximizes the first term over all u ∈ U . The last in-
equality is due to Lemma C.8 and the fact that ‖u?‖2 = 1
and ρ ≤ 1. We further upper bound the right hand side
of (19) as follows:

ρ · ũ>UΣc̃

= ρ · ũ>UΣc? + ρ · ũ>UΣ(c̃− c?)

= ũ>UΣc? + ρ · ũ>UΣ(c̃− c?)

= ũ>UΣV>v? + ρ · ũ>UΣ(c̃− c?)

≤ ũ>UΣV>ṽ + ρ · ũ>UΣ(c̃− c?) (20)

≤ ũ>Aṽ + ε
2 · σ1(A). (21)

Inequality (20) follows by the fact that ṽ by definition (18)
maximizes the bilinear term u>Av over all v ∈ V when
u = ũ. The last inequality is once again due to Lemma C.8
and the fact that ‖u?‖2 = 1 and ρ ≤ 1. Combining (19)
and (21), we obtain

ũ>Aṽ ≥ u>? Av? − ε · σ1(A).

Algorithm 1 computes multiple candidate solution pairs
and outputs the one that maximizes the objective. There-
fore, the output pair (u],v]) must achieve a value as least
as high as that achieved by (ũ, ṽ), which implies the de-
sired guarantee.

The running time of Algorithm 1 follows straightforwardly
by inspection. The algorithm first computes the truncated
singular value decomposition of inner dimension r in time
denoted by TSVD(r). Subsequently, it performs T iter-
ations. The cost of each iteration is determined by the
cost of the matrix-vector multiplications and the running
times TU and TV of the operators PU (·) and PV(·). Note
that matrix multiplications can exploit the available singu-
lar value decomposition of A and are performed in time
r ·max{m,n}. Substituting the value of T, completes the
proof.

Theorem 1. For any real m× n matrix A, ε ∈ (0, 1),
and r ≤ max{m,n}, Algorithm 1 with input A, r, and
T = Õ

(
2r·log2(2/ε)

)
outputs u] ∈ U and v] ∈ V such that

u>] Av] ≥ u>? Av? − ε · σ1(A)− 2 · σr+1(A),

in time TSVD(r) +O
(
T ·
(
TU + TV + r ·max{m,n}

))
.

Proof. Recall that Algorithm 1 with input an m × n ma-
trix A and accuracy parameter r, first computes a rank-r
truncated singular value decomposition U, Σ, V and oper-
ates on that principal subspace of A. Let B be the m × n
best rank-r approximation of A under the spectral norm.
Then B = UΣV>. One can easily verify that running
Algorithm 1 with input A and accuracy parameter r, is
equivalent to applying the algorithm on B with the same
parameters.

By Lemma B.3, Algorithm 1 outputs u],v] such that

u>] Bv] ≥ û>? Bv̂? − ε · σ1(B), (22)

where

(û?, v̂?), arg max
u∈U,v∈V

u>Bv

is a pair that optimally solves the maximization on the rank-
r matrix B. By the optimality of the pair û?, v̂? for the
rank-r problem, it follows that

û>? Bv̂? ≥ u>? Bv?. (23)

Recall that u?, v? is the pair that optimally solves the max-
imization on the original input matrix A. Further,

u>? Bv? = u>? Av? − u>? (A−B)v?

≥ u>? Av? −
∣∣u>? (A−B)v?

∣∣
≥ u>? Av? − σr+1(A). (24)

Combining (24) with (22) and (23),

u>] Bv] ≥ u>? Av? − σr+1(A)− ε · σ1(B).

Finally,

u>] Bv] = u>] Av] − u>] (A−B)v]

≤ u>] Av] +
∣∣u>] (A−B)v]

∣∣.
≤ u>] Av] + σr+1(A). (25)

Combining with the previous inequality, we obtain

u>] Av] ≥ u>? Av? − 2 · σr+1(A)− ε · σ1(B).

Noting that σ1(B) = σ1(A) completes the proof of the ap-
proximation guarantee. The running time of the algorithm
is established in Lemma B.3.

Lemma B.4. For any real m× n matrix A with
rank(A) = r ≤ max{m,n} and ε ∈ (0, 1), if V =
{v : ‖v‖2 = 1}, then Algorithm 1 with input A, r, and
T = Õ

(
2r·log2(2/ε)

)
outputs u] ∈ U and v] ∈ V such that

u>] Av] ≥ (1− ε) · u>? Av?

in time TSVD(r) +O
(
T ·
(
TU + TV + r ·max{m,n}

))
.
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Proof. The lemma focuses on the special case where the
feasible region for the variable v coincides with the set of
vectors with unit `2 norm, i.e.,

V = {v : ‖v‖2 = 1}. (26)

The feasible region U for u is arbitrary, assuming once
again that there exists an efficient operator PU (·).

By the Cauchy-Schwarz inequality, for any u0 ∈ Rm×1,

u>0 Av ≤ ‖u>0 A‖2, ∀v ∈ V. (27)

In fact, equality is achieved when v is aligned with A>u0,
i.e., for v = A>u0/‖A>u0‖2 ∈ V . In turn, for any u0 ∈
Rm×1,

max
v∈V

u>0 Av = u>0 AA>u0/‖A>u0‖2

= ‖A>u0‖2
= ‖VΣU>u0‖2
= ‖ΣU>u0‖2, (28)

where the last equality follows from the fact that the r
columns of V are orthonormal.

We now proceed in a fashion very similar to that in the
proof of Lemma B.3. Recall that u?,v? is a pair that maxi-
mizes –not necessarily uniquely– the objective u>Av over
all feasible solutions, and define c?,V>v?. Note that
here,

c?,V>v? = V>A>u?/‖A>u?‖2
= ΣU>u?/‖VΣU>u?‖2
= ΣU>u?/‖ΣU>u?‖2 (29)

and hence, ‖c?‖2 = 1. Following similar reasoning as in
the proof of Lemma B.3, Algorithm 1 considers a point
c̃ ∈ Rr×1, such that

‖c̃− c?‖2 ≤ ε.

Let (ũ, ṽ) be the candidate solution pair computed at c̃ by
the two step maximization procedure. We have,

u>? Av? = u>? UΣc?

= u>? UΣc̃ + u>? UΣ
(
c? − c̃

)
≤ ũ>UΣc̃ + ‖u>? UΣ‖2‖c? − c̃‖2
≤ ũ>UΣc̃ + ε · ‖u>? UΣ‖2. (30)

where the first inequality follows from the fact that ũ by
definition maximizes the first term at c̃ over all u ∈ U and
the Cauchy-Schwarz inequality. The key difference from
the proof of Lemma B.3, is that the term ‖u>? UΣ‖2 in the
right-hand side coincides with the optimal objective value

u>? Av? as follows from (28). For comparison, note that
in the proof of Lemma B.3 it was loosely upper bounded
by σ1(A). Continuing from (30),

(1− ε) · u>? Av? ≤ ũ>UΣc̃. (31)

But, once again by the Cauchy-Schwarz inequality,

ũ>UΣc̃ ≤ ‖ũ>UΣ‖2‖c̃‖2
= ‖ũ>UΣ‖2 (32)

and by (28),

ũ>UΣc̃ = max
v∈V

ũ>Av = ũ>Aṽ. (33)

Combining (33) with (31),

ũ>Aṽ ≥ (1− ε) · u>? Av? (34)

Recalling that Algorithm 1 outputs the candidate pair
that maximizes the objective among all computed feasible
points implies the desired result.

Theorem 2. For any real m× n matrix A and ε ∈ (0, 1),
if V = {v : ‖v‖2 = 1}, then Algorithm 1 with input A, r,
and T = Õ

(
2r·log2(2/ε)

)
outputs u] ∈ U and v] ∈ V such

that

u>] Av] ≥ (1− ε) · u>? Av? − 2 · σr+1(A)

in time TSVD(r) +O
(
T ·
(
TU + TV + r ·max{m,n}

))
.

Proof. The Theorem follows from Lemma B.4. The proof
is similar to that of Theorem 1. The main difference lies in
substituting (22) with

u>] Bv] ≥ (1− ε) · u>(B)?Bv(B)?. (35)

The remainder of the proof easily follows.

C. Auxiliary Lemmas
Lemma C.5. Let a1, . . . , an and b1, . . . , bn be 2n real
numbers and let p and q be two numbers such that 1/p +
1/q = 1 and p > 1. We have

∣∣ n∑
i=1

aibi
∣∣ ≤ ( n∑

i=1

|ai|p
)1/p · ( n∑

i=1

|bi|q
)1/q

.

Lemma C.6. For any A,B ∈ Rn×k,∣∣〈A,B〉∣∣,∣∣TR
(
A>B

)∣∣ ≤ ‖A‖F‖B‖F.

Proof. Treating A and B as vectors, the lemma follows
immediately from Lemma C.5 for p = q = 2.
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Lemma C.7. For any two real matrices A and B of ap-
propriate dimensions,

‖AB‖F ≤ min
{
‖A‖2‖B‖F, ‖A‖F‖B‖2

}
.

Proof. Let bi denote the ith column of B. Then,

‖AB‖2F =
∑
i

‖Abi‖22 ≤
∑
i

‖A‖22‖bi‖22

= ‖A‖22
∑
i

‖bi‖22 = ‖A‖22‖B‖2F .

Similarly, using the previous inequality,

‖AB‖2F = ‖B>A>‖2F ≤ ‖B>‖22‖A>‖2F = ‖B‖22‖A‖2F .

The desired result follows combining the two upper
bounds.

Lemma C.8. For any real m× k matrix X, m× n matrix
A, and n× k matrix Y,∣∣TR

(
X>AY

)∣∣ ≤ ‖X‖F · ‖A‖2 · ‖Y‖F.

Proof. We have∣∣TR
(
X>AY

)∣∣ ≤ ‖X‖F · ‖AY‖F ≤ ‖X‖F · ‖A‖2 · ‖Y‖F,

with the first inequality following from Lemma C.6 on
|〈X, AY〉| and the second from Lemma C.7.

Lemma C.9. For any real m × n matrix A, and pair of
m × k matrix X and n × k matrix Y such that X>X =
Ik and Y>Y = Ik with k ≤ min{m, n}, the following
holds:

∣∣TR
(
X>AY

)∣∣ ≤ √k · ( k∑
i=1

σ2
i

(
A
))1/2

.

Proof. By Lemma C.6,

|〈X, AY〉| =
∣∣TR
(
X>AY

)∣∣
≤ ‖X‖F · ‖AY‖F =

√
k · ‖AY‖F.

where the last inequality follows from the fact that ‖X‖2F =
TR
(
X>X

)
= TR

(
Ik
)

= k. Further, for any Y such that
YTY = Ik,

‖AY‖2F ≤ max
Ŷ∈Rn×k
Ŷ>Ŷ=Ik

‖AŶ‖2F =

k∑
i=1

σ2
i (A). (36)

Combining the two inequalities, the result follows.
Lemma C.10. For any real m× n matrix A, and any k ≤
min{m, n},

max
Y∈Rn×k
Y>Y=Ik

‖AY‖F =

(
k∑
i=1

σ2
i (A)

)1/2

.

The above equality is realized when the k columns of Y
coincide with the k leading right singular vectors of A.

Proof. Let UΣV> be the singular value decomposition of
A; U and V are m × m and n × n unitary matrices re-
spectively, while Σ is a diagonal matrix with Σjj = σj ,
the jth largest singular value of A, j = 1, . . . , d, where
d,min{m,n}. Due to the invariance of the Frobenius
norm under unitary multiplication,

‖AY‖2F = ‖UΣV>Y‖2F = ‖ΣV>Y‖2F . (37)

Continuing from (37),

‖ΣV>Y‖2F = TR
(
Y>VΣ2V>Y

)
=

k∑
i=1

v>i

 d∑
j=1

σ2
j · vjv>j

vi

=

d∑
j=1

σ2
j ·

k∑
i=1

(
v>j vi

)2
.

Let zj,
∑k
i=1

(
v>j vi

)2
, j = 1, . . . , d. Note that each indi-

vidual zj satisfies

0 ≤ zj,
k∑
i=1

(
v>j vi

)2 ≤ ‖vj‖2 = 1,

where the last inequality follows from the fact that the
columns of Y are orthonormal. Further,

d∑
j=1

zj =

d∑
j=1

k∑
i=1

(
v>j vi

)2
=

k∑
i=1

d∑
j=1

(
v>j vi

)2
=

k∑
i=1

‖vi‖2 = k.

Combining the above, we conclude that

‖AY‖2F =

d∑
j=1

σ2
j · zj ≤ σ2

1 + . . .+ σ2
k. (38)

Finally, it is straightforward to verify that if vi = vi, i =
1, . . . , k, then (38) holds with equality.


